热发射率测定仪

仪器信息网热发射率测定仪专题为您提供2024年最新热发射率测定仪价格报价、厂家品牌的相关信息, 包括热发射率测定仪参数、型号等,不管是国产,还是进口品牌的热发射率测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热发射率测定仪相关的耗材配件、试剂标物,还有热发射率测定仪相关的最新资讯、资料,以及热发射率测定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热发射率测定仪相关的厂商

  • 上海拓精工业测定仪器有限公司,是一家具有独立进出口权的股份制责任有限公司,公司成立于2004年,公司自成立以来致力于不断提高品质检测水平并秉承“诚信合作,专业经营,服务第一”的经营理念, 公司员工专业化,技术人员经验丰富。我们还吸取了日本及欧美国家一些优秀公司的先进技术理念,利用坚实的技术基础,提供准确可靠的产品售前售中和售后服务;主要为汽车制造、航天航空业、第三方实验室、国家检测机构、高校院校研究所、化工制药、医疗、能源等领域提供品质检测仪器设备、非标自动化检测设备及相关技术服务。 拓精仪器是一家专业实验室检测分析仪器研发、生产、销售一体化股份制有限公司并同时代理国际一线品牌检测分析仪器,主要产品:实验室分析仪器、动态分析检测仪器、光学检测分析仪器、材料试验机、X- ray检测分析仪器、环境试验箱实验箱、实验室设备及工业仪器设备及耗材同时也为广大客户提供实验室综合解决方案服务!公司的产品在众多行业领域迅速推广并得到客户的认可,公司将不断的把世界最先进的检测设备及工业制造设备以最直接最快捷的方式传达给我们的客户,并帮助我们的客户提高产品检测能力和制造工艺。
    留言咨询
  • 北京华瑞森科技发展有限公司 是一家集技术推广、销售和技术服务于一体的高科技企业,公司设有高效的业务职能机构、完善的服务体系,迅速为您提供优质的产品和热情周到的服务。北京华瑞森科技发展有限公司 致力于核辐射检测仪器及辐射防护用品、辐射监测系统工程、射线防护材料、远红外线发射率检测仪器、 核医学仪器(井型NaI咖玛计数仪、多功能核放射性检测仪、活度计,个人剂量报警仪,Xγαβ辐射仪等)、医疗器械、实验仪器、环保核辐射仪器设备等研发销售,我们以科学严谨的工作态度,服务于科研、医疗教育、环保、检验检疫、疾控中心、军警、安防等诸多行业,服务于社会。北京华瑞森科技发展有限公司 专业维修德国R280型手持式αβγX多功能放射性检测仪,GAMMA-SCOUT多功能数字核辐射仪,维修900型数字核辐射仪, 维修美国Alert型αβγ和X辐射检测仪,专业维修Inspector Radalert 100、Inspector Alert、Inspector EXP、Monitor 4辐射检测仪
    留言咨询
  • 上海芸尖智能科技有限公司是一家以技术研发、技术创新、应变设计、智能生产、厂家直售、跟随服务为一体的高新技术企业,自主创新,高校研发,探索研发,始终是公司经营战略。目前拥有各种温度段的黑体研究,论证,实践和应用技术。本公司黑体发射率高,产品种类全、温度范围广,工作温度为-50℃~3200℃。黑体辐射源的温控系统采用先进的AI人工智能算法控制技术,具有精度高、稳定性好的特点,温度校准和修正方便等。? ? 我司黑体技术累积应用十余年,用户遍布全国各行各业,科研院所、计量所、国防大学、航空航天、军工安防、钢铁、铁路、汽车、电力、红外热像等行业都有广泛运用,成功案列数不胜数。 我司将一如既往地严守信誉,严保质量,为您提供优质的产品和服务。希望与您携手共创美好明天,打创国产替代! 公司愿景:让员工拥有自己的事业,让公司成为自己的家,为社会创造价值做一个充满责任感的制造业核心企业 。 坚持质量是企业命脉。
    留言咨询

