当前位置: 仪器信息网 > 行业主题 > >

噪声测量传感器

仪器信息网噪声测量传感器专题为您提供2024年最新噪声测量传感器价格报价、厂家品牌的相关信息, 包括噪声测量传感器参数、型号等,不管是国产,还是进口品牌的噪声测量传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合噪声测量传感器相关的耗材配件、试剂标物,还有噪声测量传感器相关的最新资讯、资料,以及噪声测量传感器相关的解决方案。

噪声测量传感器相关的资讯

  • 日常生活噪声危害大,如何选择合适的噪声传感器监测?
    噪声污染是主要环境污染之一,但噪声污染与空气污染、水污染不同,它属于物理性污染(或称能量污染)。一般情况下噪声污染并不致命,且与声源同时产生同时消失。噪声源分布很广,较难集中管理。由于噪声渗透到人们生产和生活的各个领域,且能够直接感觉到它的污染,不像其他物质污染那样在产生后果时才受到注意,所以噪声诉讼成为城市环境诉讼案件中最多的。 一、噪声的危害1、对人听力的影响强的噪声可以引起耳部的不适,如耳鸣、耳痛、听力损伤。在噪声长期作用下,听觉器官的听觉灵敏度显著降低,称作“听觉疲劳”,经过休息后可以恢复。若听觉疲劳进一步发展便是听力损失,分轻度耳聋、中度耳聋以至完全丧失听觉能力。据测定,超过115dB的噪声将会造成耳聋。2、诱发多种疾病噪声间接的生理效应是诱发一些疾病。噪声会使大脑皮质的兴奋和压抑失去平衡,引起头晕、头疼、脑涨、耳鸣、多梦、失眠、嗜睡、心慌、记忆力减退、注意力不集中等症状,临床上称之为“神经衰弱症” 噪声还会对心血管系统造成损害,它可使交感神经紧张,从而出现心跳加快,心律不齐,心电图波升高或缺血性改变,传导阻滞,血管痉挛,血压变化等 噪声会加速心脏衰老,增加心肌梗塞发病率。3、对视力的影响噪声可造成眼疼、视力减退、眼花等症状 噪声会使人的胃功能紊乱,出现食欲不振、恶心、肌无力、消瘦、体质减弱等症状。4、对动物的影响噪声能对动物的听觉器官、视觉器官、内脏器官及中枢神经系统造成病理性变化。噪声对动物的行为有一定的影响,可使动物失去行为控制能力,出现烦躁不安、失去常态等现象,强噪声会引起动物死亡。鸟类在噪声中会出现羽毛脱落,影响产卵率等。5、对建筑物的影响当噪声超过140dB时,对轻型建筑开始有破坏作用。如,当超声速飞机在低空掠过时,在飞机头部和尾部会产生压力和密度突变,经地面反射后形成N形冲击波,传到地面时听起来像爆炸声,这种特殊的噪声叫做轰声。在轰声的作用下,建筑物会受到不同程度的破坏,如出现门窗损伤、玻璃破碎、墙壁开裂、抹灰震落、烟囱倒塌等现象。由于轰声衰减较慢,因此传播较远,影响范围较广。此外,在建筑物附近使用空气锤、打桩或爆破,也会导致建筑物的损伤。二、噪声传感器的选择技巧1、灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。2、频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。3、线性范围传感器的线性范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。4、稳定性传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。5、精度精度是噪声传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。
  • 应用案例 | 基于QCL的大气N2O测量的开路传感器
    近日,来自山东师范大学光学与光子器件技术重点实验室的联合研究团队发表了一篇题为 Open-path sensor based on QCL for atmospheric N2O measurement 的研究论文。Recently, a collaborative research team from the Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University published a research paper titled Open-path sensor based on QCL for atmospheric N2O measurement.简介作为重要的温室气体之一,氧化亚氮(N2O)可能导致空气污染和全球变暖。N2O在大气中的寿命很长,更糟糕的是,其全球变暖潜力比二氧化碳高300倍。因此,开发一种快速、实时和高精度的气体传感器系统,用于检测大气中的N2O浓度水平,对于更好地理解全球变暖和气候变化至关重要。调谐二极管激光吸收光谱学(TDLAS)在高灵敏度、选择性和快速响应领域广泛报道,并已被证明是实时检测N2O的可靠工具。基于波长调制光谱学(WMS)的TDLAS已被证明是提高检测灵敏度和降低电子噪声的良好方法。大多数传感器是封闭路径系统。这严重限制了在远程或露天研究中进行连续监测的实际适用性,并限制了测量的空间覆盖范围。为解决这一问题,本文开发了一种紧凑的开放光学路径气体传感器系统。Introduction As one of the important greenhouse gases, nitrous oxide (N2O), can give rise to air pollution and global warming. N2O has a long atmospheric lifetime, and worse its global warming potential is 300 times higher than carbon dioxide. Therefore, the development of a fast, real-time, and high-precision gas sensor system for detecting the atmospheric N2O concentration level is essential for the better understanding of global warming and climate changes.Tunable diode laser absorption spectroscopy (TDLAS), as a versatile technique, has be widely reported for real-time analysis of gas compositions in the field of high sensitivity, selectivity, and fast response and it has been demonstrated as a dependable tool for real-time detection of N2O. Wavelength modulation spectroscopy (WMS) based TDLAS has been proved to be a good method for improving the detection sensitivity and reducing the electronic noise. Most of sensors are closed-path systems. This severely restricts the practical applicability of continuous monitoring in remote or open-field researches, and limits the spatial coverage of the measurements. To address this problem, in this paper, we develop a compact openoptical-path gas sensor system.实验细节基于QCL的开路N2O气体传感器的系统框架如图1所示。它主要由三部分组成:激光系统、光学元件和数据处理部分。激光系统由QCL、激光驱动器和信号发生器组成。光学部件具有检测光路和参考光路。数据处理部分包括数据采集、信号处理和显示模块。The system framework of the open-path N2O gas sensor based on QCL is depicted in Fig. 1. It mainly consists of three parts: the lasersystem, the optical elements, and the data processing section. The laser-system consists of a QCL, a laser drive and a signal generator. The optical component has the detecting and reference optical paths. The data processing section includes the data acquisition, signal processing and display modules.Fig. 1. The N2O sensor system schematic diagram.宁波海尔欣光电科技有限公司为此项目提供了HPQCL-Q&trade 标准量子级联激光发射头,QC750-Touch&trade 量子级联激光屏显驱动器,HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器。HealthyPhoton Technology Co., Ltd. , provided a QCL(HPQCL-Q&trade ), a driver(QC750-TouchTM), a HgCdTe photodetector (HPPD-M-B) for this project.HPQCL-Q&trade QC750-Touch&trade HPPD-M-B在这项工作中,需要考虑N2O或其他物质(主要是水蒸气)的光谱吸收干扰,以减少它们对系统特异性和准确性的副作用。如图2(c)所示,根据HITRAN 2016数据库,已经模拟了N2O、CO和CO2的吸收线强度,范围从2020 ~ 2220 cm-1。幸运的是,N2O的独特基本振动带在波数为2200cm-1左右,远离水蒸气的吸收带。因此,室温下的QCL可以达到N2O的基本振动带,检测灵敏度为ppb级。考虑到灵敏度和成本,选择了中心波数为2203.73 cm-1的QCL来检测N2O。QCL的中心电流和温度分别设置为330 mA和36.0 °C。DetailsIn this work, we need to take the spectral absorption interference of N2O or other substances (mostly water vapor) into consideration in order to reduce their side effects on the specificity and accuracy of the system. As depicted in Fig. 2(c), the absorption line intensity of N2O, CO and CO2 have been simulated from 2020 ~ 2220cm-1, according to the HITRAN 2016 database. Fortunately, the unique fundamental vibration band of N2O is around wavenumber of 2200cm-1, which is stay away from the absorption band of water vapor. Therefore, the N2O fundamental vibration band can be reached by room-temperature QCL, and the detection sensitivity is ppb level. Taking sensitivity and cost into consideration, a QCL emitting at center wavenumber of 2203.73 cm-1 was selected for detection of N2O. Of the QCL, the central current and temperature were set at 330 mA and 36.0 ◦ C, respectively.Fig. 2. (a): The relationship between the QCL emission wavenumber and drive current. (b): The dependence the QCL emission wavenumber and temperature. (c): The intensity distribution of absorption lines of N2O, CO and CO2 in the range of 2020 ~ 2220 cm-1.结论我们实现了用一种紧凑的开路气体传感器检测大气中的N2O。在这种传感器中,采用了波长调制光谱学与1f-归一化WMS检测策略,以提高检测灵敏度并消除光强度波动的影响。对20 ppm N2O标准气体进行了校准,标准偏差为0.011 ppm,表明具有高精度。对实验室N2O空气进行了连续7小时的测量,浓度的标准偏差低于1.5 ppb。我们使用Allan偏差分析得出,在1秒的积分时间下,N2O的检测限为1.1 ppb,而在最佳积分时间为95秒时,灵敏度可以提高到0.14 ppb。通过在自然环境中进行的为期两天的实时测量验证了所开发传感器系统的长期稳定性。得出的结果充分证明我们的开放光学路径气体传感器系统具有快速响应、良好稳定性、高灵敏度和卓越的精度。在实际应用方面,该系统可用于检测农田和汽车尾气中的N2O排放。此外,我们认为通过更新具有不同发射波长的QCL,传感器系统还可以检测不同类型的微量气体。Conclusions A compact open-path gas sensor is developed for detection of atmospheric N2O. In such sensor, the wavelength modulation spectroscopy with 1f-normalized WMS detection strategy is employed to improve the detection sensitivity and eliminate the influence of light intensity fluctuations. The 20 ppm N2O standard gas is calibrated and the standard deviation is 0.011 ppm, which demonstrates it has high accuracy.Laboratory N2O air is continuously measured for 7h and the standard deviation of the concentration is below 1.5 ppb. We use Allan deviation analysis to derive that N2O detection limit is 1.1 ppb at integration time of 1 s, and the sensitivity can be improved to 0.14 ppb at an optimal integration time of 95 s. The long-term stability of the developed sensor system is verified by a two-day real-time measurement in ambient air. The derived results well demonstrate our open-optical-path gas sensor system has a fast response, a good stability, a high sensitivity, and an excellent accuracy.In terms of practical application, the developed system can be used to detect N2O emissions in farmland and automobile exhaust. Furthermore, we believe the sensor system can detect different types of trace gases, by updating QCLs with different emission wavelengths.参考来源:Open-path sensor based on QCL for atmospheric N2O measurement,Results in Physics 31 (2021) 104909
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 柯力传感领投点联传感天使轮 开拓精密测量传感器市场
    2023年7月,宁波柯力传感科技股份有限公司(“柯力传感”)与深圳点联传感科技有限公司(“点联传感”)正式签署协议,完成天使轮投资。柯力传感是此次点联传感天使轮融资的领投方。   深圳点联传感科技有限公司正式成立于2022年,是由多名清华大学博士领衔的高层次人才硬核团队,精密仪器专业出身,专注传感检测研究15年。   点联传感在精密光学系统、高速硬件电路以及综合检测算法方面有深厚的研究基础,依托底层高速高精度CMOS激光测量传感器技术框架,逐步拓展对射式、反射式以及同轴共聚焦的产品矩阵,实现对工业品形位尺寸的精密检测与定位,提高生产效率与性能。未来,点联传感将在产学研基础上,进一步构建名校传感器成果转化平台,立志解决中国工控及其他领域中高端传感器卡脖子问题。据悉,柯力投资点联传感主要是基于以下三个方面的考虑:   第一、当前国内精密测量传感器的发展仍处于起步阶段,未来是一个确定性的发展机会,是柯力布局传感器行业的重要市场方向。   第二、高精密测量传感器有一定的技术壁垒,需要依赖技术型团队才能打造升级产品,形成品牌。点联传感团队是由多名精密仪器专业出身的博士组成,专业技术能力强。   第三、通过柯力投资与赋能,可以快速提升点联传感的客户拓展能力,整体价值实现1+1>2。   当前,中国制造业正在向高精度、智能化的方向转型升级。高精度工控传感器是制造装备的基础要素,柯力传感对点联传感的投资与赋能,将助力其成为中国制造业转型升级过程中的国内外一流传感器品牌,同时,也将加速柯力从单一物理量传感器向多物理量传感器融合的步伐与进程。
  • 仪器信息:PH传感器是什么?
