当前位置: 仪器信息网 > 行业主题 > >

长波红外热像仪

仪器信息网长波红外热像仪专题为您提供2024年最新长波红外热像仪价格报价、厂家品牌的相关信息, 包括长波红外热像仪参数、型号等,不管是国产,还是进口品牌的长波红外热像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合长波红外热像仪相关的耗材配件、试剂标物,还有长波红外热像仪相关的最新资讯、资料,以及长波红外热像仪相关的解决方案。

长波红外热像仪相关的资讯

  • 小菲课堂 | 详细解析长波红外SLS热像仪的显著优势!
    近年来,我们见证了读取技术和高级热像仪电子元器件的重大进展——推动热像仪的分辨率、速度和灵敏度显著提升。这使得我们能够解决棘手的热测试难题,如对安全气囊进行高速热测量,对微型电子元件进行故障分析,以及对看得见的半透明气体进行光学气体成像等。然而,直到引进II型应变层超晶格(SLS),我们才得以见证热成像技术的显著进步。这种探测器材料使热像仪有了与读出集成电路(ROIC)和热像仪电子器件相一致的性能提升。将SLS集成到商用红外热像仪中,提供了一种新的长波红外解决方案,实现速度、温度量程、均匀性和稳定性的明显提升,与此同时价格低于模拟探测器材料。速度提升长波红外SLS热像仪充气气囊停止运动的热图像SLS在长波红外波段和中波红外波段都能运行,但当过滤成长波红外波段时,其性能优势显而易见。事实上,与其它红外热像仪材料相比,SLS的主要优势是积分时间短或快照速度快。表1和表2展示长波红外SLS与中波红外锑化铟(InSb)性能指标之间的差异。只看首行的温度量程,我们发现SLS的快照速度比处于同一量程的中波红外InSb探测器快12.6倍。表1长波红外SLS表2 中波红外锑化铟(InSb)更快的快照速度使用户能够对高速目标进行定格摄影,以便获得精确的温度测量值。如果积分时间过慢,模糊不清的结果成像会影响温度读数。同样,更快的快照速度意味着更快的帧频。很多时候,InSb和其它探测器材料的较长积分时间需求导致热像仪以慢于探测器max值的帧频运行。例如,如果您拥有一台热像仪能够以1000帧/秒帧频生成640×512像素的图像,但是它在要求1.2 ms积分时间的带通下运行。由于积分时间限制较长,热像仪将无法达到Max帧频潜力,如果成像目标快速升温,这会引起问题。较慢的采样可能会导致用户无法精确描述部件的热稳态特性,可能会错过电路板启动或重启的关键温度尖峰。较宽的温度范围长波红外SLS热像仪长波红外SLS热像仪的另一项优势是有较宽的温度范围。在表1中,我们看到长波红外SLS热像仪的启动温度量程为-20°C至150°C,需要1次积分时间。为获得同样的温度范围,中波红外InSb探测器需要循环(超帧)3次积分时间,每个积分时间代表不同的温度量程。为了超帧获得完整的-20℃至150℃温度范围需要循环通过3个温度范围,这导致热像仪每捕获3帧仅获得一张超帧图像。这意味着校准热像仪时须付出3倍工作量并且总帧频减少1/3。再看表1和表2,我们发现有另一个值得注意的点:长波红外SLS热像仪未安装减光镜之前能测量更高的温度范围。受评SLS热像仪在安装减光镜之前Max高测量650℃,而中波红外InSb热像仪在安装减光镜之前仅能测量highest350℃。这仅是在长波红外波段运行的SLS与在中波红外波段运行的InSb的部分功能。图1:30°C理想黑体的光谱发射功率为说明这一点,让我们看图1,此图显示的是一个30℃理想黑体的光谱发射功率。曲线下的面积表示那一波段内的功率,长波红外波段的功率比中波红外波段的功率大得多。看图2,我们发现当物体升温时,代表性光谱发射强度曲线的波峰向左侧移动并向右逐渐下降。在一定温度范围内长波红外波段中的功率的变化,不如中波红外波段中的功率的变化显著。正因为如此,与中波红外InSb探测器相比,长波红外SLS探测器能够避免给定积分时间内的过度曝光或曝光不足问题。注意,中波红外波段中的功率变化是很大的;因此,随着物体升温,红外热像仪会在单次积分时间内快速饱和。图2:不同温度下黑体的光谱辐射发射率总之,SLS使您能够处理目标在较宽温度范围内快速升温的富有挑战性的应用,如燃烧研究应用。然而,在长波红外波段运行不是仅有的因素。如果研究长波红外碲镉汞(MCT)探测器,我们会发现它们的温度范围也有限,类似于中波红外InSb探测器。你会注意到,长波红外MCT热像仪每次积分时间具有较短的单个温度范围,以及在安装减光镜削减信号之前能够测量的温度限制(见表3)。表3 长波红外碲镉汞(MCT)探测器仪性能指标低成本,高性能长波红外SLS热像仪与其它长波红外制冷型热像仪相比,长波红外SLS热像仪一项最出色的特性是能通过冷却显著提升均匀性和稳定性,尤其是与长波红外MCT热像仪相比。长波红外MCT探测器通常具有较差的均匀性和稳定性。因此,每当用户打开长波红外MCT热像仪,上一次执行的均匀性校正都需要更新(见图3)。图3:启动时的MCT热图像这为基于现场的应用带来一些问题,由于环境状况,这不利于需要更新增益、补偿错误像素映射设备。这些应用可能包括当热像仪位于试验室中对其进行远程控制,或在政府试验场爆破区之外对其进行控制。相比之下,长波红外SLS能像中波红外InSb那样运行,因为用户只需打开热像仪就可以开始测试(见图4)。在实验室中完成的均匀性校正,除了可能利用热像仪内的内部NUC标记进行一点式补偿更新外,无需额外图像均匀性更新,便可在现场良好运行。NUC在长期多次冷却后仍保持正常。本文测试的热像仪自一年多前首次现场使用以来无需新的NUC。图4:启动时的SLS热图像虽然SLS热像仪的价格高于中波红外InSb热像仪,但它们比性能相当的长波红外MCT热像仪便宜40%。因此,如果您的应用需要更短的积分时间,更宽的温度范围或只有制冷型长波红外探测器才能提供的光谱灵敏度,SLS探测器比现行的制冷型长波红外MCT探测器具有明显的成本和均匀性优势。综上所述,SLS长波红外探测器材料是一种极具吸引力的高性价比材料,与中波红外InSb和长波红外MCT材料相比具有更短的积分时间和更宽的温度量程;长波红外SLS热像仪拥有比现行长波红外MCT热像仪更优异的均匀性和稳定性以及更实惠的价格。如果应用对性价比有特定要求时,长波红外SLS热像仪将是您工具箱的理想之选。
  • 视频:国惠光电展出面阵近红外成像仪与长波热像仪
    仪器信息网讯 2014年11月25-26日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的&ldquo 第七届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2014)&rdquo 在国家会议中心开幕,吸引了数十家业内相关产品厂商参展。  作为CIOAE 2014唯一的战略合作媒体,仪器信息网在本次展会现场视频采访了多家在线分析仪器相关厂商,记录了我国在线分析仪器技术与应用的最新进展。  山西国惠光电科技有限公司成立于2011年9月,专业从事红外焦平面探测器、激光气体传感器、红外热像仪、激光气体分析仪等产品的研制与生产。该公司激光气体产品开发部经理兰淑平在CIOAE 2014上接受了仪器信息网的视频采访,主要介绍了国惠光电的两款主推产品&mdash &mdash 面阵近红外成像仪与长波热像仪的优势与典型应用。
  • 小菲课堂 | 如何挑选心仪的红外热像仪?
    近几年红外热像仪的应用在全球发展迅速,红外热像技术在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等方面发挥了重要作用。作为种类繁多的高科技产品,到底该如何选择适合自己的红外热像仪,小菲今天就给大家支个招!测温范围(量程)测温范围是热像仪校准并能够测量的整个温度范围(量程)。有些热像仪设置多个量程,以便更精确地测量更大范围的温度。每种型号的热像仪都有自己特定的测温范围(量程)。因此,用户的被测温度范围(量程)一定要考虑准确、周全。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化。选择温度范围(量程)较高的热像仪对于某些工业应用尤其重要,例如测量锅炉、窑炉或熔炉等高温设备。因此,选择热像仪之前一定要先熟知行业所需的测温范围(量程)。左图为测量窑炉温度,温度超过测温范围时,热像仪正在猜测温度视场角 (FOV)视场角由热像仪镜头决定,是热像仪在任何既定时刻看到的场景范围。对于特写工作,你需要一个广角视场(45°或更高)的镜头。对于长距离工作,您需要一个长焦镜头(12°或6°)。有些相机可能有多个镜头用于不同的应用。例如FLIR T840配备6°超长焦镜头,适合在更远的距离下工作。左:长焦镜头 右:广角镜头红外分辨率热像仪的分辨率是热像仪在工作中有多少像素。更高的分辨率意味着每个图像包含更多的信息:更多的像素,意味着更多的细节,因此获得精确测量的可能性更大。选择红外热像仪时,取决于你的应用:当你能接近目标时,可以选择低成本,低分辨率的相机。从更远的地方测量较小的目标时,则需要更高的分辨率。左:低分辨率热像仪适合近距离测量目标 右:在一定距离测量时需要使用高分辨率相机热灵敏度(NETD)热灵敏度或噪声等效温差(NETD)描述了使用热像仪可以看到的最小温差。数字越小,红外系统的热敏性越好。选择热像仪时需要警惕:低成本制造商的热像仪可能隐藏了低灵敏度,将NETD设置为50°C而不是行业标准的30°C。如果你需要测量的目标温差很大,就无需热灵敏度太低的热像仪。然而,对于更精确的应用,比如检测水分问题,您将需要更高的热灵敏度。探测细微的细节,比如墙上的饰钉,需要很高的热灵敏度焦距热像仪的焦距可以是固定的,也可以是调节的,这意味着用户可以手动调整相机上的焦距,还可以自动调整焦距。一般来说,入门级热像仪是固定的焦距,高性能热像仪将有手动或自动调整焦距。手动对焦和自动对焦的优势在于用户的需要调整焦距,适应更多的场景。精确的温度测量需要正确聚焦图像光谱范围光谱范围是热像仪中的传感器检测到的波长范围,以微米(μm)为单位进行测量。大多数气体检测热像仪(如丙烷、甲烷和丁烷检测器)都是中波热像仪,这意味着它们的光谱范围在2微米到5微米之间。大部分热像仪都是长波热像仪,光谱范围在8微米到14微米之间。长波热像仪适用于各项红外应用,例如电气检查、消防救援等。左:丙烷、甲烷和丁烷等气体检测 右:其他各项红外应用在确定哪种热像仪最适合您的需要时,请记住以上挑选要点。重要的是,选择热像仪时,不能只考虑一种参数,要根据您的需求综合选择。
  • 小菲课堂|红外热像仪镜头是由什么制成的?
