当前位置: 仪器信息网 > 行业主题 > >

在线原油精量仪

仪器信息网在线原油精量仪专题为您提供2024年最新在线原油精量仪价格报价、厂家品牌的相关信息, 包括在线原油精量仪参数、型号等,不管是国产,还是进口品牌的在线原油精量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合在线原油精量仪相关的耗材配件、试剂标物,还有在线原油精量仪相关的最新资讯、资料,以及在线原油精量仪相关的解决方案。

在线原油精量仪相关的资讯

  • 便携式PM2.5在线测量仪市场分析
    ■技术点评  点评机构:北京大学技术转移中心  点评人:高炎 黄牧青 刘笑一 李士杰  出镜主角:一项由加拿大研究人员研发的便携式PM2.5 在线实时测量技术。该系统首先用一个 PM2.5 采样器将PM2.5 从总的大气颗粒中分离提取出来,通过颗粒计数系统监测这些颗粒,然后利用基于悬浮颗粒物的基本原理, 计算出测量地点的PM2.5 数值, 并即时显示PM2.5 测量结果。这种便携式 PM2.5 在线检测仪器可以应用在几乎任何空气检测的场所。也可以进一步研发出用于科研用的高精度的测量仪器。  研发现状:实验室内可行性研究成功 寻求商业投资和产品化合作伙伴 继续致力于市场开发与拓展。  市场分析:PM2.5监测设备厂商主要有美国热电、美国MET ONE、美国API、法国ESA(法国苏氏环境公司)、澳大利亚的Eco Tech和Monitor等 国内的主要厂商有先河环保、武汉天虹、安徽蓝盾、中晟泰科等多家企业。由于我国在此领域投入较晚,非国产的PM2.5监测设备的市场占有率超过70%。业内相关人士估计,未来5年内国有厂商将赶超国外企业。  作为一个重要的空气质量指标。世界大多数发达国家都对PM2.5进行检测以了解空气污染的情况。现有的离线(非实时)测量技术主要是基于称重法 它的问题是测量速度太慢:采一个数据要至少几个小时。这种方法是无法进行在线即时测量的。商业上的PM2.5 在线测量设备主要是应用于城市空气质量检测站里。它们虽然测量精度高但是设备庞大笨重而且价格昂贵。目前一台PM2.5监测设备的价格区间大致为8&mdash 38万元。  据环保部初步测算,&ldquo 十二五&rdquo 期间,全国要建设1500多个PM2.5监测点位,前期投入将超过20多亿元。PM2.5监测点位的运行费用和维护成本也需考虑。这两部分成本占到PM2.5监测点位配置总成本的30%到40%。  除了国家环保监测点位的设备市场外,很多厂家也推出了手持式的家用PM2.5检测仪,价格从1000元到8000元不等,一般专业一点的检测仪价格在3000元以上,但目前销量还很小。国内市场目前在销售的手持式PM2.5检测仪有美国LIGHTHOUSE公司PM2.5检测仪、武汉四方光电PM2.5检测仪、汉王PM2.5检测仪、北京艾然科技PM2.5检测仪、博朗通PM2.5检测仪等,产品化门槛并不高。价位由600&mdash 3000元不等,在天猫上,最高的销量不超过100台。  可行商业模式:从当前市场来看,PM2.5在线实时测量仪的技术并不是难点,很多公司已经掌握 直接卖检测仪器的方式将导致市场价格竞争,难以形成竞争优势。智能空气监测设备最大的挑战在于,它是否抓住了人们&ldquo 需求背后的需求&rdquo ,让用户愿意买单。人们关注空气质量隐藏的需求是想让空气变得更好。针对PM2.5的空气质量状况,国内用户采用的办法是买口罩和使用空气净化器。但空气净化器并没有得到普及,据统计,由PM2.5激发的口罩市场规模每年达50亿。独立的空气监测设备并不被看好。  国内通过手机APP发布PM2.5数据起家的墨迹天气,下载量达4.3亿次,日活跃用户4500万。