    pH是水溶液最重要的理化参数之一。凡涉及水溶液的自然现象。化学变化以及生产过程都与pH有关,因此,在生活用水、工业、农业、医学、环保和科研领域都需要测量pH。接下来我们来了解一下pH传感器,PH传感器是用来检测被测物中氢离子浓度并转换成相应的可用输出信号的传感器。pH传感器可以对大型反应槽或制程管路中pH值测定;耐高温杀菌、CIP清洗;电极长度有120、150、220、250、450 mm等多种选择。PH传感器用于多种场合的pH值测量,比如:水源地水质PH值测量、废水污水场合pH值测量,电镀废水场合pH值测量,高温场合pH值测量,发酵场合pH值测量,高压场合pH值测量等多种场合pH值的测量。在实际使用过程中,pH实际使用过程中,在pH传感器可能会存在以下问题:灵敏度/斜率下降,响应迟缓,噪声信号以及化学破坏。⑴灵敏度/率斜:在pH和探头的电极电位之间存在一定的理论关系(见前述的能斯特方程)。新的pH探头可接近其理论斜率(即25℃下每pH单位的电极电位为59mv),但随着探头的老化或破坏,灵敏也会不断下降。将系统进行某种pH校准(通过缓冲液设置控制)后,再用一种或多种缓冲液进行检验。与预期结果不同的是,pH计的读数会系统性地偏离已知缓冲液的pH值。如果所得到的线比较陡,说明斜率设置过低;如果所得的线比较平缓,则说明斜率设置过高。⑵清洗 :当pH探头表现出响应延迟或灵敏度下降时,就需要对其进行清洗。pH探头恶化的主要原因是发酵液中的物质污染了多孔塞,多孔塞如果被污染就会由白色变成褐色或黑色。为防止污染,可将pH探头浸泡在10mmol/L HCl溶液中,这样不会损坏pH传感器(这也可用于运行间歇期间常规保存pH探头)。有时添加胃蛋白酶有助于去除蛋白质沉淀。如果HCl处理没有效果,可以尝试下面两种方法,尽管它们具有一定的损坏pH探头的风险,但也有一定的效果。将pH探头浸泡于1%左右的H2O2 溶液中约1~2h;或者对多孔塞进行温和的机械清洗,即采用锋利的刀片刮去外表面的沉积物。⑶ 电干扰: pH计的高阻抗和放大器线路可能会产生一些问题,这使得pH探头对由其他电气设备的杂散场入口的感应电压带来的噪声比较敏感,对由载有pH探头信号的两个接线柱间微量的电流泄漏引起的错误响应也较为敏感。为此pH传感器或pH计的制造商提供了专用的屏蔽导线和接线柱。如果存在过量噪声,可将pH探头导线从其他电线处移开以减少噪声。搅拌器电机可能是一个干扰源,这可通过将电机关闭几秒钟来检查。⑷防止机械破坏:pH探头相当易碎,在发酵罐的安装和清洗过程中容易破损。因些建议在发酵罐准备的后期再插入pH探头(需要在这里进行校准),在使用后(下罐)拆卸时先取出pH探头。传感器发生破损的很多情况是由于未取出传感器就直接提起了发酵罐的顶盖。为了避免探头在运行间歇期间贮存时产生破损,一个简便方法是将传感器置于一个塑料量筒内,该量筒内装有专用溶液。选择合适的量筒尺寸,以使探头的较宽部位也可放入,球形检测部位悬浮在底部上方(如可将一个棉塞入量筒底部),同时最好将量筒用夹子固定。
  • 柔性温度传感器实现高温测量新突破
    近年来,各大品牌的折叠屏手机、柔性可穿戴电子等智能设备层出不穷,成为行业热点。作为柔性电子设备的重要组成部分,柔性传感器用以测量温度,反映人体的各项指标。现有的柔性薄膜温度传感器受柔性衬底、敏感材料等限制,难以实现高温物理场的温度测量。因此,如何继承柔性薄膜传感器优势,实现柔性薄膜传感器在高温环境下的应用是一个值得关注的问题。近日,来自微纳制造领域的一项最新研究成果,为柔性传感器突破高温应用瓶颈提供了新思路。西安交通大学机械工程学院精密工程研究所的刘兆钧博士、田边教授、蒋庄德院士及其合作团队首次制备出了具有良好温度敏感性的高温柔性温度传感器。相关成果发表于工程制造领域期刊《极端制造》。传统柔性温度传感器难以实现高温无损监测柔性传感器是指采用柔性材料制成的传感器,具有良好的柔韧性、延展性,甚至可自由弯曲、折叠,而且结构形式灵活多样,可根据测量条件的要求任意布置,能够非常方便地对复杂表面进行检测。在可穿戴方面,柔性的电子产品适合“人体不是平面”的生理特性,因此更易于测试皮肤的相关参数,其可将外界的受力或受热情况转换为电信号,传递给机器人的电脑进行信号处理,从而实时精准地监测出人体各项指标。“柔性薄膜温度传感器能变形、易附着、轻薄等优点受到了研究人员的广泛关注。”田边说,“热电偶式传感器以结构简单、动态响应快、便于集中控制等优点脱颖而出。”结合二者优势,热电偶式柔性薄膜温度传感器应运而生。“温度传感器主要由两部分组成,由两种不同材料制成的温度敏感层和柔性基板。温度敏感层常由金属以及金属化合物组成,柔性基材则选择已经商业化的聚二甲基硅氧烷、聚酰亚胺等高分子聚合物材料。”田边表示。实际上,柔性传感器的优势使其能运用到多个领域当中,除了可穿戴设备,柔性传感器还在医疗电子、环境监测等领域显示出很好的应用前景。然而,现有的柔性薄膜温度传感器受柔性衬底、温度敏感材料等限制,难以在高温环境场中工作,更无法实现功能化应用。“因为柔性基板的熔点通常低于400℃,在高温环境中发生碳化后会变脆、变硬,因此,很难在高温环境下使用现有的柔性温度传感器。这一点也限制了它们在航空航天、钢铁冶金和爆炸损伤检测等极端环境中的应用。”田边解释道。“现有的高温温度测量手段受限于设备尺寸大、需要破坏结构、破坏气流场、受环境干扰等,难以实现对温度场的无损实时温度监测。”博士生刘兆钧补充道。因此,如何继承柔性薄膜传感器的优势,实现柔性薄膜传感器在高温环境下的安装与应用是亟须解决的关键问题。突破多项柔性温度传感器测量瓶颈为了突破柔性温度传感器的温度测量瓶颈,田边教授团队创新性地选择了具有宽温域的铝硅氧气凝胶毡作为温度传感器的柔性基板。由于柔性基板表面不均匀、粗糙度较大,难以通过传统的微纳制造工艺实现薄膜沉积与功能化,因此团队选用了丝网印刷技术制备厚膜以克服上述困难。在制备传感器的实际操作中,田边、刘兆钧等人使用有机黏合剂混合功能粉末完成浆料配置,利用高温热处理的方法去除薄膜中的多余有机物,如环氧树脂、松油醇等。同时,团队还针对不同应用表面,基于柔性材料可变形、可共形的优势,实现了功能薄膜的特定曲面化制备。“就像球鞋设计者根据球星脚底的尺寸大小来制定码数一样,这种‘独家订制’能有效解决一些问题。”田边表示,这样制备好的柔性温度传感器能够贴附于不同曲率曲面,例如叶片等。同时,其也具有超薄、超轻等优点。这项研究首次实现柔性传感器在零下190℃至零上1200℃这一极广的温度范围内工作,测试灵敏度也达到了可观的226.7微伏每摄氏度(μV/℃)。这是现有所有柔性温度传感器难以实现的。扩大柔性传感器的工作温域,为柔性传感开拓了更广阔的应用领域,它在探险排难、航空航天、钢铁冶金等领域将呈现出巨大的应用潜力。在被问及新型柔性传感器何时能够实现实际应用时,蒋庄德表示:“我们团队的研究人员对制备的柔性温度传感器已经进行了多种实验室级测试与实际测试。其中,包括对航模发动机的尾喷温度进行实时监控,小型物理爆炸场爆炸瞬时温度测量以及对坩埚中金属熔化过程进行温度监测等。传感器在整个测试过程都表现出了优异的测温能力。”在蒋庄德看来,科技发展的目标始终围绕造福人类。他指出:“我们根据柔性温度传感器极轻、极薄的特点,创新性地将其应用于智能穿戴设备,如传感器与环保透明面罩相结合设计出的智能口罩,实现对人体呼吸状态的实时监测,有望惠及长期独居旅行者和慢性病患者。我们的科研成果可以给人们的生活带来便捷,这也让科研有了‘温度’。”目前,柔性传感器许多技术仍停留在研究阶段,柔性传感器产业链整体能力亟待增强。就技术本身而言,传感器本身的稳定性、耐磨损性等还需要进一步提高。而从整个产业链的配套来说,柔性电路、柔性存储,以及软硬连接等环节也需要跟进步伐。在未来,团队也期望将制备的柔性传感器进一步优化,实现飞机表面、涡轮叶片等国之重器上的温度测量,为我国科技进步添砖加瓦。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 管道风速传感器如何测量管道风压、风速、风量
    风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。当测试现场难于满足要求时,为减少误差可适当增加测点。但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。选择测量断面,还应考虑测定操作的方便和安全。(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。因此,必须在同一断面上多点测量,然后求出该断面的平均值。1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。测试中需测定气体的静压、动压和全压。测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。用U形压力计测全压和静压时,另一端应与大气相通(用倾斜微压计在正压管段测压时,管的一端应与大气相通,在负压管段测压时,容器开口端应与大气相通)。因此压力计上读出的压力,实际上是风道内气体压力与大气压力之间的压差(即气体相对压力)。大气压力一般用大气压力表测定。由于全压等于动压与静压的代数和,可只测其中两个值,另一值通过计算求得。(二)测定仪器气体压力(静压、动压和全压)的测量通常是用插入风道中的测压管将压力信号取出,在与之连接的压力计上读出,常用的仪器有毕托管和压力计。1 毕托管(1)标准毕托管它是一个弯成90°的双层同心圆管,其开口端同内管相通,用来测定全压;在靠近管头的外壁上开有一圈小孔,用来测定静压,按标准尺寸加工的毕托管校正系数近似等于1。标准毕托管测孔很小,易被风道内粉尘堵塞,因此这种毕托管只适用于比较清洁的管道中测定。(2)S型毕托管它是由两根相同的金属管并联组成,测量时有方向相反的两个开口,测定时,面向气流的开口测得的相当于全压,背向气流的开口测得的相当于静压。由于测头对气流的影响,测得的压力与实际值有较大误差,特别是静压。因此,S型毕托管在使用前须用标准毕托管进行校正,S型毕托管的动压校正系数一般在0.82~0.85之间。S型毕托管测孔较大,不易被风道内粉尘堵塞,这种毕托管在含尘污染源监测中得到广泛应用。2.压力计(1)U形压力计由U形玻璃管制成,其中测压液体视被测压力范围选用水、酒精或汞,U形压力计不适于测量微小压力。压力值由液柱高差读得换算,p值按下式计算:p=ρgh (Pa) (2.8-1)式中p—压力,Pa;h—液柱差,mm;ρ—液体密度,g/cm3;g—重力加速度,m/s2。(2)倾斜式微压计测压时,将微压计容器开口与测定系统中压力较高的一端相连,斜管与系统中压力较低的一端相连,作用于两个液面上的压力差,使液柱沿斜管上升,压力p按下式计算:p=KL(Pa)(2.8-2)式中L—斜管内液柱长度,mm;K—斜管系数,由仪器斜角刻度读得。测压液体密度,常用密度为0.1g/cm3的乙醇。当采用其他密度的液体时,需进行密度修正。(三)测定方法1.试前,将仪器调整水平,检查液柱有无气泡,并将液面调至零点,然后根据测定内容用橡皮管将测压管与压力计连接。毕托管与U形压力计测量烟气全压、静压、动压的连接方法。2测压时,毕托管的管嘴要对准气流流动方向,其偏差不大于5°,每次测定反复三次,取平均值。三、管道内风速测定常用的测定管道内风速的方法分为间接式和直读式两类。(一)间接式先测得管内某点动压pd,可以计算出该点的流速v。用各点测得的动压取均方根,可以计算出该截面的平均流速vp。式中pd—动压值,pdi断面上各测点动压值,Pa;vp—平均流速是断面上各测点流速的平均值。此法虽较繁琐,由于精度高,在通风系统测试中得到广泛应用。(二)直读式常用的直读式测速仪是热球式热电风速仪,这种仪器的传感器是一球形测头,其中为镍铬丝弹簧圈,用低熔点的玻璃将其包成球状。弹簧圈内有一对镍铬—康铜热电偶,用以测量球体的温升程度。测头用电加热。由于测头的加热量集中在球部,只需较小的加热电流(约30mA)就能达到要求的温升。测头的温升会受到周围空气流速的影响,根据温升的大小,即可测出气流的速度。仪器的测量部分采用电子放大线路和运算放大器,并用数字显示测量结果。测量的范围为0.05~19.0m/s(必要时可扩大至40m/s)。仪器中还设有P-N结温度测头,可以在测量风速的同时,测定气流的温度。这种仪器适用于气流稳定输送清洁空气,流速小于4m/s的场合。管道风速传感器测量风速、风量我们可以通过风速(V)算出风量(L)的大小,如1小时内通过风量的计算公式为L=F*V*3600秒,公式中:F——风口通风面积(m2),V——测得的风口平均风速(m/s)。通过配置软件设置风更方便我们的使用,将地址及波特率设置好,将管道截面积添加好之后,软件会自动计算出风速值和风量值。广泛应用在油烟管道、通风管道、暖通空调进出风口等地方来测量风速和风量。
  • 钻石量子传感器可提升电动汽车10%续航里程
    据报道,近年来,电动汽车(EVs)作为替代传统汽油内燃机汽车的环保型汽车,受到越来越多用户的欢迎,同时,科研人员也加大针对高效电动汽车电池的研发力度。然而,由于对电池电量的估计不准确,导致电动汽车效率较低,通常是通过电池输出电流评估电动汽车电池充电状态,这将用于计算车辆剩余行驶里程数。一般而言,电动汽车电池电流可达到数百安培,然而,能检测到该电流的商用传感器无法测量毫安等级电流的微小变化,从而导致电池电量估计不确定性约10%,这意味着电动汽车的行驶里程可以延长10%,反之,如果提高电动汽车电池电量评估精度,将增强电池使用率。幸运的是,日本一组科学家已找到了解决方法,他们研究发现一种基于钻石量子传感器的检测技术,在测量电动汽车典型的大电流时,可以在1%的精度内估计电池电量。该研究报告发表在9月6日出版的《科学报告》杂志上。该研究负责人是东京理工大学Mutsuko Hatano教授,他解释称,我们研发的钻石传感器对毫安电流非常敏感,而且足够紧凑,可以在汽车上使用,此外,我们能在电动汽车嘈杂环境中检测到精度较高的毫安等级电流状态。在这项研究中,研究人员开发了一个传感器原型,使用两个钻石量子传感器,放置在汽车母线(输入和输出电流的电气接点)的两侧,然而,他们使用一种叫做“差分检测”的技术来消除由两个传感器检测到的常见噪声,仅保留实际信号,反之,使用这种钻石量子传感器能在背景环境噪声中检测到10毫安等级的小电流。接下来,科学家团队利用两个微波发生器产生频率的模拟-数字混合控制,在1千兆赫带宽内追踪分析量子传感器的磁共振频率,结果发现磁共振频率可实现±1000安的较大动态范围(检测到的最大电流和最小电流之比),此外,该传感器的工作温度范围较广,从零下40摄氏度至零下85摄氏度,适用于普通车辆的温度范围。最后,该研究团队对这款原型进行了全球协调轻型车辆测试周期(WLTC)驾驶测试,这是电动汽车能耗的标准测试,该传感器能够准确跟踪-50安至130安的充放电电流,电池电量估计精度在1%以内。Mutsuko Hatano教授表示,这些发现意味着什么呢?电池使用率每提高10%,电池重量则减少10%,这将使2030年2000万辆新型电动汽车的运行能耗减少3.5%,生产能耗降低5%,这相当于2030年全球交通运输领域二氧化碳排放量减少0.2%。
  • 德国成功研发氮原子大小量子传感器 可用于测量微磁场
    p  量子技术为电子元件小型化开辟了新的途径。近日,德国弗劳恩霍夫应用固体物理研究所(IAF)和马普固体研究所发布消息称,其科研人员共同研发出一种量子传感器,未来可用于测量微磁场,如硬盘磁场和人脑电波。/pp  集成电路越来越复杂,目前一台奔腾处理器可容纳约3000万个晶体管,因而硬盘的磁性结构可识别的范围仅为10至20纳米,比直径为80至120纳米的流感病毒还小,该量级的尺寸规格只有量子物理技术可触及。新研发的量子传感器则可精确测量这类用在未来硬盘上的微小磁场。新型量子传感器仅有氮原子的大小,作为载体物质的是一种人造金刚石。金刚石具有很好的机械和化学稳定性以及超强的导热性能,可通过引入硼、磷等外来原子,将晶体制成半导体,且非常适用于光学电路。/pp  IAF的研究人员在近几十年中研制并优化出用于生产金刚石的设备,一种专用的椭圆形等离子体反应堆模具。在800-900摄氏度的高温下,在金刚石底物上从导入甲烷气和氢气中可长出金刚石层,再将边长3-8mm的晶体从底物剥离并抛光,最后制造出具备量子物理用途的、仅含碳原子稳定同位素C12的超纯单晶金刚石晶体。所用的甲烷气经锆过滤器净化,氢气经其它手段净化。/pp  研究人员制做磁场检测器有两种途径:直接植入单个氮原子,或在制造金刚石的最后一步加入氮。之后,在超净室内采用氧等离子体蚀刻法均可制作出类似于原子力显微镜的纤细金刚石尖。关键点是导入的氮原子以及晶格中的相邻空位。该氮空位中心就是实际的传感器,用激光和微波照射时会发光,发出的光可随附近磁场的强度变化而变化。专家们将这项创新与光学探测磁共振(ODMR)相提并论。/pp  这种传感器不仅能准确检测到纳米级的磁场,还能确定其强度,应用潜力惊人。例如,可监控硬盘质量,检测出密集存储数据中的小错误和发现有缺陷的数据片段,在刻写和读取前即将其去除。因此,可减少随着小型化的加速而迅速增加的废料,降低生产成本。IAF的专家称,这种量子传感器还可用于测量很多微弱磁场,包括脑电波。与目前使用的脑电波传感器相比,不仅更准确,而且在室温下即可使用,无需经液氮冷却。/p
  • 一篇文章看懂:什么是SENIS集成3轴磁传感器?