    一直以来由于红外热成像仪可以将肉眼不可见的物体表面温度变成能直接看到的热图像所以,红外热像仪广泛应用于电子或机械设备等潜伏性热隐患的检测那么,红外热像仪的镜头藏着什么奥秘?是如何将温度转换成热图像的呢?下面,小菲带你来揭秘~红外热像仪镜头是由锗类等物质或其他在红外光谱中吸收率和反射率低的材料制成的。但是为什么要使用这些特殊的成分而不是像玻璃这样更普通的物质呢?红外热像仪的工作方式与普通可见光相机不同。普通相机的功能或多或少与人眼相同,接收可见光谱中的辐射并将其转换为图像。但是,红外热像仪是利用热量(即红外线或热辐射)而不是可见光拍摄图像。红外辐射的表现与可见光差别较大。所以,红外热像仪的镜头需要用不同于普通相机的材料制成。在可见光世界中,一种特定材料的性质可能与它在红外世界中的性质无关。例如,玻璃在可见光谱中对辐射极为透明,但在红外世界中,长波红外(8-14uM),玻璃是完全不透明的:反之亦然, 锗是一种类似于硅的半金属元素,在可见光世界中是完全不透明的:但是在红外世界中却是透射率很高的物质:正因如此,FLIR红外热像仪的镜头是由锗或其他在红外光谱中是近乎透明的材料制成的。为了方便将热辐射转变成热图像所以红外热像仪的镜头是由锗类物质构成
  • ​全新一代 X 系列红外热像仪:FLIR X8580 和 X6980
    高速、高分辨率 全新一代高速高分辨率红外热像仪——X8580和X6980系列中波和长波红外光谱范围的科研热像仪,采集帧率快,噪声低,并带有记录、触发和同步功能。具备远程调焦能力,数据传输迅速,能将数据直接录制到机载固态硬盘上,此款热像仪能提供高质量热图像,同时节省您的时间,使用户能从容应对动态数据采集环境。 选择适合您研究项目的一款热像仪 FLIR X8580:X8580 系列热像仪分辨率高,集成了1280x1024的红外探测器,能够低噪声地检测出微小的温度差异。借助它,用户可以进行印刷电路板无损测试、辐射指标测量,以及采集高速冲击试验的应力场分布图和目标特征图的数据。此外,带有长波应变超晶格探测器的X8580 SLS ,拥有更短的成像曝光事件和更宽的温度动态范围,能帮助研究人员准确捕捉整个高速事件中的每个动态细节。 FLIR X6980:捕捉高速运动事件中的一帧热图像,例如热瞬变,即便是对锂电池进行破坏测试,你也需要一台能够以每秒1000帧的速度捕捉详细细节图像的热像仪。FLIR X6980 MWIR 和 X6980 SLS LWIR 热像仪提供您所需要的高速,高灵敏度,以及电动远程调焦镜头。 如欲了解更多详细信息,您可以留言或直接与我们联系。 全新的、具有颠覆力的特性 相关产品(点击图片即可获得详细参数)高速 MWIR 科研级热像仪FLIR X6980&trade 科研级高速 LWIR 热像仪FLIR X6980 SLS&trade 科学级高清中波红外热像仪FLIR X8580&trade 高清长波红外 (LWIR) 科研级热像仪FLIR X8580 SLS&trade
  • 艾睿红外热像仪将温度可视化 助力石化行业高质量发展
    艾睿光电,作为红外热成像领军者,从危化品仓储、工艺过程监测、设备故障检测到环保执法、安全管控等方面,全方位剖析红外热像仪在石化行业下的应用赋能。凭借领先的红外探测器核芯优势,旗下手持和在线红外热像仪以其高分辨率,高灵敏度的细腻热图,专业级软件方案,助力石化行业高质量发展。艾睿光电多波段布局,不仅长波红外有深厚积累,同时在短波、中波等其他波段也枝叶繁多。通过此次会议,来了解一下艾睿光电给石化领域带来的惊喜。 化无形为有形,微量气体清晰可见,泄漏量小至0.001mL/s,直击能源用户气体检测痛点; 中国 “芯”VOx红外探测器,探索极致红外世界,艾睿首款1280×1024级手持热像仪—瑶光S1280,带您体验高清晰的智能巡检; 视觉“温度”感知,1280×1024、640×512、384×288全系列产品,提供更精准的测温效果,呈现更锐利的图像细节,让感知多一个维度,让监管多一份保障;点击下图观看回放另外仪器信息网联合艾睿光电推出“艾睿红外热像仪应用挑战赛-仪会通报告视频打卡季”,欢迎相关用户来挑战。
  • 小菲课堂|制冷型or非制冷型红外热像仪,我们该如何抉择?
    多年来,科学家、研究人员和研发专家热衷于将红外热像仪运用在广泛的应用领域中,包括工业研发、学术研究、无损检测(NDT)和材料检测,以及国防与航空航天等。但是,并非所有的红外热像仪均具有同等的品质功能,或者可用于一些专门的应用。譬如,要想获得精确的测量值,则需要配备高速定格动画功能的先进红外热像仪。今天,小菲就教大家如何选择制冷型和非制冷型红外热像仪!各有千秋制冷型红外热像仪先进的制冷型红外热像仪配有集成低温制冷机的成像探测器。这是一款可将探测器温度降低至制冷温度的设备。为了将热噪声降至场景成像信号水平之下,探测器温度的下降必不可少。制冷型红外热像仪是最敏感型红外热像仪,可探测物体间最细微的温差。它们工作在光谱中波红外(MWIR)波段和长波红外(LWIR)波段,因为从物理学角度来讲在这些波段热灵敏度较高。热灵敏度是指信号变化相对于目标温度变化。热灵敏度越高,就越容易探测那些目标温度与背景差异不大的场景。FLIR A6700sc是一款科研级中波红外锑化铟热像仪,能生成细节丰富的327,680像素热图像。非制冷型红外热像仪非制冷型红外红外热像仪是一款其中配备的成像探测器无需低温制冷的红外热像仪。常见的探测器设计基于热释电探测器,这是一种拥有较大温度测量系数的小型氧化钒电阻,表面积较大、热容量低,以及热绝缘效果佳。场景温度变化会导致红外探测器温度变化,从而将转化为电信号,并经过处理产生图像。非制冷型探测器用在长波红外(LWIR)波段中,与地面温度类似的目标在该波段中放射出的红外热能最多。相比制冷式探测器,非制冷型探测器的制造步骤更少,产率更高,真空包装成本更低,而且非制冷型红外热像仪无需极其高昂的低温制冷机设备。非制冷型红外热像仪配有较少的活动部件,在类似的工作条件下,其往往较制冷型红外热像仪具有更长的使用寿命。FLIR T650sc配备一台非制冷型氧化钒(VOx)微测辐射热计探测器,能生成640×480像素的热图像。非制冷型红外热像仪展现的优势带来了两难的问题:研发/科学应用什么时候使用制冷型红外热像仪?答案是:取决于应用需求。实例对比如果你想要发现微小的温差变化,需要图像质量,拍摄快速移动或发热目标;如果你需要看清热变化过程,或者测量极小目标的温度;如果你希望在非常明确的电磁波谱部位可见热对象;抑或你希望将红外热像仪与其他测温设备同步工作,制冷型红外热像仪则是适合你的仪器。01速度制冷型红外热像仪的成像速度快于非制冷型红外热像仪。高速热像成像的曝光时间可达到微秒,能够停止动态场景的表观运动,并可捕获每秒62,000帧以上的帧速率。其应用包括热分析和动态分析喷气式发动机涡轮叶片、汽车轮胎或安全气囊检测、超音速弹丸,以及爆炸等。制冷型红外热像仪具有极快的响应速度,并充分利用全局快门优势。这意味着它们能够同时读出所有的像素,而并非如非制冷型红外热像仪一样逐行读取,从而使制冷型红外热像仪能够捕获清晰的图像和对移动物体进行测温。这些红外图像对比了以20 mph速度旋转的轮胎的拍摄效果。左边这张是用制冷型红外热像仪拍摄的。您可能会觉得轮胎并未在转动,但这是制冷型红外热像仪在极其高速条件下的拍摄结果,它会“定格”轮胎的转动。非制冷型红外热像仪的拍摄速度太慢,无法捕捉到轮胎旋转时使得轮辐显得透明的瞬间。02空间分辨率下面热图像对比了采用制冷型和非制冷型红外热像仪系统可实现的特写放大效果。左边的红外图像是用带4倍近焦镜头和像元间距13μm制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为3.5μm。右边的红外图像是用带1倍近焦镜头和像元间距25μm非制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为25μm。由于传感红外波长较短,制冷型红外热像仪通常具有比非制冷型红外热像仪更强的放大功能。由于制冷型红外热像仪的灵敏度更高,因此可使用带更多光学元件或更厚元件的镜头而不降低信号噪声比,从而提升了放大功能。03灵敏度制冷型红外热像仪灵敏度改善带来的价值往往并不显而易见。为了对比灵敏度的优势,我们做了一个快速的灵敏度实验。我们将手按在墙上停留几秒钟来创建手印的热图像,以此进行对比。开始的两张图像显示了手移开瞬间的手印。第二组图像显示了两分钟后手印的热特征。您可看见:制冷型红外热像仪仍能捕捉手印的大部分热特征,而非制冷型红外热像仪仅能捕捉其部分热特征。显而易见,制冷型红外热像仪比非制冷型红外热像仪能检测到更细微的温差,其检测的持续时间也更长。这意味着:制冷型红外热像仪能更清晰地显示被测目标的细节,并能帮助您检测到最微弱的热异常。04光谱滤波制冷型红外热像仪优势之一是能够轻松进行光谱滤波,以便侦测细节和测温,而这两点使用非制冷型红外热像仪则难以做到。实例一:我们使用了滤片,将其置于镜头后的滤片支架内或者内置在杜瓦探测器组件内,以便让火焰完整成像。过去,终端用户希望测量和表征火焰内的煤颗粒的燃烧现象。借助“看穿火焰”的光谱红外滤片,我们对制冷型红外热像仪进行了光谱波段滤波处理,在该波段中火焰为穿透式,因而我们能够对煤颗粒进行成像。图一为不带火焰滤片拍摄的图像,我们看到的都是火焰本身。第二张图为带火焰滤片拍摄的图像,我们能够清晰地看清煤颗粒燃烧情况。05同步精确的红外热像仪同步和触发功能使红外热像仪成为高速、高热灵敏度应用的理想之选。通过快照模式工作,FLIR A6750sc能够同步捕捉热活动中的所有像素。这对于监测快速移动物体时尤其重要,在这种时候,标准的非制冷式红外热像仪会使图像变得模糊。图中的图像即是良好的示例。在该例中,我们扔下一枚硬币,并通过传感器触发红外热像仪拍摄图像。两次抛扔相同硬币时,同时触发红外热像仪,你每次都会看到物体处于相同的位置。借助非制冷式红外探测器红外热像仪,你根本无法捕获硬币,因为其无法触发此类型探测器。如果不走运的话,图像可能模糊不清。FLIR红外热像仪配备制冷型探测器的红外热像仪比配备非制冷型探测器的红外热像仪具有更多优势,但是这类热像仪价格更昂贵。FLIR高性能制冷型红外热像仪有FLIR A6750sc、A8300sc、SC6000、SC7000、SC8000、X6000sc和X8000sc,它们在红外中波和红外长波光谱波段中具有超快速、超灵敏性能,而FLIR A6250sc则可在近红外光谱波段中操作。FLIR还提供各种非制冷式红外热像仪,包括入门级桌面实验套件和像FLIR T650sc一样的高端系统。专用镜头和软件将让您的红外热像仪解决方案满足特定的应用。选择制冷型与非制冷型红外热像仪主要是根据您的用途
  • 厉害了红外热像仪,用它观测月食会有什么新发现呢?
