当前位置: 仪器信息网 > 行业主题 > >

真空交流接触器

仪器信息网真空交流接触器专题为您提供2024年最新真空交流接触器价格报价、厂家品牌的相关信息, 包括真空交流接触器参数、型号等,不管是国产,还是进口品牌的真空交流接触器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合真空交流接触器相关的耗材配件、试剂标物,还有真空交流接触器相关的最新资讯、资料,以及真空交流接触器相关的解决方案。

真空交流接触器相关的论坛

  • 【分享】GB21518-2008《交流接触器能效限定值及能效等级》国家标准第1号修改单

    [size=4][font=方正仿宋简体][font=Times New Roman]附件:[/font][/font][/size][align=center][font=Times New Roman][size=4][font=方正小标宋简体]GB21518[/font][/size][size=4][font=方正小标宋简体]-2008《交流接触器能效限定值及能效等级》国家标准第1号修改单[/font][/size][/font][/align][size=4][font=方正仿宋简体][font=Times New Roman][/font][/font][/size][size=4][font=方正仿宋简体][font=Times New Roman]本修改单经国家标准化管理委员会于2008年10月24日批准,自2008年12月1日起实施。[/font][/font][/size][u][size=4][font=方正仿宋_GBK][b][font=Times New Roman] [/font][/b][/font][/size][/u][font=Times New Roman][size=4][font=方正仿宋简体]GB 21518-2008[/font][/size][size=4][font=方正仿宋简体]《交流接触器能效限定值及能效等级》中修改内容如下:[/font][/size][/font][font=Times New Roman][size=4][font=方正仿宋简体]1. [/font][/size][size=4][font=方正仿宋简体]范围第二自然段[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]原文中为“额定工作电压不超过1140V、额定工作电流9A~630A的接触器”更改为“额定工作电压为380V(400V)、额定工作电流6A~630A的直动式,三极电动式,整体式交流接触器”。[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]2. [/font][/size][size=4][font=方正仿宋简体]范围第三自然段[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]原文中为“本标准不适用于外加节电装置的接触器及半导体接触器(固态接触器)”更改为“本标准不适用于外加节电装置、家用和类似用途的接触器及半导体接触器(固态接触器)”。[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]3. [/font][/size][size=4][font=方正仿宋简体]术语和定义[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]增加以下2条术语:[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]3.4[/font][/size][size=4][font=方正仿宋简体]同一壳架等级的接触器 contactors of same shell[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]外形尺寸和内部结构相同,仅部分尺寸有差异,但额定工作电流不同的接触器。[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]3.5[/font][/size][size=4][font=方正仿宋简体]整体式接触器 unitary contactor[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]所有完成接触器功能不可缺少的部件(模块)组装成的接触器。[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]4[/font][/size][size=4][font=方正仿宋简体].表1标题[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]原表1标题“接触器能效等级”更改为“接触器(AC-3)能效等级”。[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]5. [/font][/size][size=4][font=方正仿宋简体]表1[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]原表1第一行中的“9≤Ie≤12”更改为“6≤Ie≤12”;原3级的“8.3”更改为“9.0”。[/font][/font][/size][size=4][font=方正仿宋简体][font=Times New Roman]原表1第二行3级的“8.5”更改为“9.5”。[/font][/font][/size][size=4][font=方正仿宋简体][font=Times New Roman]原表1第三行3级的“13.9”更改为“14.0”。[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]6[/font][/size][size=4][font=方正仿宋简体].表1表注[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]增加表1的表注“注:同一壳架等级取最大的Ie,例如:40A~65A为同一壳架等级的接触器,应按65A的能效等级进行考核,即应符合本表中63<Ie≤100一栏中的能效等级指标。”[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]7. [/font][/size][size=4][font=方正仿宋简体]第5.1条[/font][/size][/font][size=4][font=方正仿宋简体][font=Times New Roman]在原5.1条前增加“在环境温度为20℃±[/font][/font][/size][font=Times New Roman][size=4][font=方正仿宋简体]5[/font][/size][size=4][font=方正仿宋简体]℃[/font][/size][size=4][font=方正仿宋简体]下,……。”[/font][/size][size=4][font=方正仿宋简体]。[/font][/size][/font][size=4][font='Times New Roman'][/font][/size][size=4][font=Times New Roman][/font][/size]