    一篇文章看懂:什么是SENIS集成3轴磁传感器?为了测量电磁铁和永 jiu磁铁产生的从 10-6 到 102 T 的非均匀磁通密度,通常使用带霍尔探头的特斯拉计。为了同时测量磁通密度的三个正交分量,需要使用三轴霍尔探头。根据目前传统的的技术水平,三轴霍尔探头由三个霍尔板组成,这三个霍尔板分别位于一个小立方体的三个相互正交的面上。单个霍尔板的尺寸及其定位公差严重限制了可实现的空间分辨率和测量磁通密度矢量的角度精度。此外,连接霍尔装置的导线中的电磁感应也限制了这种霍尔探头的有用带宽。此外,平面霍尔效应通常会产生额外的误差。在基于量子阱的霍尔板中,平面霍尔效应很弱,但问题依然存在。 为了解决这个问题,在一个点上检测三个方向的磁性。SENIS开发了一种划时代的“集成3轴磁传感器",使之成为可能。这就是“集成的三轴磁传感器"。 该传感器可以在所有情况下测量精确的3D矢量,例如永磁体的邻近磁场、小线圈产生的磁场和时间变化,这在过去是不可能的。图1. 传统的霍尔片3轴探头(左)和SENIS集成3轴磁传感器(右)3轴磁性探头的配置传统的霍尔片3轴探头SENIS集成3轴磁传感器磁化位置3个位置一个位置(单点)磁感应位置的错位量取决于传感器位置(约0.5mm~10mm)无错位传感器的相对角度误差通常不标注(过大)±0.1°以内温度传感器无安装在传感器芯片中探头形状约1~2种8种类型+定制自由一、 专li技术的SENIS集成3轴磁传感器二、 SENIS集成三轴磁传感器的功能除了磁传感器外,集成的3轴磁传感器还集成了偏置电路和放大器,以提高频率特性和抗噪性,甚至在宽度仅为 0.64 m 的单个芯片上集成了温度传感器,用于因温度变化而进行灵敏度校正。1.敏感区域仅为0.15mm × 0.1mm × 0.15mm2.3个方向相对角度误差在±0.1以内3.频率响应:高达25Khz(-3db)4.温度特性±100ppm/°C三、 SENIS集成三轴磁传感器放大图四.SENIS集成三轴磁传感器详细信息图2. 磁性传感器内部有5个感磁区域。通过取BZ1和BZ2的平均值,虚拟地求出By传感器位置的Bz磁场。同样地,通过取Bx1和Bx2平均值来求出By传感器位置的Bx磁场,可在同一点上收集Bx、By、Bz。五.搭配SENIS集成三轴磁传感器的霍尔探头类型:六.搭配SENIS集成三轴磁传感器的高斯计/特斯拉计汇总类型: SENIS数字特斯拉计/高斯计基于SENIS的模拟磁场传感器电子设备,其顶部添加了数字模块,具有显示器,通信端口,数字数据校正等。SENTIS提供不同类型的特斯拉计,具有不同的磁性分辨率,精度,f带宽,噪声水平和功能和处理选项(手持式,台式,机架式)3MH3特斯拉计,适用于工业和实验室应用,具有良好的精度,分辨率和f带宽3MH6台式特斯拉计,用于实验室应用,具有非常高的分辨率和精度以及良好的f带宽3MTS 手持式特斯拉计,探头支架坚固,精度高1 轴、2 轴或 3 轴 Nanoteslameter 3NTA1,用于极低磁场SENIS已通过ISO 9001和ISO 22301(业务连续性管理)认证。我们的校准实验室已通过ISO17025:2017认证。上海昊量光电作为SENIS公司在中国大陆地区主要的代理商,为您提供专业的选型以及技术服务。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 搭载全新CMOS传感器,FLIR机器视觉相机满足生物医学成像的严苛要求
    众所周知,现代生物医学成像的进步帮助医生在诊断和治疗上取得越来越大的突破,X光、计算机辅助断层摄影(computer aided tomographic,CT)、磁共振成像、核与超声波成像,生物医学成像技术越来越精细。因此,研究和诊断生物医学应用通常需要成像仪具备较高的空间分辨率、准确的色彩还原度以及弱光条件下较高的灵敏度,而且许多情况需要同时具备这三种因素,才能提高数据的可靠性。选择医学成像相机要考虑的因素选择合适的显微镜学相机、组织学相机、细胞学/细胞遗传学相机、落射荧光相机,对于临床应用进行正确诊断或在研究工作过程中提供可靠数据具有至关重要的作用。那么要如何判断机器视觉相机是否适合您的应用呢?你需要考虑这些因素:01分辨率与色彩精度现代生物医学成像相机所需的分辨率取决于样品中目标结构相对于相机像素大小的放大率,也就是说,显微镜应用的高分辨率可以通过2MP、25MP或介于这两者之间的相机来实现。它取决于光学元件对样品中目标结构进行的相对于相机像素大小的放大率,为了选出能实现所需分辨率的相机,首先要确定待解析样本中最小结构的尺寸,然后将其乘以光学系统中的镜头放大率,从而得出投射到相机传感器上的结构尺寸。如果结构的尺寸至少是相机传感器上像素的2.33(Nyquist)倍,那么相机可以解析此机构。例如,如果这些投射的结构尺寸是~8um,那么3.45um像素的相机可以解析这些结构。测量分辨率还可以用其他方法(如线对数),但上述方法可以通过简单计算,找到用于测试的相机的选项。组织学、细胞学和细胞遗传学等成像应用使用较大范围的白光(~400nm至700nm),或使用此范围内的选定波长(例如565nm)。如果这批样品中的样本不是活动的(即固定的),则可以暴露于亮光下,不会有污渍褪色或样品被杀死的风险。这种情况下,相机的主要要求是高分辨率和色彩还原度。反过来说,弱光灵敏度不是一个重要因素。02灵敏度、量子效率及动态范围对于活体样本的成像应用,面临的挑战是避免样本在太强光线下过度曝光,否则会使荧光分子褪色或杀死样本。这些应用通常使用一种称为落射荧光技术,落射荧光技术可用于固定样本和活体样本。有的标本很难获得或价格昂贵,而且制作样本的材料和人工费用很高。因此,能保护样品质量的系统有助于降低这些成像应用的持续成本。落射荧光使用经过过滤的高能量波长,以刺激样品发出低能量波长。低能量波长再经过过滤返回相机。这种情况下,可以对样品使用强度较小的破坏性光,因此其要求是灵敏度。即便发射光能量较低,具有出色灵敏度的相机也可以提供高质量的图像。如需查找具备出色灵敏度、在弱光条件下性能良好的型号,您可以侧重于以下三种技术规格:灵敏度、量子效率以及动态范围。灵敏度是得到与传感器所观测噪声等效的信号所需的光子数,数值越小越好。量子效率是指给定波长下转化为电子的光子——值越高越好。动态范围是信号与噪声(包括颞暗噪声)的比值,颞暗噪声是指无信号时传感器内的噪声,动态范围值越高越好。通常单色型号的弱光性能优于彩色型号。03因素综合对于同时使用白光和落射荧光的应用,可以选择FLIR配备Sony全新转换增益功能的相机型号,此功能可以优化传感器,实现高灵敏度或高饱和容量。弱光环境较高的转换增益,因为在此条件下,读取噪声被更大程度地弱化,从而产生较低的灵敏度阈值,非常适合在短时曝光下检测弱信号。强光条件下饱和容量得到了Maximun,获得的动态范围得以增强,因此稍低的转换增益是这种情况的理想选择,Maximun动态范围将受限于12位 ADC。挑选合适的机器视觉相机在选择相机时,较新的CMOS传感器是个很好的出发点。较新的传感器通常性能更好(价格可能还更低)另外,如果针对的应用程序需要在几年内购买多个相机(如持续生产诊断仪器),那么就要选择生命周期不会很快结束的相机,否则您可能要承受提前设计替换相机的成本费用。FLIR生产的机器视觉相机型号有200多种,广泛应用于采用新CMOS传感器的三大系列:Blackfly S、Oryx 和 Firefly。01FLIR Blackfly SFLIR Blackfly S系列相机的传感器、外形尺寸及接口最为广泛。这些相机提供USB3和GigE两种型号,功能广泛,设计初期易于整合。板级Blackfly S型号是全功能盒装产品的微型版本,特别适合空间受限和嵌入式的应用,其功能广泛,性价比高,分辨率可达24MP,是生物医学和生命科学应用的选择。FLIR Blackfly S USB3FLIR Blackfly S 板级02FLIR Oryx10 GigEFLIR Oryx相机系列拥有适配最快10GigE接口的高分辨率传感器,能够以60FPS的速度捕捉4K分辨率、12位的图像。Oryx的10GBASE-T接口是经过验证且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。03FLIR Firefly DLFLIR Firefly相机系列的外壳尺寸娇小、重量轻、功耗低且价格实惠。Firefly DL型号还能够运行已经过训练的神经网络,可用于物体检测或分类。所有FLIR机器视觉彩色相机都可以通过不同的白平衡选项的形式自定义色彩还原,并使用特殊色彩校正矩阵,这对于生物医学成像非常重要,医学成像中,色彩准确度的涵义不同,这取决于人类对诊断的视觉分析以及实现数据准确性的机器可读格式之间的对比。另外,FLIR 机器视觉Blackfly S、Oryx 和Firefly相机系列可通过GenICam3及 Spinnaker SDK进行控制和编程,它们自一开始设计时就以轻松开发与部署为理念时,确保我们能更快进行应用开发和测试。随着医学科技的进步对于现代生物医学成像的需求也将更加严格对于如何选择医学成像相机
  • NSTC:将量子传感器付诸实践
    量子传感器和测量设备能够为商业、政府和科学应用提供精确性、稳定性和新功能,产业界、学术界、政府部门间的合作可以促进量子测量科学和产业进展。此前,美国国家科学和技术委员会(NSTC)量子信息科学小组委员会(SCQIS)发布了题为《将量子传感器付诸实践(Bringing Quantum Sensors to Fruition can be found)》的报告。  报告以美国《量子信息科学国家战略概览》和《国家量子倡议(NQI)》法案为基础,讲述了当前主要应用的5类量子传感器是原子钟、原子干涉仪、光学磁力器、利用量子光学效应的装置和原子电场传感器,量子测量从研发到产业化阶段主要面临人才多样化、技术可行性、关键辅助性技术和组件和知识产权与技术转让4大方面挑战。报告针对量子测量研发、应用领域提出1-8年的短中期建议,其长期目标是通过量子技术的发展促进经济发展、安全应用和科学进步。该报告增强了美国QIS国家战略,体现出美国在量子测量领域的重视和决心。  (一)量子传感器  量子传感器(quantum sensors)是利用量子力学特性(如原子能级、光子态或基本粒子的自旋)进行测量的设备。量子传感器在定位、导航、计时、本地和远程、生物医学、化学和材料科学、基础物理学和宇宙学等不同领域均有使用。目前,量子测量领域有5类主要的量子传感器。表1 量子测量5类主要的量子传感器名称工作原理应用领域量子传感器原子钟当标准GPS信号不可用时,使用原子钟辅助网络和高精度时间传输协议可以为导航系统提供弹性地质学、地震学、石油勘探、电网运营和金融服务业等原子干涉仪在基础物理学领域的应用包括万有引力常数(大G)的测量、等效原理(自由落体的普遍性)的测试、毫米级的引力测量、暗物质粒子的搜索以及引力波探测的可能替代方法火山学、地下水、矿藏、潮汐动力学和冰层等地球科学研究,陀螺罗盘、卫星定位、制导、导航重力测绘和海底避障等应用光学磁力器基于蒸汽、玻色凝聚体或固态系统(如金刚石中的氮-空位(NV)中心)中原子自旋的光学磁力计用于神经功能的生物医学研究,支持生物样本的无创检测和表面科学的新工具利用量子光学效应的装置利用量子光学效应的设备提供了突破显微镜、光谱和干涉测量中的标准量子极限的机会。非经典状态的光子使测量达到海森堡极限DNA测序、酶活性跟踪、粒子物理学、暗物质搜索、量子网络协议和微光遥感原子电场传感器使用里德堡原子态作为换能器或量子天线,来测量从直流(0 Hz)到太赫兹(1012 Hz)的宽频率范围内的电磁场应用于遥感和电测领域,其他应用包括扩大蜂窝塔之间的距离,以及采集具有宽动态范围的信号  (二)困难与建议  量子测量从概念验证设计到实现可应用的产品仍然需要克服许多障碍。首先,研发工作分散、巨大应用空间和潜在用户需求,使人们很难专注于某一特定的应用或需求,许多量子测量市场驱动力和商业价值仍未明确;其次,从基础研究到商业化产品成型需要大量和持续性的资金。量子测量技术的研发不仅需要高校、研发机构和企业间共同参与,一个有凝聚力的、系统性的战略路线尤其重要,使多个机构目标一致,联合产业链上的企业在一些特定应用和关键辅助性技术上共同开发,并且与合作企业处理好知识产权、收购、商业安全和寻求战略合作伙伴等关系,使量子测量技术更加高效成熟。  1.团队人才专业多样化问题  面临的挑战:许多进行基础研究的科学家可能缺乏量子测量应用和商业化相关领域的专业知识,比如不熟悉当前具有竞争性的技术或者军事领域应用下部署传感器的严格要求等,所以还需要完善专家团队的多样化,找到各领域的专家和行业精英一同参与。但是存在寻找人才时间长,晋升和任期标准不一致,对新的联合项目缺乏方案资源或资金支持,回报周期长等实际困难,进展缓慢。  建议:QIST研发机构,如NIST、NSF、DOE、DOD、NASA和情报界,应该加快开发新的量子测量技术,并优先与量子测量最终用户建立合作伙伴关系,共同测试、开发和推广应用结果,从而帮助量子测量企业改进技术、实现市场目标或任务,共同努力通过提供新的资源、先发优势和提高对新兴技术的认识而使最终用户受益。   2.具体技术的可行性问题  面临的挑战:(1)量子技术被过于夸大,使得有些用户对量子测量的潜在应用有不切实际的期望或误解,另一方面因量子测量未被有效推广,还有一些潜在的用户不知道量子测量的存在而错过商业机会。在实现一定的市场规模之前,较难预测实验室成果的商业可行性,特别是与现有的、传统的替代方案和基准比较,传统测量已有几十年的研发经验和商业市场,量子测量大规模进入市场还需要很长一段时间。(2)因为传感器的实用价值取决于许多因素,包括在现实环境中的性能、对环境噪声的响应、可靠性、带宽、占空比和操作时间等规格,而这些实地部署时的必要条件通常不是科学家或研发专家在早期原型优化时能想到首要任务。因此,潜在市场用户应该帮助进行判断。   建议:使用传感器的机构应进行可行性研究,并与QIST研发领导人共同测试量子原型系统,以确定有市场前景的量子测量技术。(1)量子测量应用机构应确定一些相关的量子技术,并进行专门的市场调查,寻找可应用的美国政府机构进行技术商用和推广,如美国国土安全部、国家卫生研究院、农业部、美国地质调查局、美国国家海洋和大气管理局,以及能源部、国防部和NASA中的部分部门。(2)国家实验室、联邦政府资助的研发中心和学术界的科学家也可以是研发试验阶段的采用者。(3)QIST研发从业者和这些最终用户的共同努力可以优先用于现场测试、共同设计和开发新的量子传感器原型和应用。(4)各机构可以利用SCQIS及其工作组来帮助确定潜在的合作伙伴关系。   3.关键辅助性技术和组件  面临的挑战:由于控制量子系统所需的严格技术要求和高昂的工程成本,获取关键辅助性技术仍是挑战。将量子实验室原型移植到现场演示所需要的组件或工艺,如专用材料、制造设施、集成光子器件、激光器、电子器件、真空系统、互连、量子控制和诊断等,这些尚未完全可控可用,而且这些辅助性技术和器材目前没有足够的市场实现规模生产,仅在实验室内投入使用,依赖实验室研发投入和应用场景,这些障碍不但影响了所需子系统的开发,在没有多次技术迭代和后续改进的情况下,也为量子测量最终用户的使用和推广带来困难。  建议:支持研发工程的机构应该与SCQIS工作团队合作,帮助促进量子测量更精确、更实用、更优化成本的关键组件开发。与产业界共同探索,有针对性的投资相关基础设施,从而生产出跨领域、多功能的组件,为多种量子设备的开发提供可能,如适用波长的可靠激光器和集成光学电路。各机构可协调对辅助性技术的战略研发和投资,建立合资企业和人才队伍,培育可持续的量子产业基础。   4.知识产权与技术转让问题  面临的挑战:在目前量子技术尚不成熟的阶段,地区或企业间一些保证知识产权的做法可能会阻碍合作,特别是国际间的合作。同样,进出口限制也可能会推迟收购和减缓开发,进而降低竞争力。因此,需要一些策略性的措施来确保研究安全,同时维护美国公开、透明、诚实、公平、客观和民主的科学精神。过度保护研究安全免受威胁,也会同时带来另一种风险,即过度过大地实施保护措施会抑制技术交流与进步。   建议:各机构应该简化技术转让和收购的流程,如来源选择、购买权和许可协议等,鼓励量子测量技术的开发和早期应用。高效的技术转让和获取过程对创新至关重要,它们可以减少技术开发人探索商业可行性的行政障碍,帮助最终用户访问和共同开发产品,有助于推进政企合作。其次,在公平可信的情况下,相关决策可适当考虑促进创新和基础研究的方式,以减轻行政负担,促进快速创新。为此,机构应结合法律法规,慎重考虑对技术或操作风险的承受能力,探索维护研究安全的最佳操作方式。由于技术转让取决于政府、企业和学术界不同部门,一种方法是让SCQIS、NSTC实验室参与到市场小组委员会及其工作组中,有助于相关决策。  (三)短中期发展规划  为落实上述建议,报告指出了研发界在短期(1-3年)和中期(3-8年)的若干规划。  未来1-3年内:  1.QIST研发领导人向各机构提供关于量子测量的简报和研讨会。简报包括对现有量子测量技术的调查及其对机构市场需求的影响力分析。结合简报,企业将共同测试和演示量子测量,并编制具有可行性性能指标的策划清单。   2.潜在市场用户应该参加以QIST为中心的专业协会会议、研讨会和圆桌会议等,了解用户及市场需求。最终用户可以参加“提议者日活动”,告知研发界他们对量子测量技术的兴趣和期望。  3.建立流动性的量子测量研发合作企业关系,多个企业将参与联合现场测试和初步结果评估,量子测量技术的开发、测试和共同设计有助于开创和验证新的应用场景。对于成果跟踪与评估,分类各个量子测量技术成熟度将很有必要。  4.确定量子传感器的具体、高效应用场景,其中重要的一项是关键组件的优先列表,以及相关工程研发的规格和计划。  5.确定工程基础设施和研发项目清单,确定最优排序,便于解决每个项目的辅助性技术和应用难题;预估每个研发项目所需的时间、投资预算及其潜在风险;鼓励建设实施有助于多个量子测量应用的基础项目或基础设施。  6.设立或建立能够促进量子测量技术发展的法律、政策咨询机构。  7.跟进量子测量技术的各个环节进展,包括文献统计、参与者、专利、量子测量技术许可,以及量子测量销售收入、国内外的量子测量关键组件或辅助性技术发展进展等。  未来3-8年内:  一旦确定了有可行性的量子测量技术,研发界和SCQIS机构应与应用方合作推进现场测试演示,以加快技术早期采用和项目落地过渡;优先考虑组件小型化和子系统集成;争取投资方支持,与代工厂合作开发、建设研发实验基础设施;为已确定的量子测量技术和组件制定标准。  量子测量虽然还有很多基础科学有待完成,但量子测量全新的应用和平台蓄势待发。该报告介绍的量子测量发展战略侧重于原型系统的现场测试,协调和解决这一难题,将有助于推进整个QIST领域实现突破。将量子测量从实验室推向市场需要漫长的过程,必须要有相应的国家科学战略,为量子测量技术的研发、测试和应用做好全程支持与服务,从而加速量子测量变革性的产品和服务推向市场。在此过程中,早期技术采用者将获得先发优势,创新者和企业家将获得知识产权,市场用户收益于优良的量子测量组件和设备,甚至包括其他领域的科学家,从而拓宽QIST研发生态链。总而言之,为了让美国更好的实现量子技术的经济、安全和社会效益,各机构应该齐心协力,共同推动量子测量技术的关键性进步。[2]  资料来源:  [1] https://www.whitehouse.gov/ostp/nstc/reports/  [2] https://www.whitehouse.gov/wp-content/uploads/2022/03/03-2022-BringingQuantumSensorstoFruition.pdf
  • Science:STM中用氢分子制作量子传感器 颠覆传统测量技术
    加州大学欧文分校(University of California Irvine)的物理学家近日在扫描隧道显微镜(Scanning Tunnel Microscope)中将氢分子与太赫兹激光(Terahertz Laser)配合使用制作量子传感器,这项技术在测量材料化学特性时呈现出前所未有的时间和空间分辨率。图片来源:加州大学欧文分校Wilson Ho实验室。在扫描隧道显微镜的超高真空中,一个氢分子被固定在银尖和样品之间。太赫兹激光的飞秒脉冲激发分子,使其成为量子传感器。  这种新方法也可用于分析二维材料,在先进的能源系统、电子学和量子计算机中十分有用。  加州大学欧文分校物理、天文和化学系的研究人员描述了科学家如何将两个键合氢原子定位在STM的银尖和一个由平整的铜表面组成的样品之间,该表面上排列着氮化铜的“岛”。这项研究发表在《科学》杂志上。  科学家们能够利用持续数万亿分之一秒的激光脉冲,在低温和极高真空环境下刺激氢分子,并识别其量子态的变化,从而获得样品的原子尺度和延时图像。  这个项目代表了测量技术的进步,并拓展了我们探索科学问题的方法。现有仪器不基于这一量子物理原理,因此依靠探测两能级系统中态相干叠加的量子显微镜要更加灵敏。——Wilson Ho(研究人员之一)和加州大学欧文分校物理学、天文学和化学系教授Donald Bren   根据何的说法,由于氢分子的取向在上下两个位置之间波动,并且在一定程度上水平倾斜,氢分子是两能级系统的一个例子。科学家们可以利用激光脉冲激励系统从基态循环到激发态,从而实现两种状态的叠加。  循环振荡非常短,仅持续几十皮秒,但科学家们通过测量“退相干时间”和循环周期,能够探测到氢分子与其周围环境的相互作用。  氢分子成为量子显微镜的一部分,因为无论显微镜扫描到哪里,氢都在尖端和样品之间。它是一种非常灵敏的探针,可以让我们看到低至0.1埃的变化。在这个分辨率下,我们可以看到样品上电荷分布的变化。  ——Wilson Ho(研究人员之一)和加州大学欧文分校物理学、天文学和化学系教授Donald Bren  STM针尖与样品之间的距离约为6埃或0.6纳米,这几乎是不可能实现的微小距离。  Ho和他们的研究同事建立了一个STM,可以检测该区域的微小电流,并提供光谱数据,证明氢分子和样品成分的存在。根据何教授的说法,这是第一次利用太赫兹诱导的单分子整流电流进行化学精确光谱分析。  根据何教授的说法,利用氢的量子相干性在这种细节层次上分析材料的能力在催化剂的研究和工程中非常有用,因为它们的功能通常取决于单个原子大小的表面缺陷。  只要氢能吸附到材料上,原则上,你就可以用氢作为传感器,通过观察材料的静电场分布来表征材料本身。  ——加州大学欧文分校物理学和天文学研究生王立坤(研究第一作者)  加州大学欧文分校物理学和天文学专业的研究生夏云鹏与何和王一起进行了这项实验,该实验由美国能源部基础能源科学办公室资助。  期刊原文:Wang, L., et al. (2022) Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity. Science. doi.org/10.1126/science.abn9220.