    今年六月份,在中国境内出现了十年一遇的天文奇观——金日环食,也就是指月球和太阳视直径非常接近。“日环食”非常接近全食,因为太阳整个圆面将有超过99%的面积被遮住,因此发生日食时太阳只会露出很细的一圈,所以这样的“日环食”也被称为“金边日食”!在月食期间,月亮拥有“血色”的外观,这是投射到地球上的影子和仅被我们大气层折射的红色阳光照射的结果。这一现象可通过肉眼观测到,但是高级红外热像仪能观测到更多情况。月亮表面通常被太阳加热至高温,当阳光在月食期间被阻挡时会快速放射热量,如果使用长波红外热像仪对月亮进行成像,会产生非常漂亮的图像。下面通过FLIR公司的高级研究科学家Austin Richards用事实证明其可行性!Austin Richards是FLIR公司的高级研究科学家。他拥有加州大学伯克利分校的天体物理学博士学位,专门研究红外辐射测量,利用红外系统进行测试和测量,建模与仿真。FLIR RS8303捕捉日全食1月20日在加利福尼亚州戈利塔市一个少云的夜晚,Richards设置了一台FLIR RS8303红外望远镜,在太平洋标准时间晚上9点12分,月食大时对其进行成像。该望远镜采用高分辨率中波红外热像仪,配备一个变焦倍率为10:1的红外变焦镜头。在这里,Richards使用了一台不带外壳的RS8303,以降低重量和减小体积。RS8303最初专为导弹和火箭而设计,但是它还有其它用途,比如远程监视、动物研究和天文学等。Richards曾在2017年8月使用它捕获日全食的中波红外图像。Richards把RS8303安装在一个重型三脚架上,指向东方的白道。在镜头的全变焦设置下,视场角几乎与满月尺寸接近。由于没有RS8303的赤道追踪基座,他必须得手动追踪云层间隙中的月亮。Richards使用FLIR ResearchIR软件以1帧/秒的帧速记录视频至笔记本电脑的硬盘驱动器。FLIR RS8303捕捉日全食当月亮终于出现在云缝中时,月食变大。这种景观异常迷人,数百个环形山在月球表面显示为热点,这证明了相对于较光滑的“月海”(月球表面的玄武岩平原),环形山表面有更高的阳光吸收率。最热、最明亮的环形山是位于下图右下区域的第谷。较大的环形山哥白尼和柏拉图也很引人注目。这张月食期间的月亮热图像由两张图像垂直拼接而成,以展示整个表面。白色是最热部位的颜色,接下来依次是红色和黑色。调色板基于“血月”的红色和黑色。在1960年9月5日月全食期间轻松测量第谷的温度归因于数个因素。其一,环形山中尘土和岩石的热属性被认为能减缓月食期间的辐射热损失。其二,环形山表面的光学属性造成其阳光吸收率高于周围区域。无论原因何在,结果是迷人的现象和令人难忘的月食。你还只会用天文望远镜夜观星空?科学技术的发展让我们有了更多的选择只要有热量差异几乎都可以被红外热像仪捕捉到哦~快来用FLIR红外热像仪发现不一样的美吧~
  • 高芯科技长波制冷系列红外探测器量产全记录
    制冷长波红外器件的研制工艺一直是业内公认的顶尖红外技术。高芯科技早在成立初期,就实现了长波制冷红外探测器的攻关和批产。目前,公司全系列长波制冷红外探测器产品的整体量产能力已经稳步跻身业内头部阵营。WHY IS 长波制冷红外?长波制冷红外器件因其较高的帧频、低温响应度以及适应性在高端热像应用领域潜力巨大。长波制冷红外探测器的优势集中在:1. 穿透能力强,适应复杂使用环境(沙尘、海面、云层、反光等);2. 积分时间短,帧频更高;3. 低温响应度高,适合探测室温目标。WHY IS 超晶格?高芯科技完全掌握锑化物超晶格研制工艺,并基于此开发出长波制冷红外探测器全系列产品。作为发达国家一致选择的第三代高性能焦平面探测器的优选材料,锑化物超晶格制备长波探测器具备如下优点:1. 量子效率高;2. 低成本;3. 宽波段精确可调;4. 工作温度高;5. 长波、双色性能优良;6. 大面积材料均匀性好。锑化物超晶格材料的强项是极高的质量,均匀性和稳定性。因此基于其制备的红外探测器在有效像元率、空间均匀性、时间稳定性、可制造性上要比其他材料更有优势,这种优势尤其体现在长波探测器的降低成本和大面阵制备两个方面。WHY IS 高芯科技?高芯科技拥有涵盖材料、芯片、电路、封装、制冷机的完备生产线,超过两万平洁净厂房,上千台(套)精密制程设备。全系长波制冷红外探测器在这里实现了从原材料到整机系统的完全国产化制造。坚实的硬件基底支撑公司实现了覆盖多种面阵规格、多种像元尺寸以及多种波段组合的制冷红外探测器全产品线量产。前沿超晶格技术始终是高芯科技的前进方向。从立项研发到量产交付,从新品导入机制到工艺过程控制,高芯科技娴熟掌握锑化物超晶格长波红外探测器的关键芯片工艺,逐年实现320×256、640×512以及1280×1024百万像素长波红外探测器的规范化批量制造。兼顾性能的同时,产品的应用稳定性也是我们关注的重点。高芯科技的红外探测器在历经严苛贮存环境测试、上千次开关机验证、耐久性工作寿命论证等多项可靠性试验后,产品性能、图像均匀性等各项指标依然满足应用所需。2024年1月,高芯科技以1280×1024/10μm长波制冷红外探测器产品为代表的科技成果一举通过湖北省技术交易所专家评定:“整体达到国际先进水平,部分指标国际领先”。未来,各类制冷红外探测器的市场需求会进一步扩大。高芯科技将深入挖掘红外核心器件底层技术,继续精研热像传感芯片制造工艺,稳步提升制冷红外探测器的量产交付能力,牢牢把握长波、高温、双色制冷红外探测器快速发展的重大市场机遇,持续保持公司在锑化物超晶格探测器产业化领域的领先优势。关于高芯科技武汉高芯科技有限公司掌握了红外热成像技术的核心——红外焦平面探测器,致力于为全球红外热成像用户提供专业的非制冷和制冷红外探测器、机芯模组以及应用解决方案。公司在红外探测器及相关领域获得多项技术专利,可同时提供非制冷和制冷红外探测器。建立了8英寸0.11μm氧化钒非制冷红外探测器、8英寸0.5μm碲镉汞制冷红外探测器、8英寸0.5μm二类超晶格制冷红外探测器三条批产线,自主完成原材料提纯、生长,到芯片的流片、制造、封装与测试的全套工艺。公司产品品类丰富,覆盖多种面阵规格、多种像元尺寸以及多种波段组合 。产品灵敏度高、可靠性好,各项性能指标达到国际先进水平,已广泛应用于人体测温、工业测温、安防监控 、无人机载荷、气体泄漏检测、户外夜视、智能驾驶、物联网、智能家居、智能硬件等领域。
  • InfraTec全新推出高清级便携式红外热像仪
    全新一代非制冷红外热像仪 VarioCAM HD采用了1024x768像素高清级长波非制冷微量热型焦平面探测器.通过我们的ORI光学分辨率提升技术,VarioCAM HD 输出更为清晰、详细的红外辐射图像达2048× 1536像素,并提供了 50mK的热分辨率(NETD)。VarioCAM HD 还是世界上第一款集成了激光测距仪,具有最佳温度校正、支持自动对焦和内置 GPS 模块的高清级便携式红外热像仪。坚固的5.6"TFT特大显示器和可倾式取景器方便本机操控和实时图像观看。包括无线和 GigE-Vision等多种工业级标准接口可选,容易实现远程操控和图像传输。我们还提供一系列经过优化设计和精确匹配的高质量红外镜头,以匹配各种各样的热成像应用。更多详情敬请洽询英福泰克(InfraTec)红外热像仪中国总代理-北京雅世恒源科技发展有限公司.New thermal camera series VarioCAM High DefinitionFor the first time, mobile thermographic microbolometer cameras with a detector format of (1,024 x 768) IR pixels and therefore a 2.5 times higher resolution than previous high-class models are available with the VarioCAM HD, which is manufactured by the German manufacturer Jenoptik. Large test objects can be captured thermographically with unprecedented efficiency.With optomechanical Microscan function up to(2,048 x 1,536) IR pixelsDigital real time data interface GigE-Vision for high-speed image transmissionWide standard range for temperature measurementsImage storage of fast IR sequences on a SDHC cardLarge assortment of premium-quality full optics (f/1.0)Vision mixer and cross-fade feature, synchronous display of thermal and video images in real timeVoice recording and text annotationLi-ion battery technology, standard battery, operating time of up to 3 hoursWireless camera control and data acquisition via WLANComfortable control software with numerous measurement functionsSolid light metal housing (IP54) for harsh industrial applicationsEasy operation, diverse automatic functions。(详情请洽中国总代理-北京雅世恒源科技发展有限公司)The stationary industrial models VarioCAM HD head are based on the same core technology as the mobile models of the thermographic
  • 高功率高重频可调谐长波飞秒中红外光源
    波长调谐范围覆盖6-20μm的高重复频率(10 MHz)、高平均功率(10 mW)飞秒激光源具有重要的应用,由于大量分子在这个波段具有振动跃迁,因此有望用于痕量气体检测以及对由气体、液体或固体组成的复合系统进行与物理、化学或生物学相关的非侵入性诊断。但由于增益介质的缺乏,这些中红外源通常利用高功率近红外飞秒激光器驱动光学差频产生(DFG)来实现:近红外激光脉冲的一部分用作泵浦脉冲,另一部分采用非线性波长转换产生波长可调的信号脉冲,泵浦脉冲和信号脉冲之间的DFG产生可调谐的中红外脉冲。利用传统非线性光学手段产生的信号光脉冲能量较低,限制了中红外光源的功率,导致长波中红外飞秒光源无法广泛应用。针对该难点,中国科学院物理研究所/北京凝聚态物理国家研究中心L07组在长期开展基于超快激光脉冲产生及波长转换的基础上,利用自相位调制的光谱旁瓣滤波(SPM-enabled spectral selection,SESS)技术,基于高功率掺铒光纤激光器在高非线性光纤中得到了波长范围覆盖1.6-1.94μm、功率高达300mW(~10nJ)的信号脉冲,再与1.55μm的泵浦脉冲在GaSe晶体中差频得到了波长覆盖7.7-17.3μm的中红外激光脉冲,最大平均功率可达58.3mW。图1. 实验装置图实验装置如图1所示,前端为自制的高功率掺铒光纤激光器系统,重复频率为32MHz,经过啁啾脉冲放大后得到平均功率为4W、脉冲能量为125nJ、宽度为 290fs的脉冲。将激光脉冲分成两份,一份作为泵浦脉冲,另一份耦合到SESS光纤中进行光谱展宽。光纤输出处的展宽光谱由二向色镜分离,长通滤波器(图中的LPF1)将最右边的光谱旁瓣过滤出来作为信号脉冲。泵浦脉冲经过时间延迟线与信号脉冲在时间上重合后聚焦到GaSe晶体上,光斑大小约为50μm。再通过另一个截止波长为4.5μm的长通滤波器,生成的中红外光束经焦距为75mm的90°离轴抛物面镜准直。利用校准的热敏功率计测量中红外脉冲的平均功率,傅里叶变换红外(FTIR)光谱仪来测量输出光谱。图2(a)为1mm-GaSe后输出光谱和功率,光谱范围为7.7-17.3μm,最大平均功率为30.4 mW。为了进一步提高输出功率,我们采用2mm厚的GaSe晶体,结果如图2(b)所示,整个光谱调谐范围内脉冲功率均大于10mW,最大平均功率达58.3mW。相比于以往基于掺镱光纤的中红外光源,本研究成果将DFG平均功率提高了一个数量级,并首次实验上观测到了工作在光参量放大机制下的高重频DFG过程。该高功率长波中红外光源基于结构紧凑的光纤激光器,可以用于实现中红外双光梳,从而推动中红外光梳在精密光谱学中的前沿应用。相关结果发表在最近的Optics Letters上(https://doi.org/10.1364/OL.482461),被选为Editor's Pick并成为当天下载量最多的5篇论文之一。图2. 在不同厚度GaSe后测量到的中红外光谱和功率:(a) 1mm-GaSe(b)2mm-GaSe。该工作得到了国家自然科学基金(批准号:No.62227822和62175255)、中国科学院国际交流项目(批准号:No. GJHZ1826)和国家重点研发计划(批准号:No. 2021YFB3602602)的支持。论文第一作者为物理所博士生刘洋,常国庆特聘研究员为通讯作者,赵继民、魏志义研究员也参与了该工作的设计和讨论。