热发射率测定仪相关的仪器

  • 日立高新热场式场发射扫描电镜SU5000--搭载全新用户界面,向所有用户提供高画质图像-- 日立高新技术公司(以下简称:日立高新)8月4日开始发售的肖特基式场发射扫描电子显微镜"SU5000",搭载了全新的用户界面和"EM Wizard",无论用户的操作技巧是否娴熟都可以拍出好的照片。 扫描电子显微镜在纳米技术领域、材料领域、医学生物等领域均被广泛使用。但随着近年来仪器性能的大幅提升,以及用户群体的不断扩大,使得用户对不需要任何经验和技术就能得到好照片的需求迅速扩增。而且,由于观察对象的样品的不断多样化,对样品的大小和性质的无制约观察变得尤为重要。 这次新开发的"SU5000"对用户没有任何操作技巧上的要求,通过”EM Wizard“只要选择好观察目的就可以得到好照片。"EM Wizard"以人为本的设计理念使电镜的操作性大幅上升,对于用户来说,再也不用去讨论该用什么条件进行观察,只要按照观察目的选择”表面细节观察“或是”成分分布“等就可以自动将适合的观察条件设置好。除此之外,使用经验丰富的操作人员也可以像往常一样自由的选择观察条件,按照自己的操作习惯进行设置。”EM Wizard“对于初学者或者使用经验尚浅的客户来说,它独有的操作简易性和各种学习工具可以帮助您迅速成长起来;对使用经验丰富的客户来说,开放了丰富的可设置选项,会令您操作起来更加得心应手。这正是"EM Wizard"的价值所在。 另外"SU5000"的寻找视野功能"3D MultiFinder"更是独一无二的。不但可大幅提高做样速度,更使视野再现性得到大大提高。并且,为了能适应各种分析的需求,最大束流可达到200nA。再加上全新设计的背散射电子探头和低真空二次电子探头等,都使该款电镜无论在是观察样品还是分析都具备了超强的功能与强大的扩展性。 日立高新在8月3日至8月7日在美国康涅狄格州举办的"Microscopy & Microanalysis",9月3日至9月5日在日本千叶县幕张国际展览中心举办的"JASIS 2014",9月7日至9月12日在捷克举行的"18th International Microscopy Congress"上都做了实机展出。*:肖特基式场发射电子显微镜:高亮度、大束流、超强稳定性汇聚一身肖特基式场发射电子显微镜。分辨率高和可做各种定量定性分析。 肖特基式场发射电子显微镜"SU5000" "EM Wizard"画面样式【主要参数】 电子枪ZrO/W 肖特基式场发射电子枪加速电压0.5~30kV着陆电压0.1~2kV分辨率2.0nm@1kV(*1)、1.2nm@30kV、3.0nm@15kV 低真空模式(*2)放大倍率底片倍率:10~600000倍、显示倍率:18~1000000倍5轴马达台X:0~100mm、Y:0~50mm、Z:3~65mm、T:-20~90°、R:360° *1:减速模式是选配项 *2:低真空模式是选配项 2014年,日立高新技术公司(以下简称:日立高新) 新型肖特基场发射扫描电镜*"SU5000"作为工业用设备荣获由公益财团法人日本设计振兴会颁发的GOOD DESIGN AWARD 2014”(2014年度最佳设计奖)。
    留言咨询
  • 半球发射率测定仪 400-860-5168转4338
    半球发射率是指热辐射体在半球方向上的辐射出射度与处于相同温度的全辐射体(黑体)的辐射出射度的比值,体现了材料在特定温度下相对黑体的辐射能力。PM-E2半球发射率测定仪测量半球放射率,适合太阳能电池组件,建筑隔热涂料,热控涂层等材料开发,工厂热能有效利用和节能设计。PM-E2半球发射率测定仪测量原理PM-E2半球发射率测量举例PM-E2半球发射率测定仪技术规格系统组成仪器包含积分球测量单元,光源,数据显示的操作单元。校正低辐射参考样板使用镀金玻璃镜面 (εL=0.05@293K/Edmund),高辐射标准样板使用黑体 (εH=0.85@293K/Sheldahl).测定方法 半球发射率εH半球发射率测定范围 0.05~0.95检测器波长范围 0.6~42μm(300K理论黑体总放射能量的95%)测定的不确定性 半球发射率值±0.03测定时间 1~3分基准样品 低半球发射率εH=0.05@293K (镀金镜面/ Edmund)高半球发射率εH=0.85@293K(Sheldahl制)电源 DC12V1A尺寸规格 操作部分:W145×D82×H32 (mm)测定部分:W125×D60×高74 (mm)重量 操作部分:约200g测定部分:约700g储存环境 温度:10~45℃湿度:50%RH附件 使用手册CD(驱动程序)USB数据线 (Type A-Type B)电源线
    留言咨询
  • D and S AERD半球发射率测定仪Emissometer可快速测量各种固体表面的发射率。 半球发射率(hemispherical emittance): 热辐射体在半球方向上的辐射出射度与处于相同温度的全幅射体(黑体)的辐射出射度之比值。 原理: 加热探测器内的热电堆,使探测器和试板之间产生温差。该温差与试板的发射率呈线性关系,通过比较高、低发射率标准板与试板表面温差的大小,得出试板的发射率。ASTM C1371-15(2022) Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers.(便携式反射率测定仪常温下材料半球发射率的测定)。GB/T 25261-2018 建筑用反射隔热涂料(半球发射率)。GB/T 31389-2015 建筑外墙及屋面用热反射材料技术条件及评价方法(半球发射率的测定-辐射计法)。GJB 2502.3-2015 航天器热控涂层试验方法 第3部分: 发射率测试(辐射计法(方法2031))。HG/T 4341-2012 金属表面用热反射隔热涂料(半球发射率)。JG/T 235-2014 建筑反射隔热涂料(半球发射率的测定-辐射计法)。JG/T 375-2012 金属屋面丙烯酸高弹防水涂料(半球发射率的测定)。JC/T 1040-2020 建筑外表面用热反射隔热涂料(半球发射率的测定-辐射计法)。便携式半球反射率测定仪 D and S AERD 主要特点:1. 发射率数字显示,从0.01~1.00,重复性±0.01。2. 测量时间短(约15秒)。3. 低价格,且操作容易。便携式半球反射率测定仪 D and S AERD 技术参数: 检测器部份:测定波长: 3~30μm。 重复性: ±0.01发射度単位。 输出: 约2.5mV。 响应时间: 约10秒。 电源: AC100~240V。 主机部份:精度: 显示値±0.3%。 环境温度: -10?40℃。 尺寸: 80(W)x152(D)X51(H)mm。 电源: DC9V。 重量: 约370克。京都电子(KEM)中国分公司 客服热线: 400-820-2557
    留言咨询