2014年5月,墨迹天气推出&ldquo 空气果&rdquo ,集温度、湿度、二氧化碳、PM2.5等数据的检测和提醒于一体,定价999元。不过,这一较高的定价使空气果的受众少了许多,不少极客型用户表示价格低于500元才考虑尝试。另外,空气果的续航能力只有几天,对用户来说挑战不小。美国的Birdi是与空气果相似的设备。Birdi监测空气中的健康危害元素、污染和紧急情况等,包括烟雾、危险物(一氧化碳)、过敏源(花粉)和空气质量(微粒、温度、湿度、空气新鲜程度)。除了预防紧急情况外,Birdi还可以对空气质量进行评分,并提供改善建议。手机App可查看报告、接受警告,在危险情况Birdi App还可直接拨打火警电话。定价119美元,约合740元人民币。  空气报警器和处理器找准了刚需。报警器是在危险情况下告知用户,用户马上可采取一系列措施来消除危险。而处理器则是可以直接改变空气,让人们生活更舒适、更安全。还有一点对独立监测设备是非常致命的:报警器在做报警的同时,可以顺带把空气监测做了,如Birdi 处理器在改变空气的同时,也可以顺便把空气监测做了,如TCL和360的空气卫士。空气监测器可通过开放API指挥智能窗帘开窗,指挥智能空调和净化器运转起来。不过要实现这一点并不容易。在产品达到一定存量前,品牌繁多的空调、净化器很难兼容。  技术点评  点评机构:北京大学技术转移中心  点评人:高炎 黄牧青 刘笑一 李士杰
  • 老问题新思考 又见在线仪器仪表新应用——CIOAE 2012在线分析综合类专题报告
    仪器信息网讯 2012年10月29-30日,“第五届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2012)”(以下简称“论坛”)在北京国际会议中心隆重召开。本次论坛吸引了1000余名观众参加,80余家在线分析仪器厂商参展。  本次论坛设有1个主会场和7个专题报告分会场,49名来自石化、环保、科研等领域的专家学者做了报告。  以下是本次论坛“在线分析综合类专题报告”分会场的报告内容。中石化长岭分公司信息技术管理中心代表、博太科集团有限公司邓建友、聚光科技(杭州)股份有限公司李霞、美国哈希公司刘智龙、中国石油化工股份有限公司广州分公司检验中心符青灵、吉林大学赵冰、燕山石化段宝军分别做了报告。  报告中,在线仪器仪表在石油化工传统工艺中的应用成了主力军,其中不乏常规应用的新思考,分析小屋连锁系统的报警触点设计问题得到了与会人员的一致回应。此外,近红外光谱中药提取过程在线监测与核磁共振原油在线快速评价的应用让人眼前一亮。  中石化长岭分公司信息技术管理中心 代表  报告题目:在线质量仪表在先进控制系统的应用  报告介绍了先进控制(APC)的意义,在线质量仪表在先进控制系统中的应用及其效果。肯定了APC控制是企业挖潜增效的重要手段以及在线质量仪表在石油化工等生产环节中的重要作用。并介绍了当前中石化企业装置应用的先进控制系统主要采用HONWEL的鲁棒多变量预估控制技术、APSPEN公司的DMCplus控制技术。报告还介绍了武汉通力倾点分析仪、蒸汽压分析仪,德国西门子色谱仪,德国布鲁克金红外分析仪等中石化企业作为软仪表校正部分的在线质量仪表。  博太科集团有限公司 邓建友  报告题目:BARTEC微量水/水露点在线分析技术  报告中邓建友首先介绍了德国BARTEC公司的发展历程及目前的发展情况。随后着重介绍了公司露点分析仪HYGROPIL-F5673的技术特点、测量原理(光纤湿度传感技术)及其应用领域等。  