  • 细看仪器/传感器领域的2023两院新增院士
    11月22日,备受瞩目的2023年中国科学院、中国工程院两院院士增选名单正式公布!2023年中国科学院选举产生了59名中国科学院院士, 2023年中国工程院院士增选共选举产生74位中国工程院院士。中国科学院、中国工程院是国家科学技术界和工程科技界的最高学术机构,是国家战略科技力量,入选两院院士是我国科学研究人员的最高荣誉。据悉,本次两院院士增选名额进一步向国家急需的关键领域和基础学科、新兴学科、交叉学科倾斜;向为国防和国家安全作出突出贡献的科研人员倾斜;向承担国家重大科研任务、重大科技基础设施建设和重大工程并作出突出贡献的科研人员倾斜。本次两院院士有多位传感器及仪器仪表、半导体等领域专家当选!简要整理,以飨读者。2023年新当选中国科学院院士名单-传感器领域专家名单&简介刘胜年龄:59工作单位:武汉大学研究方向:微纳制造及芯片封装与集成学部:技术科学部【简介】刘胜,教授、国家杰出青年基金获得者(B类)、长江学者特聘教授、美国电气和电子工程师协会会士、美国机械工程师学会会士。现受聘为科技部“十三五”微纳制造主题专家组成员。目前在研国家重大科研仪器研制项目、国家重点研发计划项目等多项国家级重点重大项目。刘胜院士是电子封装科学与技术领域杰出专家,他长期从事集成电路、LED 和微传感器封装及可靠性理论和前沿技术研究,取得了系统的原创性研究成果。曾荣获国家技术发明二等奖(2016)、电子学会技术发明一等奖(2018)、电子学会十佳工作者(2018)、教育部技术发明一等奖(2015)、美国白宫总统教授奖等,发表SCI论文260余篇,引用超过2800次,出版著作5本,已授权专利170余项。现任武汉大学工业科学研究院 执行院长、武汉大学微电子学院副院长。郑海荣年龄:45工作单位:中国科学院深圳先进技术研究院研究方向:医学成像仪器与医疗设备学部:信息技术科学部【简介】博士,研究员,博士生导师。国家杰出青年基金获得者、何梁何利科技创新奖及全国“创新争先”奖状获得者。中科院深圳先进技术研究院副院长、Paul C. Lauterbur生物医学成像中心主任。担任国家高性能医疗器械创新中心主任、中科院健康信息学重点实验室主任。本科毕业于哈尔滨工业大学,2006年获美国科罗拉多大学博士学位。主要研究领域为医学成像理论、技术与仪器系统、信号处理与电子学。主持承担国家973计划项目(首席)、国家重大科研仪器专项等科研项目。发表论文200余篇,授权专利100余项,一批专利技术实现产业化。主持完成的高场磁共振成像技术与设备成果以第一完成人获国家科技进步一等奖。孙胜利年龄:52工作单位:中国科学院上海技术物理研究所研究方向:光学工程学部:信息技术科学部【简介】1999年5月至今,中国科学院上海技术物理所。曾任中国科学院上海技术物理所工程三室主任。现任中国科学院上海技术物理研究所副所长、智能红外感知中科院重点实验室主任、国家级专家。主要从事天基信息获取研究工作,致力于揭示特殊环境中红外探测噪声与时空相关性机理,系统研究了影响探测灵敏度的基本问题,使广域空间微弱时变信号高效捕获难题获得突破。研究领域包括红外智能感知、光电仪器的现代设计方法、数字化制造和全过程定量化测试。近年,引入人工智能、智能制造、天文学等领域的新方法新理念,追求智能红外感知的新突破。荣获中国航天钱学森杰出贡献奖,中国首届创新争先奖,国家技术发明一等奖 (天基高时效红外探测技术),中国科学院杰出成就奖 (天基红外探测关键技术)。张荣年龄:58工作单位:厦门大学研究方向:半导体光电子器件与材料学部:信息技术科学部【简介】张荣 教授,中国科学院院士,教育部“长江学者奖励计划”特聘教授,博士生导师,1964年2月出生,1983年南京大学物理学系本科毕业,1986年南京大学物理学系半导体专业硕士研究生毕业并获硕士学位,1995年获南京大学半导体专业博士学位。现任第十四届全国人大代表,厦门大学党委书记(副部长级)、党委党校校长。先后主持国家“973”计划、“863”计划、国家自然科学基金重大项目等十余项国家和地方重大研究课题,在新型低维量子结构与器件方面,特别是在Ⅲ族氮化物异质结构与器件、硅基异质结构、纳米结构与器件、宽禁带半导体自旋电子材料等方面取得一系列有重大创新意义的研究成果。2023年新当选中国工程院院士名单-传感器领域专家名单&简介孙以泽年龄:64工作单位:东华大学学部:环境与轻纺工程学部【简介】孙以泽,现任东华大学机械工程学院教授、博士生导师、机械电子工程学科带头人、上海市领军人才,获国务院特殊津贴、宝钢优秀教师奖、桑麻奖教金、上海市松江区先进工作者、机械电子工业部优秀科技工作者等荣誉。主要学术兼职为东华大学学术委员会委员。研究方向:1、复杂机械系统及其智能传感测控技术2、高端纺织装备技术与系统3、太阳能光伏系统集成与逆变技术李清泉年龄:57工作单位:深圳大学学部:土木、水利与建筑工程学部【简介】工学博士,二级教授,博士生导师,动态精密工程测量专家,国际欧亚科学院院士,现任深圳大学党委书记。1998年获得武汉测绘科技大学摄影测量与遥感工学博士学位。自然资源部大湾区地理环境监测重点实验室主任,中国测绘学会副理事长,教育部测绘专业教学指导委员会副主任委员,教育部高等学校教学信息化与教学方法创新指导委员会副主任委员。长期从事精密工程测量的多传感器集成与同步控制、测量新技术、测量数据处理新方法研究,形成了动态精密工程测量技术体系,突破影响基础设施性能和安全的刚度/弯沉、表观变形和线形变化连续高精度测量关键难题;发明研制了激光动态弯沉检测装备、移动道路检测车、隧道检测装备、地铁测量小车、管道检测胶囊等系列高端测量专用装备,服务我国70%以上等级公路、数百城市道路以及机场、隧道、地铁、地下管网等领域的状态测量,推动精密工程测量从“静态到动态”、“离散到连续”的转变,显著提升我国基础设施状态测量技术水平,并实现了国际化推广。主持973计划项目、863计划项目、国家重点研发计划课题、国家自然科学基金中欧国际合作项目、重点项目等科研项目50余项。获授权发明专利31项(第一),出版专著5部,发表论文300余篇(SCI 100余篇),引用超过超过16500次,H-index 63;获国家技术发明二等奖1项(第一),国家科技进步二等奖1项(第二),国家科技进步创新团队奖1项(第五),国家教学成果二等奖1项(第一),何梁何利科技进步奖,省部级科技进步一等奖7项(第一),中国青年科技奖,全国十大测绘科技创新人物、全国创新争先奖等,入选全球前2%顶尖科学家榜单。张学军年龄:54工作单位:中国科学院长春光学精密机械与物理研究所学部:信息与电子工程学部【简介】张学军,男,1968年9月生,汉族,吉林长春人。现任光机所副所长,研究员,博士研究生导师。1990毕业于吉林工业大学(现吉林大学),1997年在长春光机所获得理学博士,后赴美国亚利桑那大学光学中心做访问学者。归国后一直从事空间光学系统先进制造技术方面的研究,相关研究成果曾获2011年度国家科技进步二等奖(排名第一)、2013年度国家技术发明二等奖(排名第三)、2008年度国家技术发明二等奖(排名第三)、1999年度国家科技进步二等奖(排名第三)、2014年度吉林省科技进步一等奖(排名第一)、2012年度国防技术发明一等奖(排名第三)。申请发明专利30项(授权10项),发表学术论文142篇,其中SCI收录15篇,EI收录95篇。从上世纪90年代开始张学军一直从事空间光学系统超精加工与检测方面的研究工作,归国后积极投身先进光学制造技术研究,在大口径光学加工、检测等方面做出了一系列开创性工作,成果主要体现在两个方面:一是突破、发展了大口径非球面高精度加工设备、工艺及复合检测技术。研制成功了具有自主知识产权的四代大口径非球面加工中心,技术指标与见诸报道的国际最高水平相当,使我国成为了继美、法之后第三个具备大口径空间反射镜系统制造能力的国家。二是突破了以离轴三反系统为代表的新型光学系统工程化应用的技术瓶颈,推动了我国空间对地遥感新技术体制的建立。多个型号空间相机以及背景预研项目均采用了可同时实现长焦距与大视场的离轴三反光学系统形式,其中8台相机已经在轨服役,全部满足用户使用要求,部分指标为当前国际最高水平。于海斌年龄:58工作单位:中国科学院沈阳自动化研究所学部:信息与电子工程学部【简介】1964年生, 工学博士,研究员、博士生导师,“十一五”国家863计划先进制造领域专家组成员,国家科学技术 奖励评审委员会评审专家。现任中国科学院沈阳分院院长、分党组副书记。主要研究方向:工业通信与实时系统理论,分布控制系统技术,工业无线技术,网络协同与智能制造。主持并参加了多项国家级项目,包括国家自然科学基金杰出青年基金项目、国家自然科学基金重点项目、国家高技术研究发展计划(863)重点项目以及中国科学院重要方向性项目等。在高水平国际国内期刊和知名国际会议上发表论文100余篇,出版学术专著2部 。王岩飞年龄:59工作单位:中国科学院空天信息创新研究院学部:信息与电子工程学部【简介】1984年毕业于北方交通大学,1987年毕业于中国科学院电子学研究所,获硕士学位,1998年获博士学位。现任中国科学院电子学研究所研究员,博士导师。主要研究方向:微波成像与数字信号处理技术。从1987年至今在中国科学院电子学研究所工作,1992年至1993年在澳大利亚新南威尔士大学遥感中心访问学习。先后参加了国家自然科学基金课题“雷达图像模拟”、“宽带微波成像原理研究”、863项目“星载SAR总体及关键技术可行性研究”、科学院攻关项目“机载多极化合成孔径雷达系统”、863项目“机载SAR实时数字成像处理器”、以及干涉式合成孔径雷达、雷达图像的模拟和几何校正研究等工作。目前,主要从事“机载成像雷达系统”、“合成孔径雷达实时成像处理器”、“星载合成孔径雷达系统”、“星载合成孔径雷达原始数据实时压缩技术”、以及“分布式卫星成像雷达系统”等项目的研究工作。童小华年龄:51工作单位:同济大学学部:信息与电子工程学部【简介】童小华,男,1971年出生,江西抚州人,教授,博士生导师。分别于1993、1996、1999年获同济大学学士、硕士和博士学位。历任同济大学土木工程学院测量与国土信息工程系副主任、土木工程学院党委副书记兼测量与国土信息工程系党总支书记、测绘与地理信息学院院长、科研管理部部长、校长助理。2021年1月任同济大学党委常委、副校长。研究领域为测绘科学与技术,主要研究方向是航天测绘遥感与深空探测。曾是武汉大学测绘遥感信息工程国家重点实验室博士后、香港理工大学客座研究员、美国加州大学圣巴巴拉分校访问学者。航天测绘遥感与空间探测上海市重点实验室主任,国家杰出青年科学基金获得者,国家重点研发计划项目首席,全国优秀科技工作者,全国教育系统先进集体带头人。现担任国务院学位委员会学科评议组测绘科学与技术组成员、教育部科学技术委员会委员、多部学术期刊编委。研究成果应用于嫦娥探月、测绘卫星和国土资源调查等工程,获得国家科技进步奖一等奖、国家自然科学奖二等奖、全国创新争先奖状。
  • imec集成薄膜固定光电二极管以实现卓越的短波红外成像传感器
    2023年8月14日在比利时鲁汶,imec作为纳米电子学和数字技术领域的全球研发和创新中心宣布成功集成了固定光电二极管结构到薄膜图像传感器中。通过添加固定光电栅和传输栅,薄膜成像器超过一微米波长的吸收质量终于可以被利用,以一种成本效益的方式解锁感知可见光之外光线的潜力。检测可见光范围之外的波长,例如红外光,具有明显的优势。应用包括自动驾驶汽车上的摄像头,以“看穿"烟雾或雾霭,以及用于通过面部识别解锁智能手机的摄像头。虽然可见光可以通过基于硅的成像器检测,但需要其他半导体材料来检测更长的波长,比如短波红外线(SWIR)。使用III-V材料可以克服这一检测局限。然而,制造这些吸收体的成本非常高,限制了它们的使用。相比之下,使用薄膜吸收体(如量子点)的传感器最近出现为一个有前景的替代方案。它们具有良好的吸收特性和与传统CMOS读出电路集成的潜力。尽管如此,这种红外线传感器的噪声性能较差,导致图像质量较差。早在20世纪80年代,固定光电二极管(PPD)结构就在硅CMOS图像传感器中引入。该结构引入了一个额外的晶体管栅极和一个特殊的光检测器结构,通过该结构, charges可以在积分开始前全部排空(允许在没有kTC噪声或前一帧影响的情况下复位)。因此,由于噪声更小、功耗性能更好,PPD主导了基于硅的图像传感器的消费者市场。 在硅成像之外,至今还不可能集成此结构,因为难以混合两种不同的半导体系统。现在,imec在薄膜图像传感器的读出电路中成功集成了PPD结构。 一种SWIR量子点光电检波器与一种氧化铟镓锌(IGZO)薄膜晶体管单片集成成PPD像素。 随后,该阵列被进一步处理在CMOS读出电路上以形成一个完整的薄膜SWIR图像传感器。 imec的“薄膜固定光电二极管"项目负责人Nikolas Papadopoulos 表示:“配备4T像素的原型传感器表现出显着低的读出噪声6.1e-,相比之下,传统的3T传感器超过100e-,证明了其良好的噪声性能。" 因此,红外图像的拍摄噪声、失真或干扰更小,准确性和细节更高。imec像素创新项目经理Pawel Malinowski补充说:“在imec,我们正在红外线和成像器的交汇处处于地位,这要归功于我们在薄膜光电二极管、IGZO、图像传感器和薄膜晶体管方面的综合专业知识。通过实现这一里程碑,我们克服了当前像素架构的局限性,并展示了一种将性能最佳的量子点SWIR像素与经济实用的制造方法相结合的方法。下一步包括优化这项技术在各种类型的薄膜光电二极管中的应用,以及扩大其在硅成像之外的传感器中的应用。我们期待通过与行业伙伴的合作进一步推进这些创新。“研究结果发表在2023年8月《自然电子学》杂志"具有固定光电二极管结构的薄膜图像传感器"。初步结果在2023年国际图像传感器研讨会上呈现。原文: J. Lee et al. Thin-film image sensors with a pinned photodiode structure, Nature Electronics 2023.摘要使用硅互补金属氧化物半导体技术制造的图像传感器广泛应用于各种电子设备,通常依赖固定光电二极管结构。 基于薄膜的光电二极管可以具有比硅器件更高的吸收系数和更宽的波长范围。 但是,它们在图像传感器中的使用受到高kTC噪声、暗电流和图像滞后等因素的限制。 在这里,我们展示了具有固定光电二极管结构的基于薄膜的图像传感器可以具有与硅固定光电二极管像素相当的噪声性能。 我们将一种可见近红外有机光电二极管或短波红外量子点光电二极管与薄膜晶体管和硅读出电路集成在一起。 薄膜固定光电二极管结构表现出低kTC噪声、抑制暗电流、高满量容和高电子电压转换增益,并保留了薄膜材料的优点。 基于有机吸收体的图像传感器在940 nm处的量子效率为54%,读出噪声为6.1e–。
  • 振动试验基础:加速度传感器介绍
    如果说振动控制仪是振动试验系统的大脑,那么加速度传感器就是人体的感官部分。本文主要介绍电荷型加速度传感器的原理和使用方法。※振动领域常用传感器加速度:压电型(电荷输出型或电压输出型IEPE)、动电型等。速度:激光测定器等。位移:LVDT(Linear Variable Differential Transformer)、Laser等。频率响应特性:加速度传感器 速度传感器 位移传感器(原因:相位关系),所以振动试验机系统多采用加速度传感器。※电荷输出型加速度传感器构造:原理:Q(电荷量) = C(电容) × V(电压)压力(F=mA)作用,压敏材料上产生电荷,对应电荷,输出电压变化。常见电荷型加速度传感器:※加速度传感器质量要求必须保证测定物质量的1/10以下。※加速度传感器频率使用范围避开传感器的共振点,使用直线形区域。在低频区域(1-5Hz)尤其要注意,由于频率响应特性的缘故,测得的加速度会有一定的偏差,对反馈控制有较大影响。也许这就是振动台厂家的设备产品目录中设备频率使用范围都是从5Hz开始标注的缘故吧。另外还要注意环境对传感器灵敏度的影响,比如,温度、湿度、电磁干扰等,别篇叙述。※加速度传感器的固定要求①用手测 ②磁铁(2点吸附) ③磁铁(平面吸附) ④垫片胶水粘贴 ⑤胶水粘贴 ⑥螺丝固定上图中,可以看出采用螺丝固定是最好的,但是由于实际情况,一般振动试验,能提供螺丝固定的螺孔基本上没有,所以通常采用胶水(502胶水等)粘贴或垫片(绝缘地线)胶水粘贴传感器。※加速度传感器的使用方法※加速度传感器的重要参数灵敏度、最大测定加速度、电容等。例:加速度传感器型号:2353B、灵敏度:0.209pC/(m/s²)传感器电容: 890pF,加速度500m/s²振动时,输出的电压是多少?(传感器低噪声电缆的电容已忽略。)Q=0.209×500=104.5[pC]V=Q/C=104.5/890=0.11742[V]= 11.742[mV]※前置功放(电荷放大器)将加速度传感器的电荷输出电压(mV级别)转换,通过增幅放大到±V级的电压信号,输出给振动控制仪。电压输出型(IEPE or ICP)加速度传感器也经常应用,稳定可靠,直接电压输出。内部含有微电子电路,受温度和湿度的影响比较大,一般使用上限在+125℃左右,建议在常温下采用。在三综合试验中,尤其需要特别注意试验条件的温度。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 应用案例 | 通过实施光学条纹噪声抑制方法的激光波长调制光谱技术实现气体测量的高精度和高灵敏度检测
