当前位置: 仪器信息网 > 行业主题 > >

真空同步测试仪

仪器信息网真空同步测试仪专题为您提供2024年最新真空同步测试仪价格报价、厂家品牌的相关信息, 包括真空同步测试仪参数、型号等,不管是国产,还是进口品牌的真空同步测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合真空同步测试仪相关的耗材配件、试剂标物,还有真空同步测试仪相关的最新资讯、资料,以及真空同步测试仪相关的解决方案。

真空同步测试仪相关的仪器

  • 仪器简介:早在1964年,梅特勒托利多就上市了品牌首台商品化的TGA/DTA同步热分析仪。50多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,新版本的同步热分析仪TGA/DSC 3+于2015年5月8日正式在中国上市,以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 3+采用梅特勒托利多微量或超微量天平。并采用新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪pinp技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 3+可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC 3+是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。 主要特点:● 梅特勒托利多超微量天平–依赖出色的天平技术● 热重分析高分辨率–对整个测量范围的超微克分辨率● 高效自动化–选配非常可靠的自动进样器能处理大量样品 ● 温度范围广–从室温到1100或1600℃● 同步DSC 热流测量–同步测定热效应,灵敏度高● 密闭测量单元–确保完全定义的测量环境;确保真空度 ● 联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试 ● 模块化概念–量身定制的解决方案满足当前和以后的需要技术参数:● 仪器型号:TGA/DSC 3+同步热分析仪专业型● 温度范围:室温~1100°C或~1600°C● 天平灵敏度:0.1μg或0.01μg● 传感器热电耦数量:6对Pt-Pt/Rh热电偶● 量热温度分辨率:0.00003℃● 量热准确度(金属标样):1% 应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • 仪器简介:早在1964年,梅特勒托利多就上市了品牌首台商品化的TGA/DTA同步热分析仪。50多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,新版本的同步热分析仪TGA/DSC 3+于2015年5月8日正式在中国上市,以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 3+采用梅特勒托利多微量或超微量天平。并采用新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪pinp技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 3+可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC 3+是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。 主要特点:● 梅特勒托利多超微量天平–依赖出色的天平技术● 热重分析高分辨率–对整个测量范围的超微克分辨率● 高效自动化–选配非常可靠的自动进样器能处理大量样品 ● 温度范围广–从室温到1100或1600℃● 同步DSC 热流测量–同步测定热效应,灵敏度高● 密闭测量单元–确保完全定义的测量环境;确保真空度 ● 联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试 ● 模块化概念–量身定制的解决方案满足当前和以后的需要技术参数:● 仪器型号:TGA/DSC 3+同步热分析仪专业型● 温度范围:室温~1100°C或~1600°C● 天平灵敏度:0.1μg或0.01μg● 传感器热电耦数量:6对Pt-Pt/Rh热电偶● 量热温度分辨率:0.00003℃● 量热准确度(金属标样):1% 应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • 仪器简介:早在1964年,梅特勒托利多就上市了品牌首台商品化的TGA/DTA同步热分析仪。50多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,新版本的同步热分析仪TGA/DSC 3+于2015年5月8日正式在中国上市,以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 3+采用梅特勒托利多微量或超微量天平。并采用新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪pinp技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 3+可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC 3+是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。 主要特点:● 梅特勒托利多超微量天平–依赖出色的天平技术● 热重分析高分辨率–对整个测量范围的超微克分辨率● 高效自动化–选配非常可靠的自动进样器能处理大量样品 ● 温度范围广–从室温到1100或1600℃● 同步DSC 热流测量–同步测定热效应,灵敏度高● 密闭测量单元–确保完全定义的测量环境;确保真空度 ● 联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试 ● 模块化概念–量身定制的解决方案满足当前和以后的需要技术参数:● 仪器型号:TGA/DSC 3+同步热分析仪专业型● 温度范围:室温~1100°C或~1600°C● 天平灵敏度:0.1μg或0.01μg● 传感器热电耦数量:6对Pt-Pt/Rh热电偶● 量热温度分辨率:0.00003℃● 量热准确度(金属标样):1% 应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • 早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的同步热分析仪TGA/DSC 1至尊型以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 1至尊型采用世界最好的梅特勒托利多微量或超微量天平。并采用独一无二的新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 1至尊型可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC1至尊型 是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。技术参数:仪器型号:TGA/DSC 1同步热分析仪专业型温度范围:室温~1100° C或~1600° C天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)传感器热电耦数量:6对Pt-Pt/Rh热电偶量热温度分辨率:0.00003℃量热准确度(金属标样):1%主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品温度范围广&ndash 从室温到1100或1600℃同步DSC 热流测量&ndash 同步测定热效应,灵敏度高密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。主要型号: TGA/DSC1 查看更多信息咨询电话:
    留言咨询
  • 到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。40多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的同步热分析仪TGA/DSC 1专业型具有很强的测试性能和经久耐用的可靠性。热重分析的核心是天平单元,TGA/DSC 1专业型同步热分析仪采用世界最好的梅特勒托利多微量或超微量天平。并采用双铂铑热电偶DSC传感器,同时测量热流变化。TGA/DSC 1专业型同步热分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC1专业型同步热分析仪是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。同步热分析仪技术参数:仪器型号:TGA/DSC 1同步热分析仪专业型温度范围:室温~1100° C或~1600° C天平灵敏度:0.1µ g(百万分子一)或0.01µ g(千万分子一)传感器热电耦数量:2对Pt-Pt/Rh热电偶量热温度分辨率:0.0001℃量热准确度(金属标样):2%同步热分析仪主要特点:梅特勒托利多超微量天平&ndash 依赖领先的天平技术热重分析高分辨率&ndash 对整个测量范围的超微克分辨率高效自动化&ndash 选配非常可靠的自动进样器能处理大理样品温度范围广&ndash 从室温到1100或1600℃同步DSC 热流测量&ndash 同步测定热效应,灵敏度高密闭测量单元&ndash 确保完全定义的测量环境;确保真空度联用技术&ndash 联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试模块化概念&ndash 量身定制的解决方案满足当前和以后的需要同步热分析仪应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。同步热分析仪主要型号: TGA/DSC1到梅特勒托利多公司官网详细了解 TGA/DSC1 热重及同步热分析仪查看更多信息咨询电话:4008-878-788
    留言咨询
  • 仪器简介:STA 6000 同步热分析仪——性能与效率的完美结合 STA 6000 同步热分析仪为您提供优异的性能、稳定的可靠性和杰出的效率。 STA 6000 同步热分析仪以常规测试和高级研发为设计宗旨,采用独创的传感器技术来达到更佳的准确性和高质量测试结果。STA6000的专利技术SaTurnATM传感器和集约的炉体设计使该仪器具有更佳的温度控制、更好的测试一致性、更快的升降温速度。如果您认为测试效率是非常关键的,STA6000的立式设计装换样品非常方便,另外,可选配45位的自动进样器进行自动测试。可同步测得TG、DTA模式(△T)和DSC模式(mW)数据结果。采用专利的SaTurnATM传感器,可同步精确的测试样品温度和参比温度。集约式炉体设计获得更佳的控温能力,从而得到更准确的测试结果。起始测试温度为15oC,能很好的控制样品中水分和溶剂的挥发。内置式自动气体质量控制切换装置,可以更好的控制测试气氛。更快的冷却速率,大大提高仪器的使用效率。可选配45位自动进样器,进行无人看管的测试操作。仪器功能强大、体积灵巧,便于实验室安置。采用功能强大的PyrisTM操作软件。SaTurnA传感器STA6000采用自主专利技术的SaTurnATM传感器进行高质量的TG和DTA/DSC同步测试。SaTurnATM传感器将样品盘支架和铂金材料的参比环组合在一起,这样可以将样品盘的热性能和参比热电偶巧妙的配合起来,从而可得到好的DTA基线平直特性和优异的灵敏度。样品温度和参比温度都是直接测得,具有很多的解析特性。样品盘支架和参比环都采用纯铂金材质,耐腐蚀性佳,测试范围广。
    留言咨询
  • 产品概述 SYN5104型时间频率综合测试仪是由西安同步电子科技有限公司精心设计、自行研发生产的一款专门针对时间频率同步性能进行全方位测试的高端便携式时间频率综合测试设备,对时间频率各项性能指标进行测量、分析和评估,不但满足时频测试需求而且能作为时频信号激励源。该测试仪接收GPS北斗二代卫星定时信号,驯服恒温晶振(可选铷钟),使其输出频率同步于卫星铯原子钟信号上,产生准确的多种时间频率信号,实时精确测量多种时间频率信号,为时间同步装置及时统设备的现场检测、校验、验收提供了有效而便捷的解决方案。产品特点精度高、高性价比;功能齐全、性能可靠;频率比对数值自动存储和计算;高精度、 高可靠性、 方便性和直观性。产品功能在结构设计上,将时间标准源、时差测量和测试结果显示三块功能实现一体化, 从而可以在一台便携式智能仪表中方便而准确地完成测试项目;测试功能齐全:时间准确度、频率准确度、报文准确度,周波测量,温湿度测量,时间记录,PTP/NTP等网络测量;选件丰富:测量E1/2048KHz、SyncE、DCF77等,输出1MHz、5MHz,B码ST光口等,时差测量分辨率提高到0.1ns,频率准确度提高到12位/s,内置铷钟等;采用GPS/北斗二代卫星定时信号控制内置振荡器提供高精度时间频率标准,测量精度100 ns;能直接测量,在前面板上直接显示被测时钟和标准时间的时差,测量方式直观方便;可便携移动,既可用于现场,又可用于检测机构;可以输出时间信号与更高级的标准时间源进行比对,以标定本测试仪的精度等级。也可用于给现场有需求的设备提供高精度的时间信号;测量结果数据自动导出到计算机中;具有7AH电池供电。典型应用时频同步产品的研发、中试、标定;电力系统,计量校准部门及科研院所等;可用于实验室对时间频率产品进行检测和标定;3G/4G/5G时频同步、轨道交通时间同步系统、军网时统系统、卫星授时等精密时频同步测试。技术指标输入信号GPS/北斗二代双模接收机频点L1、B1定时精度(RMS)≤30ns跟踪灵敏度-160dBmGPS北斗二代双模天线数量1套形状蘑菇头线长30米物理接口BNC支架蘑菇头安装支架正弦 /脉冲路数2路波形1路正弦,1路脉冲电平TTL电平:0V-7V;触发电平:2.5V交流幅度(标称10MHz):1Vpp-10Vpp 频率范围0.1Hz-40MHz(脉冲)30kHz-30MHz(正弦)测量精度≤2E-8/s时差测量路数2路电平2路TTL触发沿上升沿/下降沿测量内容单通道测量/双通道测量/1PPS测量/1PPM测量/1PPH测量测量方式单次、连续测量精度≤100ns时间记录路数4路脉冲1(TTL)/脉冲2(TTL)/串口(RS232)/串口(RS422)触发沿上升沿/下降沿测量精度≤100ns(TTL)SOE信号采用本功能进行测量周波测量路数1路 交流220v电压88~264VAC频率47~63Hz测量精度:±0.005Hz/s温湿度测量温度测量范围0~50℃温度测量精度25℃±2℃湿度测量范围20%~90%湿度测量精度25℃±5%串口测量指标路数2路电平1路串口(RS232)1路串口(RS422)波特率4800/9600/19200/38400/57600/115200 bit/sIRIG-B电平1路TTL直流1路RS232C直流1路RS422/485直流1路600Ω平衡交流1路非平衡交流测量标准国军标(2991A-2008)/美标(STD 200-04)E1/2048KHz测试(选件)路数2路信号E1/2048KHz阻抗RJ45(120Ω)和BNC(75Ω)协议G.704SSM解析16种SSM标志位测量准确度≤2E-8/s网络测量NTP/SNTP测试路数1路RJ45功能主从测试协议NTP/SNTPV1.0-V4.0解析分辨率≤0.2usPTP测试路数1路RJ45功能主从测试协议IEEE STD 1588(PTPV2)测试精度≤50nsGOOSE时标测试路数1路RJ45(与NTP共用端口)协议IEC61850解析分辨率≤1ms输出信号10MHz输出路数1路电平正弦幅度≥7dBm 默认9dBm ±1dBm准确度≤1E-12 (跟踪到卫星信号24小时后平均值)≤5E-10 (卫星信号失效24小时后平均值)输出阻抗50欧姆物理接口BNC1PPS脉冲信号路数1路电平TTL同步误差≤100ns物理接口BNCE1/2048KHz(选件)路数2路阻抗RJ45(120Ω)和BNC(75Ω)信号E1/2.048Mbps/2048KHz协议G.704SSM可设置16种标志容差±50ppmIRIG-B码输出路数5路电平1路TTL1路RS232C1路RS422/4851路平衡交流1路非平衡交流标准国军标(2991A-2008)/美标(STD 200-04)串口输出路数1路电平RS232C串口格式RMC语句/ZDA语句/ST语句波特率4800/9600/19200/38400/57600/115200物理接口DB9环境特性工作温度0℃~+50℃相对湿度≤90%(40℃)存储温度-30℃~+70℃存储路数2路 (1路USB(预留),1路DB9公头)U盘存储兼容绝大多数U盘 满足USB2.0规约,插上u盘等待5s以后即可以进行自动存储,只要启动测试,数据就会自动存储,停止测试则会结束存储串口通信实时发送测量数据到上位机供电电源交流88~264VAC,47~63Hz,功率小于40W,电池:7AH机箱尺寸4U,19″标准机箱选件SyncE、DCF77、1MHz、5MHz,B码st光口,时差测量分辨率0.1ns,频率准确度12位/s,内置铷钟等