  • 焜腾红外推出全系列T2SL制冷红外探测器,全面覆盖中波和长波多种面阵规格
    ——记HOT T2SL Ⅱ类超晶格探测器量产第三年 致力于Ⅱ类超晶格制冷型红外探测器产业化的焜腾红外,在过去三年已经完成Ⅱ类超晶格红外探测器工程化批产超千支。尽管已是焜腾红外120k高工作温度制冷型探测器实现量产的第三年,但是在技术迭代和产品开发方面,焜腾红外却从未止步。在稳定批产的同时,焜腾红外也在逐步发力150k制冷探测器的批量生产以及长波Ⅱ类超晶格制冷型探测器的工程化工作。现阶段已经研发出温度更高(160K)、面阵更大(2Kx2K)、重量更轻(260 g)、波长更长(12 μm)、寿命更久(45000小时)的Ⅱ类超晶格制冷型红外探测器,全面覆盖中波和长波多种面阵规格。 经过技术研发人员过去三年的持续努力,焜腾红外现已研制出适用于不同场景和应用条件的多种T2SLⅡ类超晶格探测器。仅重量方面就已经研制出550 g、350 g、和260 g三种规格,其中重量仅重260 g的探测器其芯片的工作温度已经能达到150K,部分甚至可达160K的芯片工作温度。在制冷机的配置上,除了旋转式斯特林制冷机外,还可以根据客户需求搭配线性制冷机,以实现挥发性有机化合物(VOCs)气体在线泄漏检测系统应用高达45000小时的寿命的特殊需求。除了重量和制冷机配置上可以适配用户的不同需求外,焜腾红外在探测器面阵上也已经可以做到2Kx2K,覆盖范围除中波之外,也已研制出最长波长达12 μm的长波探测器。焜腾红外能为广大客户提供多种阵列规格和响应波长的产品,分别为320x256、640x512、1280x1024以及2048x2048,其光谱响应范围涵盖3.2 μm – 3.5 μm、3 μm – 5 μm、7.5 μm – 9.5 μm及10.3 μm – 10.7 μm多个波段,基本上实现了中波和长波全规格探测器的技术供应。 焜腾红外的技术研发路线集中于深耕Ⅱ类超晶格制冷红外探测器这一新型探测器技术路线,研制出并生产覆盖中长波的Ⅱ类超晶格制冷型红外探测器,下一步的研发方向将会向着更长波发力,以及研发覆盖波段更全、应用范围更广、在有害气体检测方面能检测到更多气体种类的II类超晶格探测器。除了现有生产基地之外,焜腾红外在嘉兴的新厂(占地35亩的焜腾光电芯片产业园项目)已经结顶并即将落成投入使用,届时该产业园将会成为国内最具竞争力的覆盖Ⅲ-V族化合物半导体制冷型芯片与探测器组件及VCSEL芯片的重要基地,预计达产后年产红外探测器一万支,最终实现国产化探测器的全规格批产。 在第24届中国国际光电博览会中(9月6-8日),焜腾红外将携自研和生产的各类探测器、探测器组件和VCSEL芯片亮相,展位在深圳国际会展中心(宝安新馆)CIOE红外技术及应用8号馆8B023,欢迎各位莅临展位进行洽谈合作!本次展会展品介绍V340红外热成像气体泄漏检测仪V340红外热成像气体泄漏检测仪是一款针对VOCs的非接触式泄漏检测设备,产品工作波段为3.2 µm – 3.5 µm,可检测甲烷、乙醇、汽油、苯等400余种VOCs气体或挥发性液体的微小泄漏。机载式VOCs气体泄漏可视化巡检系统U-330机载式VOCs气体泄漏可视化巡检系统U-330应用于甲烷及其他VOCs的泄漏检测,整套系统由大疆M300RTK无人机搭载吊舱式VOCs气体泄漏红外成像仪D330组成。在线式VOCs气体泄漏可视化检测系统M330在线式VOCs气体泄漏可视化检测系统M330应用于甲烷及其他VOCs的泄漏检测。探测终端内采用高灵敏度320x256高工作温度的二类超晶格中波制冷红外焦平面探测器、通过有线网络可实时观测VOCs气体泄漏状态的双光图像,系统适用于工业领域VOCs气体泄漏的实时在线监测。
  • 国内红外热像仪厂商研发投入:近7成过亿 持续加码研发
    20世纪50年代之前,红外热成像技术还处于初步研究阶段,后随着红外探测器和电子显示元件的发展,红外热像仪开始进入实用化阶段。但当时由于技术壁垒较高且成本高昂,红外热像仪主要用于军事领域。近年来,随着热成像探测材料和光学系统的改进,红外热像仪的性能进一步提高。同时,红外热像仪的体积和重量也得到了大幅减小,使其适用于更多的应用场景,已经迅速向民用、工业领域扩展。例如,在汽车防盗定位系统、智慧工业、户外观察、人工智能、机器视觉、智能驾驶、安防消防、物联网、医疗健康等领域都有广泛的应用。红外热像仪的发展离不开科技的进步和持续的研发投入正,正是这些努力,使得红外热像仪在多个领域都取得了显著成果。基于此,为方便业界人士了解2023年国内红外热像仪厂商在该领域的研发投入现状,本文特对以红外热成像为主要业务的6大上市企业:睿创微纳 、高德红外、大立科技、热像科技 、光智科技、久之洋2023年度的研发投入金额、研发投入占比、研发人员数量、研发人员占比等数据进行了梳理,以飨读者。研发投入金额:近7成企业过亿 研发投入持续加码在六家企业中,2023年度有四家的研发投入破亿元。其中,睿创微纳的研发投入位居榜首,达6.83亿元。值得注意的是,所有企业在这一年度的研发投入均相较于2022年有所增长,且光智科技的增长幅度尤为显著,达到了111.69%。从研发投入的维度来看,睿创微纳的投入金额最高。2023年,睿创微纳加大研发投入,从红外探测器芯片、热成像机芯模组和红外热像仪整机系统三个环节加强了研发平台建设,建立了第一个红外图像开源平台,为保持技术和产品领先优势打下坚实的基础。在非制冷红外成像领域,持续优化提升12μm系列产品的综合性能。推进10μm系列产品化,640×512产品转入小批量阶段,超大面阵2560×2048高灵敏度探测器完成正样研制并通过转阶段评审。8μm系列产品稳步推进,640×512及1280×1024两款产品均已进入正样阶段,1920×1080产品转入小批量阶段。车载方向,完成了车载红外热成像产品在汽车行业的布局,产品涵盖单红外、双光融合、双红外等类型,分辨率做到256、384、640、1280及1920的全覆盖,发布了国内首款通过AEC-Q100车规级认证的红外热成像芯片,将广泛满足汽车智能驾驶、自动驾驶、智能座舱等领域的应用需求。车载红外领域获得了包括比亚迪、吉利、滴滴、大运、智加、慧拓等在乘用车、智驾、商用车等领域的多家头部企业定点项目。从研发投入占营业收入的比例来看,大立科技以77.64%的占比位居榜首。报告期内,大立科技依托完全自主知识产权的非晶硅技术路线在红外测温领域的独特优势,重点开拓政府采购和商业客户的测温需求,研发项目包括高分辨率非制冷红外焦平面项目、车载红外目标识别系统项目、防爆巡检机器人项目等,不断巩固电力和工业监控等传统领域的优势地位,优化产品结构提升集成度,继续重点开发电网全息感知平台和巡检机器人等产品;同时,利用新量产的氧化钒技术路线产品,深挖市场需求不断加大新行业的应用拓展,重点投入个人消费、辅助驾驶等新兴应用领域的产品开发。从研发投入的增减幅度来看,光智科技的增长幅度最为显著,达111.69%。累计拥有专利权共358项。报告期内,主要的研发项目包括640×512@12μm 非制冷晶圆级封装探测器、InSb探测器组件项目等数十项。在红外材料方面,公司开发具有自主知识产权的13N锗填补了国内空白,突破了国外长期对超高纯锗的封锁和垄断。在红外镜头业务方面,现已完成100多款红外镜头创新设计开发,产品谱系涵盖从常规的定焦镜头、消热差镜头,到结构复杂的双视场/三视场切换镜头、大变倍比连续变焦镜头等各种类型红外光学镜头产品。在红外探测器方面,已建设8英寸硅基MEMS非制冷红外探测器芯片生产线,突破了红外热成像核“芯”技术;制冷探测器方面,已建设2-6英寸各种制冷型红外探测器芯片生产线(含中波MCT、InSb 和长波二类超晶格等探测器芯片),搭配自主研发生产的制冷机和杜瓦,形成了从制冷红外材料、芯片、封装到器件完整的制冷探测器产业链。在红外整机方面,光智科技进一步聚焦红外系统集成应用领域产业化,加快丰富产品类别,陆续推出了辐射监测仪、Nonshutter系列无挡片红外机芯、Mickey-LR/IR系列手持单目热像仪、Lucking- LR/IR非制冷红外热像仪等下游终端新品,打开公司业务增长新空间。研发人员规模扩大:2家企业超千人 6家数量均实现增长在六家企业中,2023年度有两家企业的研发人员数量破千人,分别为高德红外和睿创微纳。其中,高德红外的研发人员数量位居榜首,达2088人。与研发投入一样,所有企业在这一年度的研发人员数量均相较于2022年有所增长,且光智科技的增长幅度尤为显著,为55.10%。在研发人员数量方面,高德红外以2088人的规模位居首位。2023年因公司业务领域扩增,项目增多,加大了研发类岗位的招聘力度,多渠道进行研发岗的招聘,并取得较好的成效。特别是在校园招聘方面,选拔了具有相当潜力、专业知识和技能的研发人才,为后续项目推进做好研发人员储备,确保公司长期可持续发展。此外,公司还适时调整和保障了对研发团队的激励,提升了公司在人才市场的竞争力,从而稳定现有研发岗位人员。大立科技在研发人员占比上表现出色,达47.77%。作为国内少数拥有完全自主知识产权的企业,大立科技在红外热成像领域能够独立研发、生产从核心芯片、机芯组件到整机系统的全产业链完整产品。公司一直秉持自主研发的理念,致力于打造一支专业且核心骨干的研发团队,以确保在红外热成像技术领域的持续领先地位。从研发人员数量增减幅度看,光智科技2023 年度研发人员较 2022 年增加 55.10%,主要分布在红外光学业务板块。随着公司主要产线陆续投入生产,加快推进红外光学与激光器产业化项目向下游产业链延伸步伐,是公司整体战略规划的关键所在。公司聚焦红外器件、红外整机等光电器件领域,加深研发和布局,预期形成从材料到器件再到子系统模块的全产业链规模化生产能力,因此公司大幅增加研发投入,研发人员数量快速增长。结语从两个榜单可见,企业日益重视研发投入,这既是创新力提升与市场竞争力增强的关键,也是确保可持续发展的基石。这些企业均表示,将持续深化技术开发、产品创新、平台升级与市场拓展,力求在新技术上不断突破、产品线持续丰富、市场领域广泛拓展。
  • 大连化物所开发出柔性可穿戴长波红外光热电探测器
    近日,大连化物所催化基础国家重点实验室热电材料与器件研究组(525组)姜鹏研究员、陆晓伟副研究员、包信和院士团队开发了柔性、可穿戴长波红外光热电探测器,并将其用于电子皮肤非接触温度感知。仿生触觉是智能机器人感知外部环境刺激的基础。在传统触觉系统中,触觉传感器需要与外部环境物理接触进而获取温度信息,无法在接触前对外部刺激作出预判。因此,发展具有非接触温度感知能力的先进触觉传感技术,将有助于为机器人交互感知领域带来全新的体验。光热电探测器是基于光热、热电两个能量转换过程,可在无需制冷、无需偏置电压、无接触的条件下实现对长波红外辐射(8至14μm)的灵敏探测。本工作中,研究团队在前期光热电探测器工作(Adv. M ater. ,2022;Adv. Mater .,2019;Nat. Commun. ,2019)的基础上,在具有长波红外吸收能力的柔性聚酰亚胺(PI)衬底上构建了Te/CuTe热电异质结,制备出高灵敏度、柔性、可穿戴长波红外光热电探测器。Te/CuTe热电异质结一方面可以提升复合薄膜的热电功率因子,起到降低器件噪音的作用;另一方面可以通过降低其光学反射损耗,并将其光学反射极小值与PI吸收峰对齐,增强光热电耦合,提升器件灵敏度。在非接触式温度感知测试中,当目标温度从零下50°C上升至110°C,所制备的柔性光热电探测器灵敏度均优于商业刚性热电堆,温度分辨能力可达0.05°C。以此为基础,研究团队利用该红外探测器在接近辐射源过程中响应电压的斜率变化,开发了动态温度预警系统,使得软体机械手可对热源进行预先判定。该工作为在仿生触觉系统中引入红外探测技术提供了可行的解决方案,在机器人交互感知、虚拟现实等领域具有重要的应用前景。相关研究成果以“Touchless thermosensation enabled by flexible photothermoelectric detector for temperature prewarning function of electronic skin ”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金、大连化物所创新基金等项目的资助。(文/图 郭晓晗、陆晓伟)文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911