热发射率测定仪相关的资讯

  • 小菲课堂 | 想要提高发射率?这里有个省钱的方法......
    各位菲粉们,还记得小菲给大家科普过发射率对红外检测的重要性吗?(回顾戳这里)今天,小菲就教大家如何用低成本提高目标的发射率~为了正确的使用热像仪,你需要知道不同的材料和环境如何影响热像仪的温度读数。发射率是指物体表面辐射出的能量与相同温度的黑体辐射能量的比率。(黑体是一种理想化的辐射体,可辐射出所有的能量,其表面的发射率为 1.00)实际上,我们测量物体的发射率值通常低于1,对于这些目标,测量的温度将是物体的发射率、反射率、透射率的综合结果。一个完美的黑体的发射率是1,也就是说目标的辐射是从目标表面发射出来的实际上,我们的目标并不是完美的黑体测定发射率从测量辐射量出发,了解发射率值是进行真实温度评估的必要条件,但是,必须谨慎使用发射率表值。通常不清楚发射率值在哪个波段有效,而且发射率也会随着波长的变化而变化。此外,表面条件、纹理和形状对材料的发射率也有重要影响。有一种方法可以理解发射率不确定度对测量精度的影响:假设目标发射率的不确定度为±0.05。对于0.95的发射率,看上去这表示大约5%的误差(0.05/0.95),而对于光亮的铜等材料,发射率为0.05。这些误差传播到温度计算中,增加了温度读数的误差(但实际测温结果是由红外电磁辐射通过斯蒂芬?波尔茨曼定律间接转换成温度读数获取得来的,温度和电磁辐射是一个四次方的非线性曲线Wrb=εσΤ4)。因此我们建议不要尝试对低于0.5的目标发射率进行温度测量。如果必须要测量,则可通过准确的补偿(ITC培训中有详细介绍),或者可用建议的高发射率材料覆盖目标,通过热传导作用,将被测物体表面温度传导到高发射率材料后间接测量获取。通过红外图像,你可能会认为树叶比杯子表面更冷,实际上,它们的温度完全相同,红外辐射强度的差异是由发射率的差异造成的改变发射率的低成本材料电工胶带大多数高质量的电工胶带的发射率为0.95,需要注意的是使用中波长热像仪(3 - 5μm),胶带是不透明的,有些乙烯基胶带很薄,有一定的红外透过率,因此不能用作高发射率的涂料。Scotch™ Brand的88黑色乙烯基电工胶带的发射率为0.96,在短波(3-5μm)和长波(8-12μm)区域的发射率均为0.96,建议使用。这个例子展示了两个带胶带的罐子:左边的那个装满了热水,右边的在室温下。对于热罐,胶带的温度为163°F(72.8°C),罐的温度为74.3°F(23.5°C)。后者的读数基本上是环境温度,因为罐子的发射率很低。这是一个典型的例子,说明在低发射率目标上使用高发射率应用程序的必要性油漆和涂料大多数油漆的发射率约为0.9至0.95,金属基涂料具有低发射率,不推荐使用。油漆的平整度和涂层的厚度对红外发射率来说很重要。胶带适合小面积使用。油漆适用于较大面积,但这是一种涂料。对于需要去除的大面积涂层,或者胶带不合适的地方,悬浮在泥浆或喷雾形式的粉末可以很好地工作。染料渗透显影剂和Dr. Scholl s喷雾足粉就是两个例子,这些粉末的发射率在0.9至0.95范围内,前提是它们的应用厚度足够不透明。没有增加发射率涂料的印刷电路板 随着涂料的发射率增加,使用油漆的缺点是减少了精细的细节实例:控制PCB板的发射率值在故障查找过程中,测量组装好的印刷电路板(PCB)上元件的温度是一项经济有效的技术,但由于不同元件的ε值不同,因此很难实现。通常,多氯联苯中含有各种金属和塑料部件,这些部件由不同的制造商制造,这些制造商对这些部件进行自己的表面处理。当用已知的、测试过的和有特征的涂层处理电路板时,通常可以简化问题。涂覆后,组件表面具有相同的ε值,并且可以通过热成像确定相对温度。要控制发射率值,可以用涂层处理PCB板各位菲粉们对于如何改善物体的发射率你们了解多少呢?想要系统的学习相关知识一定要来参加ITC红外培训在这里不仅可以学到发射率的相关知识还有很多红外相关的秘密哦~
  • 小菲课堂|“吃透”发射率,热像仪测温才最准确
    上周我们分享了电影的精彩片段因为熟知物体发射率的差异强森透过热像仪鉴定出“假金蛋”想要回顾的小伙伴戳这里:可乐浇毁“金蛋”,强森的自信源于这里......那么到底什么是发射率?它和热像仪是如何相辅相成的?,时长01:13身边物体的发射率发射率其实是一种比率发射率是指物体表面辐射出的能量与相同温度的黑体辐射能量的比率。(黑体是一种理想化的辐射体,可辐射出所有的能量,其表面的发射率为 1.00)各种物质的发射率是由物体的本身材质、表面粗糙程度、表面几何形状、拍摄角度、观测波长以及被摄物体本身的温度所决定(其中物体本身材质是对物体发射率影响的一个因素),所以在相同的温度下,物质不同,向外辐射的能量也会不同。相同温度下,因发射率不同,而显示的表象温度有差异例如,高度抛光的金属表面,如铜或铝,其发射率通常低于0.10。粗糙或氧化的金属表面有更高的发射率(0.6或更大,取决于表面条件和氧化量)。大多数平面漆的发射率约为0.90,而人类皮肤和水约为0.98。影响发射率的因素:反射温度金属的发射率随表面温度的大幅上升而增大,而非金属的发射率一般是随表面温度的变动却几乎没有变化,金属的发射率比非金属的小得多。如果你看到的是一个高抛光金属物体,具有低发射率,该表面将像一面镜子。