  • 真空环境中接触热阻对热导率测试的影响

    真空环境中接触热阻对热导率测试的影响

    1. 问题的提出在研制完成低温高真空环境材料热物理性能测试系统后,开始进行各种材料热导率的测试。低温高真空材料热物理性能测试系统如图1所示,低温高真空腔体如图2所示。在测试过程中发现在一定真空度下热导率测试非常不准确,甚至测试结果非常怪异,真空度会使得试样接触热阻发生巨变而严重影响热导率测试。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667317_3384_3.jpg图1 低温高真空环境材料热物理性能测试系统http://ng1.17img.cn/bbsfiles/images/2017/10/2016020120342460_01_3384_3.jpg图2 低温高真空腔体为了验证试样接触热阻的影响,针对不同表面状态和硬度的材料进行了验证试验,但选择验证试样的原则是真空度不能造成试样本身的热导率发生变化。1.1. 不同真空度下接触热阻对不锈钢试样热导率测试的影响首先采用表面光滑的刚性金属材料进行验证。如图3和图4所示,将一对已知热导率的不锈钢参考材料放入真空腔内,分别进行常温和不同真空度下的热导率测试,测试结果如图5所示。http://ng1.17img.cn/bbsfiles/images/2017/10/2016020120352005_01_3384_3.jpg图3 已知热导率的被测不锈钢试样 http://ng1.17img.cn/bbsfiles/images/2017/10/2016020120354782_01_3384_3.jpg图4 不锈钢试样测试状态 http://ng1.17img.cn/bbsfiles/images/2017/10/2016020120474812_01_3384_3.png图5 不锈钢试样常温不同真空度下的热导率测试结果在真空度变化前期(真空度大于5000Pa),热导率测试结果还是十分准确和稳定。随着真空度的提高,小于2000Pa时的测试结果明显开始降低,在小于1000Pa后测试结果出从图5所示的测试结果可以看出,现波动甚至无法获得有效的热导率测试数据。这就意味着随着真空度升高,试样与探测器之间的接触热阻逐渐增大,最终巨大的接触热阻和接触热阻分布的不均匀完全破坏了瞬态平面热源法传热测试模型,导致根本无法进行测量。1.2. 不同真空度下接触热阻对低导热硬质泡沫塑料试样热导率测试的影响上述验证试样所选的不锈钢热导率在14W/mK左右,为进一步验证试样接触热阻的影响,我们选择了硬质聚氨酯泡沫塑料进行考核。选择硬质聚氨酯泡沫塑料一是因为这种材料的热导率很低,热导率在0.04W/mK左右;二是因为这种材料是闭孔材料,闭孔率在90%以上,材料热导率随真空度的变化不大。如图6和图7所示,将一对硬质聚氨酯泡沫塑料试样放入真空腔内,分别进行常温和不同真空度下的热导率测试,测试结果如图8所示。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016020120443559_01_3384_3.jpg图6 被测硬质聚氨酯泡沫塑料试样http://ng1.17img.cn/bbsfiles/images/2017/10/2016020120452836_01_3384_3.jpg 图7 硬质聚氨酯泡沫塑料试样测试状态http://ng1.17img.cn/bbsfiles/images/2017/10/2016020120423345_01_3384_3.png图8 硬质聚氨酯泡沫塑料常温不同真空度下的热导率测试结果从图8所示测试结果可以看出,随着真空度升高,热导率数值逐渐降低,最终在真空度升高到5Pa时,热导率从常压下的0.0447W/mK降到了0.0337W/mK,减小了近四分之一。随着真空度的升高,引起聚氨酯泡沫塑料热导率降低主要有两个原因:(1)试样内的部分开孔随着真空度升高而降低热导率,但由于开孔率较低,这种影响不是主要因素。(2)尽管聚氨酯泡沫塑料属于硬质材料并便于加工,但试样的表面粗糙度还是远大于表面光滑的不锈钢试样,所以接触热阻是热导率降低最主要因素。1.3. 测试结果分析由以上两种材料的测试,可以得出以下初步的结论:(1)对于瞬态平面热源法这种试样与探测器夹心测试结构,测试过程中随着真空度的升高,探测器与试样之间的接触热阻会明显增大,这种热阻的增大会给热导率测量带来影响。(2)试样与探测器之间的接触热阻并非均匀分布,随着真空度升高,这种非均匀分布的接触热阻会完全破坏传热测试模型,造成测试结果完全不正确,甚至根本无法进行测量。(3)由于试样表面粗糙度不同,真空度对接触热阻的增加幅值也不相同。如果假设接触热阻等效为一个均匀分布热阻层,接触热阻给热导率测试所带来的影响假设为一个等效热导率,那么在一般情况下,这个热阻层的等效热导率大小为0.01W/mK量级。(4)这种由于真空度升高引发的试样接触热阻增大的现象,是所有真空环境下固体界面热传导中存在的普遍现象。因此,如果不采取一定措施,真空下的试样接触热阻不仅会严重影响瞬态平面热源法的热导率测量,也好严重影响其它所有热导率测试方法的测量准确性。2. 解决方案为了降低和消除真空环境下试样接触热阻对热导率测量结果的影响,最有效的方法就是采用薄的柔性填充物来填充试样与探测器之间的空隙,把真空度的影响降低到最小。为此,我们选用了填充物为导热硅脂、导热硅胶片和镜头纸分别进行试验,以其找到有效的材料和方式。3. 试验验证3.1. 不锈钢参考材料填充导热硅脂的试验验证还是采用表面光滑的刚性金属材料进行验证。如图9和图10所示,将一对已知热导率的不锈钢参考材料测试表面分别涂覆了一层导热硅脂。常温常压下导热硅脂的热导率为3W/mK,这也是目前热导率比较高的导热硅脂,从理论上来说,导热硅脂的热导率越大约好。将涂覆了导热硅脂的试样与探测器夹紧并放入真空腔内,分别进行常温和不同真空度下的热导率测试。添加导热硅脂前后的测试结果对比如图11所示。http://ng1.17img.cn/bbsfiles/image