  • FLIR红外热像仪模块Lepton用于EOC早期火灾探测摄像机
    FLIR Lepton可为建筑环境和电动汽车充电站提供超灵敏的24/7早期火灾探测功能。近期,Teledyne Technologies旗下的Teledyne FLIR宣布,韩国视频安全和热成像IP摄像机公司Eye on Cloud(EOC)将在其早期火灾探测(EFD)系列IP摄像机中采用Teledyne FLIR红外热成像仪模块Lepton。EOC推出的早期火灾探测系列产品,是“Thermal by FLIR”合作的一部分。Teledyne FLIR红外热像仪模块Lepton在美国制造,并且不受《国际武器贸易条例》(ITAR)约束,是世界上产量甚高的长波红外(8 µm至14 µm)热成像模块。Lepton结构紧凑、经济高效,实现了各种热成像创新应用,已被数百万客户采用。Lepton提供多种分辨率和视场(FoV)选项,并且特定型号还提供绝对温度输出。Lepton的低功耗、卓越的图像质量和集成支持,可助力客户实现移动、小型电子产品和无人值守传感器的创新性产品开发,适用于智能建筑、火灾探测、占用跟踪、设备状态监控等。红外热像仪模块Lepton技术参数为了降低开发成本并缩短上市时间,Teledyne FLIR不断改进Lepton的在线集成工具箱。应用说明、集成视频、快速入门指南,以及用于在Windows、Linux、Raspberry Pi和BeagleBone上进行测试的补充源代码可确保高效的集成。对于高级、大规模计划,Teledyne FLIR技术服务团队可对MyFLIR®应用软件和图像增强MSX®,以及Vivid-IR™的许可提供支持。EOC开发的HI1612-OH和HI1612-MW系列早期火灾探测摄像机提供多种分辨率选项,可用于持续监控电动汽车(EV)充电站和其它关键的基础设施、安全设施等。通过非接触式温度测量,FLIR Lepton可以在火灾前识别升高的热量,然后触发警报系统。EOC符合ONVIF标准的早期火灾探测摄像机有助于提高安全性,同时使消防人员能够比依靠传统的烟雾报警器更快地扑灭潜在火灾。EOC部分产品展示,其中第二个为早期火灾探测摄像机Teledyne FLIR产品开发副总裁Mike Walters表示:“我们开展了‘Thermal by FLIR’计划,以支持客户针对新的和正在开发的应用进行创新。EOC及其在电动汽车充电站和其它建筑环境中的早期火灾检测工作是FLIR Lepton和‘Thermal by FLIR’计划的自然合作基础。”“Thermal by FLIR”计划是一项合作产品开发和营销计划,支持原始设备制造商(OEM)将Teledyne FLIR红外热像仪模块集成到产品中,并为后续产品创新提供上市支持。EOC首席执行官(CEO)Dong Gyun Shin表示:“变电站、建筑和电动汽车停车设施的管理人员(包括购物中心和办公楼)需要能够帮助他们更好地检测可能威胁生命和财产的火灾的解决方案。我们的早期火灾探测系列摄像机采用‘热成像+可见光’双成像,提供了一种成本相对较低但有效的方法,可以在潜在火灾发生之前就识别出来。”关于Teledyne FLIRTeledyne FLIR专注于设计、开发、生产用于增强态势感知力的专业技术。通过热成像、可见光成像、视频分析、测量和诊断以及先进的威胁检测系统,Teledyne FLIR将创新的传感解决方案带入日常生活中。Teledyne FLIR提供多样化的产品组合,服务于政府与国防、工业和商业市场中的众多应用。Teledyne FLIR产品帮助救援和军事人员保护和挽救生命,提高行业效率,并创新面向消费者的技术。Teledyne FLIR致力于加强公共安全与人们的生活福祉,提高能源和时间效率,为健康和智能的社区做出贡献。
  • 大面阵窄带F-P干涉仪实现长波红外光谱传感
    西澳大利亚大学研究人员利用基于MEMS的固定腔法布里-珀罗(F-P)干涉仪实现了在长波红外(LWIR)波段的光学遥控成像和传感,并完成了该光谱系统的轻型化和便携式。F-P干涉仪基于锗 (Ge) 氟化钡 (BaF2) 薄膜分布式布拉格反射器。研究人员之所以选择BaF2,是因为它在LWIR波长范围内表现出低折射率并可提供高折射率对比度,有利于提高器件的性能。该干涉仪具有与薄膜、表面微加工 MEMS兼容的架构。当与单点红外探测器或焦平面成像阵列结合使用时,可用于开发轻便的便携式光谱仪。据研究人员称,这是首次实现将低指数的BaF 2薄膜与的高指数Ge薄膜相结合来构建干涉仪。该团队使用三层Ge/BaF2/Ge光学薄膜结构构建了扁平、独立的分布式布拉格反射器。在10到20nm范围内,跨越数百微米的空间尺寸,独立结构实现了峰间平坦度。实验表明,所制备的F-P干涉仪线宽约为110nm,峰值透过率约为50%,满足可调谐、基于MEMS的LWIR光谱传感和成像这些需要窄线宽的光谱分辨应用的要求。研究人员对固定气腔滤光片进行了表征,并将测量的光学性能与建模结果和先前研究的结果进行了比较。在考虑到制造缺陷对分布式布拉格反射器的影响后,他们发现F-P干涉仪的测量光学特性与模拟的光学响应非常吻合。Mariusz Martyniuk教授表示:“这些微型化的片上、轻型和小尺寸设备被视为未来用于简单和低成本的微型光谱远程系统的解决方案,而面向热红外发射波段,轻量化、小尺寸和低功率等需求均至关重要。”该研究以“Large-area narrowband Fabry–Pérot interferometers for long-wavelength infrared spectral sensing”为题发表于 Journal of Optical Microsystems 。
  • 中航红外成功研制1280×1024(15μm)InSb中波、640×512(25μm)超晶格长波焦平面探测器
    近日,中航凯迈(上海)红外科技有限公司(简称:中航红外)针对机载、舰载、防空雷达等光电系统远距离探测应用需求,研制出1280×1024(15 μm)InSb中波和640×512(25 μm)超晶格长波焦平面探测器。两款探测器均采用斯特林制冷机(可选集成式、分置式),性能稳定,具备高帧频、任意开窗、输出通道选择、全局复位等多种功能。1280×1024(15 μm)InSb中波探测器是基于中航红外公司多年累积的InSb焦平面探测器技术研制而成,具体参数见下表。表1 1280×1024(15 μm)InSb红外探测器主要参数在制冷型中波探测器领域,InSb具有量子效率高、稳定性好等特点,在国际军用中波红外探测器系统占据主导地位,而对于光电系统而言,该型探测器出色的稳定性同样具有很强的竞争力。图1 1280×1024(15 μm)InSb中波探测器:探测器(左)、成像(右)另外在公司原有十多年超晶格双色探测器技术基础上,采用二类超晶格材料成功研制出640×512(25 μm)超晶格长波焦平面探测器,具体参数见下表。表2 640×512(25 μm)超晶格长波红外探测器主要参数图2 640×512(25 μm)超晶格长波探测器:探测器(左)、成像(右)关于中航红外中航凯迈(上海)红外科技有限公司是中国空空导弹研究院控股子公司。公司建有红外探测器技术航空科技重点实验室、河南省探测器工程技术研究中心等。 中航公司在红外探测器设计、开发、生产等方面拥有良好人才、技术基础。现有正式职工200余人,专业技术人员120余人(其中博士20人,硕士90余人,技术专家1人,研究员11人),技能人员80余人,涵盖红外探测器设计、生产、测试、装配等各个专业及岗位。公司年均科研经费5000余万元,基础技术、基础工艺研究深入,获国家科技进步奖二等奖、国防发明二等奖等省部级奖15项,发明专利60余项,锑化物探测器科研生产能力处于国内领先水平。 近年中航公司将不断引进先进管理技术和高水平人才,做强、做大红外探测器产业,打造国内领先、国际一流的红外探测器研制生产基地,推进我国红外探测器的技术进步,带动相关产业发展,创造更大的经济和社会效益。
  • 久之洋:2023年度业绩亮眼,营收与净利润双增长,红外热像仪业务成主要增长动力
    近日,湖北久之洋红外系统股份有限公司(简称“久之洋”)公布了2023年年度业绩报告。久之洋成立于2001年,是中国船舶集团有限公司【CSSC】旗下上市公司,控股股东为中国船舶集团第七一七研究所,于2016年在深交所创业板发行上市,是国家专精特新小巨人企业、工信部工业强基“传感器一条龙”示范企业。公告显示,报告期内,公司实现营业收入76,969.88 万元,同比增长 3.50%;归属于上市公司股东的净利润8,292.46 万元,同比增长 1.00%,在复杂的内外部环境下,保持了经营业绩持续稳定。公司主营业务包括红外热像仪、激光传感器、光学镜头及光学元件和星体跟踪器等业务。自主研发的红外热像仪涵盖全球已有全产品谱系,包括短、中、长波各种波段,以及面阵、线阵、扫描各种体制型号。激光技术专注于信息激光并有限拓展能量激光,产品覆盖激光照射、激光告警、激光通信、激光对抗等各种应用领域,尤其在激光小型化方面,处于国际领先水平。在光学膜系和光学镜头方面,设计与工艺功底深厚,拥有超亿元的硬件投资,特别是在定制特种光学制造方面具有较强的竞争优势。公司的光学星体跟踪器团队是国内最早开展星体跟踪相关技术研究和产品研制的团队之一,经过多年的技术积累和产品迭代优化,光学星体跟踪器业务的市场占有率位居国内前列。得益于公司在技术自立自强的坚持和产品质量精益求精的追求,产品已广泛应用于红外侦查、激光照射、导航定位、红外测温、成像光谱、气体探测、安防、监测、测量等领域。报告期内,从产品线角度分析,红外热成像仪领域实现了56470.3万元的营业收入,占据了全年营业收入的73.37%,相较于上一年度,实现了21.53%的同比增长,稳居首位。此外,久之洋在2023年度的研发投入高达9245.53万元,实现了21.76%的同比增长,占公司营收比重达到12%。公司攻克了包括高精度运动控制、全国产化低成本光纤激光测距、杂散光分析与抑制、随机网栅电磁屏蔽膜、临近空间大视场白天稳定测星等关键技术,不仅显著提升了公司在红外、激光、光学、星体跟踪业务领域的技术实力,也进一步增强了产品的市场竞争力。报告期内,公司申报发明专利82项,其中国家发明专利48项,获受理65项,获得专利授权22项,登记软件著作权8项;发表相关领域的专业技术论文73篇。公司的“自由曲面光学系统制造关键技术及产业化应用”项目获得天津市科学技术进步特等奖。高低温环境下光学窗口透射比及传递函数测试仪和红外光学传递函数测量仪项目顺利通过鉴定验收,填补国内外高低温传函测量领域的技术和产品空白。2024年,久之洋将进一步加大力度发展新兴产业,在军品领域,围绕防务产业,加快技术研发创新成果转化,推出新产品快速抢占市场,主动引导用户需求;在民品领域,将以成像信号处理、激光器及应用、光学设计及特种光学加工等核心技术为基础,面向需求、面向产业链,由“项目思维”向“产品思维”转变,持续拓展民品市场,从而形成产业齐头并进发展格局。并强力推进重大专项立项实施,深化完善科技创新平台体系,聚力攻克一批关键核心技术,不断强化“数智赋能”建设。
  • 大连化物所研制出可用于非接触人机交互系统的高灵敏长波红外探测器
    近日,大连化物所二维热电材料研究组(DNL2104组)陆晓伟副研究员、姜鹏研究员、包信和院士团队在高灵敏、低功耗人体红外热辐射探测器研制及其在非接触人机交互系统中的应用方面取得新进展。人体自发热辐射主要位于长波红外(8至14 μm)波段,呈现出光子能量低(~0.1 eV)、光强弱(~5 mw/cm2)等特点。实现人体红外热辐射的高灵敏探测,对构建低功耗、非接触人机交互系统具有重要意义。作为一种热敏型探测器,光热电探测器是基于光热转换、热电转换两个能量转换过程,具有光谱响应范围宽、无需制冷、功耗低等优点。目前,商业的光热电探测器通常采用分立式的热电堆结构,需要复杂的MEMS微机械加工制备工艺,且在探测人体热辐射时,其输出电压相对较小(数十至数百微伏),需要额外的高信噪比信号采集电路。本工作中,该研究团队突破传统热电堆材料和构架的限制,构建了基于SrTiO3-x/CuNi异质界面结构的一体式热电堆。该异质界面结构一方面将SrTiO3-x高的Seebeck系数(-737 μV/K)与CuNi高的电导率(5×105 S/m)协同耦合,在降低器件内阻的同时,可保持高的电压输出;另一方面,通过结合声子共振吸收和自由载流子吸收,该异质结展现出优异的吸光能力,其在长波红外波段的吸光率最高可达98%。结合这些优势,基于SrTiO3-x/CuNi的热电堆在探测人体辐射时展现出高灵敏度、低噪音、高稳定性等特征,其输出电压最高可达13 mV,相比商业热电堆有数量级的提升。通过进一步构建热电堆阵列,团队还实现了实时手势识别、非接触式数字/字母输入等功能。该研究为开发低功耗非接触人机交互系统提供了新思路,在人工智能技术、公共卫生安全领域具有广阔的实际应用价值。相关研究成果以“SrTiO3/CuNi Heterostructure-based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-machine Interaction”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、中国科学院创新交叉团队、大连化物所创新基金等项目的资助。