聚光科技(杭州)股份有限公司 李霞  报告题目:在线分析系统应用于硫磺回收工艺在线监测  李霞在报告中介绍了聚光OMA-3510硫磺比值仪,其采用全固化紫外过程分光光谱、差分光学吸收光谱、原位取样、热法除硫等技术,有效的解决了硫磺堵塞、响应时间长、安装维护工作量大等问题。  美国哈希公司 刘智龙  报告题目:真气对钢铁表面的氧化机制探讨及溶解氢检测技术应用  刘智龙在报告中简单介绍了溶解氢的来源及氧化机制、溶解氢的测量原理及其影响因素等。  中国石油化工股份有限公司广州分公司检验中心 符青灵  报告题目:在线分析小屋连锁系统功能与实现  报告中符青灵介绍了在线分析小屋连锁系统的硬件配置、连锁逻辑及其在PLC系统上的实现方法。对目前在线分析小屋连锁报警系统存在的问题进行了阐述,特别提出要使用故障安全型常闭触点作为报警信号,并希望国产分析小屋的连锁报警系统进一步完善。  吉林大学 赵冰  报告题目:近红外光谱在线检测中药提取过程  报告提出由于近红外光谱仪具有体积小,分析速度快,受温度、压力和震动等外部因素干扰小等优势,其可以安装在中药生产流水线上,直接检测各个加工环节的药物质量参数。报告提出,目前在中药生产过程尤其是提取过程来说基本没有在线监测手段的情况下,近红外在线监控中药提取过程是可行的。报告还指出这种应用需要进一步完善的问题是分析模型的建立、中药品种适应性范围、多参数同时监测和监控等。  燕山石化 段宝军  报告题目:核磁共振(NMR)技术在线快速原油评价应用  报告首先肯定了NMR技术应用于原油在线快速评价的可行性,并通过不同的监测指标介绍了其应用于分析原油、石脑油、常一线和常二线的效果。主要产品常一线收率在NMR仪表投用后,提高收率2个百分点,常二线提高收率4个百分点。  NMR在线分析系统实现对原油的快速在线评价,填补了原油不能在线快速评价的技术空白,在国内的炼油生产和设备使用上是一项革命性的技术创新。
  • 工信部发文:推动在线检测、计量仪器仪表升级
    工业和信息化部办公厅关于印发《制造业质量管理数字化实施指南(试行)》的通知制造业质量管理数字化是通过新一代信息技术与全面质量管理融合应用,推动质量管理活动数字化、网络化、智能化升级,增强产品全生命周期、全价值链、全产业链质量管理能力,提高产品和服务质量,促进制造业高质量发展的过程。为推动制造业质量管理升级,以数字化赋能企业质量管理,强化产业链质量协同,优化质量创新生态,特制定本指南。一、总体要求推进制造业质量管理数字化是一项系统性工程,要以提高质量和效益、推动质量变革为目标,按照“围绕一条主线、 加快三大转变、把握四项原则”进行布局。企业要发挥主体作用,强化数字化思维,持续深化数字技术在制造业质量管理 中的应用,创新开展质量管理活动。专业机构要以提升服务为重点,加快质量管理数字化工具和方法研发与应用,提供 软件平台等公共服务。各地工业和信息化主管部门要以完善 政策保障和支撑环境为重点,做好组织实施。(一)围绕一条主线。把数字能力建设作为推进质量管理数字化发展的主线,加快数字技术在质量管理中的创新应 用,优化重构质量管理业务流程,打破不同管理层级、职能部门以及企业间的合作壁垒,赋能企业多样化产品创新、精 细化生产管控、高附加值服务开发、个性化体验提升,快速 有效应对不确定性变化,不断构建差异化竞争优势。(二)加快三大转变。加快重塑数字时代质量发展理念,推动质量管理范围从企业质量管控向生态圈协作转变,加强对产品全生命周期、产业链供应链乃至生态圈协作质量的管 理;推动质量管理重点环节从以制造过程为主向研发、设计、 制造、服务等多环节并重转变,深化质量数据跨部门跨环节 跨企业采集、集成和共享利用,促进质量协同和质量管理创 新;推动质量管理关注焦点从规模化生产为主向规模化生产与个性化、差异化、精细化并重转变,积极协同生产模式和组织方式创新,主动适应动态市场变化需求。