而你的热像仪不会测量物体本身的温度,而是检测被测物体表面的出射辐射(物体的表象温度),出射辐射包括物体自身的红外辐射+环境在物体表面的,经过相同的反射角进入热像仪镜头的反射辐射。环境反射表面温度(也称为背景温度或T-反射)是指来自被测物体周围环境中其他物体的任何热辐射,这些物体从你测量的目标反射进入热像仪镜头。反射温度会影响热像仪测量的表象温度反射温度会影响热像仪测量的表象温度(除发射率是影响测温结果的重要补偿参数,环境反射表象温度对测温结果影响也是至关重要的!),如果附近的热源(如变压器,电动机或者反射阳光中的红外波段能量)从物体表面反射进入热像仪镜头,而被测物体本身温度可能很低,但根据热像仪显示的温度却可能高得多。金属灯的开关是比墙的其他部分更热,还是反射了一个温暖的热源?或者一个物体可能和一个相邻物体的温度相同,但看起来要冷得多。戒指的温度可能和人的皮肤一样,但看起来要冷得多对于发射率较高的物体,反射温度的影响较小。但对于低发射率的物体来说,反射温度是关键因素。随着发射率的降低,你所测量的热量更多的是来自周围物体的表面,而不是你正在检查的目标。如何测量物体的真实温度?如果要测量的对象具有高发射率,则可以在热像仪设置中调整发射率和反射温度。例如,如果你想测量一个人的体温,你可以将发射率设置为0.98(人体皮肤的发射率),将反射温度设置为环境温度(如果你在室内,大概在68°F/20°C左右),你的热像仪就会进行补偿。对于其他类型的表面,如果温度测量精度对您和您的检查程序很重要,您可能需要进行热成像培训,以便在进行测量时正确补偿发射率。一般来说,如果你要测量的目标的发射率低于0.5,你可能得不到精确的温度测量值。在这种情况下,你需要考虑如何提高目标的发射率。高发射率表面如电子胶带可用于精确测量低发射率表面如闪亮金属的温度发射率+反射率+透射率=1对于热像师来说,我们平时拍摄的被摄物体在红外波段绝大多数都是不透明的物体,意味着物体的透射率为0,而物体的发射率+反射率+透射率=1。所以可以推出:不透明的物体(指红外波段):发射率+反射率=1。这也就意味着在低发射率(尤其当物体表面发射率低于50%的时候)环境的反射表象温度会对测温结果产生比较大的干扰。这个时候我们就需要热像师通过具体的检测手段来调整补偿物体的发射率以及物体的反射表象温度,来更接近物体的真实表面温度!在进行温度测量时,发射率是一个具有挑战性的因素,而且它还会受到不同因素的影响。幸好它是可以学习的,用先进的测量方法,它可以得到正确的补偿。所以小菲建议各位菲粉们,要想获得物体本身的真实温度,可以到ITC红外培训系统学习下发射率、环境反射表象温度等补偿的设置,在这里不仅可以学习各种热成像相关的理论知识,还可以上手实操检测,完成培训后,妥妥滴由热成像“小白”转换成专业热成像师哦~Teledyne FLIR的明星课程ITC红外培训本年度还有一堂课想要学习提升自己的小伙伴赶快联系我们报名来年你就是专业红外热像师or热像分析师啦~新品免费试用目前,Teledyne FLIR正在进行一场2021年终新品免费试用的活动,无论是FLIR A50/A70研发套件,还是FLIR A50/A70图像流/智能传感器热像仪,亦或是FLIR Si124-PD:局部放电检测声像仪,还有FLIR Si124-LD:压缩空气泄漏检测声像仪,以及FLIR E96 高级热像仪都在此次活动当中哦~当然如果您想试用其他产品,小菲也会尽量满足您的需求!所以,小伙伴们赶紧联系我们,我们将安排专人上门为您演示!
  • 新材料领域:高温红外高发射率节能涂料
    工业高温窑炉作为一种高耗能设备广泛应用于各个行业,我国现有高温窑炉每年的能源消耗约占总能耗的三成,占工业能耗的六成。同时我国工业高温窑炉的热能利用率远低于发达国家的水平。因此,工业高温窑炉的节能降耗具有重大意义,同时也存在巨大的节能空间。本项目是针对工业窑炉节能的需求以及国内外在高温节能涂料方面的发展状况而研发的一种高性能节能涂料。该节能涂料在很宽的红外波段范围都具有高的发射率(~0.9)。在高温炉膛内壁(或炉管外壁)涂覆高发射率材料,可有效提高辐射换热量,改善炉内热辐射特性,提高热辐射效率,从而达到节能降耗、减少排放的目的。同时,高发射率涂层是一种高致密性的无机陶瓷材料,具有抗腐蚀、耐火焰冲刷等特点,对炉壁和炉管起到保护作用,可以延长窑炉(锅炉)的使用寿命。   主要技术指标(或参数):   1、红外发射率:≥0.9;   2、耐火度:1100℃~1500℃;   3、节能效率:5%~15%;   4、能缩短炉膛升温时间、提高炉膛温度、降低排烟温度、延长炉体(炉管、加热元件等)使用寿命,起到明显的节能减排和降耗增效作用。   应用领域:   用于冶金、石化、火电、水泥、玻璃、陶瓷等行业的各种高温窑炉、锅炉的涂层材料。   市场前景:   可广泛用于冶金、石化、火电、水泥、玻璃、陶瓷等行业的各种高温窑炉、锅炉,涂层具有红外发射率高、节能效果好、抗老化、耐候性强等特点。使用该产品可缩短炉膛升温时间、提高炉膛温度、降低排烟温度、延长炉体(炉管、加热元件等)使用寿命,能起到明显的节能减排和降耗增效作用。   拟转化的方式(或合作模式):   可采用研究所与企业通过成果转让或技术入股等方式,共同推进该成果的产业化。