  • 大连化物所研制出可用于非接触人机交互系统的高灵敏长波红外探测
    近日,大连化物所二维热电材料研究组(DNL2104组)陆晓伟副研究员、姜鹏研究员、包信和院士团队在高灵敏、低功耗人体红外热辐射探测器研制及其在非接触人机交互系统中的应用方面取得新进展。   人体自发热辐射主要位于长波红外(8至14μm)波段,呈现出光子能量低(~0.1 eV)、光强弱(~5 mw/cm2)等特点。实现人体红外热辐射的高灵敏探测,对构建低功耗、非接触人机交互系统具有重要意义。作为一种热敏型探测器,光热电探测器是基于光热转换、热电转换两个能量转换过程,具有光谱响应范围宽、无需制冷、功耗低等优点。目前,商业的光热电探测器通常采用分立式的热电堆结构,需要复杂的MEMS微机械加工制备工艺,且在探测人体热辐射时,其输出电压相对较小(数十至数百微伏),需要额外的高信噪比信号采集电路。 本工作中,该研究团队突破传统热电堆材料和构架的限制,构建了基于SrTiO3-x/CuNi异质界面结构的一体式热电堆。该异质界面结构一方面将SrTiO3-x高的Seebeck系数(-737μV/K)与CuNi高的电导率(5×105S/m)协同耦合,在降低器件内阻的同时,可保持高的电压输出;另一方面,通过结合声子共振吸收和自由载流子吸收,该异质结展现出优异的吸光能力,其在长波红外波段的吸光率最高可达98%。结合这些优势,基于SrTiO3-x/CuNi的热电堆在探测人体辐射时展现出高灵敏度、低噪音、高稳定性等特征,其输出电压最高可达13mV,相比商业热电堆有数量级的提升。通过进一步构建热电堆阵列,团队还实现了实时手势识别、非接触式数字/字母输入等功能。该研究为开发低功耗非接触人机交互系统提供了新思路,在人工智能技术、公共卫生安全领域具有广阔的实际应用价值。   相关研究成果以“SrTiO3/CuNi Heterostructure-based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-machine Interaction”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、中国科学院创新交叉团队、我所创新基金等项目的资助。
  • 大连化物所研发高灵敏长波红外探测器,可用于非接触人机交互系统
    近日,大连化物所二维热电材料研究组(DNL2104组)陆晓伟副研究员、姜鹏研究员、包信和院士团队在高灵敏、低功耗人体红外热辐射探测器研制及其在非接触人机交互系统中的应用方面取得新进展。人体自发热辐射主要位于长波红外(8至14 μm)波段,呈现出光子能量低(~0.1 eV)、光强弱(~5 mw/cm2)等特点。实现人体红外热辐射的高灵敏探测,对构建低功耗、非接触人机交互系统具有重要意义。作为一种热敏型探测器,光热电探测器是基于光热转换、热电转换两个能量转换过程,具有光谱响应范围宽、无需制冷、功耗低等优点。目前,商业的光热电探测器通常采用分立式的热电堆结构,需要复杂的MEMS微机械加工制备工艺,且在探测人体热辐射时,其输出电压相对较小(数十至数百微伏),需要额外的高信噪比信号采集电路。本工作中,该研究团队突破传统热电堆材料和构架的限制,构建了基于SrTiO3-x/CuNi异质界面结构的一体式热电堆。该异质界面结构一方面将SrTiO3-x高的Seebeck系数(-737 μV/K)与CuNi高的电导率(5×105 S/m)协同耦合,在降低器件内阻的同时,可保持高的电压输出;另一方面,通过结合声子共振吸收和自由载流子吸收,该异质结展现出优异的吸光能力,其在长波红外波段的吸光率最高可达98%。结合这些优势,基于SrTiO3-x/CuNi的热电堆在探测人体辐射时展现出高灵敏度、低噪音、高稳定性等特征,其输出电压最高可达13 mV,相比商业热电堆有数量级的提升。通过进一步构建热电堆阵列,团队还实现了实时手势识别、非接触式数字/字母输入等功能。该研究为开发低功耗非接触人机交互系统提供了新思路,在人工智能技术、公共卫生安全领域具有广阔的实际应用价值。相关研究成果以“SrTiO3/CuNi Heterostructure-based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-machine Interaction”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、中国科学院创新交叉团队、大连化物所创新基金等项目的资助。文章链接:https://doi.org/10.100 2 /adma.202204355
  • 小菲课堂|详细解读制冷型与非制冷型光学气体成像热像仪
    十多年来,FLIR光学气体成像(OGI)热像仪一直用来可视化各种气体泄漏。这些OGI热像仪的开发是为了“看到”各种气体,包括碳氢化合物、二氧化碳、六氟化硫、制冷剂、一氧化碳、氨等。FLIR OGI热像仪被应用于各行各业,包括减少排放、提高生产效率和确保安全的工作环境。与其他检测技术相比,OGI热像仪的一大优势是该技术能够在不中断工业过程的情况下精准定位气体泄漏部件。从历史上看,OGI热像仪一直采用制冷型红外探测器,与非制冷型红外探测器相比具有多个优势,但成本往往更高。非制冷型红外探测器技术的进步使得像FLIR OGI热像仪这样的制造商,能够为相关行业设计和开发成本较低的OGI解决方案。尽管成本较低,但与使用制冷型探测器的热像仪相比,使用非制冷型红外探测器的热像仪存在一定局限性。光学气体成像背后的科学在我们讨论OGI热像仪中制冷或非制冷探测器的问题之前,我们可以先解释这项技术背后的理论。光学气体成像可以比作通过普通的摄像机进行观察,但操作员看到的是一股类似烟雾的气体喷出。如果没有OGI热像仪,这将是肉眼完全看不见的。为了能看到这种气体飘动,OGI热像仪使用了一种独特的光谱(依赖于波长)过滤方法,使它能够检测到特定的气体化合物。在制冷型探测器中,滤波器将允许通过探测器的辐射波长限制在一个非常窄的波段,称为带通,这种技术被称为光谱自适应。光谱自适应OGI热像仪利用某些分子的吸收特性,将它们在原生环境中可视化。热像仪焦平面阵列(FPAs)和光学系统专门调整到非常窄的光谱范围,通常在数百纳米左右,因此具有超选择性。只能检测到由窄带通滤波器分隔的红外区域中的被气体吸收的红外波段。大多数化合物的红外吸收特性取决于波长。氢、氧和氮等惰性气体无法直接成像。黄色区域显示了一个光谱滤波器,设计用于对应大部分背景红外能量将被甲烷吸收的波长范围。(图中横坐标代表波长,纵坐标代表甲烷气体的透射率)如果将OGI热像仪对准没有气体泄漏的场景,视野中的物体将通过热像仪的镜头和滤光片透射和反射红外辐射。如果物体和热像仪之间存在气体云,并且该气体吸收滤波器带通范围内的辐射,那么通过气体云到达探测器的辐射量将减少或增加。具体情况要看气体云与背景的关系,云与背景之间必须有一个辐射的对比。总而言之,让气体可见的关键是:气体必须吸收热像仪看到的波段中的红外辐射;气体云必须与背景形成辐射对比;气体云的表面温度必须与背景不同。此外,运动使气体云更容易可视化。熟悉光学气体成像相关的波长为了解决理解“制冷与非制冷”光学气体成像热像仪的挑战,您需要了解与光学气体成像相关的波长以及这些热像仪中使用的探测器。OGI热像仪的两个主要波长通常被称为中波(3到5微米)和长波(7到12微米)。在气体成像领域,这些区域也可以称为“功能区”和“指纹区”。在功能区,一个热像仪可以看到单一类别的更多气体,而许多单独的气体在指纹区有特定的吸收特征。几乎所有碳氢化合物气体都在FLIR GF320的过滤区域(黄色部分)吸收能量,但在长波或指纹区域(蓝色部分)有不同的吸收特征虽然许多气体在中波和长波区域都有吸收特性,但也有气体仅在一个红外波段发射和吸收。有些气体在中波而非长波光谱中发射和吸收(如一氧化碳/CO)和吸收,另一些仅在长波光谱中发射和吸收(如六氟化硫/SF6)。这些气体不属于指纹或功能区,通常指烃类气体。下面是CO和SF6气体的红外光谱图。制冷与非制冷型探测器制冷型OGI热像仪使用需要冷却到低温(约77K或-321°F)的量子探测器,可以是中波或长波探测器。检测功能区碳氢化合物气体(如甲烷)的中波热像仪通常在3-5μm(微米)范围内工作,并使用锑化铟(InSb)探测器。检测SF6等气体的制冷型长波热像仪在8-12μm范围内工作,可以使用量子阱红外光电探测器(QWIP)。制冷型OGI热像仪有一个集成了低温冷却器的成像传感器,其可以将传感器温度降低到低温。传感器温度的降低对于将探测器噪声降低到低于被成像场景的信号水平是必要的。制冷机运动部件的机械公差非常小,随着时间的推移会磨损,氦气也会慢慢通过气体密封。最终,在运行1万至1.3万小时后,需要对冷却器进行重建。带有制冷探测器的热像仪有一个与探测器连接的滤波器。这种设计可以防止滤波器和探测器之间的任何杂散辐射交换,从而提高图像热灵敏度,进而会使光学气体成像仪更有效地可视化某些气体,甚至使OGI热像仪符合美国环保局的OOOOa或其他要求等监管标准。用制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像用非制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像非制冷OGI热像仪使用微测辐射热计探测器,不需要制冷探测器所需的额外零件。它们通常由氧化钒(VOx)或非晶硅(a-Si)制成,在7-14μm范围内具有响应性。它们比制冷型热像仪更容易制造,但热灵敏度或噪声等效温差(NETD)较差,这使得更难以可视化较小的气体泄漏。NETD是一个指标,表示热像仪可以探测的最小温度差异。上图显示了制冷和非制冷探测器灵敏度的差异。更好的NETD将使制冷型OGI热像仪检测气体的效果至少是非制冷的五倍。用于确定OGI热像仪检测气体效果的类似标准是噪声等效浓度长度(NECL),该标准确定在定义的拍摄距离上可以检测到多少气体。例如,用于甲烷检测的FLIR GF320制冷型OGI热像仪(3-5μm探测器)的NECL小于20 ppm*m,而非制冷型(7-14μm探测器)的NECL大于100 ppm*m。对于非制冷型的OGI热像仪,另一个需要考虑的是滤波器。有些热像仪没有在长波光谱中过滤,这意味着它们只是一个完全开放的探测器,使用独特的分析来可视化气体。FLIR的高灵敏度模式(HSM)是利用软件和分析来增强气体可视化的热像仪示例。有些热像仪内部设置更有针对性的过滤器。这些滤波器可能与镜头有关,在探测器和镜头之间,以多种方式设计。使用非制冷过滤,由于限制到达热像仪探测器的辐射,您会失去热灵敏度。这将导致产生更高的NETD热灵敏度值,但可以提供与气体成像相关的更好图像。随着光谱滤波器宽度变窄以聚焦于特定气体时,来自场景的辐射减少,而探测器的噪声保持不变,来自滤波器的反射辐射增加。这会产生与气体成像相关的更高质量的图像,但会降低热像仪用于温度测量(辐射测量)的热灵敏度。当你使用冷滤镜时,比如制冷型OGI热像仪,这种现象就可以避免,因为反射的辐射量非常小。如何选择制冷与非制冷型OGI热像仪气体显示:在选择OGI热像仪时,首要考虑因素是确保热像仪能够显示气体。之后,再做出综合的考量,而不仅仅基于价格。制冷型的优势:虽然它们的价格可能更高,但制冷型OGI热像仪有相当大的优势。如上所述,这些单元属于烃类气体的功能区域,这意味着只需要一个热像仪就可以看到各种各样的气体。在某些情况下,指纹区域需要多个热像仪才能达到相同的结果。中波热像仪的另一个独特优点是不受水蒸气的干扰。如上图所示,水蒸气在长波或指纹区域有很强的吸收,这可能会导致使用长波热像仪时图像的不确定性。灵敏度和图像质量:在选择OGI热像仪时,提高灵敏度和图像质量也是需要考虑的重要因素。这些不仅影响了对小泄漏的可视化能力,而且在试图满足监管标准时也可能是相当大的因素。FLIR GF320甲烷和VOC检测用红外热像仪非制冷的优势:随着非制冷型OGI热像仪在市场上的推出,这项新技术具有优势。首先,非制冷型OGI热像仪的制造成本大大降低,从而导致市场价格降低。由于设计简单,无需冷却器,因此维护成本也较低,这可能使其更适合连续、24/7全天候运行的应用。无论你是想省钱、满足监管标准、提高工人安全,还是仅仅想成为一名好的环境管理员,如今你的选择比以往任何时候都多,当然有时也可能会让人困惑。选择OGI热像仪的决定有很多因素,而不仅仅是价格。FLIR提供了市场上最广泛的OGI热像仪选择和阵列,可以让您拥有更多选择。
  • 硬核担当!FLIR部分热像仪的质保期免费延至2年!