  • 真空封装器件漏率和内部真空度的非接触测量方法

    真空封装器件漏率和内部真空度的非接触测量方法

    [size=16px][color=#339999][b]摘要:大量MEMS真空密封件具有小体积、高真空和无外接通气接口的特点,现有的各种检漏技术无法对其进行无损形式的漏率和内部真空度测量。基于压差法和高真空度恒定控制技术,本文提出了解决方案。方案的具体内容是将被测封装器件放置在一个比器件内部真空度更高的真空腔体内,采用电动可变泄漏阀和控制器自动调节微小进气流量进行高真空度控制,由此在被测器件内外建立恒定压差,通过测量此压差下的漏率可得到器件内部真空度。[/b][/color][/size][align=center][size=16px][color=#339999][b]=========================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 真空密封器件通常需要在特定的真空度下才能正常工作,即需要高真空度和长时间的真空保持度。例如杜瓦组件作为广泛使用的绝热容器在制冷、 红外探测以及超导中都有应用,而杜瓦的绝热效果与其夹层真空度直接相关。有机发光二极管对水蒸气和氧气含量特别敏感,工作时需要真空条件,含量超标的水蒸气和氧会严重影响其寿命和稳定性。高精度的MEMS惯性器件如MEMS陀螺仪、MEMS谐振式加速度计等需要工作在高真空环境中,其内部真空度的好坏决定其品质因数的大小。由此可见,为了保证真空密封器件的密封性能,需要对漏率和真空度的变化进行测试评价,但由于存在以下几方面的原因,使得这种评价技术成为目前迫切需要解决的难题:[/size][size=16px] (1)对于大多数真空密封器件而言,其几何尺寸一般很小,且不能配置真空度和漏率测量接口,这导致了很多现有真空测量领域的传感器和仪器都无法直接使用。[/size][size=16px] (2)对于个别真空封装器件,可通过在外部形成高压将示踪气体(如氦气)加载到真空封装器件内,然后再在外部抽真空条件下采用检漏仪测量真空封装器件的漏率。但这种方法往往会破坏真空封装器件内部的真空度,且不可逆转,可能会造成真空封装器件性能的降低。[/size][size=16px] (3)直接在真空密封器件内集成真空度传感器不失为一种有效手段,如集成如皮拉尼计和音叉石英晶振等,国内外的各种研究也曾在这方面做过努力,但由于所集成传感器自身特性(如结构形状、尺寸、真空度测量范围和精度等)以及所带来附加影响,使得这种技术仅勉强适用于个别真空密封器件,根本无法作为一种通用技术得以应用。[/size][size=16px] 为了解决目前真空封装器件存在的检漏问题,特别是实现对真空封装器件内部真空度的测量,本文基于压差法提出了一种间接测量的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 对于内部具有一定真空度的真空封装器件,其漏率和内部真空度的测量将基于压差法。具体是即将被测真空封装器件放置在一个要比器件内部真空度更高的密闭腔体内,由此在封装器件内外形成压差。通过测量获得此压差下的漏率,然后再通过漏率计算出器件内部真空度。[/size][size=16px] 依据解决方案设计的真空封装器件漏率和真空度测量装置结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=真空密封器件漏率和真空度测试系统结构示意图,690,253]https://ng1.17img.cn/bbsfiles/images/2023/09/202309041023569886_4228_3221506_3.jpg!w690x253.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 真空密封器件漏率和真空度测试系统结构示意图[/b][/color][/size][/align][size=16px] 依据检漏中的压差法原理,漏率的测量结果与压差(P1-P0)呈线性关系。因此,如图1所示,只要精确控制密闭腔体内的真空度P1,在测量得到漏率后,就可以计算出真空封装器件内部的真空度。由此可见,测试真空密封器件漏率和真空度需要解决以下两个关键问题:[/size][size=16px] (1)腔体真空度P1的精确控制:对于具有高真空(如P01E-03Pa)的封装器件,腔体真空度需要达到P11E-03Pa的更高真空度,以形成尽可能大的压差,这就要求对超高真空度能实现准确控制,控制精度越高则计算得到器件内部真空度的精度越高。[/size][size=16px] (2)漏率测量:漏率测量也是决定精度的关键因素,具体实施时可以采用各种高灵敏度的漏率测量方法,如氦质谱检漏仪。为了实现定量和高精度的漏率测量,也可以采用特殊设计的漏率测试系统,但这部分内容不在本文阐述的内容之内。[/size][size=16px] 本文的重点是介绍解决方案中的超高真空度精密控制技术。如图1所示,超高真空度的控制采用调节进气流量来实现,具体采用了VLV2023型号的电动可变泄漏阀,进气流量的调节范围是1E-8PaL/s~500PaL/s,调节信号为0~10V。超高真空度控制回路有真空计、真空控制器和电动可变泄漏阀组成,真空控制器采集真空计信号并与设定值进行比较后,输出PID控制信号对可变泄漏阀进行驱动来调节微小的进气流量,由此使腔体真空度快速恒定在设置值处。[/size][size=16px] 在超高真空控制中还面临另外一个问题是真空计输出信号的非线性,为此本文解决方案中采用了具有线性化处理功能的VPC2021系列真空压力控制器,通过在真空和电压的关系曲线中取八个数据点进行拟合,可很好的解决线性PID控制非线性信号的问题。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案很好的突破了真空密封件漏率和内部真空度测量难题,关键是实现了高真空度精密控制中的微小进气流量自动调节以及传感器非线性输出信号的PID控制器线性化处理。解决方案中的高真空度控制装置可广泛应用于任何真空系统,PID控制器线性化技术可广泛应用于各种非线性传感器测量控制场合。[/size][size=16px] 本解决方案对高真空微小压差下的漏率测试技术并未做详细的介绍,这部分内容将在后续研究报告中给出详细的测试系统描述。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/b][/align]