热发射率测定仪相关的方案

热发射率测定仪相关的资料

热发射率测定仪相关的论坛

  • 热辐射性能:量热法半球向全发射率测试技术综述

    热辐射性能:量热法半球向全发射率测试技术综述

    [color=#990000]摘要:热量是一种过程量,是热能传递的度量,量热技术就是研究热测量方法的一门技术科学。由于量热技术可以对物质吸收和放出热量进行精确定量测量,这使得量热技术在材料热物理性能测试中应用十分广泛,也是材料热辐射性能测试中的一种常用方法。半球向全发射率作为一种热交换分析计算和材料热辐射性能评价中最常用的性能参数,是材料热辐射性能中的必测参数。在真空条件下采用量热法测试半球向全发射率,由于其测试直接和简单,因此量热法作为一种绝对测量方法而被认为具有最高的测量精度。本文详细介绍了量热法半球向全发射率测试技术的两类主流方法:稳态法和瞬态法,介绍了国内外在这两类方法中比较有代表性的研究工作,最后总结了这两类方法它们各自的特点及适用范围,为建立相应测试设备和研究测试方法提供参考。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [align=center][img=量热法半球向全发射率测试技术,690,436]https://ng1.17img.cn/bbsfiles/images/2021/09/202109141051379730_9244_3384_3.png!w690x436.jpg[/img][/align][color=#ff0000]由于本文内容包含大量数学公式,不便在网页中进行编辑和显示,特在此近刊登文章目录,详细内容请阅读附件原文。[/color][color=#ff0000][/color][size=24px][color=#990000] 目录[/color][/size][size=24px][color=#990000][/color][/size][color=#990000][b]1. 热辐射性质的内容及其定义[/b][/color][color=#990000] 1.1. 发射率.[/color] 1.1.1. 光谱定向发射率 1.1.2. 光谱法向发射率 1.1.3. 全波长法向发射 1.1.4. 全波长半球向发射率 [color=#990000] 1.2. 吸收率 [/color] 1.2.1. 光谱定向吸收率 1.2.2. 全波长定向吸收率 1.2.3. 光谱半球向吸收率 1.2.4. 全波长半球向吸收率 [color=#990000] 1.3. 反射率 [/color] 1.3.1. 光谱定向—半球向反射率 1.3.2. 全波长定向—半球向反射率 1.3.3. 光谱半球向—定向反射率 1.3.4. 全波长半球向—定向反射率[color=#990000] 1.4. 透过率 [/color] 1.4.1. 光谱定向透过率 1.4.2. 全波长定向透过率[color=#990000][b]2. 发射率测量方法概述 3. 稳态量热法半球向全发射率的测量[/b][/color][color=#990000] 3.1. 保护电热法 3.2. 间接电热法 3.3. 直接通电加热法 3.4. 辐射加热法 3.5. 薄膜热流计法[/color][color=#990000][b]4. 瞬态量热法半球向发射率的测量[/b][/color][color=#990000] 4.1. 辐射加热法 4.2. 直接通电热脉冲法[/color][color=#990000][b]5. 总结 [/b][/color][color=#990000][b]6. 参考文献 .......................................................... 34[/b][/color][color=#990000][/color][color=#990000][/color][color=#990000][/color]