    近日,来自安徽科技理工大学、安徽西部大学皖西学院、复旦大学大气与海洋科学学院、上海期智研究院的联合研究团队发表了《通过实施光学条纹噪声抑制方法的激光波长调制光谱技术实现气体测量的高精度和高灵敏度检测》论文。Recently, the joint research team from Anhui University of Science and Technology, West Anhui University, Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai QiZhi Institute published an academic papers High precision and sensitivity detection of gas measurement by laser wavelength modulation spectroscopy implementing an optical fringe noise suppression method.可调谐二极管激光吸收光谱(TDLAS)已被开发用于痕量气体测量,因其高精度、高灵敏度和无需任何样品准备的原位自校准的独特优势。通常,长光程的多次通过腔体(MPC)被应用于增强基于TDLAS的传感器的检测精度和灵敏度。然而,MPC中出现的意外光学干涉纹严重影响了传感器的检测精度和灵敏度。基于MPC的TDLAS传感器的检测精度和灵敏度通常受到光学干涉纹的限制,这些干涉纹由衍射、镜面表面瑕疵的散射、镜面畸变、热膨胀、冷收缩或应力变形引起。因此,MPC中观察到的光学干涉纹由不同的光学干涉纹组成。这些光学干涉纹主要是由于少量的激光以与主激光束相差ΔL的光程到达探测器所致。这些问题对于TDLAS是普遍存在的,尤其是在使用密集重叠斑点模式的MPC时,提出了一些不同的方法来消除光学干涉纹的负面影响。The Tunable Diode Laser Absorption Spectroscopy (TDLAS) has been developed for trace gas measurement, as its unique advantages of high precision, high sensitivity and self-calibration in situ qualification with-out any sample preparation. The multi-pass cell (MPC) with a long optical path is usually applied to enhance TDLAS-based sensor’s detection precision and sensitivity. However, the unexpected optical fringes occurring in the MPC often spoil the sensor’s detection precision and sensitivity seriously. The detection precision and sensitivity of the TDLAS-based sensors containing an MPC are often limited by the optical fringes that result from diffraction, scattering on the mirror surface imperfections, mirror aberration, thermal expansion, cold contraction, or stress deformation. Therefore, the complex optical fringe consisting of different optical fringe will be observed in the MPC. These optical fringes are due largely to a small amount of laser reaching the detector with an optical path length differing by ΔL from the main laser beam. Those problems are common for TDLAS, especially using dense overlapped spot pattern MPC and some di&fflig erent methods are proposed to eliminate the negative influence of the optical fringes.研究团队提出了一种抑制可调二极管激光吸收光谱中光学条纹噪声的新方法,并将其应用于由光学条纹扰动的CH4气体传感器,以提高检测精度和灵敏度。所开发的CH4检测仪的示意图如图1所示。宁波海尔欣光电科技有限公司为此项目提供锁相放大器(HPLIA 微型双通道调制解调锁相放大器),从光电探测器输出的信号发送到锁相放大器,锁相放大器相对于同步信号对2f模式进行解调,锁相放大器的时间常数设为1ms。In this work, a novel method to suppress optical fringe noise in the tunable diode laser absorption spectroscopy is proposed and applied to the CH4 gas sensor perturbed by optical fringes for higher detection precision and sensitivity.The schematic diagram of the developed CH4 detection instrument is shown in Fig. 1 . HealthyPhoton Co.,Ltd provided a HPLIA Miniature dual-channel modulated demodulation lock-in amplifier for this project. The lock-in amplifier demodulates the signal in the 2f mode with respect to the sync signal. The time constant of the lock-in amplifier is set to 1 ms.Fig.1. Schematic diagram of the developed CH 4 detection systemlock-in amplifier (Healthy Photon, HPLIA)对于被光学条纹和随机噪声干扰的20 ppm CH4的二次谐波(2 f)信号,通过该新方法,2f信号的信噪比(SNR)从17提高到182,优化平均光谱范围Δ𝜆 。与未经处理的原始信号相比,CH4测量精度改善了约1.5倍。相应的最小可检测浓度可从3 ppb改善到0.78 ppb。系统的相应噪声当量吸收灵敏度(NNEA)和噪声当量浓度(NEC)分别为6.13 ×10-11 cm&minus 1 W Hz&minus 1/2 and 0.181 ppm。For the 2nd harmonic(2f) signal of 20 ppm CH4 spoiled by optical fringes and random noise, by the novel method, the signal-to-noise ratio (SNR) of the 2f signal is improved about 6.5 times from 17 to 182 with an optimal averaging spectral range Δ𝜆 . A &sim 1.5 times improvement in the measurement precision of CH4 is achieved compared to unprocessed raw signal. The corresponding minimum detectable concentration can be improved from 3 ppb down to 0.78 ppb. The corresponding noise equivalent absorption sensitivity (NNEA) and the noise equivalent concentration (NEC) of the system is 6.13 ×10-11cmW-1Hz-1/2 and 0.181 ppm, respectively.Violet line from traditional averaging method and magenta line from the novel optical fringe noise suppression method.Histogram plot of the 20 ppm CH 4 deviation.20 ppm CH 4 Allan-deviation stability of developed overlapped spot pattern MPC.参考文献:Reference:Yanan Cao, Xin Cheng, Zong Xu, Xing Tian, Gang Cheng, Feiyan Peng, Jingjing WangHigh precision and sensitivity detection of gas measurement by laser wavelength modulation spectroscopy implementing an optical fringe noise suppression method, Optics and Lasers in Engineering 166 (2023) 107570www.elsevier.com/locate/optlaseng
  • 我国自主研制地球磁场传感器已达世界领先水平
    中科院电子所第十研究室(中科院电磁辐射与探测技术重点实验室)面向国家“立足国内,找矿增储”等重大战略需求,在中科院知识创新工程、SinoProbe计划等项目经费支持下,经过近3年的技术攻关,突破了制约我国地球物理电磁勘探仪器装备研发的核心技术——磁场传感器(磁棒)技术,研制出可应用于大地电磁法(MT)、可控源音频大地电磁法(CSAMT)、海洋可控源大地电磁法(CSEM)、瞬变电磁法(TEM)、地球物理电磁测井等方法的磁场传感器,最低工作频率可到0.0001Hz(10000s),噪声水平达到皮特斯拉(pT)或飞特斯拉(fT),各项指标已迈入世界先进行列。   小批量生产的CAS系列磁棒陆续经多个地球物理勘探部门一年多不同季节、不同地区的野外工程应用和测试对比表明,电子所研制的频率域和时间域磁棒与国外同类磁棒的先进技术水平相当,部分指标略高于国外产品 同时,与国外同类磁棒相比,CAS系列磁棒的重量和功耗均具有十分明显的优势。CAS系列磁棒的研制成功,为我国研发具有自主知识产权的地球物理电法勘探仪器装备奠定了坚实的技术基础。  此外,CAS系列磁场传感器在海洋探测与监测,尤其在海底科学观测网建设、海底资源勘探等领域还具有广阔的应用前景。
  • 【2023世界传感器大会】MEMS智能传感器——先进技术分论坛成功召开
    2023年11月5日,2023世界传感器大会“MEMS智能传感器——先进技术分场活动”在郑州国际会展中心成功召开。来自智能传感器等领域专家学者、企业代表、新闻媒体近2000余人线上线下参加会议。会议由郑州市人民政府、河南省科学技术协会、沈阳仪表科学研究院有限公司、传感器国家工程研究中心、中国仪器仪表学会仪表元件分会、中国仪器仪表学会仪表工艺分会承办,郑州(国家)高新技术产业开发区管理委员会、郑州市科学技术协会、郑州众智科技股份有限公司协办。河南省科学技术协会副主席王继芬、郑州市人民政府副秘书长王举等领导出席会议并致辞。由沈阳仪表院院长助理、行业中心主任张阳主持。沈阳仪表院院长助理、行业中心主任张阳领导致辞中国工程院蒋庄德院士致开幕词。蒋院士回顾了MEMS智能传感器技术的发展历程,并鼓励中国传感器人在传感器产业细分领域不断攻坚克难、突破瓶颈,以国家战略需求为导向,加快实现高水平科技自立自强。中国工程院蒋庄德院士致开幕词中国科学院上海微系统与信息技术研究所李铁研究员作《微型全集成红外CO2气体传感器及其应用》主题报告,分享了红外二氧化碳气体传感器发展现状以及最新应用领域。传感器国家工程研究中心副总工程师、沈阳仪表院研发中心主任张春光作《大型模锻压机状态监测传感器关键技术研究》主题报告,介绍了压力传感器、位移传感器、振动传感器、粘度传感器在大型装备中应用的关键技术。西安交通大学赵立波教授聚焦压力传感器技术做《微纳特种压力传感器技术》专题报告。杭州师范大学传感技术中心钱正洪主任作《磁传感测量与数据融合处理技术》专题报告,从磁传感芯片的设计、信号测量与数据融合等方面作了详细的介绍。国防科技大学吴学忠教授作了《AI赋能MEMS传感器智能化发展新趋势》专题报告,从MEMS传感器智能化发展需求、技术途径、发展现状及趋势四个方面梳理了MEMS智能传感器技术发展方向。杭州晶华微电子股份有限公司副总经理赵双龙作了《智能传感器中国芯的方案》专题报告,分享了传感器信号调理芯片国产化方案。中科院上海微系统与信息技术研究所研究员李铁传感器国家工程研究中心副总工程师沈阳仪表院研发中心主任张春光西安交通大学教授赵立波杭州师范大学传感技术中心主任钱正洪国防科技大学教授吴学忠杭州晶华微电子股份有限公司副总经理赵双龙本次会议围绕MEMS智能传感器的前沿技术、产业趋势和热点问题等进行了深入研讨,来自不同领域的行业专家分享了传感器技术、产业和应用领域的最新研究成果,探讨了今后的发展方向。
  • 应用案例 | Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP
    近日,来自山西大学激光光谱研究所、光学协同创新中心,-巴里大学和巴里理工大学跨校物理系波利森斯实验室的联合研究团队发表了《Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP》论文。二甲基甲基膦酸酯(DMMP)被广泛认为是最具代表性的模拟物,已开发并广泛用于DMMP检测的各种气体分析技术。气相色谱(GC)和质谱(MS)分析可以高敏感地鉴定不同的有机磷化合物,但它们在原位监测方面具有几个缺点,包括昂贵和耗时。此外,色谱分析必须由熟练的人员在专门的实验室中进行,不适合小型化。相比,光声光谱(PAS)是DMMP气体水平监测最有前景的技术之一,因为它具有高灵敏度、选择性和快速响应的优势。作为PAS的一种变体,石英增强光声光谱(QEPAS)技术自2002年首次报道以来迅速发展,其中超窄带石英调谐叉(QTF)与两个作为锐利共振声学换能器的声学微共振器(AmRs)在声学上耦合,用于检测声音信号,而不是传统的宽带麦克风。与体积超过10 cm3的传统光声池相比,小体积的QTF更有利于DMMP检测设备的小型化和快速响应。此外,QEPAS技术的显著特点是激发波长的独立性,这意味着可以使用相同的光谱声学器测量具有不同特征吸收光谱的痕量气体。DMMP在9–11.5 µ m的中红外区域显示出强烈的光吸收特征,因此使用高性能中红外量子级联激光器(QCLs)可以在理论上实现高灵敏度的检测。然而,中红外QCL输出光束通常具有较大的发散角,这使得将中红外激光束耦合到具有300微米叉间距的QTF中成为巨大的挑战,因为任何误散射光束击中QTF都会产生大的背景信号。在本研究中,我们展示了种基于定制T型QTF和中红外量子级联激光器(QCL)的小型化集成QEPAS DMMP传感器。T型QTF的叉间距为0.8毫米,具有约15,000的高品质因数,避免了由误散射光引起的背景信号,从而在ppb水平上获得最佳检测限。通过使用掺入DMMP的真实室外空气对传感器进行测试,以验证其有效性。实验部分:检测波长和光学激发源的选择强有力的靶向吸收带对于DMMP检测至关重要,因为实际应用需要具有亚百万分之一灵敏度的传感装置。由于其高输出功率、紧凑性和窄的光谱线宽,QCLs在中红外光谱区域已成为最多功能的半导体激发源。考虑到激发波长和激光源的大小,宁波海尔欣光电科技有限公司为该实验提供了一个发射波长为9.5 µ m,线宽为2 MHz的QCL激光器(QC-Qube 200831-AC712)作为DMMP-QEPAS传感器的激发源,其输出功率稳定性2%,一个具有极低电流噪声和温漂的QCL激光器驱动电路(QC750-Touch&trade ),在室温下操作,以稳定发射波长。通过激光驱动电路将QCL的温度设定为25.5℃。如图2所示,所使用的QCL激光器的输出波长是驱动电流的函数,并且其波长调谐范围落在所选吸收带中(图1中的绿色框区域)。图2中绘制了QCL激光器的平均功率与驱动电流之间的线性关系,表现出良好的线性关系。此外,该激光源的小尺寸是一个显著特点,外部尺寸约为300 cm3(65 × 65 × 70 mm3),使激光源能够实现紧凑的气体传感器。Fig. 1. Absorption spectra of 1-ppm DMMP/N2 gas mixture (red) obtained by the FTIR spectrometer and absorption spectra of 300-ppm H2O (blue) and 5- ppm CO2 (orange) based on HITRAN database. Inset: DMMP absorption band in the range of 1040–1065 cm&minus 1 and wavelength tuning range of the used QCL laser.Fig. 2. QCL emission wavelength and output optical power as a function of driving current in amplitude modulation operating mode with a duty cycle of 50 %. QCL laser: HealthyPhoton, QC-Qube QCL laser driving circuit:: Healthy Photon, QC750-Touch&trade 结论基于QEPAS的传感器由于其波长独立性具有很高的多功能性,这使得通过替换激光源可以检测各种神经毒剂。在本研究中,首次开发了一种紧凑尺寸和可靠性能的ppb级QEPAS DMMP传感器。选择了9.56 µ m的激发波长,这是最强的DMMP吸收带,不受H2O和CO2的干扰。优化了主要系统参数,包括激光激发功率、气体压力和调制频率。最终,在0至1.5 ppm范围内验证了传感器的线性,并在300毫秒的积分时间下实现了6 ppb的最低检测限。我们使用真实室外空气作为载气检测了500 ppb的DMMP,并获得了与以零气作为载气时相同的信号幅度,从而验证了传感器的高选择性。参考Ppb-level mid-IR quartz-enhanced photoacoustic sensor for sarin simulant detection using a T-shaped tuning fork, Sensors & Actuators: B. Chemical 390 (2023) 133937, https://doi.org/10.1016/j.snb.2023.133937
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 科学家研制出超高灵敏度光学超声传感器阵列
    近日,中山大学电子与信息工程学院(微电子学院)教授李朝晖和副教授沈乐成率领的研究团队基于硫系微纳加工平台,成功研制出了包含15个微腔的超高灵敏度光学超声传感器阵列,并融合新型通信算法数字光频梳技术,开展基于硫系片上阵列器件结构的并行信号解调及光声计算成像相关研究。相关研究论文发表于Nature Communications。 基于硫系微环传感器阵列和数字光频梳解调技术的光声成像示意图。研究团队 供图近年来,李朝晖/沈乐成团队一直致力于搭建面向硫系微纳器件的制备平台,并依此开展多物理场的传感与成像应用研究。在算法研究方面,他们提出了基于先进光信息处理算法的数字光频梳技术,具有高效、大带宽以及多维解调等优势,并结合光学微腔实现双共振模式下的超声信号解调;在技术创新方面研发了具有高调制效率的非悬浮硫系声光调制器;在成像应用与调控方面开展了面向生物医疗的高通量全息成像和高速光场调控。这些研究成果表明先进光信息处理技术与新型硫系材料器件的结合在生物成像、医疗传感等方面具有巨大的潜力和前景。基于上述积累,该团队近日研制出包含15个微腔的超高灵敏度光学超声传感器阵列。该微环传感器阵列具有高灵敏度、大带宽和小尺寸等优点,其中单个微环传感器具有175 MHz(-6 dB)的检测带宽和2.2?mPaHz?1/2的噪声等效压力,性能指标领先。基于可调的数字光频梳技术,研究团队还研发了一套可与微环传感器阵列相匹配的高性能并行信号检测方案,对高速动态粒子、静态叶脉和活体斑马鱼等展示了光声计算成像结果。上述研究工作得到科技部重点研发计划、国家自然科学基金和南方海洋科学与工程广东省实验室(珠海)的资助。
  • 光学气体传感器你选对了吗