  • 分享如何判断温度控制仪的输出故障

    一、继电器输出的温度仪表主要故障判别法:  1、热电偶或热电阻完好状况与仪表接线正确的前提下,仪表通电后不升温,甚至测量温度向下跌的现象(设定温度高于测量温度先决条件下)。  1)仪表的主控输出是继电器,输出而被控制的电路中是交流 接触器(或中间继电器)时;首先搞清此输出为触点控制。  检查主控输出的端子接线是否正确。因我厂仪表主控输出是反作用,所以我厂仪表主控输出的继电器闭端应与交流接触器(中间继电器)的线包一端相连,其他接线正确,虽然仪表运行中,绿指示灯亮,但不升温。(由于仪表是反作用原理)。  仪表主控输出继电器常开端,按前述与交流接触器(中间继电器)的线包连线正确的前提下,仪表通电运行中,绿指示灯亮,仍不升温。  检查方法:把万用表放在交流电压、交流250V档,万用表上一根表棒在仪表主控输出的继电器常开的端子上,另一根表棒放在交流220V电源的中线上,万用表显示是否有交流220V电压。  A) 若无电压数值:说明交流接触器(中间继电器)线包的一端没接在仪表主控输出继电器的常开端子上,而接在仪表主控输出的继电器的常闭端子上,(说明交流接触器或中间继电器线包两端无电压输入)。  检查方法,查一下交流220V电源相(火)线有无用电线连到仪表主控输出继电器的中间端子上。或所用的电线内部开路而造成。  仪表主控输出继电器通电后没有反转,说明仪表主控继电器中间端与常闭端咬死。  B)若有约交流220V电压,说明交流接触器或中间继电器线包两端有约交流220V电压加上。  检查方法:查一下交流接触器或中间继电器的线包电压是否定220V。若该产品要求线包电压为交流380交流接触器(中间继电器)就无法工作。要求换上线包电压为交流220V的交流接触或中间继电器。  1)符合上述要求,还不能正常工作。在不通电状况下,用万用表放在电阻×10档上,把万用表的两根表棒按在交流接触器工中间继电器的线包两端,若电阻值很大,说明线包内的线圈断开或损坏,应调换交流接触器或中间继电器。若有电阻数值,说明线包内无铁心,不能产生电磁吸力而无法工作。就应调换交流接触器或中间继电器。  2、仪表运行工作中,测量温度已高于设定温度,仪表绿色指示灯已熄灭,但测量温度还一直上升。  检查方法:  1)表的主控输出是继电器触点输出,而被控电路中是交流接触器或中间继电器时。  (1)仪表不通电时,用万用表电阻×1Ω档去检测,信表主控继电器的中间庙与常开端电阻数值大小来判别。  ①若有电阻,甚至电阻数值很小,说明仪表主控输出的继电器中间端与常开端因长期工作咬死,应调换仪表主控输出的继电器,在现场只能是更换仪表。  ②若电阻数值很大,说明仪表主控输出的继电器完好,被控电路中交流接触器或中间继电器可能有问题。检查方法:  用万用表电阻×1Ω档去检测交流接触器或中间继电器的常开端的电阻值大小来判别。若有电阻数值,甚至电阻数值很小。说明交流接触器或中间继电器常开端因长期工作而咬死。只能把交流接触器或中间继电器更换。反之电阻值很大,说明交流接触器或中间继电器完好。  (2)仪表通电时,信仪表在运行工作中,当测量温度高于设定温度,仪表的绿色指示灯关,并大于10℃时,把万用表放在交流电压250V档上,用万用表一根表棒桉在仪表主控继电器的常开端;另一根表棒桉在交流220V电源的中线万用表显示是否有电压数值。①若仍约交流220V电压值,说明仪表主控继电器长期工作而咬死,应更换仪表。②若无电压值,说明仪表主控继电器完好。再用上述检查方法,用万用表一根表棒桉在交流接触器或中间继电器常开端的出线处,另一根表棒桉在交流220V电源的中线,是否有电压数值。若有约交流220V电压值,说明交流接触或中间继电器常开端长期工作而咬死,应进行调换。若无电压数值,说明交流接触器与中间继电器的常开端完好。  二、SSR(电平输出)的温度控制仪表主要故障判别法:  1、热电偶或热电阻完好状况与仪表接线正确的前提下,仪表通电后不升温,甚至测量温度向下跌的现象(设定温度高于测量温度先决条件下)  仪表的主控输出是SSR(电平)输出而被控制的电路中是外接固态继电器时。应首先应搞清此仪表的主控输出时,仪表上绿色指示灯亮,主控输出端子上有12V电平,而当绿灯指示灯暗,无电平或是OV。  检查方法  1)不通电的状况下  检查一下仪表主控输出同固态继电器之间接线是否正确,仪表主控输出SSR有(+)与(—)同固态继电器上的两小螺钉处或称固态继电器信号控制端的(+)与(—)相连一定要正确。同时把相连的线,用万用表电阻×1Ω档,量一下连线是否开路。  2)电的状况下:  用万用表直流电压20V档,把万用表两表棒按在仪表主控输出的两个端子(但弄清正负),在仪表绿色指示灯亮时,是否有12V直流电压。  A)若万用表测量无12V时,说明仪表主控输出有问题。检查仪表的型号是否正确,应更换仪表。  B)若万用表测量有12V时,说明固态继电器有问题,要更换固态继电器,也可以在不通电时,先把固态继电器大螺钉处的接交流220V电源相(火)线的连线拆掉,然后通电,用万用表电阻×1档,把万用表两根棒按在固态继电器的两个大螺钉上,当仪表绿色指示灯亮时,万用表显示的电阻值很大,也说明固态继电器有问题应更换。反之,万用表显示的电阻值接近0时,说明固态继电器完好  2、仪表运行工作中,测量温度已高于设定温度,仪表绿色指示灯已熄灭,但测量温度还一直上升。仪表主控输出是SSR(电平),而被控电路是固态继电器时。  检查方法:  (1)仪表不通电时,把万用表电阻×1KΩ档上,用万用表的两根表棒桉在固态继电器两个大螺钉上,(但要拆除大螺钉处与外行的连线)。  ①若万用表上显示的电阻数值∞大时,说明固态继电器冷态时完好。  ②若万用表上显示有电阻或电阻数值很小时,说明固态继电器损坏,要调换。  (2)仪表通电时,仪表运行工作中,当测量温度高于设定温度,并大于10℃时,仪表的绿色指示灯灭,把万用表放在直流电压20V档上,用万用表上两根表棒桉在仪表主控输出的两端,但正负要弄清,万用表上显示是否有电压数值。  ①若万用表上显示有直流12V电压值时,说明仪表有问题,应更换仪表。  ②若万用表上显示无电压值,说明仪表正常完好。那么要检查固态继电器。方法是在未通电前,先把固态继电器大螺钉与外界的连线拆除。通电后,把万用表放在电阻×1KΩ档上,用万用表的两根表棒桉在固态继电器两个大螺钉上,若万用表显示有电阻值并电阻值很小时,说明固态继电器处热态时短路,要调换固态继电器。反之电阻值∞大时,说明固态继电器冷态时完好。  三、脉冲输出的温度控制仪表主要故障判别法:  1、热电偶或热电阻完好状况与仪表接线正确的前提下,仪表通电后不升温,甚至测量温度向下跌的现象(设定温度高于测量温度先决条件下)。  当仪表的主控输出是脉冲输出,电路中用的是双向可控硅。首先应弄清仪表的主控输出是什么?仪表的主控输出是脉冲讯号。  检查方法:  当仪表主控输出端不与外界相连,把万用表放在直流电压0.5V档上,用万用表两表棒按在仪表主控输出端子(弄清正负)通电后,仪表绿色指示灯亮(仪表设定温度高于测量温度),万用表显示若有稍许电压说明仪表有脉冲输出,仪表输出正常.当代号为G(或无符号)时,主控输出是仪表内的小可控硅是否导电来定夺。仪表输出端子上与外界相连的电线全部拆除,把万用表放在电阻×1Ω档上,当通电后,仪表绿指示灯亮(信仪表设定温度高于测量温度),万用表显示有较小电阻数值,仪表主控输出正常。反之代号M的无电压与代号为G或无此符号电阻值很大,说明仪表有问题,应更换仪表。  根据以上所讲,若仪表无问题,应检查以下状况。  1)仪表的主控输出与双向可控硅接线是否正确。一定要按照产品使用说明书中接线端子所标明的接线图进行接线,否则无法正常进行。  2)查电路中大功率双向可控硅的质量  A)在不通电状况下,把双向可控硅的控制极轻轻拉一下,是否牢靠。若松动或掉下来,说明双向可控硅坏了要更换。  B)在不通电状况下,用万用表电阻×1Ω档,万用表上一根表棒按在双向可控硅的控制极,一根表棒桉在阴极,若万用表上显示的电阻数值很大或无电阻数值,说明双向可控硅坏了要更换。正常情况其电阻数值为≥20Ω与≤80Ω之间。  C)仪表不通电时,先把电路中大功率双向可控硅阳极同阴极上与外界的连线拆除。把万用表放在电阻×1KΩ档上,用万用表上一根表棒桉在双向可控硅阳极,另一根表棒桉在阴极,万用表显示是否有电阻值,①若万用表上显示的电阻数值∞大时,说明双向可控硅冷态时完好。②若万用表上显示有电阻或电阻数值很小时,说明双向可控硅损坏,要调换。  D)仪表通电时,仪表主控输出是脉冲讯号,未通电前,先把仪表主控输出端与外界的连线拆除,仪表通电时,把万用表放在直流电压0.5V档上,万用表两根表棒桉在主控输出两个端子上(正负要弄清)。当仪表的测量温度高于设定温度,仪表绿色指示灯熄灭。若万用表上显示有一点电压值,说明仪表主控输出有问题应更换仪表。若成万用表显示无电压时,说明仪表完好。此时再入下检查,先把双向可控硅阳极与阴极上与外界的连线拆除当信表通电,测量温度高于设定温度,仪表绿色指示灯熄灭,再把万用表放在电阻×1KΩ档上,用万用表上一根表棒桉在双向可控硅阳极,另一根表棒桉在阴极,若万用表数显示:电阻数值很小,说明双向可控硅热态时短路,要调换双向可控硅。反之电阻数值∞大时,说明双向可控硅完好。