  • 【原创大赛】稳态量热法总半球发射率测试的SIMULATIONX热仿真研究

    【原创大赛】稳态量热法总半球发射率测试的SIMULATIONX热仿真研究

    [size=18px][color=#990000][/color][/size][size=18px][color=#990000]摘要:为了研究总半球发射率测试方法,特别是对间接通电加热式量热法总半球发射率测试进行更深入研究,本文采用SimulationX软件对所建立的测试模型进行了仿真计算,从而获得了样品温度与加热功率之间的量化关系,明确了测试过程中漏热对测量误差的影响程度,从而可有效指导总半球发射率测试装置的设计。[/color][/size][align=center][size=18px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px] [/size][size=24px][color=#990000]1. 热仿真目的[/color][/size][size=18px]  在总半球发射率测试设备的设计前期开展热仿真计算,拟达到以下几方面的目的:[/size][size=18px]  (1)对总半球发射率测试过程中的加热方式和整个测试过程有较直观的认识。[/size][size=18px]  (2)获得样品温度与加热功率的量化关系,由此确定真空水冷腔体冷却所需的最大冷却功率,以帮助水冷结构设计的制冷机选型。[/size][size=18px]  (3)确定护热温差所引起的漏热对发射率测量精度的影响程度。[/size][size=24px][color=#990000]2. 样品材料[/color][/size][size=18px]  样品材料选择镍基高温合金Inconel 600,这主要是因为Inconel 600是常用且研究比较深入的材料,有比较齐全的热物理性能参数(热导率、比热容、热扩散率和密度)随温度变化数据,这就非常便于热仿真计算中物性参数的准确设置。[/size][size=24px][color=#990000]3. 仿真模型[/color][/size][size=18px]  SimulationX是一款分析评价技术系统内各部件相互作用的权威软件,是多学科领域建模、仿真和分析的通用CAE工具,并具有强大标准元件库。对于间接通电加热式稳态量热法总半球发射率测量方法的建模,会涉及到热学、电学和自动化PID控制多个领域,因此采用SimulationX软件进行建模和计算分析。[/size][size=18px]  为了对测试方法进行深入研究,建立了两个仿真模型。一个是理想情况下的样品绝热时(样品热量无损失)的仿真模型,另一个是实际情况下样品有引线热损时的仿真模型,由此来研究两种状态下的加热过程和热损所带来的误差影响。[/size][size=18px]  [/size][size=18px][color=#990000][b]3.1. 绝热模型[/b][/color][/size][size=18px]  采用SimulationX软件建立的绝热仿真如图3-1所示。由PID控制的热量加热被测样品,并按照不同设定值使样品达到不同设定温度,被测样品同时与作为黑体的等温量热计进行辐射热交换。在测试过程中,假设被测样品只有热辐射一种传热形式,样品加热引线上无导热热损,样品处于绝热状态。[/size][align=center][color=#990000][img=半球发射率,625,275]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202201358306_9908_3384_3.jpg!w625x275.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-1 绝热条件下SimulationX仿真模型[/color][/size][/align][size=18px]  为了计算出样品达到最高温度1200℃时所需要的最大功率,设置样品表面的总半球发射率为1。对于100mm×100mm×6mm规格的样品尺寸进行计算,结果如图3-2所示。[/size][align=center][color=#990000][img=半球发射率,690,400]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202201524222_4058_3384_3.png!w690x400.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-2 规格100mm×100mm×6mm样品加热温度和功率计算结果[/color][/size][/align][size=18px]  按照图3-2所示的计算结果,可以采用发热率计算公式计算得到不同温度下的总半球发射率变化曲线,如图3-3所示。[/size][align=center][color=#990000][img=半球发射率,690,397]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202015455_5562_3384_3.png!w690x397.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-3 规格100mm×100mm×6mm样品不同加热温度下的发射率计算结果[/color][/size][/align][size=18px]  从上述计算结果可以看出,发射率仿真结果与理论值无偏差,证明了所建模型是准确的。另外还可以看出,在间隔200℃的不同设定温度点上,随着加热温度的增加,加热功率几乎成倍的增加。如在1000℃时,加热功率3.3kW,如果采用低压大电流电源,低压电压为30V时,直流电压则会至少100A,那么所对应的电极引线会较粗,这势必会带来较大的引线导热热损。为避免加热引线导热热损则需要增加护热加热,将靠近样品处的加热导线温度也要保持与样品温度一直,这势必会给高温样品热辐射带来严重影响,相当于大幅度增加了样品辐射面积,从而给测量带来严重误差。[/size][size=18px]  为避免大的加热功率,减小电极引线的粗细,将模型中样品缩小到50mm×50mm×3mm,测试结果如图3-4和图3-5所示。[/size][align=center][color=#990000][img=半球发射率,690,402]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202136564_9259_3384_3.png!w690x402.