    留言咨询
  • EEG脑电系统和fNIRS近红外脑成像系统都是测量大脑活动的可靠技术,但是技术特点非常不同,并且各有优劣。来自荷兰的脑电设备供应商TMSi和近红外脑成像供应商Artinis紧密合作,打造了EEG与fNIRS同步测试方案。方案从硬件和软件两方面进行深度整合。软件:Artinis的近红外脑成像软件OxySoft可以在采集近红外数据的同时还可以同步采集EEG数据,两种模态数据同步和整合。硬件:TMSi公司专门为SAGA脑电系统打造了环形电极,让fNIRS的近红外光极探头更容易和电极一起布置,并且位置重复性更好。了解更多信息请浏览SAGA脑电系统和Artinis近红外脑成像系统OxyMonBrite、OctaMon。
    留言咨询
  • 1、产品介绍 T1000S 同步测温仪(10通道),测温精度在全量程范围内优于±0.01℃,不需要切换通道,10个通道可以同步测量,全通道采集时间小于1s。带有专业的操作软件,可实现二次开发,通过软件可以显示各种测量数据,原始数据可保存。仪器内置ITS-90温标及工业铂电阻温度计算公式。 2、主要特点 测温准确度高:全量程范围内测量准确度可达± 0.01 ℃;测量速度快:各通道幵行数据采集,全通道采集时间小于 1s;同步测量:可实现多通道同步测量,满足客户需要;测温范围宽:-200~+850 ℃(取决于所选配的温度计);触摸操作:7 英寸触摸屏,不需要与业操作人员,节省人力成本;内置 ITS90:内置 ITS90 标准,直接显示温度而无需人工计算。 3、主要技术参数温度范围:-200~850 ℃采集通道:10通道准确度:±0.01℃分 辨 率: 0.001℃年发化率: < 5mK /年采集周期:全通道采集时间 1 s单 位: ℃/℉/K/Ω操作界面: 7 英寸显示屏数据传输: RS-485 接口、B 型 USB 接口、RJ-45 网络接口连接探头: 5 芯直式插头操作系统 :Windows外观尺寸: 365×260×160(L×W×H,mm)工作环境: 0~40℃,≤ 65% RH电 源: 110/220 V,50/60 Hz
    留言咨询
  • 高频分布式动态同步测量采集系统高频分布式动态同步测量采集系统是我们信赖的、可靠的测量设备,已赢得了良好的声誉在多年来严酷的环境下工作中。产品优势:1:独立的模块每个奥林巴斯的独立模块可以连接到一个计算机实时进行测量。使用测量支持软件,独立模块可方便组件台架测试和实验室应用。2:模块化设计奥林巴斯采集模块提供一个完全可定制的系统。几个奥林巴斯模块可以配置在一起,得到更优解决方案。3:分布式系统奥林巴斯模块可以集中或分布在整个测量网络。模块由一个奥林巴斯采集和同步控制。OLYMPUS测量:Olympus模块测量通道数量简述TEMP 120热电偶20混合和匹配所有热电偶类型和每个通道都有一个专用的参考温度。UNIVERSAL 112通用12衡量任何传感器类型包括脉冲、电压、桥,热电偶和数字传感器。VOLT 108模拟8 or 16模拟测量与24位ADC的分辨率测量电压和桥。 Volt 116 可进行16的2线制或32的1线制测量。VOLT 116模拟16 or 32SPECTRUM 103高速 模拟310000 Hz同步测量32位ADC,分辨率测量,电压和桥。SPECTRUM 109高速 模拟9VWIRE 305动态振动频率8动态和同步频率测量20、50、100、200和333赫兹。对于较大的通道数系统或长期/远程应用程序,一个奥林巴斯数据采集系统 可以记录和使用通讯平台。Olympus 数据采集:数据采集简述SURVEYOR连接,查看和记录任何奥林巴斯模块的实时 图形显示。OLYMPUS 6一个入门级的数据采集系统,有测量功能和 同步多个奥林巴斯模块的能力。OLYMPUS 9同步高速测量20 ns或更快。增加系统-系统 与本地GPS同步。 large-channel-count网络的能力。OLYMPUS 10含括奥林巴斯9的功能,并添加了四个监听或广播CAN通道。
    留言咨询
  • 一、简介T1000S是10通道同步测温仪,在-200~+850 ℃范围内可实现±0.001 ℃的测温准确度,测量单位℃/℉/K/Ω自由切换,内置ITS90标准。满足物理、化学、生物、医疗等大多数工业测量及科学研究等对温度测量的需求。 二:主要特点: 测温准确度高:全量程范围内测量准确度可达± 0.001 ℃;同步测量:可实现多通道同步测量,满足客户需要;测温范围宽:-200~+850 ℃(取决于所选配的温度计);触摸操作:7英寸触摸屏,不需要专业操作人员,节省人力成本;内置ITS90:内置ITS90标准,直接显示温度而无需人工计算。 三、技术参数: T1000S温度范围-200~850℃通 道 数10通道准 确 度± 0.01℃分 辨 率0.001℃年变化率< 0.005℃采集周期单通道采集时间 1 s单 位℃/℉/K/Ω操作界面7英寸显示屏数据传输USB连接探头5 芯直式插头操作系统Windows外观尺寸365×260×160(L×W×H,mm)工作环境0~40℃,≤ 65% RH电 源110/220 V,50/60 Hz
    留言咨询
  • 全球唯一可同步测量P700与气体交换的系统全球唯一可同步测量P700、叶绿素荧光与气体交换的系统便携式光合-荧光测量系统&mdash &mdash GFS-3000是一台配备高精度4通道绝对开路式非扩散红外气体分析器的光合仪,是目前世界上功能最强大、操作最简单、界面最人性化的光合仪,有多种方式可以进行气体交换与叶绿素荧光的同步测量,包括在人工光下同步测量气体交换与叶绿素荧光、在自然光下同步测量气体交换与叶绿素荧光、同步测量气体交换与荧光成像等。双通道PAM-100荧光仪&mdash &mdash Dual-PAM-100是大名鼎鼎的PAM-101/102/103的升级版,是全球唯一一台可同步测量叶绿素荧光(PS II活性)与P700(PS I活性)的仪器,代表了调制叶绿素荧光与P700测量的最高水平。2009年,WALZ公司设计出一个特制的Dual-PAM气体交换叶室&mdash &mdash 3010-DUAL,可以将Dual-PAM-100与GFS-3000结合起来,在世界上第一次做到了同步测量植物叶片的P700、叶绿素荧光与气体交换!主要功能 * 同步测量P700、叶绿素荧光与气体交换 * 同步测量P700、叶绿素荧光与气体交换的暗-光诱导曲线 * 同步测量P700、叶绿素荧光与气体交换的光响应曲线和CO2响应曲线 * 典型的气体交换测量,如光合作用、蒸腾作用、呼吸作用 * 典型的叶绿素荧光测量,如诱导曲线、快速光曲线、淬灭分析、暗驰豫等 * 典型的P700曲线测量 * 叶绿素荧光与P700的快速诱导动力学等 * 编程进行复杂的同步或独立测量应用领域植物生理学、植物病理学、农学、林学、园艺学等,特别适合于进行深入的光合作用机理研究,可深入探讨植物光合机构对各种环境胁迫的复杂的变化响应机理。测量参数 * PS II参数:Fo, Fm, F, Fm&rsquo , Fv/Fm, Y(II)=△F/Fm&rsquo , Fo&rsquo , qP, qL, qN, NPQ, Y(NPQ), Y(NO)和ETR(II)等* PS I参数:P700, Pm, Pm&rsquo , P700red, Y(I), Y(ND), Y(NA)和ETR(I)等* 气体交换参数:参比室和样品室的CO2绝对值(CO2abs,CO2sam),参比室和样品室的H2O绝对值(H2Oabs,H2Osam),流速(gas flow),环境气压(Pamb),叶室温度(Tcuv),叶片温度(Tleaf),环境温度(Tamb),环境PAR(PARamb),叶室内叶片正面PAR(PARtop),叶室内叶片背面PAR(PARbot),叶室相对湿度(rH),蒸腾速率(E),水气压饱和亏(VPD),叶片气孔导度(GH2O),净光合速率(A),胞间CO2浓度(Ci),环境CO2浓度(Ca),植物水分利用效率,CO2响应曲线,光响应曲线等Dual-PAM气体交换叶室&mdash &mdash 3010-DUAL 专为DUAL-PAM-100与GFS-3000的同步测量设计,由特制叶室(带温度和PAR传感器)、风扇、导光杆、电子盒与支架构成。同步测量时,光源完全由DUAL-PAM-100的测量头提供,气体交换由GFS-3000的红外分析器检测,P700和叶绿素荧光由DUAL-PAM-100的检测器测量。需要注意的是,3010-DUAL可以连接DUAL-PAM-100的DUAL-DB测量头,但不能连接DUAL-DR测量头。DUAL-DR的光学单元太复杂,连接3010-DUAL容易损伤DUAL-DR。主要技术参数 1)Dual-PAM气体交换叶室&mdash &mdash 3010-DUAL * 设计:专为GFS-3000与Dual-PAM-100或KLAS-100的同步测量设计,叶室上下可通过导光杆与Dual-PAM-100的测量头DUAL-DB(不可连接DUAL-DR!)和DUAL-E连接,叶室的气路与电子盒连接到GFS-3000的主控单元3000-C上。* 叶室温度测量:Pt 100 A型热电阻,测量范围-10~+50℃,精度± 0.1℃* 温度控制:低于环境温度10℃~+50℃* 叶片温度测量:热电耦,测量范围-10~+50℃,精度± 0.2℃* 外置微型光量子传感器:测量PAR,范围0~2000 &mu mol m-2 s-1,精度± 5%* 叶面积:1.3 cm2* 工作温度:-5~+45℃* 尺寸:叶室10 cm x 4 cm 12 cm;电子盒7 cm x 7 cm x 15 cm* 重量:包括叶室、电子盒、电缆与安装架,1.7 kg;工作台ST-101,2 kg2)Dual-PAM-100* P700双波长测量光:LED,830 nm和870 nm* PSII荧光测量光:LED,460 nm(DUAL-DB)或620 nm(DUAL-DR)* 红色光化光:LED阵列,635 nm;最大连续光强2000 &mu mol m-2 s-1* 蓝色光化光:LED,460 nm;最大连续光强700 &mu mol m-2 s-1* 单周转饱和闪光(ST):200000 &mu mol m-2 s-1,5~50 &mu s可调* 多周转饱和闪光(MT):20000 &mu mol m-2 s-1,1~1000 ms可调3)GFS-3000* CO2测量:0~3000 ppm,分辨率:0.01ppm* CO2控制:0~2000 ppm* H2O测量:0~75000 ppm,分辨率:0.01ppm* H2O控制:0~100% rh(可加湿)* 温度测量:-10℃ ~ +50℃* 温度控制:低于环境温度10℃ ~ +50℃* PAR测量:0~2500 &mu mol m-2 s-1* PAR控制:0~2000 &mu mol m-2 s-1* 气压测量:60~110 kPa
    留言咨询
  • 非接触亚微米分辨红外拉曼同步测量系统—mIRage美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的非接触式亚微米分辨红外拉曼同步测量系统。基于PSC专利的光热诱导共振(PTIR)技术,mIRage显微红外光谱仪突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。mIRage显微红外克服了传统红外光谱的诸多不足: &bull 空间分辨率受限于红外光光波长,只有10-20 μm&bull 透射模式需要复杂的样品准备过程,且只限于薄片样品&bull 无传统ATR模式下的散射像差和接触污染 mIRage显微红外的优势之处在于: &bull 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长&bull 与透射模式相媲美的反射模式下的图谱效果&bull 非接触测量模式——使用简单快捷,无交叉污染风险&bull 很少或无需样品制备过程 (无需薄片), 可测试厚样品&bull 可透射模式下观察液体样品&bull 实现同时同地相同分辨率的IR和Raman测试,无荧光风险 测试数据1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing. 图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布很少或无需样品制备的多层高分子膜的O-PTIR分析高分子薄膜层间的亚微米空间分辨O-PTIR分析2、高分子 高分子膜缺陷。左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰环氧树脂包埋聚苯乙烯球的亚微米分辨O-PTIR线扫描PS和PMMA微塑料混合物的亚微米红外拉曼同步O-PTIR光谱和成像分析3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 矿物质的红外成像:小鼠骨骼中的蛋白质分布分析 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μmPLA/PHBHx生物塑料薄片的O-PTIR光谱和成像分析 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm 右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域 &bull 故障分析和缺陷&bull 微电子污染&bull 食品加工&bull 地质学 &bull 考古和文物鉴定发表文章[1] Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution, Ji-Xin Cheng et al., Sci. Adv. 2016, 2, e1600521.