  • 导致配电箱发生故障的原因

    作为一个电气化时代,基本上所用的东西都跟电有关系,一旦某一区域的配电箱出现故障就会导致整个区域的电力都会无法正常使用,而因停电所造成的损失是无法计量的,严重影响人们的正常生活。 据研究调查发现,会导致配电箱出现故障主要有以下几个方面的原因:第一、环境温度对低压电器影响。我们知道许多的低压电器主要是由熔断器、交流接触器、剩余电流动作保护器、电容器及计量表等组成。而这些低压电器对温度都是有限定条件的,如果一旦工作温度超出这个范围,就会引发故障。第二、产品质量不合格。由于产品质量的不严格,造成了一些产品投入运行后不久就发生故障。比如:有些型号交流接触器在配电箱投运后不久,就因接触器合闸线圈烧坏,而无法运行。第三、箱体内电器选择不当。选择交流接触器容量时,没有考虑到三相负荷不平衡,导致因高温季节运行时出现的交流接触器烧坏的情况。

  • 【原创大赛】精密烘箱故障排除

    【原创大赛】精密烘箱故障排除

    国庆回来,有台烘箱“罢工”了,开机时无法正常运行。故障现象如下:1.开关断断续续,伴有咔嚓咔嚓声2.进气孔风扇不转http://ng1.17img.cn/bbsfiles/images/2013/10/201310090948_469978_1678646_3.png电话联系厂家,通过描述故障现象,厂家工程师给出分析和建议是开关断断续续的原因是交流接触器出了故障,自己可以买个交流接触器换上就可以了;进气孔风扇不转是风扇坏掉的原因,可以直接购买好的风扇更换就可以了。熟悉的人按着厂家要求做就能解决问题,可惜我对这设备比较陌生,不敢随意去更换配件,尤其是担心购买风扇和交流接触器如果型号不对,钱花了,问题没解决,这就麻烦了。最后决定还是让厂家工程师来上门维修,费用肯定比自己更换配件要贵很多,但效果会好很多,主要是能解决问题。厂家工程师响应速度还是很快的,隔天就来厂维修设备了,配件也带的很齐全,更换过程的确很简单,半个小时不到就解决问题了,更换风扇和交流接触器后,开机一切正常,问题也就解决了,这就是专业与非专业的区别。http://ng1.17img.cn/bbsfiles/images/2013/10/201310081742_469899_1678646_3.pngA: 新更换的交流接触器 B:新更换的风扇更换好新配件后,开机正常工作,开关没有断断续续的情况发生。http://ng1.17img.cn/bbsfiles/images/2013/10/201310081742_469900_1678646_3.png进风孔风扇运转正常,为了便于拍照显示效果,特用一小纸片做实验。http://ng1.17img.cn/bbsfiles/images/2013/10/201310081743_469901_1678646_3.png总结:每次故障维修后,最宝贵的就是总结原因,关于交流接触器不良,厂商工程师分析了下可能原因线圈里进有杂质,所以设备存放工作环境很重要,避免在潮湿,灰尘比较大的环境下工作。 风扇不转的原因在量过电压后发现是在额定电压范围内,所以烧坏的可能性比较低,由于设备使用有些年头,风扇质量问题,部件老化是主要原因。

  • 【资料】非接触式电导检测器原理

    大家好!非接触式电导检测器原理:一高频激发电位作用于输入电极时,在两电极组成的电导池内产生一交流电流,该电流通过检测电极经运算放大进行检测,该电流会随两电极间毛细管内溶液的电导变化而改变,由此检测出组分的电导。其基本原理是:将两个金属圆筒电极套于毛细管外,向两个电极施加高频电压,分离的组分流经两个电极之间时,组分的电导不同其高频电流也不同。

  • 【资料】高压真空断路器的安装调整

    真空断路器的使用优势主要是指真空灭弧室,但其不检修周期长的特性并不等于不检修和免维护。针对真空断路器整体而言,真空灭弧室仅是一个组成元件,诸如操动机构、传动机构、绝缘件等,仍为保证真空断路器各项技术性能的重要组成部分。对于各组成部分的正常维护,以达到真空断路器满意的使用效果是非常必要的。  1 真空断路器的安装要求  真空断路器在制造厂未作出承诺时,使用现场进行常规的例行检查是很必要的,尽可能地避免盲目的自信心理。  (1)安装前对真空断路器应进行外观及内部检查,真空灭弧室、各零部件、组件要完整、合格、无损、无异物;  (2)严格执行安装工艺规程要求,各元件安装的紧固件规格必须按照设计规定选用;  (3)检查极间距离,上下出线的位置距离必须符合相关的专业技术规程要求;  (4)所使用的工器具必须清洁,并满足装配的要求,在灭弧室附近紧固螺丝,不得使用活扳手;  (5)各转动、滑动件应运动自如,运动磨擦处应涂抹润滑油脂;  (6)整体安装调试合格后,应清洁抹净,各零部件的可调连接部位均应用红漆打点标记,出线端接线处应涂抹有防腐油脂。  2 使用中对于真空断路器机械特性的调整  通常,真空断路器在出厂调试时,对于其机械性能诸如开距、行程、接触行程、三相同期、分合闸时间、速度等都进行了比较完整的调试,并随机附有调试记录。一般在使用中现场只需对三相同期、分合闸速度和合闸弹跳稍许调整合格之后,即具备了投运条件。  (1)三相同期的调整:  针对测试中合、分闸开距差异最大的一相,如该极合闸过早或过迟,将该极的开距稍许调大或者调小点,只需把该极绝缘拉杆的可调活接头旋入或者旋出半圈,一般可调整使合、分闸不同期性达到1mm以内,获得比较理想的同期参数最佳值。  (2)合、分闸速度的调整:  合、分闸的速度受到多方面因素的影响,而在使用现场可调整的部位仅是分闸弹簧和接触行程。分闸弹簧松紧程度,对合、分闸速度产生直接的影响,而接触行程(指触头压力弹簧的压缩量),仅对分闸速度产生主要的影响。如果合闸速度偏高而分闸速度偏低时,可以将接触行程稍许增大,或者将分闸弹簧拉紧一点即可;反之调松一些。如果合闸速度比较合适,而分闸速度偏低,则可调整总行程使其增大0.1~0.2mm,此时各级的接触行程均增大了0.1~0.2mm左右。其分闸速度也会上升;反之分闸速度过高时,也可将接触行程调小0.1~0.2mm,分闸速度也会降低。  当完成三相同期与合、分闸速度的调整之后,切记要重新对各极的开距和接触行程进行测量修正,并应符合真空断路器产品的相关规定。  (3)合闸弹跳的消除:  真空断路器普遍存在着合闸过程中触头的弹跳问题。分析其产生的主要原因:一是合闸冲击刚性过大,致使动触头发生轴向反弹;二是动触杆导向不良,晃动过大;三是传动环节间隙过大;四是触头平面与中心轴垂直度不好,碰合时产生横向滑动等所致。  对于已经形成的产品,整机结构刚性已成定局,现场一般无法改变。对于动触杆导向不良,在同轴式结构中,触头压簧与导电杆是直接相联,无中间传动件,所以也就无间隙。对于异轴式结构的真空断路器,触头弹簧与动触杆之间有一个转向用的三角拐臂,用三个销钉连结,这就存在三个间隙,容易出现合闸过程中的弹跳,这是消除弹跳的重点。同时还应重视触头弹簧始压端到导电杆之间传动间隙的调整,使传动环节尽可能紧凑,无缓冲间隙;如果因为灭弧室触头端面垂直度不好而产生弹跳,则可以将灭弧室分别转动90°、180°、270°安装,寻找上下接触面吻合位置,实在不行时则需要更换灭弧室。