(三)把握四项原则。注重价值牵引和数据驱动。把提升发展质量与效益作为出发点和落脚点,深化全过程全链条 数据挖掘,驱动质量变革。注重深化实践和创新应用。发挥 数字化系统作用,深化推广质量管理理论方法和实践活动, 依托信息化平台在全产业链、价值链推动质量管理创新应 用。注重分类引导和示范带动。引导企业结合自身条件制定 方法路径,通过树立一批典型场景、质量标杆企业加强方向 指引。注重开放合作和安全可控。完善覆盖全产业链、生态 圈的质量协作机制,把握安全和发展的关系,加强企业信息 安全保护。二、明确质量管理数字化关键场景(四)面向企业重点业务环节的质量管理数字化。处于数字化起步期的企业要根据实际需求,选择研发、设计、采购、生产、检测、仓储、物流、销售、服务中的重点业务环节,着力推进数字技术应用。充分运用数字化工具加强对业务环节质量信息的采集、分析和利用,开展数字化设计验证、 质量控制、质量检验、质量分析和质量改进,提升质量过程 控制的精细化、智能化水平,提高企业质量管理的效率和效益。(五)面向产品全生命周期和全产业链的质量协同。已较好实现数字化并实现业务集成运作的企业,要推进基于数 字化产品模型的研发、设计、生产、服务一体化,加强产品 全生命周期的质量信息追溯,提升产业链供应链各环节质量 数据共享与开发利用,推进数据模型驱动的产品全生命周 期、全产业链的质量策划、质量控制和质量改进,加强产业 链供应链上下游质量管理联动,促进多样化、高附加值产品 服务创新。(六)面向社会化协作的质量生态建设与知识分享。具备平台化运行和社会化协作能力的企业,要推进质量管理相 关资源、能力、业务的在线化、模块化和平台化,与生态圈合作伙伴共建质量管理平台,加强质量生态数据的收集整 理、共享流通和开发利用,推动质量管理知识经验对外输出和迭代优化,构建客户导向、数据驱动、生态共赢的质量管理体系和商业模式,逐步打造形成质量共生共赢新生态。重点行业质量管理数字化关键场景原材料行业。面向钢铁、石化、化工、建材等行业,推进生产制造数字化质量管控。基于传感器、机器视觉、自动化控制、先进测量仪器等技术在生产环节深度应用,加强企业内部管控精细化程度,推进生产环节质量数据自动采集与处理,开展全流程质量在线监测、诊断与优化,以市场、过程质量指标为牵引设置智能预警的管控限制,持续提升质量控制水平。强化供应链上下游质量管理联动,联合上下游企业共建供应链管理系统及平台,打通供应链上下游企业间质量信息传递渠道,基于数据互联互通与有序流通共享,提升从采购寻源到生产销售的全过程质量协同管控、全生命周期质量追溯管理等水平。装备制造行业。面向机械、交通设备制造等行业,推进基于数字模型的产品质量设计。推进人工智能、仿真等技术在产品研发设计环节应用,搭建产品级、部件级数字仿真模型,开展失效模式分析预防、装配及物流仿真,识别最优设计方案,通过智能化质量策划提升质量设计水平,降低质量损失风险。推进生产制造数字化管控,基于传感器、机器视觉、自动化控制、先进测量仪器等技术在生产环节深度应用,提升精益生产过程质量控制水平。推进基于产品全生命周期管理的服务质量提升。基于线上平台连接实现整机及零部件状态识别与跟踪,开展产品故障预警预测,保养服务预警提示等延伸服务,促进产品高端化。消费品行业。面向轻工、纺织行业推进生产制造环节数字化质量管控。推广传感器、机器视觉、自动化控制技术等在轻纺生产环节广泛应用,提高在线监控水平。面向医药、食品等行业,推进产品全生命周期质量追溯。联合上下游共建产品唯一标识规范,开展质量追溯体系建设,提供信息实时追溯和查询服务,强化全生命周期质量协同管控,让消费者放心消费。三、完善企业质量管理数字化工作机制(七)加强质量管理数字化组织领导。