    好消息!好消息!好消息!菲力尔又给大家送福利啦~FLIR X系列、RS系列和A系列部分热像仪均享受2年的超长质保期2023年10月12日之后购买的产品均可享有哦~FLIR X系列目前,FLIR X系列的产品主要包含FLIR X8500系列、X6900系列和X6800系列高速中波MWIR和长波LWIR科研级热像仪,它们是专为需要捕捉高速图像以进行精确热分析和定制辐射测量的科学家和工程师而设计。FLIR A系列目前,FLIR A系列的产品主要包含FLIR A8500系列、A6700系列和A6200系列科研级中波MWIR和长波SLS高清红外热像仪,其能为工业和制造研发应用提供所需的清晰热成像、精确温度测量和简化分析特性等。FLIR RS系列目前,FLIR RS系列的产品主要是FLIR RS8500系列、RS6700系列远距离科研检测中波和长波红外热像仪,其提供先进的探测器、触发和同步功能,便于配置和集成,让用户能够在苛刻的研发应用中成功采集数据。如果你想要更长的保修期 我们的售后也提供延长保修服务哦~其中可选是否包含热像仪制冷器保修增加一年保修期
  • 中国电科11所多谱段长波红外探测器组件随高光谱综合观测卫星成功入轨
    高光谱红外热成像可以获取地物的热辐射精细光谱信息,更有效地识别地物、分辨目标,在地质勘察领域发挥重大作用。12月9日,中国光学光电子行业协会理事长单位、红外分会理事长单位中国电科11所研制的多谱段长波红外探测器作为宽幅热红外成像仪载荷的核心红外器件随高光谱综合观测卫星(高分五号01A)进入预定轨道,将实现每天3次大气环境、红外全球覆盖,通过卫星的应急观测能力,实现对全球热点区域的快速高光谱重访观测,以高新红外技术,为我国航天事业发展做出新的重要贡献。2022年12月9日02时31分,长征二号丁遥四十五运载火箭在太原卫星发射中心点火升空,成功将高光谱综合观测卫星(高分5号01A)送入预定轨道,发射任务取得圆满成功,标志着高分辨率对地观测系统重大专项空间段建设任务圆满收官。高光谱综合观测卫星将在生态环境动态监测、自然资源调查与监测、大气成分探测等方面发挥重要作用。高光谱综合观测卫星搭载的宽幅热红外成像仪载荷的核心红外器件是由中国电科11所自主研制的一款多谱段长波红外探测器,探测器具有以下特点:4个长波红外谱段。8um-12.5um的长红外波段细分为4个波段,通过分裂窗的反演算法实现高精度、高稳定性定量温度反演。优于50mk的温度分辨率。在波长12.5um的红外探测器中,温度分辨率达到了国际先进水平,可以直观、清晰地迅速捕捉地表广域范围内的昼夜热红外图像。优于10%的响应非均匀性。拍摄的每一幅图像是通过扫描机构将不同区域的图像扫描拼接而成,卓越的非均匀性为百米量级数据提供了保障。该探测器的成功入轨,为我国空间光学遥感领域再添红外“新丁”,将为热红外定量遥感提供百米量级数据,提升红外数据应用效能。▲11所自主研制的多谱段长波红外探测器组件高光谱综合观测卫星是高分5号系列的最后一颗卫星。2012年起,11所开始高分5号卫星用红外组件研制工作,并经过6年努力,红外组件于2018年随高分5号01星成功发射;2021年新研制组件再次随高分5号02星入轨。2022年12月9日,我们又一次见证了载有11所探测器组件的高光谱综合观测卫星成功入轨,它既是高分5号系列的最后一颗,也是高分工程的收官星。高分5号系列卫星发展的十年,也是11所宇航用红外组件研制水平快速发展的十年。未来,11所将继续发挥自身优势,为我国航天事业的发展做出新的更大贡献。
  • 春季新品上市!Teledyne FLIR推出X858x和X698x系列高速高分辨率科学级热像仪
    好消息!好消息!好消息!Teledyne FLIR又双叒发新品啦~本次推出的是科研级用热像仪系列FLIR X858x系列和FLIR X698x系列新上市的它们有哪些过人之处呢?让小菲为您一一道来~FLIR X858x系列和FLIR X698x系列红外热像仪,是专门面向科学家和工程师而设计。借助它,用户可以捕捉到快速/高速事件的细节图像,以便进行准确的红外分析,自定义测量目标辐射数据,检测复合材料、太阳能电池和电子产品里的失效点。超高分辨率,捕捉细节FLIR X858x系列科学级高清红外热像仪FLIR X858x系列科学级高清红外热像仪的分辨率高达1280 x 1024,其是极高速冲击试验的应力场热分布图的数据采集或其他材料研究试验中非常有力的工具。功能强悍,保障数据FLIR X858x系列热像仪能直接以181Hz的捕捉频率(子窗口模式下可达6,000 Hz)记录长达15分钟的1280x1024分辨率的数据至标配512GB SSD,并且采用热插拔SSD,可快速从热像仪中删除敏感数据,同时还可保存多达34秒的全高清分辨率数据至机载RAM内存,零丢帧,这样就可以保障实验数据的真实性和完整性。高级过滤,满足需求FLIR X858x系列热像仪搭载自动滤镜识别功能,能确保滤镜和温度标定文件关联正确无误;还提供自定义冷滤镜选项,优化热像仪系统,可满足特别应用需求;还能通过操作方便的四孔位电动滤镜轮,快速切换滤镜;在现场即可安装/拆除光谱或中性密度滤镜,大幅提升热像仪灵活性。总之,FLIR X858x系列热像仪可提高热像仪的图像质量,满足各项具体应用需求。FLIR X8580系列热像仪FLIR X8580 SLS系列热像仪FLIR X858x系列热像仪还分为中波红外热像仪(FLIR X8580系列)和长波红外热像仪(FLIR X8580 SLS系列),其中,带有长波应变超晶格探测器的FLIR X8580 SLS系列热像仪,拥有更短的成像曝光时间和更宽的温度动态范围,能帮助研究人员准确捕捉整个高速事件中的每个动态细节。帧速快,数据共享FLIR X698x系列科学级高速红外热像仪FLIR X698x系列是一款超快的高灵敏度科学级红外热像仪,其采集帧速可达1004 Hz,子窗口模式下可达29,134 Hz,是FLIR目前最快的采集帧速,在超高速冲击试验或其他材料研究中,可以用于应力的红外呈现,能帮助研究人员捕捉快速移动物体的每个细节动作或快速的温度变化情况。触发同步,数据一致FLIR X698x系列热像仪可使用外部记录触发器或在特定IRIG-B时间,启动机载数据记录功能;还能控制何时获得一帧图像或将此帧图像同步至其他设备;而且其使用TSPI精确级别的IRIG-B时间戳,可以使图像捕捉时间与其他数据保持一致。搭配多个软件,安全传输数据FLIR X698x系列热像仪拍摄的红外数据通过FLIR Research Studio软件的高级分析功能,可快速进行关键决策;用户通过FLIR Science Camera SDK可将热像仪功能和记录功能与第三方软件集成;借助FLIR 免费提供的Research Studio Player软件可在本地分析共享数据,还可以通过GigE、Camera Link 和 CoaXPress 高速流式传输14位数据,从SSD直接远程回放或传输记录的数据,便于实验数据的分享与留存,与同事密切协同工作。FLIR X6980系列热像仪FLIR X6980 SLS系列热像仪FLIR X698x系列热像仪还分为中波红外热像仪(FLIR X6980系列)和长波红外热像仪(FLIR X6980 SLS系列),其中FLIR X6980 SLS系列科学级高速长波红外热像仪,拥有更快的快照速度和更宽的温度测量范围,在室温环境成像应用中,积分时间比MWIR 中波热像仪短10倍,相比其他制冷型探测器,可在更宽的动态范围内检测低至40mK的温差。本次全新推出的FLIR X858x系列和FLIR X698x系列红外热像仪,拥有先进的录像、触发和同步功能,可以轻松配置和集成,从而在要求最为苛刻的科研应用中也能成功地采集到有用的信息。
  • 1321万!北京科技大学红外长波遥感高光谱成像仪、全自动锥形量热仪及火焰蔓延量热仪等采购项目
    一、项目基本情况1.项目编号:0873-2301HW2L0372项目名称:北京科技大学全自动锥形量热仪及火焰蔓延量热仪项目预算金额:518.000000 万元(人民币)采购需求:采购全自动锥形量热仪、火焰蔓延量热仪各1套;用于科研,接受进口产品投标,具体采购要求详见附件。合同履行期限:签订合同后8个月内本项目( 不接受 )联合体投标。2.项目编号:0873-2301HW2L0370项目名称:北京科技大学热脱附扩散氢测试仪项目预算金额:247.500000 万元(人民币)采购需求:采购热脱附扩散氢测试仪1套;用于科研,接受进口产品投标,具体采购要求详见附件。合同履行期限:合同签定后10个月内本项目( 不接受 )联合体投标。3.项目编号:BMCC-ZC23-0707项目名称:北京科技大学红外长波遥感高光谱成像仪采购项目预算金额:556.190000 万元(人民币)最高限价(如有):556.190000 万元(人民币)采购需求:包号名称分包控制金额(万元)是否接受进口货物所属预算项目项目总预算(万元)01红外长波遥感高光谱成像仪556.19是北京科技大学红外长波遥感高光谱成像仪采购项目556.19面阵列傅立叶成像红外光谱仪:需内置GPS系统,多机连用后可3D成像并对气团进行GPS定位,可在地图软件显示3D成像效果等;具体详见招标文件。合同履行期限:合同签定后14个月内,完成供货、安装及调试,并达到验收条件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年10月25日 至 2023年11月01日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:北京中教仪国际招标代理有限公司512室,北京市海淀区文慧园北路10号方式:建议采用汇款形式进行报名,请按本公告“其他补充事宜”所述账户信息汇款(不接受个人账户汇款),请您在本公告页面最下方附件自行下载“报名登记表”,填写完成后以word文本形式和汇款底单一起发送至shige@china-didac.com,工作日可以现场登记报名,到现场报名前请务必电话联系确认,文件售后不退。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京科技大学     地址:北京市海淀区学院路30号        联系方式:谭老师010-62332135      2.采购代理机构信息名 称:北京中教仪国际招标代理有限公司            地 址:北京市海淀区文慧园北路10号            联系方式:李璟琨、施歌、卢琛曦、杨硕010-59893127、010-59893121、010-59893129            3.项目联系方式项目联系人:李璟琨、施歌、卢琛曦、杨硕电 话:  010-59893127、010-59893121、010-598931294.采购代理机构信息名 称:北京明德致信咨询有限公司            地 址:北京市海淀区学院路30号科大天工大厦B座17层1709室            联系方式:韩伯阳、杜畅、王经理、吕绍山、颜华,010-82370045/17600207104            5.项目联系方式项目联系人:韩伯阳、杜畅、王经理、吕绍山、颜华电 话:  010-82370045/17600207104
  • 新型号|FLIR RS6780中波红外热像仪,远距离科研检测的可靠助手!