[2] Mid-Infrared Photothermal Imaging of Active Pharmaceutical Ingredients at Submicrometer Spatial Resolution, Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.[4] Advances in Infrared Microspectroscopy and Mapping Molecular Chemical Composition at Submicrometer Spatial Resolution, Spectroscopy 2018.[5] Evolution of a Radical-Triggered Polymerizing High Internal Phase Emulsion into an Open-Cellular Monolith, Macromolecular Chemistry and Physics, 2019.[6] A Global Perspective on Microplastics, Journal of Geophysical Research: Ocean, 2019.[7] Super-Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons (Front Cover), Advanced Science, 2020.[8] Self-formed 2D/3D Heterostructure on the Edge of 2D Ruddlesden-Popper Hybrid Perovskites Responsible for Intriguing Optoelectronic Properties and Higher CellEfficiency, Applied Physics, 2020.[9] Two-Dimensional Correlation Analysis of Highly Spatially Resolved Simultaneous IR and Raman Spectral Imaging of Bioplastics Composite Using Optical Photothermal Infrared and Raman Spectroscopy, The Journal of Molecular Structure, 2020.[10] Super resolution correlative far-field submicron simultaneous IR and Raman microscopy: a new paradigm in vibrational spectroscopy, Advanced Chemical Microscopy for Life Science and Translational Medicine, 2020.[11] Submicron-resolution polymer orientation mapping by optical photothermal infrared spectroscopy, International Journal of Polymer Analysis and Characterization, 2020.[12] Bulk to nanometre-scale infrared spectroscopy of pharmaceutical dry powder aerosols, Analytical Chemistry, 2020.[13] Optical Photothermal Infrared Micro-Spectroscopy – A New Non-Contact Failure Analysis Technique for Identification of10mm Organic Contamination in the Hard drive and other Electronics Industries. Microscopy Today, 2020.[14] Spontaneous Formation of 2D-3D Heterostructures on the edges of 2D RuddlesdenPopper Hybrid Perovskite Crystals, Chemistry of Materials, 2020.[15] Simultaneous Optical Photothermal Infrared (OPTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles, Analytical Chemistry, 2020.[16] Detection of high explosive materials within fingerprints by means of optical-photothermal infrared spectromicroscopy, Analytical Chemistry, 2020.[17] Polarized O-PTIR of collagen and individual fibril strands reveals orientation, Molecules Special Edition: “Biomedical Raman and Infrared Spectroscopy: Recent Advancement and Applications, 2020.用户单位科学研究生物医学应用部分用户评价:应用案例■ 偏振红外光谱助力胶原蛋白的分子取向研究在过去的十年里,红外(IR)光谱已被广泛应用于哺乳动物组织中的胶原蛋白研究。对有序胶原蛋白光谱的更好理解将有助于评估受损胶原蛋白和疤痕组织等疾病。因此,利用偏振红外光研究胶原蛋白(I型胶原和II型胶原)的层状结构和径向对称性逐渐成为研究热点。近期,在Kathleen M. Gough等人的研究中[1],作者采用基于光学光热红外(O-PTIR)专利技术的PSC非接触亚微米分辨红外拉曼同步测量系统 mIRage对样品?500 nm单点区域收集振动光谱,如图1所示。该光学光热红外(O-PTIR)技术的工作原理是光热检测,其中红外量子级联激光器(QCL)激发样品在1800–800 cm-1光谱范围内的分子振动。产生的光热效应通过短波长探测激光器检测。图1A-B中的光谱表明,固有的激光偏振所获得的高对比度所产生的光谱与使用FTIR焦平面阵列和偏振器组合进行的光谱测试近乎一致。并且对于安装在玻璃显微镜的不同载玻片,样品均获得了具有良好SNR的高质量光谱。图1. 从CaF2窗口利用O-PTIR测试控制肌腱原纤维获得的光谱。用平行于激光偏振的原纤维获得的顶光谱(红色);蓝色是垂直方向上的光谱。右侧是在垂直方向基于1655 cm-1的单波长图像。正方形表示光谱采集位置。比例尺= 1 μm。 光学光热红外(O-PTIR)技术可以通过在载物台上轻易地旋转样品来测试平行和垂直于红外激光偏振方向的光谱。并利用光学光热红外(O-PTIR)技术在几个单一频率下对原纤维成像,以获得表观物理宽度的确定性估计。如图1右侧所示,在垂直方向上, 1655 cm-1处记录的单波长图像的红黄带表明该原纤维的宽度不超过500 nm。该尺寸将目标物标定为真正的原纤维,并且可与红外s-SNOM实验中检测到的300 nm原纤维相当。光学光热红外(O-PTIR)技术与nano-FTIR的测试结果相互印证,反映了“原纤维”宽度的标准范围。此外作者观察到,来自原纤维的酰胺I和II谱带比完整肌腱的窄,并且相对强度和谱带形状都发生了变化。这些光谱反映出在偏振红外光下正常I型胶原纤维的更多有用信息,并可作为研究胶原组织的基准。与基于焦平面阵列检测器的偏振远场傅立叶变换红外(FF-FTIR)光谱相比,光学光热红外(O-PTIR)具有更高的空间分辨率,且可提供单波长光谱。使用FF-FTIR FPA探测往往包括其他非胶原材料。同时,光学光热红外(O-PTIR)还可以提供偏振平行于原纤维取向的原纤维光谱。这也是光学光热红外(O-PTIR)和纳米FTIR光谱对直径为100~500 nm的胶原原纤维给出证实性和互补性结果的首次证明。综上所述,这些结果为进一步研究生物样品中的胶原蛋白提供了广阔的基础。 参考文献:[1]. Gorkem Bakir, Benoit E. Girouard, Richard Wiens, Stefan Mastel, Eoghan Dillon, Mustafa Kansiz, Kathleen M. Gough, Molecules 2020, 25, 4295 doi:10.3390/molecules25184295.■ 光热红外显微技术首次应用于刑侦领域指纹中易爆炸物的检测传统的可视化指纹检测手段,如扑粉,茚三酮熏蒸,真空金属沉积等,尽管可以重建指纹图案,但其同时可能对一些指纹脊状突起中含有的化学物质造成破坏。近年来,许多技术被用于指纹中痕量外源物质的分析鉴定,如解吸电喷雾电离质谱(DESI-MS),液相色谱-质谱(LC-MS),但通常需要额外的溶剂喷雾处理,且空间分辨率不足(~150 μm),或者分析过程会对指纹造成破坏。傅里叶变换红外(FTIR)光谱显微镜,可以探测样品中分子间化学键的固有分子振动,并提供丰富的化学信息, 已成为一种快速、无需标记、无损的样品表征方法,被广泛应用于包括刑侦在内的众多领域。FTIR透射模式测试通常选用红外光透明的材料,而反射模式则选用硅片,聚酯薄膜或铝覆盖的玻璃基底,但两者在指纹分析上多局限于收集在选定波数下指纹中组分物质的二维分布信息。另外对于那些沉积在既不透明也不反射红外的基底上的样品,衰减全反射法(Attenuated total reflectance,ATR)成为选择,但ATR通常不是法医鉴定的一种理想方法,因为ATR要求被分析的样品和ATR晶体紧密接触,往往会导致样品变形甚至最后破坏剩余的证据。基于以上考虑,新加坡国立大学同步辐射光源线站的科学家们和新加坡刑事调查局刑侦部门共同合作开发出了一种新的红外检测手段,即使用基于新型光热红外(Optical- Photothermal InfraRed,O-PTIR)技术的非接触亚微米分辨红外拉曼同步测量系统mIRage来分析指纹中含有的痕量易爆炸物微粒,该技术带来了一系列的优势,如亚微米级的红外光谱和成像分辨率,易操作的远场、非接触显微镜工作模式和明显高于FTIR光谱显微镜的灵敏度。作者认为O-PTIR技术是一种分析具有挑战性样品的理想手段,如隐藏的指纹,提供隐藏在大量外源物质中的微小(亚微米)粒子的化学信息(如易爆物)且不需要复杂的样品制备过程。这些信息可以通过单波数红外成像和亚微米空间分辨率的红外光谱获得,后者使用目前的FTIR光谱显微镜是无法做到的(分辨率受限于红外波长,约10-20 μm)。另外,该分析手段非常简单快捷,无破坏性,且不需要基于接触的方法(例如ATR光谱技术),使得样品的完整性被完全的保持。特别指出的是,该技术的非破坏性非常重要,尤其是在法医领域,因为它可以允许同时使用其他技术对相同样本进行互补和比对分析,并作为法律证据。此外,随着技术的发展,O-PTIR现在可以与拉曼显微镜相结合,以提供真正的亚微米同步的红外拉曼测试,使得在一个仪器上通过一次测量即可进行互补和验证分析。■ 亚微米空间分辨同步IR + Raman光谱成像分析 PLA/PHA生物微塑料薄片来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且相对便宜,但同时也引发了人们对于塑料垃圾在环境中累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是最终回归自然,安全而又环保。虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的功能材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用基于光学光热红外技术(O-PTIR)的新一代非接触亚微米分辨红外拉曼同步测量系统mIRage对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在机理。PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域同步O-PTIR红外和拉曼光谱分析(左为红外,右为拉曼)。O-PTIR作为一种新型的光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了许多限制。首先,O-PTIR可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射极限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于FTIR的谱图,从而避免了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),O-PTIR的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在O-PTIR方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure, DOI: 10.1016/j.molstruc.2020.128045.■ 非接触式亚微米O-PTIR光谱成像技术研究Ruddlesden-Popper混合钙钛矿边缘的形成低能量边缘光致发光的研究,对提高Ruddlesden-Popper钙钛太阳能电池效率有着十分重要的影响和意义。在本篇研究中,电子科技大学王志明教授课题组与Photothermal Spectroscopy Corp公司合作,使用O-PTIR技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage研究MAPbBr3在(BA)2(MA)2Pb3Br板边缘分布情况。本研究使用O-PTIR技术探测具有以下优势:首先(BA)2(MA)2Pb3Br10和MAPbBr3之间由于缺少BA,因此其红外光谱具备显著的差异;其次,这种非接触式探测能够有效避免样品高度,探针污染所带来的问题;另外,无论是BA缺陷,还是BA对MA的比例已有使用FTIR光谱研究的报道,具备良好的基础。图1 O-PTIR观测边缘的MAPbBr3的红外光谱信息。(a)(BA)2(MA)n-1 bn br3n+1(n = 1,2,3,∞)钙钛矿的红外光谱;(b-c)(BA)2(MA)2Pb3Br10和MAPbBr3的中MA+分子在1480 cm-1 (b)和BA+分子 1580 cm-1 (c)的图谱;(d) (BA)2(MA)2Pb3Br10的PL图像;(e)在(d)中所示的中心区域和边缘的红外光谱图通过O-PTIR的测量(图1),能够观测到随着BA的含量降低,~1580 cm-1处的峰的相对强度减小,峰值伴随着向1585 cm-1的峰值偏移。这主要是由于(BA)2(MA)2Pb3Br10在1580 cm-1附近有两个涉及NH3振动的红外吸收带:一个在1575 cm-1处(BA+),另一个在1585 cm-1处(MA+)。当BA含量降低时,1575 cm-1处的带强度降低,导致峰值强度在约1580 cm-1处降低,并伴随向1585 cm-1偏移。在测试中观测到的另外一个现象为~1480 cm-1与~1580 cm-1的相对强度比增大,因为1478 cm-1的振动(CH3振动)仅与MA+相关,因此~1480 cm-1的强度没有变化,而1580 cm-1却由于BA含量降低而降低,导致比值的降低。