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-4 规格50mm×50mm×3mm样品加热温度和功率计算结果[/color][/size][/align][align=center][color=#990000][img=半球发射率,690,401]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202229346_3131_3384_3.png!w690x401.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-5 规格50mm×50mm×3mm样品不同加热温度下的发射率计算结果[/color][/size][/align][size=18px]  从图3-4和图3-5所示结果可以看出,样品尺寸缩小后,在最高温度1200℃时的最大加热功率降低到了四分之一,约1.5kW。[/size][size=18px][color=#990000][b]3.2. 护热模型[/b][/color][/size][size=18px]  采用SimulationX软件建立的护热仿真如图3-6所示。在护热模型中,在原有PID控制加热被测样品(规格50mm×50mm×3mm)的基础上,增加一路PID护热加热回路,控制护热回路温度始终跟踪样品温度变化。在理想情况下,护热温度要与样品温度完全相同,如此这两回路之间存在温差,则被测样品就会产生热损。[/size][align=center][color=#990000][img=半球发射率,625,290]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202206457581_2325_3384_3.jpg!w625x290.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-6 护热条件下SimulationX仿真模型[/color][/size][/align][size=18px]  在护热模型计算中,样品发射率设置为1,被测样品温度变化范围还是设置为200℃~1200℃,而护热温度总是比样品温度低1%,由此来计算热损对发射率测量的影响,计算结果如图3-7和图3-8所示。当设置样品发射率为0.5时,发射率测量结果如图3-9所示。[/size][align=center][color=#990000][img=半球发射率,690,403]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202345051_4964_3384_3.png!w690x403.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-7 发射率为1时护热模型的加热温度和功率计算结果[/color][/size][/align][align=center][color=#990000][img=半球发射率,690,401]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202441606_7412_3384_3.png!w690x401.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-8 发射率为1时护热模型不同加热温度下的发射率计算结果[/color][/size][/align][align=center][color=#990000][img=半球发射率,690,399]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202520436_5036_3384_3.png!w690x399.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-9 发射率为0.5时护热模型不同加热温度下的发射率计算结果[/color][/size][/align][size=18px]  从上述测试结果可以看出,护热控制过程中1%温差所造成的漏热,对样品加热功率的大小影响不大,但对发射率测量有影响,这种影响在较低温度段非常明显,并且对较低发射率样品的测量影响也较严重。[/size][size=18px]  从图3-8可以看出,当样品发射率为1时,200℃时的发射率测量结果误差最大,相对误差接近4%,然后随着样品温度的升高,误差急剧减小。由此可见在较低温度范围内,漏热在样品热辐射能量中所占的比重较大,从而造成发射率测量误差较大。随着样品温度的升高,漏热所占比重快速减小,从而发射率测量误差也快速减小。[/size][size=18px]  从图3-9可以看出,当样品发射率为0.5时,同样是200℃时的发射率测量结果误差最大,相对误差放大到了8%左右,同样随着样品温度升高,误差急剧减小。由此可见,对于低发射率的测量,漏热会更严重的影响测量精度。[/size][size=24px][color=#990000]4. 总结[/color][/size][size=18px]  通过SimulationX软件建立了绝热和护热两种总半球发射率测量仿真模型,并在不同温度下来计算得到相应的加热功率和样品温度变化曲线,最终获得加热功率变化规律和发射率测量结果。通过仿真计算,得出以下结论:[/size][size=18px]  (1)间接式通电加热稳态量热法测量总半球发射率过程中,为达到1200℃的最高温度,如果采用低压大电流加热方式,则需要较大的加热功率,并需要较粗的加热电极,这势必会给测试模型的准确性带来严重影响,并需要添加额外的护热装置,由此带来整个测试装置的复杂性和制造难度。[/size][size=18px]  (2)护热装置要求具有一定的温度跟踪精度以确保测试模型尽量接近绝热状态,温度跟踪精度对较低温度区间的样品发射率测量有较大影响,而且样品发射率越小,这种影响会急剧放大。[/size][size=18px]  (3)在存在漏热情况下,测量值会比实际值偏大。在存在增热情况下,测量值会比实际值偏小。[/size][size=18px][/size][align=center]=======================================================================[/align][align=center] [img=半球发射率,690,300]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202159531381_1955_3384_3.jpg!w690x300.jpg[/img][/align][size=18px][/size][size=18px][/size][size=18px][/size]