  • 断路器的银氧化镉问题

    国内生产的断路器触点材料,用的银氧化镉,不符合ROHS指令,怎么办呢,有没有也用断路器的进行安装生产的厂家?,你们是怎么解决这个问题的?[em63] [em63] [em63] [em63] 帮忙!!!!!!!!!!附: 以我国电触头材料中产量最大、应用面最广的银氧化镉为例,它被广泛地使用在交流接触器、直流接触器、空气断路器、限流及漏电开关、框架式断路器、一般继电器、过流继电器、按纽开关及家电方面。在日本,使用这种触头材料的家用电器有:冰箱冷藏装置、洗涤器、烤面包器、电饭煲、电风机、空调器、电热毯、电位计、搅拌器、水泵、定时器、果汁机、干燥器、电剃刀、电视机、收音扩音等音像设备、汽车开关、稳压器等等。它用到的具体方面,就是除了10类102种设备之外很多我们日常民用的耗电设备,几乎都包括在里面。欧盟限制银氧化镉的应用,原因之一是银氧化镉最好的替代物是银氧化锡,而世界上银氧化锡技术最先突破、最为成熟的是欧洲的Degussa公司(德国)。与此同时,目前在我国解决这个问题的只有一二个科研单位,产量也只有一二吨,与我国每年几百吨的需求量两相比,还有很大的差距。

  • 自己改装多次烧坏的生物安全柜

    2020年的时候,有一天微生物室的生物安全柜不能工作了,点面板上的开关,没有任何反应,电源灯也不亮,找厂家,厂家很自然(看样子是通病)的说需要更换里面的控制主板和外面的操作面板,于是付钱找厂家买,价格倒是不贵,160元。[img=外面操作面板,690,920]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151336037160_2914_3874745_3.jpg!w690x920.jpg[/img][img=仪器里面的控制板,690,920]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151336327281_5049_3874745_3.jpg!w690x920.jpg[/img]厂家邮寄到了新的控制主板和操作面板,更换上果然好了。观察旧控制板,发现电路板上有明显的发热导致颜色不一致。[img=,658,623]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151338267149_5447_3874745_3.jpg!w658x623.jpg[/img]但是万万没想到,这才是开始,实验室一共有4台生物安全柜,2台净化工作台,都是同一个品牌,不管是生物安全柜还是净化工作台,控制板和操作面板竟然都是一样的,然后这6台陆续在后面的2年内全部阵亡,每台坏的方式都是一样的,全都是控制板发热,导致电路板上某个元器件烧坏,前前后后我至少换了7、8个,直接导致我把该厂家拉入黑名单,以后绝对不买这个厂家的任何东西了,要不是因为这些安全柜和工作台已经没有办法从微生物净化室里拉出来(因为这些工作台都是装修前就放进去了,现在门太小,已经拉不出来了),我就把这些安全柜和工作台直接报废买新的了,好在每次更换配件也不算很麻烦,就这样忍了了2年。今年又有坏了,呵呵,我已经忍不了了,决定大刀阔斧的给改了。首先要搞清楚为什么会发热烧坏,我分析的是因为安全柜要带两个风机,这两个风机功率比较大,用这个小小的电路板上的电容和继电器来控制,时间久了就发热烧坏,那就不用这电路板了。既然电流大,就用交流接触器,操作面板就用家用开关!研究一下控制板线路连接,捋了半天电路,发现挺简单的。[img=,690,361]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151419150169_161_3874745_3.jpg!w690x361.jpg[/img]之前只是知道有交流接触器这个东西,[font=-apple-system, BlinkMacSystemFont, &][color=#121212]交流接触器是一种可以频繁接通、断开电动机或其他负载主电路的电磁继电器,到底怎么接线还得研究研究,从万能的淘宝那里开始学习,买商家的东西就给介绍怎么接线哈哈。总体思路就是,两个开关分别控制日光灯和紫外灯,再加2个开关分别控制2个接触器,接触器再连接风机的1档和2档,电路很简单,就差实际操作了。买了两个接触器,刚好能放进顶部的空间。[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151423111132_1116_3874745_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151423205135_3801_3874745_3.jpg!w690x920.jpg[/img]交流接触器安装好了,开始安装开关面板,从万能的淘宝上买来了4开单控开关,但是发现这个开关好大啊,比原来的开槽要大很多,没办法,我找了个电磨机开始切割这个铁的面板,没想到挺容易就切开了一个长方形,看效果还行。[img=看这个切的还算不错吧,690,920]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151426135401_3453_3874745_3.jpg!w690x920.jpg[/img]开始走线,线路没办法从工作台内部走,因为都用胶封的,走明线吧,7块钱包邮买了点固定线的小工具,最后整体效果还算不错,看图[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151430085962_4259_3874745_3.jpg!w690x920.jpg[/img]再写上字[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151430384744_1119_3874745_3.jpg!w690x920.jpg[/img]。经过测试,所有功能都能实现,我顺便也把荧光灯管换成了LED灯,荧光灯管换的频率很高,还容易一闪一闪的,换成LED等后瞬间高大上起来,工作台更明亮了。[img=,690,516]https://ng1.17img.cn/bbsfiles/images/2023/07/202307151432428208_7931_3874745_3.jpg!w690x516.jpg[/img]干了一整天,终于弄完一台。。。不过成就还是满满的。后记:后面的几周我又抽空改装了2台,不过后面2台和第一台又都各不一样,思路有变化,第二台没有用交流接触器,直接用的家用开关去控制电机,因为我查了查,家用开关还是能耐很大的功率的,2kw完全没问题,而这个风机的2档功率最大才不过1kw,所以不用交流接触器也是可行的。第三台我的思路又开阔了,还是用的仪器原来的控制板和操作面板,没加装家用开关,只加了两个交流接触器,因为也就风机功率大才会导致控制主板烧,紫外灯和LED灯功率很小,控制主板可以负载上,所以只要给风机加上交流接触器就行了,控制主板和操作面板就不需要更换了哈。[/color][/font]