■ 非接触式亚微米O-PTIR光谱成像技术研究高内相乳液聚合演变过程在高内相乳液(HIPE)中,初始离散单元在聚合过程中或之后转变成由窗口高度互联聚合体的时间和方式,一直是一个有争议的问题。2D O-PTIR(optical photothermal infrared)新表面成像技术为探索这个polyHIPE的窗口形成机理提供了机会,只要检测目标区域的大小相对于分辨率来说足够大。2D PTIR技术基于以下工作原理:一束红外激光聚焦在样品表面 被吸收的红外光使样品升温,诱导光热响应 这种本征的光热响应被一束可见光所检测;因此可与FTIR透射模式质量相媲美的图谱被使用反射模式所得到。该技术有四大优势:使用可见光为检测光,可以将分辨率提高到 ~ 500 nm;非接触式的光学显微镜;分辨率不依赖于红外光波长;不会产生弥散的伪影。同济大学万德成教授课题组与Photothermal Spectroscopy Corp公司合作,利用光学光热红外技术(O-PTIR)技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对polyHIPE的聚合体进行了红外光谱和成像分析,探究其演变过程及形成机理。图1. A) 3% 表面活性剂用量诱导的polyHIPE选取区域的光学照片, B) 相应的mIRage 2D O-PTIR图像。C) 插图为典型的选定区域附近的局部表面形貌(通过SEM),D) 插图为立方状样品的光学照片(≈5×5×5 cm3)。(B)图条件:红色代表强烈的反应,绿色代表几乎没有反应,而黄色代表对1492 cm-1处的激光束的中等反应。图2. 在1600 (绿色)和1492 cm -1(红色)激光束照射下的多聚体表面的mIRage 2D O-PTIR图像。B) 一系列的FTIR光谱提取采样点(箭头尾)。每个采样点的高度比为1600/1492 cm-1,如(C)所示,相邻的采样点为250 nm■ 科学家借助mIRage首次成功直观揭示神经元中淀粉样蛋白聚集机理老年神经退行性疾病,如阿尔茨海默症(AD)、肌萎缩性侧索硬化症、Ⅱ型糖尿病等,目前困扰着全世界大约5亿人,且这个数字仍在不断迅速增长。尤其是阿尔兹海默症(占70%以上),目前仍未有行之有效的诊断方法,因此无法得到有效的治疗或预防。尽管当代病理学研究已经证实这种病理变化与具有神经毒性的β淀粉样蛋白质的聚集有关,但其在神经元或脑组织中的聚集机制目前尚不清楚。现有的方法, 如电子显微镜、免疫电子显微镜、共聚焦荧光显微镜、超分辨显微镜,通常都需要对样品进行化学加工(标记染色等),可能会对淀粉样蛋白结构本身造成影响。而非标记方法,如表面增强拉曼光谱(SERS)和傅里叶变换红外光谱(FTIR), 前者受限于亚细胞水平上的低信噪比、自发荧光及不可逆的光损伤,后者其空间分辨率受限于红外光波长(≈5–10 μm),且光谱可解译性和准确性受到弹性细胞光散射所产生的米氏散射效应(Mie scattering effects)的严重影响,使得直接在亚微米尺度上研究淀粉样蛋白质在神经元内的聚集行为十分困难。近日,瑞典隆德大学的Klementieva教授团队与美国PSC公司的Mustafa Kansiz博士合作,使用全新非接触式亚微米分辨红外测量系统,在亚微米尺度上研究了淀粉样蛋白沿着神经突直到树突棘的聚集行为(图1B和C),这是以往的实验技术手段所不可能实现的。该技术是在非接触模式下工作,不会对神经元造成损伤,这在研究脆弱或粘性的物质时显得尤为重要。另外,该技术还能获得亚微米尺度的红外光谱,且不含由于背景失真或米氏散射造成的散射伪影。最新的技术进步表明,全新的非接触式亚微米分辨红外测量系统mIRage现在可以用来做活细胞成像,并保持相同的亚微米空间分辨率。在这种情况下,全新的非接触式亚微米分辨红外测量系统有望在β片层结构在活神经元的突触附近的化学成像中发挥关键作用,并提供一个新的机会来研究神经毒性淀粉样蛋白如何从一个患病的神经元传播到一个健康的神经元,揭示阿尔茨海默症的形成和发展机制。该工作发表在2020年的Advanced Sciences上(DOI: 10.1002/advs.201903004)。
    留言咨询
  • 非接触亚微米分辨红外拉曼同步测量系统—mIRagemIRage是美国PSC公司发布的一款应用广泛的非接触式亚微米分辨红外拉曼同步测量系统。基于光热诱导共振(PTIR)技术,mIRage显微红外光谱仪突破了传统红外的光学衍射极限,其空间分辨率可达亚微米级,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的限。与传统FTIR不同,不依赖于残留的IR辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。mIRage显微红外克服了传统红外光谱的诸多不足: - 空间分辨率受限于红外光光波长,只有10-20 μm- 透射模式需要复杂的样品准备过程,且只限于薄片样品- 无传统ATR模式下的散射像差和接触污染 mIRage显微红外的优势之处在于: ☆ 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长☆ 与透射模式相媲美的反射模式下的图谱效果☆ 非接触测量模式——使用简单快捷,无交叉污染风险☆ 很少或无需样品制备过程 (无需薄片), 可测试厚样品☆ 可透射模式下观察液体样品☆ 实现同时同地相同分辨率的IR和Raman测试,无荧光风险 测试数据1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing. 图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布很少或无需样品制备的多层高分子膜的O-PTIR分析高分子薄膜层间的亚微米空间分辨O-PTIR分析2、高分子 高分子膜缺陷。左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰环氧树脂包埋聚苯乙烯球的亚微米分辨O-PTIR线扫描PS和PMMA微塑料混合物的亚微米红外拉曼同步O-PTIR光谱和成像分析3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 矿物质的红外成像:小鼠骨骼中的蛋白质分布分析 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μmPLA/PHBHx生物塑料薄片的O-PTIR光谱和成像分析 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm 右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域 故障分析和缺陷微电子污染食品加工地质学 考古和文物鉴定......部分应用案例■ 微塑料检测——微塑料颗粒新来源及形成机制南京大学环境学院季荣教授和苏宇副研究员团队与美国麻省大学邢宝山教授等合作,利用mIRage O-PTIR显微光谱仪,建立了一种新型的(微)塑料表面亚微米尺度化学变化表征方法。研究团队通过对比分析四个国际主流品牌奶嘴产品在蒸汽消毒前后表面形貌及分子结构的变化,首先证实了蒸汽消毒引起硅橡胶老化具有普遍性。研究发现,硅橡胶婴儿奶嘴的主要成分为聚二甲基硅氧烷(PDMS)及树脂添加剂聚酰胺(PA)(图2b和2c),在经过蒸汽消毒(100 °C)时表面发生降解并释放出微纳塑料颗粒(图2a)。另外借助O-PTIR特有的单一波长大范围成像技术,作者统计了奶嘴消毒过程中PDMS降解产生的1.5 μm以上塑料颗粒数量,并估算出正常奶瓶喂养一年进入婴儿体内的该类微塑料总量约为66万颗,比此前文献报道的儿童从空气、水和食物中摄入的热塑性微塑料数量之和高出一个数量级;假如这些微塑料全部被排入环境,全球平均排放量可能高达5.2万亿个/年。上述结果表明硅橡胶奶嘴消毒产生的颗粒物可能是儿童体内和环境中微纳塑料的重要来源。图2. 使用水热分解法对硅橡胶试样表面进行蒸汽腐蚀;(a) 实验装置及O-PTIR工作原理示意图 (b)样品蒸煮60 × 10 min表面前后的光学图像 (c) 图(b)中位置1-16的归一化O-PTIR光谱■ 偏振红外光谱助力胶原蛋白的分子取向研究在过去的十年里,红外(IR)光谱已被广泛应用于哺乳动物组织中的胶原蛋白研究。对有序胶原蛋白光谱的更好理解将有助于评估受损胶原蛋白和疤痕组织等疾病。因此,利用偏振红外光研究胶原蛋白(I型胶原和II型胶原)的层状结构和径向对称性逐渐成为研究热点。近期,在Kathleen M. Gough等人的研究中[1],作者采用基于光学光热红外(O-PTIR)技术的PSC非接触亚微米分辨红外拉曼同步测量系统 mIRage对样品?500 nm单点区域收集振动光谱,如图1所示。该光学光热红外(O-PTIR)技术的工作原理是光热检测,其中红外量子联激光器(QCL)激发样品在1800–800 cm-1光谱范围内的分子振动。产生的光热效应通过短波长探测激光器检测。图1A-B中的光谱表明,固有的激光偏振所获得的高对比度所产生的光谱与使用FTIR焦平面阵列和偏振器组合进行的光谱测试近乎一致。并且对于安装在玻璃显微镜的不同载玻片,样品均获得了具有良好SNR的高质量光谱。图1. 从CaF2窗口利用O-PTIR测试控制肌腱原纤维获得的光谱。用平行于激光偏振的原纤维获得的光谱(红色);蓝色是垂直方向上的光谱。右侧是在垂直方向基于1655 cm-1的单波长图像。正方形表示光谱采集位置。比例尺= 1 μm。 光学光热红外(O-PTIR)技术可以通过在载物台上轻易地旋转样品来测试平行和垂直于红外激光偏振方向的光谱。并利用光学光热红外(O-PTIR)技术在几个单一频率下对原纤维成像,以获得表观物理宽度的确定性估计。如图1右侧所示,在垂直方向上, 1655 cm-1处记录的单波长图像的红黄带表明该原纤维的宽度不超过500 nm。该尺寸将目标物标定为真正的原纤维,并且可与红外s-SNOM实验中检测到的300 nm原纤维相当。光学光热红外(O-PTIR)技术与nano-FTIR的测试结果相互印证,反映了“原纤维”宽度的标准范围。此外作者观察到,来自原纤维的酰胺I和II谱带比完整肌腱的窄,并且相对强度和谱带形状都发生了变化。这些光谱反映出在偏振红外光下正常I型胶原纤维的更多有用信息,并可作为研究胶原组织的基准。与基于焦平面阵列检测器的偏振远场傅立叶变换红外(FF-FTIR)光谱相比,光学光热红外(O-PTIR)具有更高的空间分辨率,且可提供单波长光谱。使用FF-FTIR FPA探测往往包括其他非胶原材料。同时,光学光热红外(O-PTIR)还可以提供偏振平行于原纤维取向的原纤维光谱。这也是光学光热红外(O-PTIR)和纳米FTIR光谱对直径为100~500 nm的胶原原纤维给出证实性和互补性结果的次证明。综上所述,这些结果为进一步研究生物样品中的胶原蛋白提供了广阔的基础。 参考文献:[1]. Gorkem Bakir, Benoit E. Girouard, Richard Wiens, Stefan Mastel, Eoghan Dillon, Mustafa Kansiz, Kathleen M. Gough, Molecules 2020, 25, 4295 doi:10.3390/molecules25184295.■ 光热红外显微技术次应用于刑侦领域指纹中易爆炸物的检测传统的可视化指纹检测手段,如扑粉,茚三酮熏蒸,真空金属沉积等,尽管可以重建指纹图案,但其同时可能对一些指纹脊状突起中含有的化学物质造成破坏。近年来,许多技术被用于指纹中痕量外源物质的分析鉴定,如解吸电喷雾电离质谱(DESI-MS),液相色谱-质谱(LC-MS),但通常需要额外的溶剂喷雾处理,且空间分辨率不足(~150 μm),或者分析过程会对指纹造成破坏。傅里叶变换红外(FTIR)光谱显微镜,可以探测样品中分子间化学键的固有分子振动,并提供丰富的化学信息, 已成为一种快速、无需标记、无损的样品表征方法,被广泛应用于包括刑侦在内的众多领域。FTIR透射模式测试通常选用红外光透明的材料,而反射模式则选用硅片,聚酯薄膜或铝覆盖的玻璃基底,但两者在指纹分析上多局限于收集在选定波数下指纹中组分物质的二维分布信息。另外对于那些沉积在既不透明也不反射红外的基底上的样品,衰减全反射法(Attenuated total reflectance,ATR)成为选择,但ATR通常不是法医鉴定的一种理想方法,因为ATR要求被分析的样品和ATR晶体紧密接触,往往会导致样品变形甚至后破坏剩余的证据。基于以上考虑,新加坡国立大学同步辐射光源线站的科学家们和新加坡刑事调查局刑侦部门共同合作开发出了一种新的红外检测手段,即使用基于新型光热红外(Optical- Photothermal InfraRed,O-PTIR)技术的非接触亚微米分辨红外拉曼同步测量系统mIRage来分析指纹中含有的痕量易爆炸物微粒,该技术带来了一系列的优势,如亚微米的红外光谱和成像分辨率,易操作的远场、非接触显微镜工作模式和明显高于FTIR光谱显微镜的灵敏度。作者认为O-PTIR技术是一种分析具有挑战性样品的理想手段,如隐藏的指纹,提供隐藏在大量外源物质中的微小(亚微米)粒子的化学信息(如易爆物)且不需要复杂的样品制备过程。这些信息可以通过单波数红外成像和亚微米空间分辨率的红外光谱获得,后者使用目前的FTIR光谱显微镜是无法做到的(分辨率受限于红外波长,约10-20 μm)。另外,该分析手段非常简单快捷,无破坏性,且不需要基于接触的方法(例如ATR光谱技术),使得样品的完整性被完全的保持。特别指出的是,该技术的非破坏性非常重要,尤其是在法医领域,因为它可以允许同时使用其他技术对相同样本进行互补和比对分析,并作为法律证据。此外,随着技术的发展,O-PTIR现在可以与拉曼显微镜相结合,以提供真正的亚微米同步的红外拉曼测试,使得在一个仪器上通过一次测量即可进行互补和验证分析。■ 亚微米空间分辨同步IR + Raman光谱成像分析 PLA/PHA生物微塑料薄片来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且相对便宜,但同时也引发了人们对于塑料垃圾在环境中累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是终回归自然,安全而又环保。虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的功能材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用基于光学光热红外技术(O-PTIR)的新一代非接触亚微米分辨红外拉曼同步测量系统mIRage对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在机理。PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域同步O-PTIR红外和拉曼光谱分析(左为红外,右为拉曼)。O-PTIR作为一种新型的光谱技术,具有传统FTIR显微镜不可比拟的优点,并克服了许多限制。先,O-PTIR可以提供空间分辨率约为500 nm的红外谱图,远远超过了典型的红外衍射限空间分辨率,且不依赖于入射红外波长。更重要的是,它能够以反射/非接触(远场)工作模式简单快速的生成高质量的类似于FTIR的谱图,从而避免了制备样本薄切片的必要,且光谱与商用FTIR数据库搜索完全兼容和可译。另外,即使样品中包含易产生荧光干扰的组分(压制拉曼信号或造成其饱和),O-PTIR的可调制信号收集特性也确保它完全不受任何荧光的影响。IR和Raman在O-PTIR方法的结合下,可以充分利用这两种互补性技术的优势,实现同步的红外吸收和拉曼散射测量,并相互印证。参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure, DOI: 10.1016/j.molstruc.2020.128045.