    一直以来Teledyne FLIR以用户需求为创新的原动力持续重投入于研发创新专注原创科技和设计为红外热像仪带来更多革新今天小菲给大家带来一款全新的型号远距离科研检测专用的中波红外热像仪——FLIR RS6780FLIR RS6780拥有先进的探测器、触发和同步功能,适应外场环境的保护封装,使得该型号能满足绝大多数科研测试环境下对仪器配置及数据采集的要求。性能卓越,远距离仍保证测量精度FLIR RS6780热像仪具备连续光学变焦功能,由一个集成三位电动滤片轮和用以支持3000°C红外成像应用的可选工厂校准装置组成。通过其可选3倍视场无焦镜头附件,工程师和科学家能够在从50mm -250mm(标准)到150mm-750mm的范围内灵活变焦,增加被测目标的像素数,从而满足其独特应用和测试需求。使用RS6780可获得640×512像素全分辨率数据,采集帧速可达125Hz,子窗口模式下甚至超过4,000Hz,保障了用户从远距离也能采集到清晰的红外图像。高适配性,支持多个软件平台FLIR RS6780热像仪能提供瞬时、逐帧的焦距位置信息,适用于工厂、自定义校准红外成像和辐射测量应用,还支持时空位置信息 (TSPI) 数据收集,控制一帧图像的生成或通过先进的触发功能实现外部设备同步,捕捉必要图像。它既可部署为独立热像仪,也可以通过FLIR Science Camera SDK集成到规模更大的测试系统中。用户可将FLIR RS6780捕捉的红外数据传输至运行Windows、MacOS或Linux的电脑,RS6780还兼容FLIR Research Studio软件应用,可进行后期处理和分析。RS6780还支持对检测器底层设置和原始数据的访问。因此,用户能够进行高质量的定制辐射测量,每帧大约327,000个数据点,为研发项目生成可靠的数据。用户还可借助免费的FLIR Research Studio Player软件在本地分析共享数据,与同事协同工作。小巧耐用,专为严苛应用设计FLIR RS6780热像仪使用防风雨外壳和可选电动镜头盖,保护热像仪不受恶劣环境影响,其已通过IP65测试,防护等级与越野拖车等同,菲粉们可以放心应用。它的光学器件、探测器和热像仪均为自主设计,方便无缝系统集成和未来支持。热像仪重量不到16.7千克,易于部署和移动。FLIR RS6780中波热像仪能够实现远距离细微温度差检测同时具有多种连接和软件选项可轻松集成其光学变焦镜头可在优化目标像素密度的同时实现高性能的辐射测量非常适用于户外远距离科研检测
  • 新型号|FLIR RS6780中波红外热像仪,远距离科研检测的可靠助手!
    一直以来Teledyne FLIR以用户需求为创新的原动力持续重投入于研发创新专注原创科技和设计为红外热像仪带来更多革新今天小菲给大家带来一款全新的型号远距离科研检测专用的中波红外热像仪——FLIR RS6780FLIR RS6780拥有先进的探测器、触发和同步功能,适应外场环境的保护封装,使得该型号能满足绝大多数科研测试环境下对仪器配置及数据采集的要求。性能卓越,远距离仍保证测量精度FLIR RS6780热像仪具备连续光学变焦功能,由一个集成三位电动滤片轮和用以支持3000°C红外成像应用的可选工厂校准装置组成。通过其可选3倍视场无焦镜头附件,工程师和科学家能够在从50mm -250mm(标准)到150mm-750mm的范围内灵活变焦,增加被测目标的像素数,从而满足其独特应用和测试需求。使用RS6780可获得640×512像素全分辨率数据,采集帧速可达125Hz,子窗口模式下甚至超过4,000Hz,保障了用户从远距离也能采集到清晰的红外图像。高适配性,支持多个软件平台FLIR RS6780热像仪能提供瞬时、逐帧的焦距位置信息,适用于工厂、自定义校准红外成像和辐射测量应用,还支持时空位置信息 (TSPI) 数据收集,控制一帧图像的生成或通过先进的触发功能实现外部设备同步,捕捉必要图像。它既可部署为独立热像仪,也可以通过FLIR Science Camera SDK集成到规模更大的测试系统中。用户可将FLIR RS6780捕捉的红外数据传输至运行Windows、MacOS或Linux的电脑,RS6780还兼容FLIR Research Studio软件应用,可进行后期处理和分析。RS6780还支持对检测器底层设置和原始数据的访问。因此,用户能够进行高质量的定制辐射测量,每帧大约327,000个数据点,为研发项目生成可靠的数据。用户还可借助免费的FLIR Research Studio Player软件在本地分析共享数据,与同事协同工作。小巧耐用,专为严苛应用设计FLIR RS6780热像仪使用防风雨外壳和可选电动镜头盖,保护热像仪不受恶劣环境影响,其已通过IP65测试,防护等级与越野拖车等同,菲粉们可以放心应用。它的光学器件、探测器和热像仪均为自主设计,方便无缝系统集成和未来支持。热像仪重量不到16.7千克,易于部署和移动。FLIR RS6780中波热像仪能够实现远距离细微温度差检测同时具有多种连接和软件选项可轻松集成其光学变焦镜头可在优化目标像素密度的同时实现高性能的辐射测量非常适用于户外远距离科研检测
  • 小菲课堂|浅析热灵敏度对热像仪选择的重要性
    热像仪是利用热能拍摄图像,它捕获到红外能量,并利用这些能量通过数字或模拟视频输出创建图像,细节由温差定义,而红外热像仪的热灵敏度定义了热像仪可以检测到的最小温差。红外热像仪探测器由一系列探测器像元组成。由于红外光谱中的能量波长比可见光长,因此每个红外探测器像元必须相应地大于可见光探测器上的像素,以吸收更长的波长。因此,热像仪的分辨率通常低于相同机械尺寸的可见光传感器。电磁频谱包括从近红外0.75µ m到远红外近1 mm(1000µ m)的红外波段热像仪开发需要考虑的因素热像仪最初是为监视和军事行动而开发的,现在广泛用于工业生产领域,如建筑检查(水分、隔热、屋顶等)、消防、自动驾驶汽车、自动紧急制动 (AEB) 系统、工业检查、科学研究等。这些领域的热像仪有多种外形尺寸,从手持热像仪到无人机热像仪,再有应用到外太空的科学研究热像仪等。设计开发热像仪的工程师们需要清楚地了解关键设计规范,包括热像仪的场景动态范围、视场角、分辨率、热灵敏度和光谱范围等。不同的热像仪可以擅长不同的事情,因此工程师需要了解不同类型的热像仪功能之间的权衡,以及这些差异对最终产品性能的影响。热灵敏度是低对比度场景(包括有雾天气)的关键性能指标灵敏度:清晰度和实用性的关键变量热灵敏度定义了热像仪可以检测到的最小温差,其将直接影响热像仪所能产生的图像清晰度和锐度。热像仪以毫开尔文(mK)为单位标称灵敏度。数字越低,探测器越灵敏。热灵敏度,也称为噪声等效温差(NETD),描述使用热像仪时观察到的最小温差。实际上,NETD值越低,传感器检测细小温差的能力就越强。集成商和开发人员应寻找能够在行业标准30°C下提供NETD性能的制造商,下表可用于评估热探测器的灵敏度。灵敏度(mK)描述<30mK非常灵敏<50mK比较灵敏<60mK灵敏<70mK一般灵敏<80mK较低灵敏小伙伴们还要注意到一个问题,有些制造商生产的一些低成本热像仪通过将NETD标称在环境温度为50℃(NETD:XXmK,@50℃)而不是行业标准的30℃(NETD:XXmK,@30℃),从而来隐藏低灵敏度的问题。如果你需要测量的目标通常有很大的温差,那么具有较低热灵敏度的入门级产品就够用。然而,对于更微妙的应用,如检测湿度问题,你将需要更高灵敏度的热像仪。制冷or非制冷与配备非制冷探测器的红外热像仪相比,带制冷探测器的红外热像仪具有明显的优势。制冷型红外热像仪具有与低温冷却器集成的成像传感器,通过制冷器可将传感器温度降低。为了将探测器自身热噪音降低到低于成像场景温差信号的水平,传感器温度的降低是必要的,并且可以显著提高热灵敏度。但是,这些性能改进是有代价的。制冷型红外热像仪通常更大、更重、更耗电。除了牺牲SWaP(尺寸、重量和功率)之外,制冷型红外热像仪的成本要高得多,因为存在机械动作部件(制冷压缩机)因此会受到机械磨损,从而缩短热像仪的平均故障时间(MTTF),低温冷却器的运动部件具有极其严格的机械公差,机械性能会随着时间的推移而退化,氦气也会通过密封件缓慢泄漏。FLIR非制冷型热像仪的最新改进使灵敏度达到20 mK以下,与传统热像仪相比,灵敏度大幅提高,可能使非制冷型长波红外热像仪成为各种新应用的可行选择。虽然很诱人,但需要注意的是,非制冷型红外热像仪不能简单地取代制冷型热像仪。产品开发人员和系统集成商还需要考虑有关成像速度、空间分辨率、光谱滤波等方面的其他要求。灵敏度越高,受雨、雾、雪等恶劣天气条件的影响越小比如FLIR A310就搭载非制冷微量热型探测器,可在热灵敏度为50mK(0.05℃)时输出分辨率为320x240像素的热图像,配合内置分析功能,可提供单点温度测量、区域温度测量和自动报警功能。应用案例:FLIR A310——助力韩国火力发电厂,确保供电正常!FLIR A310:全天候监测火炬塔,守好大气污染的最后一条防线!想要供电不间断?来学学FLIR如何为挪威变电所保驾护航热灵敏度是热像仪选择的关键指标但并不是唯一指标想要知道自己最适合哪种红外热像仪吗?报名系统学习一周时间,在ITC红外培训课堂你就能红外热像仪小白化身为专业热像师
  • 新品上市|FLIR X系列科研级热像仪,确保测试不丢帧、无数据损失!
    FLIR科研级红外热像仪在实验研发领域的应用很普遍,其能帮助研发人员捕捉所有细微变化的瞬间。近期,FLIR科学级研发红外热像仪家族又新增四位新成员:X6980 HS高速系列和X8580高分辨率系列。具体有哪些新优势呢?一起来围观下~01 高清记录,高效存储全新FLIR X-HS系列热像仪可同时适用于中波红外(MWIR)和长波红外(LWIR)光谱,其连接和机载记录功能较以往型号表现更出色。使用它,用户可体验全新的10GigE和CoaXPress(CXP)2.1高速接口,它可提供一小时以上的快速图像流式传输和数据传输功能,能在提升效率的同时确保高数据保真度。此外,其机载记录选配件包括可拆卸的非易失性存储器快速通道(NVMe)固态硬盘(SSD),保证能够无损记录关键红外事件。4TB高速SSD现已成为所有X系列HS热像仪的标配,利用SSD扩展录制,用户可无丢帧地将超过1.5小时的详细红外数据记录在热像仪上。02 无缝传输,轻松共享全新FLIR X-HS系列热像仪让您能够轻松将完整录像从SSD传输至计算机,确保红外数据随时可供分析。借助它可打造精确的计时系统,实验室或现场操作人员可使用无损机载记录、高速传输、数据传输及触发和同步功能,确保事件记录精确、低延时。X-HS系列热像仪还搭载了四位电动滤镜轮,支持FLIR电动调焦镜头(可实现更精确的对焦和远程对焦),可提供更高质量的记录,节省操作时间,使用户更从容应对动态数据采集环境。03 专业软件,定制需求通过搭配FLIR Research Studio专业软件,借助简化、直观的图形用户界面(GUI))和独特的功能集,科学家、工程师、研究人员和质量保证经理可利用FLIR X-HS系列热像仪混合数据集并同步多个传感器,例如与其他FLIR A系列、X系列和T系列热像仪同步,创建综合全面的分析报告,为决策提供有效支持。根据电子板级设计和测试、国防研究及其他商业和学术用例等特定应用的具体需求,在FLIR平台上实现标准化的组织,将能在降低成本的同时提升互换性。全新FLIR X系列科学红外热像仪可谓是国防、学术和商业研究与测试应用的行业标准,适用于全世界需要高速或高分辨率红外数据采集功能的大多数关键测试场景,主要应用在弹道学、无损检测、作应力图、PCB和电子部件测试、辐射测量等领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制