    根据应用场景选择合适传感器光学气体传感器是多种分析设备的核心部件,直接决定了仪器的性能指标和功能,仪器设计之初,传感器选型非常重要。市面上各种原理、各个厂家的光学气体传感器琳琅满目,指标参数参差不齐,要如何选择最合适、性价比最高的传感器呢?实际上每款传感器都有其优缺点和适用范围,要么性能指标有优势,要么可靠性更值得信赖,要么价格便宜等等。要根据具体需求和应用场景选择合适传感器,比如经常要测量组分繁杂、湿度高的气体,最好选择UVDOAS、FTIR这类色散分光原理的气体传感器。关于传感器的性能、体积、功耗、扩展性、价格等要综合权衡。 传感器性能指标权衡选择光学气体传感器,首先传感器的关键指标参数要优于预研仪器的设计参数,除体积重量外,一般要考虑以下几点要素,(每个要素都很复杂,本期先简单描述,后面几期再根据反馈详细分析):1. 测量气体种类和干扰。前者好理解,要和仪器的目标气体一致,比如开发环境空气CO2分析仪器选择低量程LY-NDIR双通道CO2模块就完全能满足要求,但在背景气中有干扰组分的就要同时考虑干扰组分的同时测量,这是很多仪器开发者经常忽略的问题。比如开发污染源SO2分析仪选择NDIR原理就要考虑烟气常见组分CH4的干扰,因为红外波段CH4在SO2吸收峰处同样有吸收,会带来正干扰,当然选择紫外差分原理的如LY-UVDOAS系列的传感器就不用考虑CH4干扰。2. 量程、检出限和线性误差。分别代表了传感器的实际测量范围、最低响应浓度和结果正确度,其中量程和检出限指标是一对有点矛盾的参数,一般长光程设计的传感器,会有低的检出限和量程指标,反之亦然,当然,也有少数高端的传感器可以两者都兼顾,比如崂应的UVDOAS系列传感器,通过自适应调整光谱波段算法,测超低浓度时选择强吸收谱段反演计算测,超高浓度时选择弱吸收谱段反演计算,这样两个参数都能获得很优秀的指标。3. 响应时间、重复性和稳定性响应时间一般是T90、T10,表征了传感器的响应速度,跟气室体积、气体流速和平滑算法都有关系,因此也与精度、检出限指标有点负相关。关于重复性和稳定性,一般是在环境条件稳定的情况下,反复多次测量结果的一致性程度。4. 漂移(零漂、量漂)和适用温度范围漂移指标分为不同时间的漂移,常见的有1h/4h/8h/24h/月/年漂移,便携式仪器,小时漂移更重要,在线运行仪器月漂移也很重要,这关系到仪器设计或运行时的调零周期,有些仪器还需要设计自动调零气路。适用温度范围,在本文中不仅指传感器可工作的温度范围,还代表确保传感器精度/线性误差满足指标的温度范围,温度对光学气体传感器的影响非常大,所以需要确定精度是在什么温度范围内能满足。有些传感器比如崂应UVDOAS/NDIR/NDUV系列,采取了大量的措施确保了温度适用性,指标表里的误差均是指在工作温度范围内都能满足的误差;也有很多传感器指标误差中仅仅在室温条件满足(有些在指标表中看不出,有些会用温度漂移1℃示值漂移不超过满量程的多少来描述),这样就意味着仪器设计中要考虑增加对气体传感器应用环境的恒温设计或温度补偿算法,以满足仪器的高低温性能指标要求,据了解在多个领域的标准中都有仪器高低温适用性指标要求,毕竟仪器的客户群体大多分布在全国各地,四季温差、昼夜温差跨度非常大。5. 考虑升级和可扩展性,在仪器整个生命周期中,满足当前设计指标就可以?还是会根据市场需求而扩展升级(这种情况在快速发展的行业中是经常出现的,污染源监测行业指标就一直随着环保需求而不断收紧)?如果是后者,在核心传感器选型时就要考虑传感器的指标可扩展性,市面有少数高端传感器具备扩展空间,比如崂应的大部分UVDOAS传感器和NDIR传感器可以在硬件不变的情况下升级扩展量程,LY-UVDOAS更是可以在原基础上扩展测量气体的种类,然而这些扩展功能是基于深厚的技术水平的,能做到、做好的不多,有仪器扩展升级考量的要仔细甄别,选择对的传感器,有利于仪器的快速升级、缩减研发时间和成本。关于光学气体传感器的价格和价值这是个有意思的话题,本文简单一说。市面上不同传感器价格差异很大,这跟很多因素有关,最关键的还是指标。有些传感器是半定量的,有个不离谱的示值就可以,仅作为一个参考,这种很便宜;有些较准确,可以作为阈值判断用,价格一般;有些给出精确示值,比如误差在±5%以内,属于工业级的,价格较高;有些更高端的传感器给出更精确示值、表现非常好的环境使用性,比如误差在±2%甚至±1%以内,价格很高。不同等级的传感器,价格差异是数量级的,毕竟气体传感器做到一定精度指标之后,每一点小的提升,都会需要付出很高的成本代价去实现。所以,要根据预研仪器的要求和定位选择最合适的传感器。另外,传感器的附加值差异也很大,比如价格对比时,不要单独看一个传感器的价格,要看测一种气体的价格,比如多通道LYNDIR传感器一种气体的价格就明显低于多个单一气体传感器,同时去除了相互间的干扰,节省了体积,对仪器设计而言,增加功能同时省时、实力、省空间,性价比自然高很多。关于传感器之外的隐形附加价值也要权衡。比如购买崂应的传感器,就附加了定制化的解决方案,协助根据应用场景选择最佳好传感器、设计时用好,高质量的售后服务和可能的升级空间。最后,传感器基本选好了后,还要实测,尤其上文中提到的几个关键指标,毕竟光学气体传感器良莠不齐,自己测过才知道。欢迎致电崂应咨询交流。
  • 广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题
    研究背景单分子分析技术在生物传感和生物医学中具有广泛应用前景。纳米孔作为最有前途的单分子传感技术之一,在超灵敏、易操作和无标记分析方面具有独特的优势。近年来,纳米孔技术在DNA测序、生物分子相互作用探索和生物分子检测方面得到了广泛应用。固态纳米孔是纳米孔技术中常用的一种的,其具备优异的机械稳定性和孔径灵活性。然而,由于其相对蛋白质纳米孔而言分辨率和选择性较低,在开发生物传感器进行单分子分析时,存在两个重大挑战:(1)尺寸较小(1~10nm)的化学或生物靶标物由于其与纳米孔的较弱相互作用而难以产生可识别的过孔信号;(2) 广泛存在于生物样品或缓冲液中的蛋白质干扰物会显著提升纳米孔的噪声水平,甚至淹没过孔信号。为解决这两大挑战,王家海教授带领团队中陈达奇老师共同设计了新型传感策略:1、以核酸立方体结构作为信号分子提升小目标的信噪比,实现了超高信噪比的过孔信号;2、利用CRISPR–Cas12a技术,将小片段核酸被测物的浓度成功转化为核酸立方体的数量,并耦合了PCR扩增技术进一步提升检测灵敏度,实现了对核酸片段超高灵敏度与选择性的检测,突破了上述两点技术瓶颈,并应用在HBV的检测中。图1 技术原理图:利用DNA立方体为信号分子,并应用CRISPR–Cas12a技术将目标核酸片段浓度转化为DNA立方体的数量,产生高信噪比、高选择性的过孔信号。王家海教授为第一作者、团队成员陈达奇老师为通讯作者,在国际知名期刊Analyst上发表题为“A signal on-off strategy based on the digestion of DNA cubes assisted by the CRISPR–Cas12a system for ultrasensitive HBV detection in solid-state nanopores”的研究工作,广州大学第一单位。工作亮点在本工作中,我们开发了克服固态纳米孔两大挑战的有效方法:1、将DNA立方体用作信号转换器,可以实现超高(50:1)信噪比(SNR)过孔信号,即使在富含蛋白质干扰物的缓冲液中,这种信号也依然能保持。为了探索信号最优的纳米结构,我们尝试了以下4种结构,分别为环形M13mp18 DNA、Lambda DNA、DNA四面体和DNA立方体。四种结构都可以在不含稳定蛋白的缓冲液中产生可见易位信号,但是DNA立方体是其中信噪比最高的。而当稳定蛋白在缓冲液中时,仅DNA立方体能维持稳定的过孔信号,其他三种核酸纳米结构作为信号分子的过孔信号都不同程度地淹没在玻璃纳米孔传感器的增强噪声中。因此,最终选择了DNA立方体来开发我们的传感策略,因为它具有极高的信噪比和强大的抗干扰能力。图2 在不同缓冲条件下,DNA立方体作为信号转换器的性能。(a) 环形M13mp18 ssDNA、Lambda DNA、DNA四面体和DNA立方体在含有或不含BSA的缓冲液中的过孔信号。(b) DNA立方体在含有不同浓度BSA的缓冲液中的事件率。DNA立方体的浓度均为30nM。2、在CRISPR-Cas12a技术的帮助下,实现了乙型肝炎病毒(HBV)靶点引发的DNA立方体裂解,从而构建出了一种传感策略。当HBV阴性时,过孔信号正常;当HBV阳性时,过孔信号消失;从而实现了HBV阳性或阴性分类,其检测限达到3aM。并且,这个方法选择性非常高,对其他病毒序列如HPV、HIV等均无假阳性现象。此外,利用我们的方法,本工作中的所有反应缓冲液都可以购买后直接使用,其成分无需为了纳米孔应用做进一步优化,这对固态纳米孔的商业化应用有很大帮助。图3 传感器在实际样本中的性能。对其他类型的病毒如HPV和HIV样本,均显示阴性。对于HBV样本,当浓度超过3aM,便可以识别出阳性结果。文章链接: https://pubs.rsc.org/en/content/articlelanding/2022/an/d2an01402e
  • 中国传感器之殇——褪色的智能
    p style="text-indent: 2em "strong智能少不了传感器/strong/pp style="text-indent: 2em "传感器是数据采集的源头,它无处不在。智能最前端所需要的态势感知,基本都是要从传感器开始。无论是智能制造、智慧城市、智慧医疗等,还是智能设备和大数据分析,再庞大的智能系统,都要从传感器的针尖上开始。/pp style="text-indent: 2em "医疗器械界的奇兵——达芬奇手术机器人有四百多个传感器;鼎鼎有名的波士顿机器人大狗,能够自如地翻跳腾跃,则需要1300个传感器。/pp style="text-indent: 2em "日本著名的马桶品牌骊住Lixil,正在推出的智能马桶,马桶盖背面安装了图像传感器,可以自动识别粪便形状,整个马桶通过70多个传感器,自动检测并与云端相连,可以实现慢病大健康管理。而博世公司推出的工厂协作机器人助手APAS,内置了上百个传感器,以便可以迅速感知人的状态。/pp style="text-indent: 2em "这些令人叹为观止的智能产品,其实都是有共性的。/pp style="text-indent: 2em "这个世界的数字化步伐,半步都不能离开小小的传感器。/pp style="text-indent: 2em text-align: center "img style="max-width: 100% max-height: 100% width: 540px height: 277px " src="https://img1.17img.cn/17img/images/202010/uepic/bdfb750d-86ef-4930-b040-13c9f2f48f33.jpg" title="1000.jpg" alt="1000.jpg" width="540" height="277"//pp/pp style="text-indent: 2em "图1 传感器的数量/pp style="text-indent: 2em "然而在中国战略性、支撑性的产业版图上,却几乎找不到传感器的位置。当新基建如火如荼建设的时候,传感器——这一至关重要的支撑,却几乎被人忘在脑后。这个画面大概如此,当所有光鲜的客人要步入大厅的时候,脚后跟却都被夹在门外。这种尴尬的局面,迟早是要痛得大声喊出来的。/pp style="text-indent: 2em "strong两栖物种 传感器六大怪/strong/pp style="text-indent: 2em "广泛使用的传感器,它属于以小搏大的工业门类,是通向其他产业的基础。但传感器也是一个很独特的行业。很多传感器都具有两栖属性:一方面,传感器的核心是芯片,会追随摩尔定律,有着快速进化的大脑;另一方面,它同时也与敏感材料、机械器件在一起,受到机械定理的许多制约。这是种独具特色的产业,使得传感器必须经过细心呵护,才能发展得很好。然而在中国,传感器却成为一个令人惊讶的“六大怪”行业。/pp style="text-indent: 2em "传感器的第一怪:容量不小,而国内头部玩家却很小。2019年中国传感器市场规模达到1700亿元,估计有1700多家企业。除了歌尔、瑞声靠着苹果手机强大的出货量,体量达到百亿级,在声学传感器领域已经占住地盘。而其他领域,如手机、汽车、工控、可穿戴、物联网等,基本上都是国外品牌的市场。在消费电子、安防之外的领域,产值超过1个亿的企业并不多,只有郑州汉威、宝鸡麦克、南京高华等跑在前面,其他国内传感器企业,基本都属于土豆俱乐部。/pp style="text-indent: 2em "传感器的第二怪:种类繁多,但这个市场很隐蔽。国外成型产品及在研种类有3万多种,我国有2万多种。这些数量未必精确,但传感器无疑是一个庞大类别的产品。而这种产品,却很少为业界之外的人所知晓。其实手机、汽车、工业测量、智能装备等都是应用传感器的大户。而这几年风生水起的智能制造、工业互联网,都离不开小小的传感器。当然人工智能也不例外。可以说人工智能跑得再快,脚上穿着还是传感器的鞋。/pp style="text-indent: 2em "传感器的第三怪:民品最怕断供,军工不怕价高。军用传感器已经高度自主化,主要是由于军品采购可以不计成本。而如果要到民用市场来竞争,那是既要拼规模,也要有高性价比。如果功耗小一点,成本小一点,那就可赢者通吃。因此民用市场的突破还很艰难,也无法从军工市场获得支撑。两条隧道,各通一边,没有打通。而民用仪表传感器高度依赖国外。日本横河跟重庆川仪有一家合资公司,生产横河川仪的仪表。日本横河提供的谐振式压力传感器,这是最高精度的压力传感器。国内攻关一直未能攻克。这家合资厂也只能依赖日本的传感器。/pp style="text-indent: 2em "传感器的第四怪:中国制造虽以成本著称,但传感器的成本优势还没有国外明显。中国目前生产大部分都是低端传感器。而我国中高端传感器进口占比达80%,传感器芯片进口更是达90%以上。中国生产成本也很高,收入才几千万,如何舍得投入几千万建生产线?现在很多传感器厂家,还都是单干,手工装配很多。因为产量上不去,有的1个月的产量也就5000只,根本谈不上规模效益。而博世、欧姆龙等早就把工厂设立在中国,成本优势同样巨大。/pp style="text-indent: 2em "而且,美德日品牌企业对中国传感器市场虎视眈眈,对市场份额看得很紧。中国一有进步,就会被国外品牌降价挤压。2010年日本欧姆龙一个开关要接近400元,而现在随着中国品牌的逐渐崛起,现在只需要60元。灵活降价,坚决保卫市场份额,是国外厂商常见的营销手段。这种方法,一直将国产品牌压制在面黄肌瘦线附近,很难翻身。/pp style="text-indent: 2em "传感器的第五怪:市场巨大,融资最难。本来智能制造、人工智能大热,传感器终于应该迎来咸鱼翻身。但是,没有。这是一个投资人不待见的市场。由于国内对这个产业的重要性的认识不足,导致投资界一直处于冷淡期。这跟产品隐蔽,做大做强比较难,是有关系的。而国家对这个产业的“冷处理”的态度,自然也影响了投资基金的判断。/pp style="text-indent: 2em "传感器的第六怪:本是国之重器,奈何落地沦为小萝卜头。传感器作为感知的第一道防线,是人类社会走向智能的关键源头。然而这个行业一直得不到重视。上世纪80年代初,国家科委主持的课题研究中,在讨论信息技术包括哪些技术的过程中,“传感器技术”引起了巨大的分歧。但因为体量太小,最终还是被切掉。这一晃,四十年都过去了,情况几乎没有变化。虽然最近两三年有些鼓励发展传感器的政策陆续出台,但一无力度二无资金,基本也就是草草地走了过场。/pp style="text-indent: 2em "传感器其实就是互联万物的五官,是眼睛,是耳朵,是各种触觉。尽管如此重要,却无人重视。传感器六大怪,本身就是一大怪事。这可真是一根扎心的刺。/pp style="text-indent: 2em "strong惊人的利润/strong/pp style="text-indent: 2em "在国内,传感器并不容易挣钱。由于芯片不能自主,工艺研发投入巨大,再加上红海竞争激烈,中国传感器的利润一直被压得很低。根据国内40家传感器企业上市公司的财报,将近40%的企业利润率低于5%;而利润为负就有6家。/pp style="text-indent: 2em "都说制造业利润低,传感器看来也是其中的一种。不过,不挣钱,并不是这个行业的真实情况。/pp style="text-indent: 2em "日本基恩士传感器公司,可以说是日本最挣钱的公司。2019年营业额接近360亿人民币,而利润,则达到了惊人的180亿。利润率居然超过50%,而且常年如此。传感器这种在中国几乎无法建树的行业,被日本做成了真正的摇钱树。/pp style="text-indent: 2em "这家以纯设计(Fabless)起家的传感器公司,主要是设计和销售传感器、测量系统、激光刻印机等。从产品开发策略来看,它从来不定制产品,坚持完全“以我为主”的标准化产品研发。这种策略,维持了产品研发的规律性,而定制产品则会有很大的周期不确定性,经常导致企业失去灵活性。为了不断开发新品,基恩士采用了广泛的研发信息源,促使产品的多样化。而从产品系列而言,则采用了深度嵌套的产品组合。既有传感器产品,更有在传感器基础上做好的测量系统,成为测量领域的领头羊。/pp style="text-indent: 2em "国内像海康威视、大华等领头羊,都是走大型工程。虽然也挣钱不少,但其实跟传感器也没有太大关系。即使是以气体传感器起家的郑州汉威,这几年也是重点聚焦在水务、环保等总包工程。传感器事业板块,不过只是这家上市公司的高科技之名而已,从体量而言则基本就是无足轻重。/pp style="text-indent: 2em "传感器主要用在电子产品、工控与测量、设备等几个板块。而传感器的发展,最早是来自工业自动化的推动。但在中国最黯淡的,也就是工控与测量这个分支了。最典型的可以算是上海威尔泰仪表公司了。这家企业以核电为入手点,进入到传感与仪表领域的,属于纯正的工业自动化产品。从上市公司财务报表来看,这家公司上市已经14年,但最近一年收入大约在六千万元。不得不说,经营惨淡。要知道,另外一家巨头公司霍尼韦尔公司,其传感与物联部门在全球的营收将近60亿元。/pp style="text-indent: 2em "strong设计软件没人管/strong/pp style="text-indent: 2em "工业软件是中国制造的软肋,传感器更是如此。而传感器的设计软件,也是非常隐蔽的匕首。这几年MEMS传感器非常火爆,每个手机中都有几个,如感知加速度的。而一般的汽车至少也有十多个。德国博世、美国博通、荷兰恩智浦等都是业界巨头。中国只在麦克风的MEMS传感器扳回一个角,做得很好。/pp style="text-indent: 2em "然而MEMS传感器的设计,需要两款很专业的CAD软件。一个是 IntelliSuite,这是美国1991年创立的,这也是最早的MEMS专用CAD设计画图软件。/pp style="text-indent: 2em "另外一家ConventorWare也是美国公司。中国很多传感器企业几乎都在用,能占据中国80%的市场。当年在国内承担863计划MEMS研究项目的30个研究小组,全部都使用这种软件。它在MEMS传感器的位置,跟6月份哈工大被断供的Matlab软件在科学计算中的地位,基本一样。