■ 非接触式亚微米O-PTIR光谱成像技术研究Ruddlesden-Popper混合钙钛矿边缘的形成低能量边缘光致发光的研究,对提高Ruddlesden-Popper钙钛太阳能电池效率有着十分重要的影响和意义。在本篇研究中,电子科技大学王志明教授课题组与Photothermal Spectroscopy Corp公司合作,使用O-PTIR技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage研究MAPbBr3在(BA)2(MA)2Pb3Br板边缘分布情况。本研究使用O-PTIR技术探测具有以下优势:先(BA)2(MA)2Pb3Br10和MAPbBr3之间由于缺少BA,因此其红外光谱具备显著的差异;其次,这种非接触式探测能够有效避免样品高度,探针污染所带来的问题;另外,无论是BA缺陷,还是BA对MA的比例已有使用FTIR光谱研究的报道,具备良好的基础。图1 O-PTIR观测边缘的MAPbBr3的红外光谱信息。(a)(BA)2(MA)n-1 bn br3n+1(n = 1,2,3,∞)钙钛矿的红外光谱;(b-c)(BA)2(MA)2Pb3Br10和MAPbBr3的中MA+分子在1480 cm-1 (b)和BA+分子 1580 cm-1 (c)的图谱;(d) (BA)2(MA)2Pb3Br10的PL图像;(e)在(d)中所示的中心区域和边缘的红外光谱图通过O-PTIR的测量(图1),能够观测到随着BA的含量降低,~1580 cm-1处的峰的相对强度减小,峰值伴随着向1585 cm-1的峰值偏移。这主要是由于(BA)2(MA)2Pb3Br10在1580 cm-1附近有两个涉及NH3振动的红外吸收带:一个在1575 cm-1处(BA+),另一个在1585 cm-1处(MA+)。当BA含量降低时,1575 cm-1处的带强度降低,导致峰值强度在约1580 cm-1处降低,并伴随向1585 cm-1偏移。在测试中观测到的另外一个现象为~1480 cm-1与~1580 cm-1的相对强度比增大,因为1478 cm-1的振动(CH3振动)仅与MA+相关,因此~1480 cm-1的强度没有变化,而1580 cm-1却由于BA含量降低而降低,导致比值的降低。■ 非接触式亚微米O-PTIR光谱成像技术研究高内相乳液聚合演变过程在高内相乳液(HIPE)中,初始离散单元在聚合过程中或之后转变成由窗口高度互联聚合体的时间和方式,一直是一个有争议的问题。2D O-PTIR(optical photothermal infrared)新表面成像技术为探索这个polyHIPE的窗口形成机理提供了机会,只要检测目标区域的大小相对于分辨率来说足够大。2D PTIR技术基于以下工作原理:一束红外激光聚焦在样品表面 被吸收的红外光使样品升温,诱导光热响应 这种本征的光热响应被一束可见光所检测;因此可与FTIR透射模式质量相媲美的图谱被使用反射模式所得到。该技术有四大优势:使用可见光为检测光,可以将分辨率提高到 ~ 500 nm;非接触式的光学显微镜;分辨率不依赖于红外光波长;不会产生弥散的伪影。同济大学万德成教授课题组与Photothermal Spectroscopy Corp公司合作,利用光学光热红外技术(O-PTIR)技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage(图1)对polyHIPE的聚合体进行了红外光谱和成像分析,探究其演变过程及形成机理。图1. A) 3% 表面活性剂用量诱导的polyHIPE选取区域的光学照片, B) 相应的mIRage 2D O-PTIR图像。C) 插图为典型的选定区域附近的局部表面形貌(通过SEM),D) 插图为立方状样品的光学照片(≈5×5×5 cm3)。(B)图条件:红色代表强烈的反应,绿色代表几乎没有反应,而黄色代表对1492 cm-1处的激光束的中等反应。图2. 在1600 (绿色)和1492 cm -1(红色)激光束照射下的多聚体表面的mIRage 2D O-PTIR图像。B) 一系列的FTIR光谱提取采样点(箭头尾)。每个采样点的高度比为1600/1492 cm-1,如(C)所示,相邻的采样点为250 nm■ 科学家借助mIRage次成功直观揭示神经元中淀粉样蛋白聚集机理老年神经退行性疾病,如阿尔茨海默症(AD)、肌萎缩性侧索硬化症、Ⅱ型糖尿病等,目前困扰着全大约5亿人,且这个数字仍在不断迅速增长。尤其是阿尔兹海默症(占70%以上),目前仍未有行之有效的诊断方法,因此无法得到有效的治疗或预防。尽管当代病理学研究已经证实这种病理变化与具有神经毒性的β淀粉样蛋白质的聚集有关,但其在神经元或脑组织中的聚集机制目前尚不清楚。现有的方法, 如电子显微镜、免疫电子显微镜、共聚焦荧光显微镜、超分辨显微镜,通常都需要对样品进行化学加工(标记染色等),可能会对淀粉样蛋白结构本身造成影响。而非标记方法,如表面增强拉曼光谱(SERS)和傅里叶变换红外光谱(FTIR), 前者受限于亚细胞水平上的低信噪比、自发荧光及不可逆的光损伤,后者其空间分辨率受限于红外光波长(≈5–10 μm),且光谱可解译性和准确性受到弹性细胞光散射所产生的米氏散射效应(Mie scattering effects)的严重影响,使得直接在亚微米尺度上研究淀粉样蛋白质在神经元内的聚集行为十分困难。近日,瑞典隆德大学的Klementieva教授团队与美国PSC公司的Mustafa Kansiz博士合作,使用全新非接触式亚微米分辨红外测量系统,在亚微米尺度上研究了淀粉样蛋白沿着神经突直到树突棘的聚集行为(图1B和C),这是以往的实验技术手段所不可能实现的。该技术是在非接触模式下工作,不会对神经元造成损伤,这在研究脆弱或粘性的物质时显得尤为重要。另外,该技术还能获得亚微米尺度的红外光谱,且不含由于背景失真或米氏散射造成的散射伪影。新的技术进步表明,全新的非接触式亚微米分辨红外测量系统mIRage现在可以用来做活细胞成像,并保持相同的亚微米空间分辨率。在这种情况下,全新的非接触式亚微米分辨红外测量系统有望在β片层结构在活神经元的突触附近的化学成像中发挥关键作用,并提供一个新的机会来研究神经毒性淀粉样蛋白如何从一个患病的神经元传播到一个健康的神经元,揭示阿尔茨海默症的形成和发展机制。该工作发表在2020年的Advanced Sciences上(DOI: 10.1002/advs.201903004)。 图1. (A) 美国PSC公司非接触式亚微米分辨红外测量系统mIRage实物图;(B)亚微米红外成像示意图:神经元树突的AFM形貌图,其中神经元直接在CaF2基底下生长。mIRage采用两束共线性光束: 532 nm可见(绿色)提取光束和脉冲红外(红色)探测光束,样品的光热响应被检测为样品由于对脉冲红外光束的吸收而引发的绿色光部分强度的损失,使红外检测的空间分辨率提高到≈500 nm. (C) 小鼠大脑皮层初神经元, 在CamKII促进下表达为tdTomato荧光蛋白,使得神经元结构填满红色,图片标尺为20 μm。(D) 图C区域放大图片,箭头指示树突上的神经元刺。参考文献:Super‐Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons.用户单位科学研究生物医学应用部分用户评价:发表文章[1] Optical photothermal infrared spectroscopy for nanochemical analysis of pharmaceutical dry powder aerosols. Khanal, D. et al. International Journal of Pharmaceutics, 2023Pharmaceuticals[2] Fluorescently Guided Optical Photothermal Infrared Microspectroscopy for Protein-Specific Bioimaging at Subcellular Level. Prater, C et al.Journal of Medicinal Chemistry, 2023Life Science[3]SOLARIS national synchrotron radiation centre in Krakow, Poland. Szlachetko, J. et al. The European Physical Journal Plus, 2023Central facility[4]Innovative Vibrational Spectroscopy Research for Forensic Application. Weberm A. et al. Analytical Chemistry, 2023Forensic[5]High-Throughput Antimicrobial Susceptibility Testing of Escherichia coli by Wide-Field Mid-Infrared Photothermal Imaging of Protein Synthesis. Guo, Z. et al.Analytical Chemistry, 2023Life Science[6]Prebiotic-Based Nanoamorphous Atorvastatin Attenuates Nonalcoholic Fatty Liver Disease by Retrieving Gut and Liver Health. Cui, J, et al.Small Structures, 2023Life Science[7]Optical photothermal infrared spectroscopy: A novel solution for rapid identification of antimicrobial resistance at the single-cell level via deuterium isotope labeling. Shams, S. et al.Front. Microbiol., 2023Life Science[8]Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy. Jubb, A. et al.Organic Geochemistry, 2023Paleontology[9]Concurrent surface enhanced infrared and Raman spectroscopy with single molecule sensitivity. Anderson, M. et al.Review of Scientific Instrument, 2023Instrumentation/Space exploration[10]A review on analytical performance of micro- and nanoplastics analysis methods. Thaiba, B.M. et al.Arabian Journal of Chemistry, 2023Microplastics[11]Video-rate Mid-infrared Photothermal Imaging by Single Pulse Photothermal Detection per Pixel. Xin, J. et al.bioRxiv, 2023Life Science[12]Microfluidics as a Ray of Hope for Microplastic Pollution. Ece, E. et al.biosensors, 2023Microplastics[13]Solid–Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of Electrolyte Additives. Sarra, A. et al.Batteries, 2023Batteries[14]Critical assessment of approach towards estimation of microplastics in environmental matrices. Raj, D. et al.Land Degradationa and Development, 2023Microplastics[15]Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot. Ma, X. et al.Analytical Chemistry, 2022Art and cultural heritage[16]Development of a Binary Digestion System for Extraction Microplastics in Fish and Detection Method by Optical Photothermal Infrared. Yan, F. et al.Frontiers in Marine Science, 2022Microplastics[17]Automated analysis of microplastics based on vibrational spectroscopy: are we measuring the same metrics?. Dong, M. et al.Analytical and Bioanalytical Chemistry, 2022Microplastics[18]Vitamin D and Calcium Supplementation Accelerate Vascular Calcification in a Model of Pseudoxanthoma Elasticum. Bouderlique, E. et al.International Journal of Molecular Sciences, 2022Pharmaceuticals[19]Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objects. Marchetti, A. et al.Science Advance, 2022Art and cultural heritage[20]Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue. Mankar, R. et al.Applied Spectroscopy, 2022Biomedical and life science[21]Identification of spectral features differentiating fungal strains in infrared absorption spectroscopic images. Stancevic, D. et al.Lund Univ, Ugrad Thesis, 2022Bio and environmental[22]Optical photothermal infrared spectroscopy can differentiate equine osteoarthritic plasma extracellular vesicles from healthy controls. Clarke, E. et al.BioXvid, 2022BioXvid[23]Correlative imaging to resolve molecular structures in