  • 空间用VPX机箱与板框紧固结构接触热阻标准化测试思路

    空间用VPX机箱与板框紧固结构接触热阻标准化测试思路

    [b][color=#ff0000]1. 技术现状[/color][/b] 目前国内外针对空间用VPX机箱与板卡紧固结构接触热阻的测试,大多采用如图 1-1所示的测试模型。[align=center][img=,450,558]http://ng1.17img.cn/bbsfiles/images/2017/06/201706262131_01_3384_3.png[/img][/align][align=center][color=#3333ff]图 1-1 板框紧固结构接触热阻测试模型示意图[/color][/align] 接触热阻测试过程中,一般将整个测试装置放置在真空腔体内。如果需要在振动环境下进行考核,还需将放置了热阻测量装置的真空腔固定在振动台上。 测试过程中,先通过真空腔和振动台模拟出空间使用环境,然后通冷却液,并对电阻加热器通电和对压紧条加载一定的扭矩。当测量装置达到稳定状态后(真空度、振动频率、加热电流电压、温度和扭矩恒定不变),通过测量加载的电流电压以及温度值,可以按照下列公式计算出相应的接触热阻。[align=center]R=ΔT/Q[/align] 式中: R代表接触热阻、ΔT代表相应位置之间的温度差、Q代表加载的电功率。[b][color=#ff0000]2. 问题的提出[/color][/b] 以上测试模型所假设的边界条件是热阻测量装置四周绝热,即假定加热器产生的热量全部流经板框进入冷却的VPX机箱壳体而没有其它热损失。但这种假设会给实际测试带来巨大误差,这主要是因为以下三个原因: (1)加热器的一部分热量会通过加热器表面以对流和辐射形式散失掉。 (2)板框上加热器未覆盖部分表面也会以对流和辐射形式散热。 (3)测试环境的温度、湿度和气压的不同造成对流与辐射散热大小的不同。 由于以上原因,造成流经接触面的热量往往要小于所加载的电功率,如果直接采用加载的电功率进行热阻计算,所得到的热阻测试结果往往会比实际热阻小很多,加热功率越大这种误差就会越大。 尽管国内外对卡框接触热阻测试技术的研究已经开展了二十多年,但至今国内外还未建立相应的标准测试方法,主要难度在于测试过程中如何保证边界条件的一致性和消除上述的热损失。[b][color=#ff0000]3. 标准化测试关键技术[/color][/b] 为了解决卡框接触热阻测试标准化问题,需要解决以下几方面边界条件的一致性: (1)电加热器加载功率的恒定 尽管国外有文献报道采用隔热材料包裹整个测量装置,但这种被动式方法还是会带来较大散热,加热器上很大一部分热量被用来加热了隔热材料。最有效的办法是采用主动式护热技术(等温绝热技术),主动式护热技术在材料热物理性能测试技术中常被用到,如ASTM D5470、ASTM C177和GB/T 10294等,也就是距离加热器外表面一定间距加一个护热套,采用温差探测装置来控制护热套与加热器的温度始终保持一致,从而实现等温绝热,使得加热器热量无热损的只能向板框传递。 (2)真空度的恒定 真空度是接触热阻变化的一个重要变量,标准化的热阻准确测量,必须要对真空度进行精确控制。

  • 改造了一个大烘箱,分享一下。

    单位使用多年的大烘箱一台,因故障频发,维修配件奇缺,所以决定进行技术改造,大烘箱经过改在以后,效果不错,在此介绍一下改造要点。改造前的主要器件:1、温度传感器为PT100温度传感器;2、温度指示仪为XMT-192机械指针式调节仪;3、执行控制仪为ZK-100可控硅触发调节仪;4、加热功率模块为ZP-2000高压大功率可控硅,两只反并连接。5、大电流交流接触器,6、三相交流电机(风机)和交流接触器。改造过程:1、保留原温度传感器PT100;2、去掉XMT-192调节仪,购买一个XMTD-908万能数显调节仪替换,原安装孔尺寸不变直接安装;3、去掉ZK-100控制仪,新增指针式交流电流表0-100A和交流电压表0-250V各一只,电流表和电压表并在一起,装在原ZK-100控制仪安装孔内;4、保留原高压大功率可控硅KP-2000,将两个K触发极去掉不用,将两个G触发极连接至XMTD-908的常开控制输出端上;5、大电流交流接触器线圈一端断开后,串入XMTD-908的ALM1常闭输出端上,此为新增加的超温断电保护功能;6、风机电路保持不变;7、新增0-250V交流电压表接至可控硅前端,指示输入电源电压;8、新增0-100A交流电流表接配套的100/5电流互感器,指示负载加热电流。大功告成,基本不改变原指示面板布局,更换和新增的数显仪表,指示直观,美观大方。经使用效果不错,老烘箱焕发青春,改造成本也不高,经济适用,是不错的改造方案之一,特供给大家分享一下。