热发射率测定仪相关的耗材

  • 谷物水分测定仪_玉米快速水分测定仪
    玉米水分测定仪摘要:以下苞米水分测定仪 高粱水份检测仪 农作物水分测定仪是由深圳市冠亚科技有限公司提供的,如果您对苞米水分测定仪 高粱水份检测仪 农作物水分测定仪有意向或者想了解更多苞米水分测定仪 高粱水份检测仪 农作物水分测定仪的相关信息如:原理、特点、型号、图片,欢迎来电垂询、洽谈!《冠亚牌》SFY-8A粮食专用水分测定仪是由深圳市冠亚公司采用GB/T5497-1985《粮食、油料水分检验》烘箱恒重法原理,针对东北地区粮食生长环境等因素研发并生产粮食专用快速水分检测仪器,人性化系统操作, 无需操作人员特殊培训,自动校准功能、自动测试模式,具备计算机、打印机连接、无线发射大屏幕显示功能可即时监控、打印或记录被测物水分最终值。冠亚粮食专用水分测定仪引进德国自动称重显示系统,采用应变式混合气体加热器,最短时间内达到最大加热功率,在高温下样品快速被干燥恒重,因此该水分仪检测数据不受外部环境、时漂、温漂因素影响,无需辅助设备等优点。粮食专用水分仪4分钟左右出检测结果,检测效率远高于烘箱恒重法,检测准确性与其基本一致、可代替性,目前已被各农科院、粮食研发院校及部门、各粮油监测站、中央储备库、地区储备库、各玉米深加工企业(食品厂、酒精厂、饲料厂、种子公司等)、个体粮库等部门使用,并得到其用户的好评与支持。特点:1、恒重法原理2、快速、准确、易操作3、干粮、湿粮一机测试4、低温高水分粮专用水分检测仪器5、具备打印机、电脑连接、无线发射大屏幕显示功能详细参数:1、称重范围:0-60g★★可调试测试空间为3cm、5cm、10cm2、水分测定范围:0.01-100%★★JK称重系统传感器3、样品质量:0.5-60g4、加热温度范围:起始-205℃★★加热方式:应变式混合气体加热器★★微调自动补偿温度最高15℃5、水分含量可读性:0.01%6、显示7种参数:★★ 水分值,样品初值,样品终值,测定时间,温度初值,最终值,恒重值★★红色数码管独立显示模式★★打印参数:品名、等级、水分值、检定员、时间7、双重通讯接口:RS 232(打印机) RS 232(计算机) RS 232(无线发射接收器)8、外型尺寸:380× 205× 325(mm)9、电源:220V± 10%10、频率:50Hz± 1Hz11、净重:3.7Kg水分测量仪资质证明:1.SFY系列红外线|卤素快速水分测定仪器(专利号:2005301013706)2.《中华人民共和国制造计量器具许可证》 MC 粤制 03000235号;3.目前行业中唯一通过ISO 9001:2008质量管理体系认证的产品快速测水仪售后服务:(1)质保期内承诺我公司承诺,货物质量保修期为12个月。质量保证期是由货物到达用户、交付用户使用并签署验收单之日起开始计算。在质保期内若仪器发生故障(人为原因造成的损坏除外),我公司将为用户全部免费修理、更换零部件。在正常使用的情况下出现产品质量问题,若属不能维修的,我公司将负责为用户提供同型号设备予以更换。同时,仪器配套的零部件保障供应时间至少为10年。(2)仪器保修期外承诺保修期满后仍为客户提供终生售后技术支持、咨询、维修服务,维修仅收零部件工本费注明:如有复制我公司信息者,后果自负
  • 全发射附件 L2250101
    全发射附件这种全发射附件可增强对发射弱的样品的荧光检测灵敏度,建议用于生物冷光和化学冷光试验。该附件使用一种可旋转进入发射光单色仪前面适当位置处的平面镜,以对样品进行全荧光测定。建议使用截止发射滤光器以减少源自其他波长的发射。LS55光谱仪提供5个受软件控制的发射滤光器。订货信息:产品描述部件编号For LS50B/55L2250101本品必须由珀金埃尔默的服务工程师进行安装。
  • 北京绿百草专业提供粗纤维测定仪
    北京绿百草专业提供粗纤维测定仪 关键词:粗纤维测定仪,北京绿百草 粗纤维测定仪是根据相关国标设计的,通过酸碱水解、冲洗、过滤过程测定粗纤维含量的分析仪器。粗纤维测定仪实现自动添加溶剂,自动预热等功能,采用热效率高的红外管加热,高精度的浸提及过滤装置,确保了实验的精确性。粗纤维测定仪高分辨率的彩色液晶显示屏,实时显示温度时间,清晰简洁易操作控制,完备的操作和安全系统尽显海能人性化智慧。粗纤维测定仪适用于植物、饲料、食品及其其它农副产品中粗纤维的测定以及洗涤纤维、纤维素、半纤维素、木质素和其它相关参数测试,其结果符合GB/T5515、GB/T6434的规定。 粗纤维测定仪的技术参数: 1.样品量:0.5~3克(通常1克) 2.检测范围:0.1~100% 3.检测能力:6个样品/批 4.重现性:在纤维含量1~30%的范围内,重现性好于1% 5.精确度:± 0.1% 了解更多产品信息请登录绿百草网站:www.greenherbs.com.cn, 或电联:010-51659766
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制