individual cells: substrate validation study for super-resolution infrared microspectroscopy. Paulus, A. et al.Nanomedicine: Nanotechnology, Biology, and Medicine, 2022Biomedical and life science[24]Emerging nuclear methods for historical painting authentication: AMS-14C dating, MeV-SIMS and O-PTIR imaging, Global IBA, Differential-PIXE and Full-field PIXE mapping. Calligaro, T. et al.Forensic Science International, 2022Art and cultural heritage[25]Strong PP/PTFE microfibril reinforced composites achieved by enhanced crystallization under CO2 environment. Zhang, A. et al.Polymer Testing, 2022Polymer[26]Leveraging high-resolution spatial features in mid-infrared spectroscopic imaging to classify tissue subtypes in ovarian cancer. Gajjela, C. et al.BioarXiv, 2022Biomedical and life science[27]APPLICATION OF OPTICAL PHOTOTHERMAL INFRARED (O-PTIR) SPECTROSCOPY TO ASSESS BONE COMPOSITION AT THE SUBMICRON SCALE. Reiner, E. et al.Temple Univ, Master thesis, 2022Biomedical and life science[28]Matrix/Mineral Ratio and Domain Size Variation with Bone Tissue Age: a Photothermal Infrared Study. Ahn, T. et al.Journal of Structural Biology, 2022Journal of Structural Biology[29]Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level. Lime, C. et al.Chemical Science, 2022Biomedical and life science[30]Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Yang, R. et al.International Journal of Pharmaceutics, 2022Pharmaceuticals[31]Super-Resolved 3D Mapping of Molecular Orientation Using Vibrational Techniques. Koziol, P. et al.Journal of American Chemical Society, 2022Polymer[32]Analysis of the Chemical Distribution of Self-assembled Microdomains with Selective Localization of Amine-functionalized Graphene Nanoplatelets by Optical Photothermal Infrared Microspectroscopy. He, S. et al.Analytical Chemistry, 2022Material - graphene[33]Synovial joint cavitation initiates with microcavities in interzone and is coupled to skeletal flexion and elongation in developing mouse embryo limbs. Kim, M. et al.Biology Open, 2022Biomedical and life science[34]Infrared Spectroscopy–Quo Vadis?. Hlavatsch, M. et al.applied sciences, 2022infrared spectroscopy, photonics[35]Steam disinfection enhances bioaccessibility of metallic nanoparticles in nano-enabled silicone-rubber baby bottle teats, pacifiers, and teethers. Su, Y. et al.Journal of Environmental Science, 2022Microplastics[36]NOVEL SPECTROSCOPY TECHNIQUES USED TO INTERROGATE EQUINE OSTEOARTHRITIC EXTRACELLULAR VESICLES. Clarke, E. et al.Osteoarthritis and Cartilage, 2022Biomedical and life science[37]Using mid infrared to perform investigations beyond the diffraction limits of microcristalline pathologies: advantages and limitation of Optical PhotoThermal IR spectroscopy. Bazin, D. et al.Comptes Rendus. Chimie, 2022Biomedical and life science[38]Optical photothermal infrared spectroscopy can differentiate equine osteoarthritic plasma extracellular vesicles from healthy controls. Clarke, E. et al.Analytical Methods, 2022Biomedical and life science[39]Probing Individual Particles Generated at the Freshwater–Seawater Interface through Combined Raman, Photothermal Infrared, and X-ray Spectroscopic Characterization. Mirrielees, J. et al.ACS Meas. Sci. Au, 2022Environmental and Microplastics[40]Parts-per-Million Detection of Trace Crystal Forms Using AF-PTIR Microscopy. Razumtcev, A. et al.Analytical Chemistry, 2022Pharmaceuticals[41]Curious Corrosion Compounds Caused by Contact: A Review of Glass-InducedMetal Corrosion onMuseum Exhibits (GIMME). Eggert, G. et al.corrosion and materials degradation, 2022Art and conservation[42]Comparison of ATR–FTIR and O-PTIR Imaging Techniques for the Characterisation of Zinc-Type Degradation Products in a Paint Cross-Section. Chua, L. et al.Molecules, 2022Cultural heritage[43]Ultrafast Widefield Mid-Infrared Photothermal Heterodyne Imaging. Paiva, E. et al.Analytical Chemistry, 2022Photonics, bio[44]Chapter 8 - Raman-integrated optical photothermal infrared microscopy: technology and applications. Li, X. et al.Molecular and Laser Spectroscopy, 2022Photonics, bio[45]Chapter 9 - Optical photothermal infrared spectroscopic applications in microplastics—comparison with Fourier transform infrared and Raman spectroscopy. Krafft, C. et al.Molecular and Laser Spectroscopy, 2022Microplastics[46]Contribution of Infrared Spectroscopy to the Understanding of Amyloid Protein Aggregation in Complex Systems. Ami, D. et al.Front. Mol. Biosci., 2022Bio and life science review[47]Novel Submicron Spatial Resolution Infrared Microspectroscopy for Failure Analysis of Semiconductor Components. Zulkifli, S. et al.IPFA 2022 Proceedings, 2022FA/contamination[48]Overcoming challenging Failure Analysis sample types on a single IR/Raman platform. Anderson, J. et al.ISTFA 2022 Proceedings, 2022FA/contamination[49]Boosting Electrocatalytic Nitrate-to-Ammonia Conversion via Plasma Enhanced CuCo Alloy–Substrate Interaction. Wu, A. et al.ACS. Sustainable Chem. Eng., 2022Catalysis[50]Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification. Boeke, J. et al.Scientific Report, 2022Microplastics[51]Super-resolution infrared microspectroscopy reveals heterogeneous distribution of photosensitive lipids in human hair medulla. Sandt, C. et al.Talanta, 2022Life science, hair[52]Functional group Inhomogeneity in Graphene Oxide using Correlative Absorption Spectroscopy. Yoo, J. et al.Applied Surface Science, 2022Material science[53]Polystyrene: A Self-Dispersing, Ultralow Loading Additive for Improving the Breakdown Strength of Polypropylene for High Voltage Power Cable Applications. Lee, S. et al.ACS Applied Polymer Materials, 2022Polymer, material science
    留言咨询
  • 负压真空测漏仪_包装密封性测试仪MFY-CM密封试验仪专业适用于产品的密封试验,通过试验可以有效地比较和评价软包装件的密封工艺及密封性能,是食品、塑料软包装、湿巾、制药、日化等行业理想的密封试验检测仪器。产品特点:◎ 7寸彩色触摸屏,人性化操作更便捷;◎ 保压与压力递增两种试验模式,满足不同材料测试需求;◎ 全自动控制,抽压、保压、补压、计时、反吹、打印、保存、数据上传自动完成;◎ 配备微型打印机,USB数据接口,支持PC软件测控运行,mbar、kpa单位互换;◎ 自动保存历史试验记录,本地查询,并可导出EXCEL格式保存;◎ 用户分级权限设置,满足GMP要求、测试记录审计、追踪功能;◎ 试验结果同步上传至云端服务器保存,在世界各地,有网络就可浏览;◎ 本地数据与云端数据双重备份,确保数据不会丢失;◎ 中英文双语选择,方便客户语言切换选择;负压真空测漏仪_包装密封性测试仪测试原理:本机通过对真空室抽真空,使浸在水中的试样产生内外压差,观测试样内气体外逸情况,以此判定试样的密封性能;通过对真空室抽真空,使试样产生内外压差,观测试样膨胀及释放真空后试样形状恢复情况,以此判定试样的密封性能。测试标准:该仪器符合多项国家和国际标准:GB/T 15171、ASTM D3078、GB/T 27728、YBB00112002-2015、YBB00122002-2015、YBB00262002-2015、YBB0005-2015、YBB00092002-2015、YBB00392003-2015、YBB00112002-2015。国家标准:GB/T 15171、ASTM D3078注:本机气源接口系Φ6mm聚氨酯管;气源用户自备。 售后服务承诺三月内只换不修,一年质保,终身提供。快速处理,1小时内响应问题,1个工作日出解决方案。 体系荣誉资质ISO9001:2008质量体系认证、计量合格确认证书、CE认证、软件著作权、产品实用新型、外观设计。实力铸造品牌三大研发中心,两条独立生产线,一个综合体验式实验室。赛成自2007年创立至今,全球用户累计成交产品破万台,完善四大产品体系,50多种产品。
    留言咨询