  • 【分享】脉动真空灭菌器常见故障的排除

    XGI.P型脉动真空灭菌器采用可编程序控制器进行程序控制,实现了灭菌消毒的自动化,且由于使用了功能强、可靠性高的可编程序控制器,省去了过去有继电器控制而常常引起触点接触不良,而造成故障频繁发生的现象。我公司自使用该设备几年来,通过定期进行保养维护,极大地降低了设备的故障发生率,现将该设备常见的故障检修情况介绍如下: 故障一:在程序“真空”阶段,真空泵持续工作20min,无法进入灭菌状态。 分析与检修: 在程序“真空”阶段,“真空”指示灯亮,真空泵启动,这时内柜压力开始下降,脉动充气电磁阀V1与排气电磁阀V2交替启闭,进行脉动真空,即抽真空时V2开启,充气时V1开启,脉动幅值由电接点真空压力表P2的信号控制,待脉动次数达到3次时,“灭菌” 指示灯燃亮,“真空”指示灯熄灭,真空泵停止运转。现该设备在“真空”阶段,内柜压力已达到负0.07MPa,且无充气动作,测充气电磁阀V1不动作,可编程序控制器0504端无信号输出,观察脉动幅值压力表P2的指针已达到预置下限,进入充气状态,将压力表下限触点与控制触点短接,此时,脉动充气电磁阀V1开始动作,向柜内充气,待柜内压力达到预置的上限时,排气电磁阀V2开始动作,但当柜内压力下降到P2下限值时,充气电磁阀V1仍不能动作,故怀疑此故障是由电接点真空压力表触点接触不良引起的。关闭设备总电源,轻轻将压力表上盖打开,发现压力表触点有积碳打火点,致使触点接触不良。用细砂纸轻轻打磨,并用酒精擦洗干净,用万用表测量触点接触良好,最后将压力表上盖安装妥当,重新开启电源,在真空阶段,动作正常,脉动结束后成功进入程序“灭菌”状态。 故障二:在灭菌状态,灭菌计时器不计时。 分析与检修: 该机在完成三次脉动真空程序后,“灭菌”指示灯亮,内柜压力逐渐升高,温度也随之提高,当内柜温度达到记录仪下限指针132℃时,灭菌计时器开始得电计时,当计时时间达到预置值时,程序自动转入下一工作状态。内柜压力已达到0.2Mpa,但温度记录仪温度显示为127℃后不再上升,内柜温度记录仪下限指针设置为132℃,由于内柜压力已达到额定值,故此时内柜的温度实际已达到灭菌条件。拆下机器左侧裙板,观察内柜排水管路无气体排出,怀疑是疏水阀故障,缓慢调节疏水阀调节螺杆,排水管无气体排出,可能是疏水阀锈蚀引起堵塞,将柜内气体排出打开柜门,待柜体温度下降后,卸下疏水阀,打开发现阀内锈蚀严重,已无法再次使用,更换新品后试机,当内柜压力达到额定值时,仔细调节疏水阀调节螺杆,使排水管路有少量气体排出,温度开始逐渐上升达到132℃,灭菌计时器开始计时。此故障的产生是由疏水阀堵塞,而使排水管路积水造成的,管路积水后,其温度低于内柜温度,而温度记录仪的测量传感器探头就安装在柜体下侧的排水管路中,因此造成此次故障的发生。 故障三:做B-D试验不合格。 分析与检修: 当灭菌器内柜密封性能差,产生轻微漏气时会出现灭菌包内温度滞后现象,致使灭菌包内温度达不到标准要求。观察抽真空过程中,内柜压力下降缓慢,较之过去所用时间长,说明柜内有漏气现象。仔细检查内柜门封条、真空泵密封盖及电磁阀均无异常现象,最后发现内柜底部排水管与冷凝器之间单向阀密封不良,阀芯内部一圆紫铜片变形,使硅胶垫圈在抽真空时不能完全复位,产生轻微漏气,将铜片拆下整平,重新安装就位试机,经检测达到灭菌要求。 通过以上三例故障不难看出,做好设备的日常维护,可减少此类故障的发生。日常维护包括以下内容:定期检查真空泵、压力表、安全阀、疏水阀等重要部件。定期压紧真空泵盘根防止漏汽,轴承油杯加满黄油减少磨损,经常打开疏水阀进行清理以防止堵塞。由于灭菌器是压力容器,应按压力容器管理部门的要求定期对整体进行检验,其附件如电接点压力表触点要定期测量检查,保证触点接触良好,定期对安全阀进行开闭试验,以防动作失灵,且压力表、安全阀属强制检定计量器具,必须送计量测试部门定期检定,以确保数值测量准确,保障设备及人身安全。

  • 非接触式与接触式液位传感器

    非接触式与接触式液位传感器

    [font=宋体][color=#1E1F24]如今,随着科学技术的不断发展,液位传感器也被广泛应用于各种需要检测液位的设备上,根据实际应用环境不同,有时需要用到非接触式的液位传感器,那么接触式与非接触式液位传感器有哪些不同呢,今天小编就带大家了解一下相关内容。[/color][/font][font=宋体][color=#1E1F24]接触式液位传感器内置红外发射管和光敏接收器,检测部位是棱镜结构,棱镜结构与光学组件不分离。而非接触式液位传感器棱镜结构与光学组件分离,棱镜设计到用户水箱上,光学组件置于水箱外部感应液位变化,工作的原理是一样的,无水状态时,发射管所发出的光被经过透镜后会折射至接收管;有水状态时,则光折射到液体中,从而使接收器收不到或只能接收到少量光线,以此来判断液位的变化。[img=非接触式液位传感器,690,333]https://ng1.17img.cn/bbsfiles/images/2023/11/202311151609523704_7895_4008598_3.jpg!w690x333.jpg[/img][/color][/font][font=宋体][color=#1E1F24][url=https://www.eptsz.com]非接触式液位传感器[/url]立于水箱外,中间可间隔空气,解决了水箱需移动加水的问题。用此方案的产品水位感应精准,水箱外结构件干涉,更易清洁,避免传感器边角的细菌滋生。[/color][/font]

  • 【经验交流】-固相膜萃取水样中的有机氯农药

    水样中的有机氯农药包括:4种滴滴涕、4种六六六、艾氏剂、狄氏剂、异狄氏剂、六氯苯和七氯。固相膜萃取装置:C18固相萃取膜、溶剂过滤器、真空泵;1.水样需要过0.45微米的玻璃纤维滤膜除杂质。pH应该在2-12之间。2.萃取膜的清洗,用20mL乙酸乙酯和10mL丙酮。3.膜的活化:用20mL甲醇和20mL纯净水。在此过程中,不能让膜接触空气,若接触到空气,需要再清洗一次。4.活化后待膜未干直接倒入水样,萃取的流量对结果的影响不是很大。结束后,再抽真空一段时间,尽量把膜中的水都抽干。5.洗脱,用6mL丙酮先将膜浸泡约30秒,然后抽干,再用15-20mL正己烷洗脱,将上述两种洗脱液合并,然后除水,浓缩。注意:a.上述的洗脱溶剂是适合于本方法所做的目标物,如果是其他的目标物,需要重新选择合适的溶剂。b.在对上述的有机氯农药的萃取中,艾氏剂通常会被水中的杂质峰覆盖,因此在定性时应该注意。以上是个人在试验中的经验,希望大家交流![em61] [em09]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制