而在中国,几乎没有这种软件。不幸的是,这款软件在2017年被泛林LAM收购;而LAM是美国第二大半导体设备制造商。这都是美国政府最容易动刀子的断供之地。/pp style="text-indent: 2em "工业软件,非常的细分了。如果不深入到行业中去,很多软件都是隐藏而不可见。这种处境,倒是跟传感器一模一样。传感器和工业软件,似乎都穿着隐身衣。而正是这些看不见的工业软件,其实暗地封锁着中国制造的诸多命脉。传感器设计软件,就是其中一道令人紧张的暗穴。没有软件,这些传感器很难被设计出来。/pp style="text-indent: 2em "strong几乎全是卡脖子/strong/pp style="text-indent: 2em "在中国,消费类电子的传感器,由于市场的拉动,近十年已经有了很大的进步。然而在工业级的传感器,卡脖子情况比芯片还厉害。围绕着控制与测量,尤其是仪器仪表传感器,几乎100%进口。/pp style="text-indent: 2em "中国仪表的变送器两大巨头,都是“国外芯”。重庆横河川仪年产归谐振变送器30万台,传感器用的是日本横河的;北京远东罗斯蒙特,每年30万台金属电容变送器,用的是美国罗斯蒙特的传感器。可以说,这两家占据中国70%以上市场的龙头企业,基本就是给日本和美国打工。其他企业情况也一样,苏州恩德斯豪斯E+H一年大约5万台,用的是德国E+H;而国内品牌的龙头企业 ,用的基本都是德国FirstSensor。要命的是,这家公司,在今年3月被美国传感器巨头泰克连接公司所收购 。这对于中国的仪表,实际上非常的凶险。今后是否还能买到德国传感器芯片,存在着极大的不确定性。/pp style="text-indent: 2em "这意味着,石化、医药等流程行业广泛使用的变送器,其中的传感器除了用日本横河和美国罗斯蒙特的芯片,原本用德国的公司的现在也要依赖美国公司了。/pp style="text-indent: 2em "其他行业也基本是类似的状况。根据传感器国家工程研究中心《中国传感器发展蓝皮书》的统计,汽车传感器、高端化学类气体传感器、光纤传感器、环境检测传感器,对国外进口依赖度都是在95%以上。至于海洋传感器,用于移动观测平台的自动浮标、水下滑翔机,以及海上浮标等,则是100%进口。/pp style="text-indent: 2em "国人非常关心的PM2.5值,其测量仪基本都是采用仪表巨头美国热电公司的产品。它内部所使用的微量振荡天平,通过测量滤膜上微小颗粒的质量而引起振荡管的频率变化,来测试空气颗粒物的浓度。以精密测量的传感器作为基础,热电公司的一台PM2.5测量仪,动辄几十万元,甚至上百万元。也只有国家级测量站,才用真正用得起这种仪表。而直到最近,这种技术才被天津大学精仪学院毕业博士所创立的天津同阳公司,基本攻克。这是一种很幸运的进展了。/pp style="text-indent: 2em "传感器的卡脖子方式,与绝大部分其他工业产品都不一样。它就像一个漫山遍野的地雷阵,分散而隐蔽。要逐项对这一类卡脖子短板进行突破,必将是一个漫长的过程。而且要逐个突破,也基本不现实。/pp style="text-indent: 2em "strong历史上的动摇/strong/pp style="text-indent: 2em "传感器与通信、计算机被称为现代信息技术的三大支柱。但本来处于战略要冲的传感器,在中国的产业位置,基本一直被边缘化。/pp style="text-indent: 2em "这在中国,是有过历史上的动摇。据国内信息化老前辈介绍,上世纪80年代初,一些专家参与了国家科委主持的“信息技术发展政策”课题的研究与起草相关政策。当时第一个要解决的问题是: 信息技术包括哪些技术?计算机、集成电路、通信技术和软件四大技术得到专家们一致的同意。问题出在“传感器技术”,大家意见不一致。/pp style="text-indent: 2em "图2 中国信息技术的构成/pp style="text-indent: 2em "从理论上说,大家都同意,传感器技术是信息技术的一个重要组成部分。如果缺少传感器,信息技术就不完整了,体系上无法自洽。但是,从行业营业额来看,当时的传感器产业太小了,不要说与通信产业这样的大产业比,就是和当时的软件这样的“小产业”比,也不在一个量级上。如果并列在文件中,非常难以落笔。讨论了很长一段时间,最后还是“忍痛割爱”了。/pp style="text-indent: 2em "可以说,信息技术刚刚起步,作为支点之一的传感器,从一开始就被边缘化。这种偏差,意味着中国的信息化,一直就是瘸腿的信息化。而进入数字化时代,工业互联网成为国家战略,这种瘸腿就更加明显。然而,这种历史上的动摇所形成的隐形偏差,历经四十年,越发畸形,而且直到至今,也未能得到纠正。/pp style="text-indent: 2em "现在,应该是回到原点,重塑根基的时候了。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "小记/pp style="text-indent: 2em "芯片卡脖子,举国上下群情激愤,到处都是大投资。但中国的卡脖子,其实是一个系统性工程,不是只出现在某一个节点上。要说卡脖子,中国制造几乎就是长颈鹿的脖子,到处都是卡点。许多不同的卡脖子技术,底层有着更为隐蔽的交错关系。传感器的芯片,并不需要太高的纳米制程,像当前最热的传感器的微机电系统MEMS,它需要的制程甚至可以用微米级完成。以举国之力,狂热的投资,都要去解决华为手机芯片,或者中芯国际的先进制程问题,既不科学,也不理性,更忽视了其他同样重要的产业市场。/pp style="text-indent: 2em "跟芯片卡脖子是卡在明处完全不同,传感器在中国的产业地位,基本就是一个黑户口,无人关注。这才是传感器产业最令人担心的地方。/pp style="text-indent: 2em "中国数字经济已经是庞然大物,目前占GDP的比重约为35%,总量超过30万亿元。传感器正是数字经济的最基本的支点。然而在这座庞大宫殿的入口处,守门的哨兵,却依然在昏睡中。/pp style="text-indent: 2em "这是智能大门的缺失。传感器就像无处不在的小伤口,随时都可能作痛。传感器之殇,中国不可承挡。/ppbr//p
  • 应用案例 | 基于钕铁硼环形磁体阵列的双中红外波长法拉第旋转光谱NOx传感器
    近日,来自中国科学院安徽光学精密机械研究所、先进激光技术安徽省实验室、中国科学技术大学、法国滨海大学大气物理化学实验室联合研究团队发表了《基于钕铁硼环形磁体阵列的双中红外波长法拉第旋转光谱NOx传感器》论文。Recently, the joint research team from Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Advanced Laser Technology Laboratory of Anhui Province, University of Science and Technology of China, Laboratoire de Physicochimie de l′ Atmosph`ere, Universit´ e du Littoral C&circ ote d′ Opale, published an academic papers Dual mid-infrared wavelength Faraday rotation spectroscopy NOx sensor based on NdFeB ring magnet array.氮氧化物(NOx,包括二氧化氮(NO2)和一氧化氮(NO))是对流层臭氧的重要前体,同时也影响羟基和过氧基自由基的浓度。大多数气态化合物在被氧化和从空气中去除或转化成其他化学物质时,都会直接或间接接触到NOx。在典型的羟基自由基水平下,NOx的寿命取决于季节和光化学反应速率,通常为几小时。根据IPCC第六次评估报告,NOx的排放导致净正向变暖,因为它既形成短期臭氧(变暖),又破坏环境甲烷(冷却)。此外,NOx还导致酸沉降以及化学烟雾和气溶胶的形成。NO和NO2在大气光化学反应中起着核心作用,针对它们的检测有助于理解这两种气体的来源和去向,以及研究陆地生态系统与大气之间的NOx交换通量。Nitrogen oxides (NOx, the sum of nitrogen dioxide (NO2) and nitric oxide (NO)) are important precursors of tropospheric ozone, and they also influence the concentration of hydroxyl and peroxyl radicals. Most of the compounds that are oxidized and removed from the air or converted to other chemical species are in direct or indirect contact with NOx. At typical hydroxyl radical levels, the life time of NOx depends on the season and the photochemical reaction rate, which is typically a few hours. According to the IPCC sixth assessment report, the emissions of NOx result in net-positive warming from the formation of short-term ozone (warming) and the destruction of ambient methane (cooling). Additionally, NOx contributes to acid deposition and the formation of chemical smog and aerosols. Since NO and NO2 play a central role in atmospheric photochemical reactions, their simultaneous detection helps to understand the sources and sinks of these two gases, in addition to studying the NOx exchange fluxes between terrestrial ecosystems and the atmosphere.化学发光检测(NO + O3 → NO2 + O2 + hν)是测量NOx的传统方法。在通过化学发光反应(Mo + 3NO2 → MoO3 + 3NO)测量之前,NO2首先需要在高温(~325°C)下转化为NO。虽然这种方法被广泛使用,但其他氧化氮化合物,如过乙酰亚硝酸酯(PAN)和硝酸(HNO3),可能会在测量NOx浓度时引起交叉干扰。同时,这种方法不能区分NO和NO2。红外吸收法也可用于测量NO和NO2。在这种方法中,通常需要通过转化器将NO2还原为NO。由于NO和NO2是顺磁分子,法拉第旋转光谱(FRS)可以用作实现其高度敏感和选择性检测的潜在方法。FRS通过检测气态介质在纵向磁场中引起的光偏振状态的变化,实现对物种浓度的高灵敏度检测。该方法通过测量光学色散实现气体浓度的检测,因此其动态测量范围比基于比尔-兰伯定律的吸收光谱(动态范围上限≤10%)更大。FRS的另一个重要优势是它对于抗磁性分子(如水和二氧化碳)具有较强的抗干扰能力,从而使其具有高样品特异性。Chemiluminescence detection (NO+O3→NO2+O2+hν) is the conventional method for measuring NOx. NO2 first needs to be converted to NO at high temperature (~325 ◦ C) before it can be measured by chemiluminescence reaction (Mo+3NO2→MoO3+3NO). Although this method is more widely used, other oxidized nitrogen compounds, such as peroxyacetyl nitrate (PAN) and nitric acid (HNO3), can cause cross-interference in the measurement of NOx concentrations. Simultaneously, this method is non-selective in discriminating between NO and NO2. The infrared absorption method can also be used for NO and NO2 measurements. In this method, NO2 usually needs to be reduced to NO by the converter. As NO and NO2 are paramagnetic molecules, Faraday rotation spectroscopy (FRS) can be used as a potential method to achieve their highly sensitive and selective detection. FRS enables highly sensitive detection of species concentrations by detecting changes in the polarization state of light induced by a gaseous medium immersed in a longitudinal magnetic field. This method realizes the detection of gas concentration by measuring optical dispersion, so it has a higher dynamic measurement range than absorption spectroscopy (dynamic range upper limit ≤10%) based on Beer-Lambert law. Another significant advantage of FRS is that it is reasonably immune to diamagnetic species (e.g., water and carbon dioxide), which allows it to exhibit high sample specificity. 大多数这些报道的FRS传感器使用螺线管提供外部纵向磁场,从而导致能耗高和产生过多焦耳热。同时产生目标磁场所需的高电流交流电路会产生不受控制的电磁干扰(EMI),通常会降低FRS传感器的长期稳定性。此外,当前报道的FRS传感器只能在吸收池中进行单组分测量,不能满足复杂环境中同时进行多组分测量的需求。Most of these reported FRS sensors use solenoid coils to provide an external longitudinal magnetic field, which makes them suffer from high power consumption and excessive Joule heat generation. The high-current alternating current circuit required to generate the target magnetic field produces uncontrolled electromagnetic interference (EMI), which usually deteriorates the long-term stability of the FRS sensors. In addition, the currently reported FRS sensors are only capable of single-component measurements in the absorption cell and cannot meet the demand for simultaneous multi-component measurements in complex environments.在本研究中,提出了一种新型的低能耗FRS传感器,基于钕铁硼(NdFeB)环形磁体阵列,实现在单个吸收池中同时检测NO和NO2。分析了同轴双波长赫里奥特池(DWHC)的环形磁体阵列的磁场分布特性。使用两台室温连续波中红外量子级联激光器(QCL),波长分别为5.33 µ m(1875.81 cm&minus 1)和6.2 µ m(1613.25 cm&minus 1),同时探测DWHC内的磁光效应。通过对激光波长进行高频调制,有效抑制了1/f噪声。优化了双波长FRS NOx传感器的性能,包括调制幅度、调制频率、样品气压和分析器偏置角。本研究提出的FRS传感器为现场可部署的微量气体检测设备提供了理想解决方案。宁波海尔欣光电科技有限公司为此研究提供了HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器,用以分别检测2个激光束。In the present work, a novel low-power FRS sensor based on a neodymium-iron-boron (NdFeB) ring magnet array was proposed to achieve simultaneous detection of NO and NO2 in a single absorption cell. The magnetic field distribution characteristics of a ring magnet array coaxial to a dual-wavelength Herriott cell (DWHC) were analyzed. Two room-temperature continuous wave mid-infrared quantum cascade lasers (QCL) with wavelengths of 5.33 µ m (1875.81 cm&minus 1) and 6.2 µ m (1613.25 cm&minus 1), respectively, were used simultaneously to probe magneto-optical effects within the DWHC. The 1/f noise was effectively suppressed by high-frequency modulation of the laser wavelength. The performance of the dual-wavelength FRS NOx sensor was optimized with respect to modulation amplitude, modulation frequency, sample gas pressure, and analyzer offset angle. The FRS sensor proposed in this work provides a preferable solution for field deployable trace gas detection equipment. The laser detected by two TEC-cooled mid-infrared thermoelectrically cooled mercury-cadmium- telluride (MCT) photodetectors (Healthy Photon, model HPPD-B- 10–150 K).