  • 光伏电站发电系统IV功率测试仪 LX-PV50用于光伏电站的检查、验收和运维,对光伏发电系统的发电情况进行实时监测,能够实时、快速地监测太阳能光伏方阵输出的直流电压、直流电流、直流功率、交流电压、交流电流和交流功率,以及实时检测光伏发电系统的功率、转换效率和功率因数等参数。适用于1500V 光伏系统的功率分析。 主要特点 宽电压测试范围,最大直流测试电压1500V;支持网络通信功能,通过TCP组网,实现远程同步测试控制;功率分析功能,检测逆变前的直流电压和直流电流、逆变后的交流电压和交流电流、视在功率、有功功率、转换效率、系统效率等;实时获取环境参数功能,配合设计的辐照度计实时获取太阳辐照度和温度数据;环境参数无线采集功能,辐照度计提供最大100米的无线通信连接功能,环境数据获取更便捷、方便;使用简易、方便,采用触摸屏彩色液晶显示器,可直接触控交互;内部具备高压隔离电源设计,为用户提供可靠的安全保障。可连续测试,并自动存储测试数据结果;内置大容量可更换锂离子电池,为测试提供充足电力;提供用户可选的辐照度计量证书;可测量参数:交流电压、交流电流、直流电压、直流电流、直流功率、交流功率、功率因数、系统效率、交流电压谐波、交流电流谐波、太阳电池温度、环境温度、辐照度。 光伏电站发电系统IV功率测试仪 光伏电站PV系统效率分析仪 LX-PV50可提供光伏发电系统的电压真有效值、电流真有效值、有功功率、视在功率、转换效率和功率因数等参数的自动测试功能,并可根据同步测量的辐照度和温度值自动进行系统效率的计算分析,另外可以根据实际光伏发电系统中的组件参考参数设置参考组件参数。支持TCP 组网功能,可实现远程同步测试。 太阳能光伏发电系统功率分析测试 光伏电站PV系统效率分析仪 LX-PV50对光伏发电系统功率分析测试,分析光伏发电系统的效率
    留言咨询
  • 产品简介:随着石油化工,医药环保等领域的飞速发展,研究人员对于低蒸气压数据的需求越来越多。如农药,化肥的贮藏,香精香料的制造、橡胶和塑料中增塑剂的寿命延长等,这些产品的设计开发都需要纯物质的低蒸气压数据,因此测试低蒸气压有着十分重要的意义。而现状是大部分蒸气压数据都集中在数十帕量级以上的范围,低压和超低压数据很少,如何能准确测试纯物质低蒸气压数据,正是此仪器能够为大家做的。 性能参数:测试原理:努森质量透析法测试功能:可测试固体、液体和油类等低蒸汽压物质的蒸气压分析站位:2个分析站,2个空白参比站,共4个站位;称重范围:10~1000mg分辨率:1ug真空系统:双级机械泵:1*10-2Pa,涡轮分子泵:1*10-6Pa压力测试范围:0~1torr,0~1000torr;双级分段压力测试;分析测试温度范围:-180℃~900℃,准确度优于±0.1℃,稳定性优于0.1℃。控温方式:32段程序升温,防止过温,保护样品。系统恒温温度:室温~60℃,准确度优于±0.2℃,稳定性优于0.1℃。空白参比同步测试:消除系统误差,提高测试精度。所有管路、阀门的密封采用耐油抗腐蚀设计; 产品特点: ◆ 蒸汽与气体测试切换; ◆ 气密性自动检测流程,智能判断仪器气密性是否合格; ◆ 具有测试完毕自动恢复常压功能,防止样品飞溅; ◆ 清晰形象的图形化控制界面,并可在软件界面上进行所有硬件的控制操作; ◆ 详尽的仪器运行日志,时间精确到秒,该日志为仪器的可靠运行与售后提供保障; ◆ 各个测试流程真人语音提示; ◆ 自动邮件通知功能,即使操作者在出差中亦可方便了解仪器运行状态、测试进展及查看测试结果; ◆ 全球采购,关键部件原装进口; ◆ 仪器尺寸:H110cm*W100cm*L70cm,Weight:200kg; 努森隙透法(Knudsen effusion method)简介:目前常用于测定低蒸气压的方法有流逸法、努森扭矩隙透法和努森质量隙透法。努森隙透法的基本原理是被测物质放在努森盒中, 盒外为高真空(绝压小于 10-2P a )。 当加热到一定温度时, 样品蒸气的扩散达到动态平衡, 蒸气分子将以恒定的速率从小孔向外扩散, 通过测定扩散气体的扩散速率 dm /d t 来推算该物质的蒸气压, 或者通过测定扩散出去的气体形成扭力矩后引起的转动角度来推算物质的蒸气压。前者称为努森质量隙透法, 后者称为努森扭矩隙透法。要完成上述扩散, 必须满足努森扩散条件: (a)外部压强趋于零;(b)孔壁很薄即孔道很短;(c)被测物质的蒸气压较低(一般小于1P a);(d)气体分子的平均自由度足够长。努森质量隙透法适用于低蒸气压的测定, 尤其适合于在高温下测定一些难挥发固体蒸气压。努森质量隙透法的测压上限为 10P a, 而测压下限可达到 10-5P a, 是目前广泛应用的测定低蒸气压的方法之一。全自动饱和蒸汽压测试仪,全自动低蒸气压分析仪,低蒸汽压测试仪,低蒸气压检测仪
    留言咨询
  • SYN5305型晶振测试仪产品概述SYN5305型晶振测试仪是由西安同步电子科技有限公司按照IEC-444标准自主研发设计生产的一款多功能晶振测试系统,该晶振测试仪采用7寸大触摸屏设计,频率测量分辨率最高可达12位/s,被测频率范围高达6GHz,负载电容在5P~20P范围内任意可调,主机内部时基标配高精度OCXO恒温晶振,可选高稳晶振和铷钟。该晶振测试仪集合有源和无源晶振测试,多种贴片和直插封装,1.8V/2.5V/3.3V/5V等多种晶振供电电压,涵盖大多数电子产品晶体测试,广泛应用于邮电、通信、广播电视、学校、研究所及工矿企业对于晶振的验证或筛选。产品特点高度集成,精度高;稳定性好,性能可靠;7寸触摸屏设计,操作简单。产品功能PPM测量,上下限测量;频率测量范围高达6GHz 频率测量分辨率高达12位/s 多种晶振测试工装,满足常规测试应用。、典型应用通信设备、汽车电子设备、医疗电子、安防电子、工业自动化设备等生产商,对于提供基准频率的晶振进行验证或筛选技术指标频率范围通道1通道2(选件)1mHz~350MHz通道3(选件)3GHz、6GHz(选件)阻抗耦合通道1,通道250Ω/1MΩ, AC通道350Ω, AC最高分辨率12位/1s最小输入灵敏度25mVrms最大输入电平+20dBm闸门时间1ms~100000s,步进1μs测量功能频率、周期、输入功率最大值/最小值/峰峰值,PPM测量,上下限测量统计功能平均值、标准偏差、频率偏差、最大值、最小值、峰峰值、阿仑方差,趋势图和直方图功率测量范围-50dBm~+20dBm功率测量精度±2dBm晶振测试工装频率范围(可选其它频点)20kHz~50MHz (无源)DC~350MHz (有源)匹配电容5pF~20pF可测封装(可选其它封装)5032(2P/4P)/3215(2P)/3225(4P)/2550(4P)/DIP直插内部晶振供电1.8V/2.5V/3.3V/5V外部晶振供电其它直流电压0~50V工装工作电压DC12V内部时基输出频率10MHz恒温晶振(可选更高时基)开机特性≤1E-8频率准确度≤3E-8(出厂设置)老化率≤5E-10/日,老化率≤5E-8/年秒稳定度≤3E-11/s外部参考输入输入频率10MHz电平0dBm~20dBm物理接口BNC数据通信USB通信、DB9串口通信、RJ45网络通信环境特性工作温度0℃~+50℃相对湿度≤90%(40℃)存储温度-30℃~+70℃供电电源交流 220V±10%, 50Hz±5%,功率小于15W机箱尺寸便携式机箱(上机架)320mm(宽)x280(深)x140mm(高)选件根据客户要求定做类似产品。选件说明选件号项目内容选件001通道1、2频率0.1mHz~400MHz选件002通道3最大频率3GHz选件003通道3最大频率6GHz选件004内部时基高稳恒温晶振选件005内部时基高精度铷钟选件006晶振测试工装可定制其它工装选件007负载谐振电阻1Ω-300Ω 1KΩ-300KΩ选件008晶振电流测量可测量不同晶振电流选件009晶振测试系统定制各种晶振批量自动化测试系统选件010无源探头200MHz无源探头选件011无源探头500MHz无源探头选件012有源探头25MHz有源差分高压探头(1300V(DC+peak AC))选件013仪表箱专用仪表拉杆箱选件014机柜托盘19英寸标准机柜通用托盘
    留言咨询
  • 太阳能光伏发电系统功率分析测试 光伏电站PV系统效率分析仪 LX-PV50对光伏发电系统功率分析测试,分析光伏发电系统的效率光伏发电系统功率分析 光伏电站PV系统效率分析仪 LX-PV50可提供光伏发电系统的电压真有效值、电流真有效值、有功功率、视在功率、转换效率和功率因数等参数的自动测试功能,并可根据同步测量的辐照度和温度值自动进行系统效率的计算分析,另外可以根据实际光伏发电系统中的组件参考参数设置参考组件参数。支持TCP 组网功能,可实现远程同步测试。 LX-PV50 规格直流电压测试范围及准确度范围 0V~1500V;准确度±0.5%rdg±0.2V交流电压测试范围及准确度相电压范围 0V~600V;准确度±0.5%rdg±0.2V线电压范围 0V~1000V;准确度±0.5%rdg±0.2V直流电流测量范围及准确度范围:0.5A~150A/0.5A~1500A(采用电流钳测量)150A/1500A 范围准确度:依据使用的电流钳准确度交流电流测量范围及准确度范围:0.5A~1500A;准确度:依据使用的电流钳准确度辐照度测试范围及准确度 1±3.0%(在 1000W/m2 测试点,25℃±2℃)温度测试范围及准确度范围-20℃~100℃;准确度±1℃功率因数测量范围及准确度范围 0.2~1.0;准确度 0.01频率测量范围及准确度范围 42.5Hz~69Hz;准确度±0.2%rdg±0.1Hz体积宽度×高度×深度390mm×300mm×200mm重量净重主机:约 5.5kg注 1:“辐照度测试准确度”会因为大气条件不同以及周围环境的影响而产生改变,±3.0%读数准确度指标是在满足 AM1.5 光谱分布的 AAA 级太阳模拟器辐照下测得。产品优势光伏电站组串发电效率测试仪可提供光伏发电系统的电压真有效值、电流真有效值、有功功率、视在功率、转换效率和功率因数等参数的自动测试功能,并可根据同步测量的辐照度和温度值自动进行系统效率的计算分析,另外可以根据实际光伏发电系统中的组件参考参数设置参考组件参数。支持TCP 组网功能,可实现远程同步测试。
    留言咨询
  • JB-230型踏板行程测试仪(踏板力行程测试仪),可同步测试踏板力和踏板行程,配合专用安装夹具,简单易用。是汽车制造行业、汽车维修行业以及汽车检测、科研部门理想的检测设备。  配以点阵式液晶屏实时显示测试数据,以及峰值数据。仪器配有标准RS232接口,可选配外置式微型打印机,也可将测试结果发往其他计算机与之灵活构成联机测试以及数据采集系统。内置电源:8.4V镍镉电池组踏板行程测量范围:≤150毫米踏板行程分辨率:1毫米标准9针RS232接口。(3脚信号输出,2脚信号输入,5脚信号地)。波特率9600,数据位8位,停止位1位,无校验。
    留言咨询
  • 多通道电池阻抗测试系统— 可与电池循环充放电设备联用— 适合各种电池、燃料电池、超级电容器等能源样品的阻抗测试 l 最大电流5A,最大电压6Vl EIS最大交流振幅:3V、5Al EIS阻抗频率范围:10μHz-100kHzl 准确测量微欧级(μΩ)超低样品阻抗l 双静电计:电池阴阳极同步阻抗测试l 同时连接8个样品l 配备8根3米长的电极线l 通过以太网或usb方式进行数据传输l 浮地设计 交流阻抗技术已经成为许多领域不可或缺的表征手段,Gamry最新研发的EIS Box阻抗序列测试盒,结合Interface5000电化学工作站,是专为能源样品测试而打造的多样品阻抗测试系统。8个通道进行序列测试,尤其适合样品量大的情况;连续测试,无需值守,充分提高用户的时间利用率。 该系统可与电池循环充放电设备联用,在对电池充放电的同时,进行阻抗序列测试,也适合超级电容器、燃料电池等样品的阻抗测试。 仪器电流高达5A,内置FRA技术,非常适合能源样品的阻抗测试,可以准确测量低至μΩ级的样品交流阻抗。同时配备双静电计,能够对电池进行全面测试,同步测试电池阴极和阳极阻抗,同时获取阴极、阳极和全电池数据,实现阻抗随时间的漂移最小化。 —全面、自动测试电池阻抗!依次可对多达8个电池进行阻抗测试EIS Box是一款8通道多路复用器,专为电池(还有超级电容器或燃料电池等其他体系)的阻抗测量而设计,通常与电池循环充放电设备配合使用。 EIS Box采用浮地技术,EIS测试范围100 kHz-10μHz,并配备3U 19英寸机架式机箱。 最高可同时连接8个样品,进行8通道阻抗测试 最大电流5A,最大电压6V EIS最大交流振幅:3V、5A EIS阻抗频率范围:10μHz-100kHz 包含3根电缆线 基于以太网 每个通道电压可达6V 准确测量微欧级(μΩ)超低样品阻抗 双静电计:电池阴阳极同步阻抗测试 EIS Box配有8根3米长的电池线,与电池测试仪或循环充放电设备配合使用完成提供阻抗测试。电池测试仪循环充放电设备可提供电池的循环测试。它可以安装在19英寸机架中(类似于ECM8多路复用器)。通过以太网或USB连接到EIS Box。 与恒电位仪的USB连接一样,EIS Box必须与电脑保持持续接通状态才能成功运行实验。通过以太网连接是通过直接连接到计算机或仅通过本地网络连接 无法通过互联网连接。 交流阻抗技术已经成为许多领域不可或缺的表征手段,Gamry最新研发的EIS Box阻抗序列测试盒,结合Interface5000电化学工作站,是专为能源样品测试而打造的多样品阻抗测试系统。8个通道进行序列测试,尤其适合样品量大的情况;连续测试,无需值守,充分提高用户的时间利用率。 该系统可与电池循环充放电设备联用,在对电池充放电的同时,进行阻抗序列测试,也适合超级电容器、燃料电池等样品的阻抗测试。 仪器电流高达5A,内置FRA技术,非常适合能源样品的阻抗测试,可以准确测量低至μΩ级的样品交流阻抗。同时配备双静电计,能够对电池进行全面测试,同步测试电池阴极和阳极阻抗,同时获取阴极、阳极和全电池数据,实现阻抗随时间的漂移最小化。
    留言咨询
  • 仪器简介:早在1964年,梅特勒就上市了世界上第一台商品化的TGA/DTA同步热分析仪。50多年来,梅特勒-托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,最新的同步热分析仪TGA/DSC 3+于2015年5月8日正式在中国上市,以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 3+采用世界最好的梅特勒-托利多微量或超微量天平。并采用独一无二的新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒-托利多在同步热分析仪技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 3+可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC 3+是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。 主要特点:● 梅特勒-托利多超微量天平–依赖领先的天平技术● 热重分析高分辨率–对整个测量范围的超微克分辨率● 高效自动化–选配非常可靠的自动进样器能处理大量样品 ● 温度范围广–从室温到1100或1600℃● 同步DSC 热流测量–同步测定热效应,灵敏度高● 密闭测量单元–确保完全定义的测量环境;确保真空度 ● 联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试 ● 模块化概念–量身定制的解决方案满足当前和以后的需要 技术参数:● 仪器型号:TGA/DSC 3+同步热分析仪专业型● 温度范围:室温~1100°C或~1600°C● 天平灵敏度:0.1μg或0.01μg● 传感器热电耦数量:6对Pt-Pt/Rh热电偶● 量热温度分辨率:0.00003℃● 量热准确度(金属标样):1% 应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • 品牌:久滨型号:JB-230型名称:踏板行程测试仪一、 产品概述 :  JB-230型踏板行程测试仪,是以MCS-51系列单片微型计算机为核心的智能化测试仪器,该仪器采用12位高性能Σ-Δ A/D转换器件进行数模转换,配以点阵式液晶屏作为显示器件,汉字提示,实时显示测试数据,以及峰值数据,清晰直观。  JB-230型踏板行程测试仪(踏板力行程测试仪),可同步测试踏板力和踏板行程,配合专用安装夹具,简单易用。是汽车制造行业、汽车维修行业以及汽车检测、科研部门理想的检测设备。二、优势及特点:  配以点阵式液晶屏实时显示测试数据,以及峰值数据。仪器配有标准RS232接口,可选配外置式微型打印机,也可将测试结果发往其他计算机与之灵活构成联机测试以及数据采集系统。三、技术指标:内置电源:8.4V镍镉电池组踏板力测量范围:≤1000牛顿踏板行程测量范围:≤150毫米踏板力分辨率: 1牛顿踏板行程分辨率:1毫米精确度:1%标准9针RS232接口。(3脚信号输出,2脚信号输入,5脚信号地)。波特率9600,数据位8位,停止位1位,无校验。
    留言咨询
  • JHYC静态应力测试仪应用范围1.适用于测点相对集中,被测物理量缓慢变化的试验中。2.主要用于静态结构应力分析及静载荷强度研究中测量结构件及材料任意点的静态应力应变及残余应力。3.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、压力容器等结构静载荷测试、安全和健康状态测试。4.接入不同的传感器,可对力、荷重、压力、扭矩、位移、电压、电流等进行采集。5.可用于实验性测量,也可用于长期监控测量。JHYC静态应力测试仪功能特点1.全数字电路,精度高,稳定性好,具有极强抗干扰性能力仪器采用全数字电路,每通道独立AD、独立MCU,所有通道同步采样,仪器检定指标达到0.1级,显示精度0.1。采用独特的硬件隔离技术,系统具有极强的现场抗干扰性能力。2.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测测量,操作简单方便。3.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、公共,软件多种补偿方式,稳定性好。尤其是公共补偿方式,可方便快捷的对模块上10个通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。4.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,省掉一切不必要的端口,简化了测量接线难度。每个模块的状态和通道状态用高亮指示灯闪烁指示,一目了然。5.设置简单,操作方便快捷,海量存贮适合各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。应变片和仪器连接简单方便,主机与计算机usb接口连接,即插即用。可进行不间断或间断性长时间在线测量,数据存储量取决于计算机硬盘大小。6.具有掉电自动保存测量数据功能在测量过程中,如出现意外断电,仪器可自动保存断电前的所有测量数据,并自动形成测量文件,防止意外丢失测量数据。JHYC静态应力测试仪软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,完成信号的实时采集、处理、分析等功能,具有多种显示方式。2.应变实时显示,被测物理量直接显示多通道应变值实时显示,实时绘制时域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。3.数据实时保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.每个通道都可根据测量需求选择测量类型,简单方便可根据每通道接入的传感器类型,各通道选择不同的输入类型、工程单位、标定值、调零、补偿方式等。实现对不同物理量的实时同步测量。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。
    留言咨询
  • 功能 数显瓶盖扭矩测试仪是为测试和检测各种扭矩瓶盖而设计制造的一种智能化多功能计量仪器。主要用于检测和校正拧紧力,零件扭转破坏性试验等。具有操作简单,精度高、功能全、携带方便等特点,广泛应用于各种电气、轻工、机械制造、科研机构等行业。主要特点1、高精度、高分辨率、采样速度快、全屏显示。2、采用高精度扭矩传感器,具有扭矩方向显示。3、上下限值的设定,红绿指示灯及峰鸣器声光报警。4、三种单位互相转换,可供选择(Nm、kgfcm、Ibin)。5、实时、峰值、自动峰值三种模式可随意切换。6、采用USB接口与PC通讯,同步测试功能可连接电脑测试,电脑上同步显示测试力曲线图及测试过程中详细的测试力的记录,并可保存、打印,做各种分析。7、峰值保持、自动解除功能、解除时间自由设定。8、存储量大、可保存99组测试数据。9、无操作自动关机功能,时间可自由设定。
    留言咨询
  • 仪器简介:早在1964年,梅特勒托利多就上市了品牌首台商品化的TGA/DTA同步热分析仪。50多年来,梅特勒托利多秉承一贯的精湛的制造工艺,不断革新、发展、完善,新版本的同步热分析仪TGA/DSC 3+于2015年5月8日正式在中国上市,以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析的核心是天平单元,TGA/DSC 3+采用梅特勒托利多微量或超微量天平。并采用新型6对铂铑热电偶DSC传感器,同时测量热流变化。由差示扫描量热仪星型多热电偶技术发展而来的6对铂铑热电偶同步DSC传感器,是梅特勒托利多在同步热分析仪pinp技术方面的突破性进展,大大提高了同步DSC的灵敏度和分辨率。TGA/DSC 3+可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,TGA/DSC 3+是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。 主要特点:● 梅特勒托利多超微量天平–依赖出色的天平技术● 热重分析高分辨率–对整个测量范围的超微克分辨率● 高效自动化–选配非常可靠的自动进样器能处理大量样品 ● 温度范围广–从室温到1100或1600℃● 同步DSC 热流测量–同步测定热效应,灵敏度高● 密闭测量单元–确保完全定义的测量环境;确保真空度 ● 联用技术–联用 MS 或 FTIR 或MS/FTIR分析逸出气体;联用吸附装置进行水分吸附/解吸测试 ● 模块化概念–量身定制的解决方案满足当前和以后的需要技术参数:● 仪器型号:TGA/DSC 3+同步热分析仪专业型● 温度范围:室温~1100°C或~1600°C● 天平灵敏度:0.1μg或0.01μg● 传感器热电耦数量:6对Pt-Pt/Rh热电偶● 量热温度分辨率:0.00003℃● 量热准确度(金属标样):1% 应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • iSD-300冲击波毁伤效应测试仪 针对战斗部冲击波超压毁伤效应测试需求开发,将ICP恒流源调理、A/D转换器、大容量存储器、可充电锂电池、SOC单元及数据通讯单元等集成一体,可独立工作,直接接驳ICP型冲击波压力传感器,放置于测点附近,自动采集存储冲击波毁伤效应数据;内置GPS定位授时单元和无线通信单元,实现分布式多点无线同步测量及远程无线遥测功能。产品特点 ■ 仪器小巧、坚固、轻便,可独立工作,现场一键设置;■ 采样率最高1MSps,满足冲击波超压测试需求;■ 内置ICP恒流源,可直接接驳IEPE型冲击波压力传感器;■ 采用高精度GPS/北斗授时,支持分布式同步触发测量,多点同步时差μs 级;■ 自带电池供电,可置于测点附近,自动完成数据采集和存贮;■ 内置大容量数据存储器,可记录多次试验数据,16段连续采集,防止误触发;具有数据断电保护功能;■ 充电通信接口,一键下载所有设备数据;■ 可采用无线/有线通信方式,远程监测多个设备状态,设置参数,读取数据;■ 近距离(80米内)可通过WiFi应用控制设备,获取状态,读取数据及结果,远距离(5km内)可通过Lora应用控制设备,获取状态及特征值;■ 配套软件可设置参数,显示超压P-T曲线及测试结果,保存试验数据,生成测试报告等。技术指标型号:iSD-300通道数:1/2通道内置调理单元:ICP恒流源 采样率:最高1MSpsAD分辨率:16Bit量程:±10V直流精度:≤±0.3%内置数据存储空间:16 GB,eMMC续航时间:内置可充电锂电池,电池续航时间不低于4H防护等级:防水防尘等级 IP67尺寸、重量:直径:50mm 高:110mm 重:330g工作温度:-20℃~70℃抗冲击:100g更多详细信息,请咨询:四川拓普测控科技有限公司
    留言咨询
  • 嵌入式膜厚测试仪 400-860-5168转1545
    产品特点: ? 自由搭配的光纤架构,可安装于生产线上、半导体晶圆研磨设备或真空镀膜设备中。? 远端同步控制、高速多点同步测量等。? 丰富多样的光学系统套件与应用软件,提供特殊环境下最理想的膜厚解决方案。产品架构: ? 半导体晶圆面内分布测量 ? 玻璃基板面内分布测量? 即时性量测? 输送方向的定点品质管理? 对应真空环境之设备? 即时性测量? 输送方向的全面品质管理
    留言咨询
  • 价格电议美国 ATC 微流量空气泄漏测试仪 E-PDQ上海伯东代理美国原装进口 ATC 微流量空气泄漏测试仪 E-PDQ, 紧凑型设计, 适用于系统集成. E-PDQ 可以在压力和真空条件下进行测试. 可测泄漏率 0.03 cc/min 及更高微流量空气泄漏测试仪优点 设计紧凑, 占用空间小 机架式安装设计, 可在同一台机器上同时测试多个腔体 带阀门和顺序控制器的自动化测试回路 通过以太网或串行端口实现的数字和模拟 I/O 接口 易于读取的 LED 指示测试状态:测试, 通过或失败微流量空气泄漏测试仪 E-PDQ 技术规格型号EQMQ使用的微流量传感器IL2-M, IL2-KM漏率 / 灵敏度0.03 cc/min 及更高压力范围 14.5 psia / 1 bar 绝对压力至 65 psia / ≈ 4.5 bar 绝对压力2 psia / 0.138 bar 绝对压力至 14.5 psia / 1 bar 绝对压力尺寸主机: 4” W x 6.25” H x 10” D / 102 x 159 x 254 mm气体干燥, 清洁的气体:空气, 氮气 (可检测更多气体)InterfacesRJ-45 Ethernet, or RS-232 serial InterfaceAdvanced Test Concepts, Inc. 美国 ATC 提供空气泄漏检测仪, 获得 SAE, 制药 USP (1207), ASTM (F3287-17) 等认证. 专利 Micro-Flow 微流空气泄漏试验技术, 通过加压或抽真空方式, 测试产品的密封性. ATC 提供整套泄漏和密封性解决方案. 适用于制药包装, 汽车油管, 电子产品防水测试. ATC 凭借微流量传感器的发明专利, 气密性检测仪为泄漏和密封性的测试领域开启了新的一页. 2017 年 2 月 14 日, 德国 Pfeiffer 以百分之百参股的形式收购了美国 ATC, 上海伯东是美国 ATC 微流量空气泄漏测试仪代理商.若您需要进一步的了解美国 ATC 空气泄漏测试仪, 请联络上海伯东罗先生上海伯东版权所有, 翻拷必究!
    留言咨询
  • 电解法水蒸气透过率测试仪_GB/T21529透湿性测试仪C330H水蒸气透过率测试系统——本产品基于电解法水分分析传感器的测试原理,参照ISO 15106-3标准设计制造,为中、高水蒸气阻隔性材料提供宽范围、高效率的水蒸气透过率检测试验。适用于食品、药品、医疗器械、日用化学、光伏电子等领域的薄膜、片材、纸张、包装件及相关材料的水蒸气透过性能测试。产品优势:只为精准——新型电解法水分分析传感器;先进流体力学和热力学设计的专利测试集成块;空间立体恒温技术;独立监测各腔测试情况的温湿度传感器;高效合规——同时测试3个相同试样,符合平行试验的标准要求;支持同一条件下3个不同试样测试;节省人力——自动温度、湿度控制;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;C330H水蒸气透过率测试系统产品特点:专利的传感器技术——Labthink自主研制的新型电解法水分分析传感器,具有卓越的精准性、重复性和寿命,作为一种库仑电量式传感器,传感器信号遵循法拉第原理,拥有非常高的灵敏度。新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构。支持三个相同或不同试样的同步测试。自动温度湿度控制——设备内部温度、湿度自动调节。测试腔各自安装温湿度传感器监测温湿度情况,控制测试过程更加精准。易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接入第三方软件。先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品流程,可以提供灵活周到的个性化定制服务。测试原理:将预先处理好的试样夹紧于测试腔之间,具有稳定相对湿度的氮气在薄膜的一侧流动,干燥氮气在薄膜的另一侧流动;由于湿度差的存在,水蒸气会从高湿侧穿过薄膜扩散到低湿侧;在低湿侧,透过的水蒸气被流动的干燥氮气携带至电解水分传感器,不同的水蒸气浓度产生不同的电量,通过分析计算得出浓度数值,进而计算试样的水蒸气透过率。对于包装件而言,干燥氮气则在包装件内流动,包装件外侧处于高湿状态。参照标准:ISO 15106-3、ASTM F3299、GB/T 21529、YBB 00092003-2015C330H水蒸气透过率测试系统测试应用:基础应用:薄膜——各种塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、玻纤铝箔纸复合膜等膜状材料的水蒸气透过率测试。片材——PP片、PVC片、PVDC片、金属箔片、橡胶片、硅片等片状材料的水蒸气透过率测试。纸张、纸板及其复合材料 烟包镀铝纸、纸铝塑复合片材等纸张、纸板的水蒸气透过率测试。包装件——酒瓶、可乐瓶、花生油桶、利乐包装、真空包装袋、三片罐、化妆品包装、牙膏软管、果冻杯、酸奶杯等塑料、橡胶、纸、纸塑复合、玻璃、金属材质的瓶、袋、罐、盒、桶的水蒸气透过率测试。扩展应用:包装件封盖——各种包装件封盖的水蒸气透过性能测试。液晶显示屏——液晶显示屏及相关膜片的水蒸气透过性能测试。太阳能背板——太阳能背板及相关材料的水蒸气透过性能测试。管材——PPR管等各种材料管子的水蒸气透过性能测试。医药泡罩——医药泡罩整体水蒸气透过性能测试。无菌护创膜、医用膏药贴剂——无菌护创膜、医用膏药贴剂等的水蒸气透过性能测试。电池外壳——电池外壳的水蒸气透过性能测试。C330H水蒸气透过率测试系统技术参数:测试范围:0.005~50 g/(m2day) (标准);0.0003~3.223 g/(100in2day);0.000025~0.25 g/(pkgday)(包装件)分辨率:0.001 g/(m2day)重复性:0.005 g/(m2&bull day)或2%,取大者测试温度:10~55℃±0.2℃测试湿度:5%RH~90%RH±1%RH,100%RH附加功能:包装件测试(最大3L):可选DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:测试腔:3样品尺寸:108mm×108mm样品厚度:≤3mm标准测试面积:50cm2载气规格:99.999%高纯氮气(气源用户自备)气源压力:≥0.28MPa/40.6psi接口尺寸:1/8 英寸金属管
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制