(a) Schematic diagram of the dual mid-infrared wavelength FRS NOx sensor based on a NdFeB ring magnet array (b) Optical layout of the FRS NOx sensor.thermoelectrically cooled mercury-cadmium- telluride (MCT) photodetectors (Healthy Photon, model HPPD-B- 10–150 K),结论本研究开发了一种基于NdFeB环形磁铁阵列的双中红外波长FRS传感器,用于同时检测NO2和NO。在光学路径长度为23.7米,积分时间为100秒的条件下,NO2和NO的检测限分别为0.58 ppb和0.95 ppb。高频激光波长调制与外部静态磁场相结合,最大程度地减小了低频噪声对FRS信号的影响。基于有限元方法分析了使用的永磁体阵列的磁场分布特性,帮助确定与其耦合的吸收池长度。采用双波长赫里奥特池放大两种不同偏振光波长与氮氧化物分子之间的相互作用,从而实现了在单个吸收池内对两种顺磁分子的高灵敏度检测。本文提出的FRS NOx传感器在大气环境监测或生态系统NOx通量观测等领域,具有进一步发展成为便携式、可在实地使用的仪器的巨大潜力。Conclusion In this work, a dual mid-infrared wavelength FRS sensor based on a NdFeB ring magnet array was developed for the simultaneous detection of NO2 and NO. The detection limits for NO2 and NO were 0.58 ppb and 0.95 ppb, respectively, at an optical path length of 23.7 m and an integration time of 100 s. High frequency laser wavelength modulation was combined with an external static magnetic field to minimize the effect of low frequency noise on the FRS signal. The magnetic field distribution characteristics of the used permanent magnet array were analyzed based on the finite element method, which helped to determine the length of the absorption cell coupled to it. A dual-wavelength Herriott cell was used to amplify the interaction between two different wavelengths of linearly polarized light and nitrogen oxide molecules, thus achieving highly sensitive detection of two paramagnetic molecules within a single absorption cell. The FRS NOx sensor presented in this work shows great potential for further development into a portable, field-deployable instrument with applications in atmospheric environmental monitoring or ecosystem NOx flux observation. (a) Schematic diagram of a dual-wavelength Herriott cell (DWHC) with a NdFeB ring magnet array (b) Characteristics of the magnetic inductance line distribution around a NdFeB ring magnet array (c) Ray tracing results in a DWHC (d) Spot distribution on a concave mirror.Optimization of laser modulation frequency for the dual mid-infrared wavelength FRS NOx sensor.Optimization of laser modulation amplitude for the dual mid-infrared wavelength FRS NOx sensor.(a), (b) Measured FRS NOx signal as a function of analyzer angle (c), (d) Calculated FRS NOx noise as a function of analyzer angle (e), (f) Calculated SNR as a function of analyzer angle.Measured FRS NOx signal amplitude as a function of sample pressure.(a) , (b) FRS signals for different concentrations of NOx (c), (d) Linear dependence of FRS signal amplitude as a function of NOx concentration.Allan deviation plot of the dual mid-infrared wavelength FRS NOx sensor.Reference:Yuan Cao, Kun Liu, Ruifeng Wang, Guishi Wang, xiaoming Gao, Weidong Chen,Dual mid-infrared wavelength Faraday rotation spectroscopy NOx sensor based on NdFeB ring magnet array, Sensors & Actuators: B. Chemical 388 (2023) 133805https://doi.org/10.1016/j.snb.2023.133805
  • 千亿传感器市场引角逐
    今年以来,全球几大消费电子巨头纷纷发力抢占以智能眼镜及智能手表为代表的可穿戴设备市场。而在本轮可穿戴设备的追逐热潮中,传感器已然成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。据美国《华尔街日报》的报道显示,苹果即将发布的iWatch智能手表就将整合至少10种传感器,这无疑将对传感器市场的大热进一步起到推波助澜的作用。此外,前瞻产业研究院在此前发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》中,曾预测2013-2017年中国传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。分析人士表示,苹果等巨头的示范效应叠加传感器市场规模超千亿,都将推动国内传感器市场加速发展,相关概念大概率将获得资金青睐。  iWatch将成传感器大热催化剂  据外媒报道,最近Sensoplex公司的首席执行官Hamid Farzaneh在采访中对iWatch中可能出现的传感器进行了推测。作为一家新型可穿戴产品设计和供应传感器模块公司,Sensoplex在此领域非常具有发言权。  据悉,Farzaneh专门对这10种传感器进行了分类,有五种可能性比较大,而另外五种则是较有可能。其认为,几乎肯定会被整合进iWatch的传感器,包括加速度传感器、陀螺仪、磁力计、晴雨表/气压传感器及环境温度传感器。  Farzaneh指出,加速度传感器似乎已经成为智能手机的标配,而iWatch将使用加速度传感器测量身体运动,并且可以记录用户步数以及睡眠习惯。而陀螺仪是一款不可缺少的组件,可以侦测转动。陀螺仪获得的数据可以与锻炼逻辑算法相互协作 而且陀螺仪还能让iWatch&ldquo 感知&rdquo 用户,比如举起手腕准备看表时,屏幕自动亮起。气压传感器则不仅仅可以向用户提供更准确的天气数据,还可感知海拔高度的变化,对于跑步爱好者和登山爱好者来说,海拔高度数据非常重要。  针对比较有可能被整合进iWatch的传感器,Farzaneh认为,包括心率监控仪、血氧传感器、皮肤电导传感器、皮肤温度传感器以及GPS。  除此之外,据《华尔街日报》报道称,台湾厂商广大电脑将成为iWatch的主要生产商。而LG将为苹果智能手表独家提供显示屏,这种屏幕拥有2.5英寸,为长方形设计,且呈拱形,支持触摸以及无线充电功能等特点。  iPhone 6或搭载气压计及  传感器装置  据科技博客9to5mac报道,当前业界关于苹果下一代iPhone的传闻正沸沸扬扬,似乎iPhone 6将采用更大的屏幕设计、重新启用金属面板等,已是板上钉钉的事情。近期又有知情人士爆料,iPhone 6可能将搭载运动气压计和大气传感器装置。  据介绍,在通常情况下,气压计是用来测量位置高度的一个装置,这一传感器已经普遍存在于常见的Android设备上,比如三星的Galaxy Nexus手机。对于徒步旅行者、登山者、骑行和一些希望能够获取自己当前位置精确高度的发烧友来说,气压计传感器装置很实用。当然,通过一些气压数据,气压计同时可以预测气温和天气状况。  业内人士表示,&ldquo iPhone 6可能将搭载运动气压计&rdquo 的传闻并非空穴来风,在苹果最新的软件开发工具包Xcode 6和iOS 8操作系统的代码上,可以找到相关信息。其中的CoreMotion APIs上,赫然显示有高度测量功能。  此外,在当前的苹果应用商店内,已有几款可以跟踪高度的应用存在,这些应用基于现有的GPS芯片和运动跟踪芯片。不过,据相关开发人员称,Xcode 6 和iOS 8中的高度测量基于新的技术框架,需要有新的苹果硬件支持。  上述开发人员称,iOS 8操作系统对新的测量高度的硬件支持,意味着苹果将在未来发布的iOS设备中嵌入这一新功能,这些设备不仅包括今年秋季推出的iPhone 6,还有可能覆盖新的ipad,甚至iWatch。  此外,开发人员在iOS 8上还找到了环境压力跟踪参数,根据这些参数,除了根据气压可以确定高度外,还可以分析周边降水或天气阴晴状况。开发人员称,未来iOS设备的这种天气预测功能。  5000亿市场引角逐  应该说,传感器已经成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。以谷歌眼镜为例,其内置了多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速等传感器的应用,这让谷歌眼镜实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可以完成拍照。虽然谷歌没有透露具体的技术细节,但是业界专家都认为,这主要是因为谷歌眼镜内置了红外传感器和距离传感器,在两者的有机结合下,用户眼睛活动被识别,从而最终实现对应用的操作。  而在可穿戴设备智能化升级的过程中,MEMS传感器是传感器发展的必然趋势。MEMS被称为微机电系统,主要包括传感器和执行器两类,广泛应用于包括智能手机、平板电脑和可穿戴设备等在内的消费电子领域。分析人士表示,各类传感器功能性的全融合将成为传感器的研发方向,未来可穿戴产品终端前景的发展将取决于传感器等产业链上游技术的提升,其中,MEMS创新应用将是可穿戴设备发展的源泉。  另外,早在去年,前瞻产业研究院发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》就曾预测,2013-2017年传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。  具体而言,传感器制造行业研究小组认为,传感器制造行业的下游主要应用领域包括工业检测、汽车、医疗、环境保护、航空航天等。鉴于传感器制造行业下游市场给力,我国传感器制造行业的前景值得期待。其一,传感器在机械行业将会有广阔的应用前景。未来机械行业将会广泛全面地应用信息技术,加快产品更新换代,提高产品技术含量,缩短与国际先进水平的差距,在机械产品中融入传感器、单片机、微处理器、PLC、NC、数字通信接口以及激光等现代信息技术和高新技术,提高产品的机电一体化、数字化、智能化和网络化的程度,使产品的技术含量、知识含量、附加值得以提高。其二,随着传感器技术作为物联网的核心技术,家电物联网的发展必定会带动相关传感器技术的大规模应用,传感器在家电领域的发展前景也十分广阔。其三,在疾病的早期诊断、早期治疗、远距离诊断及人工器官的研制等广泛范围内发挥作用的大趋势之下,传感器在这些方面将会得到越来越多的应用。
  • 盘点手机搭载的传感器
    现在只要有智能手机在手,除基本地理位置外,还可以根据机种的不同取得周边环境的紫外线、温度、湿度等资讯。智能手机内建的传感器,可以正确测量出人体也难以察觉到的多元讯息,扮演&ldquo 第六感&rdquo 的角色。  据ETNews报导,过去智能手机制造厂多将规格重点放在相机画素、显示器、手机厚度、传感器等核心性能上,做为产品差别化的焦点。每每有高阶新机种公开,大多会以规格比较为主,并强调设计的创新和技术力的提升。  然近来手机硬件规格竞争已达上限,可以赋予智能手机各种新功能的传感器成为新焦点。三星电子(SamsungElectronics)的Galaxy系列机种和苹果(Apple)iPhone搭载指纹辨识传感器等,触发智能手机传感器的竞争。  报导引用市调机构IHSTechnology资料指出,智能手机和平板电脑等移动设备传感器全球市场规模,在2018年将较2012年的23亿美元成长约3倍,达65亿美元。  其中有20亿美元以上将来自生物辨识、紫外线、气体等新兴传感器产业。从动作辨识、光照度、距离传感器等智能手机登场初期开始,手机搭载的既有传感器和新传感器将带动传感器市场成长。  新兴传感器的代表性产品为指纹辨识传感器。苹果2013年推出的iPhone5S首度搭载指纹辨识系统,2014年更应用该系统推出移动付费服务Pay,引领传感器热潮。华为和Oppo等大陆手机业者,也陆续在最新产品上搭载指纹辨识传感器,让指纹辨识成为高阶智能手机的必备条件。  韩指纹辨识模组专门企业CrucialTec内部人员表示,近来以大陆智能手机製造厂为中心,展现出对指纹辨识模组的关心。除华为和Oppo外,许多业者也前来询问相关产品。     三星的Galaxy机种也搭载指纹辨识传感器,但三星的重心较偏向于健康管理的特殊传感器。日前推出的GalaxyNote4和NoteEdge因搭载紫外线传感器和心脉传感器受到瞩目。  原本三星计划还要搭载氧气饱和度测量传感器,但因受限韩国医疗设备登记规范等问题,只有部分海外地区的机种有搭载。内建应用程式SHealth原可利用温度及湿度传感器显示舒适度,但经过消费者调查,使用度相当低。新增传感器会导致製造成本升高,三星将先考虑活用度等再决定调整搭载的传感器。     继指纹辨识和UV等传感器后,各种健康管理、环境相关传感器可望接棒带动传感器市场成长。Partron传感器事业组长金泰元(音译)表示,正持续进行心电图传感器和体脂肪传感器等健康相关传感器模组的研发。此外,也将研发相关演算法,努力提升附加价值。  可辨识使用者情绪的传感器,也陆续有厂商进行研发。2013年微软(Microsoft)北京研究所发表MoodScope相关报告,成为热门话题。虽然与收集消费者的智能手机使用型态和生活形态等资讯,并以此为基础做运用的一般传感器有所差异,仍是一种情感辨识传感器概念。  韩国Shinyang证券研究员表示,智能手机开始搭载多元传感器,但受限于製造成本和手机外观设计等问题,未来可能只会再增加2~3颗传感器。能够配合零组件成本、使用者的接受度、生产力等三个条件的传感器,才会被应用到智能手机中。
  • 梅特勒托利多InPro 4850i传感器新品推出 为氯碱业度身设计的双膜pH传感器
    梅特勒托利多过程分析最新推出新型InPro 4850i传感器,InPro 4850i专为氯碱行业提供长寿命和高精度的pH/ORP测量解决方案。 通常,pH传感器在氯碱生产过程中面临各种非常恶劣的条件:氯气污染参比系统,结晶盐溶液和沉淀杂质堵塞隔膜,介质还可能会腐蚀液接材料。此外,传感器的高阻抗输出信号非常容易受到干扰,导致测量准确度低,传感器频繁出现故障。 梅特勒托利多的新款InPro 4850i双膜pH传感器是专为氯碱行业的需求而设计,InPro4850i传感器独特的技术优势,可确保在任何苛刻的环境下实现出色的测量。采用钠离子敏感膜参比系统该敏感膜对于盐水中的钠离子非常敏感,有助于提高测量精度。无隔膜设计钠离子敏感膜参比系统采用密封设计,没有隔膜,可避免传感器污染或阻塞,确保测量更加稳定。数字信号传输InPro4850i传感器和变送器之间传输的信号均为数字信号,无电磁干扰和信号失真,确保数据稳定和精确。智能传感器管理(ISM)技术智能传感器管理技术具有即插即测和自诊断功能、实现预测性维护,帮助您减少维护量和生产成本。双敏感膜设计、密封参比系统、数字信号传输,InPro 4850i在氯碱行业苛刻条件下均可实现长寿命和高精度测量。 了解更多InPro 4850i信息,请访问:www.mt.com/InPro4850www.mt.com/ISM 梅特勒托利多过程分析提供广泛的pH,ORP,溶解氧,气相氧,二氧化碳,电导率和浊度传感器、变送器和清洗系统,为您的过程分析和检测提供完整、精确、可靠的解决方案。梅特勒托利多也为客户提供全球范围的全方位服务管理,包括校准服务、性能测试、安装及运行认证、技术培训等。咨询热线:4008-878-788
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制