企业应结合两化融合的发展目标和规划部署,优化质量方针、质量目标,制定质量管理数字化的提升路径。明确推进质量管理数字化工作的责任部门、职责和权限,创新质量部门与业务部门协同 推进组织模式,统筹规划并选择质量管理数字化关键场景,确定资源保障,分步推动实施。在质量管理体系运行管理中应定期评估数字化能力的提升效果,并向最高管理者报告。(八)加强质量管理数字化活动策划。企业应以用户需求为导向,梳理关键场景的质量管理要求,运用两化融合管理体系等方法,开展包括流程优化、装备升级、信息系统集 成、数据资源利用、操作规程更新在内的质量管理数字化活 动策划,运用数字技术打通流程断点,加强业务流程状态跟踪、在线监控和动态优化,强化质量目标和质量活动的闭环管控。(九)推动质量管理数字化资源整合。鼓励企业依托工业互联网平台、数据集成平台等,建设统一质量管理平台, 实现质量管理知识、方法、经验等模型化、平台化。加强数字设计工具的开发利用,运用数字分析建模、数字孪生、可靠性设计与仿真、质量波动分析等技术提高产品用户体验和质量设计水平。鼓励龙头企业建设产业链质量协同平台,推动企业间质量信息共享与知识共创,探索产业链质量管理联动新模式,提升产业链质量协同发展水平。四、增强企业质量管理数字化运行能力(十)提高岗位数字化作业技能。企业应加强质量管理数字化活动的全员参与,完善评价和激励机制,将推进质量 管理数字化转变为员工主动创新、有能力创新的现实行动。结合数字化转型的发展需要,对影响质量的相关岗位人员制定数字化技能提升计划,提高运用信息化系统以及在数字化 条件下应用质量管理技术方法的能力。对有重要影响的岗位人员实施适当的考核评价,以确保相关人员具有在数字化条 件下履行质量职责的能力。(十一)推进装备数字化改造升级。企业应按照质量管 理数字化核心能力建设需求,加强必要的生产制造装备改 造,提高工艺控制自动化、智能化、精准化水平,保证工艺 稳定,减少质量波动。结合装备数字化改造过程,设计开发 相应的质量管理系统平台,形成以数据为驱动的在线质量控制和自主决策能力,为工艺改进和产品创新夯实基础。(十二)实施全流程物料数字化管理。企业应建立与数字化制造相适应的仓储物流系统,在采购、生产、仓储、物 流、交付及售后服务全过程提高物料数字化追溯管理水平。与重要供应商建立协同的数字化管理系统,共享采购产品质 量、批次、交期等信息。有条件的企业应对关键物料实施一物一码管理,实现全流程质量追溯。(十三)强化检验测试数字化管理。企业应根据质量管理数字化要求,完善检验测试的方法和程序。推动在线检测、计量等仪器仪表升级,促进制造装备与检验测试设备互联互通,提高质量检验效率,提升测量精密度和动态感知水平。运用机器视觉、人工智能等技术,提升生产质量检测全面性、精准性和预判预警水平。五、加强产品全生命周期质量数据开发利用(十四)加强质量数据管理。企业应将质量数据纳入数据资产管理范畴,加强质量数据标准化管理,开展企业数据管理能力建设。加强质量数据采集、管理、处理、分析、应用等全过程管理,明确各环节的职责和权限,强化跨部门及部门内数据管理机制建设。完善数据架构设计,促进质量数据在业务活动之间高效率交换共享。(十五)深化质量数据建模分析。企业应基于质量知识库的质量管控模型,开展基于大数据的全过程、全生命周期、全价值链质量分析、控制与改进,推进数据模型驱动的产业链供应链质量协同,深入挖掘质量数据价值,及时洞察质量风险和机遇。开发部署基于数据的质量控制和质量决策模型,提高质量响应和处理的及时性,降低质量业务决策风险,实施更加有效的质量预防和改进,提升用户体验,强化对不 确定性的柔性响应能力和水平。(十六)提升质量数据安全管理水平。企业应落实《数据安全法》和有关行政法规要求,强化数据安全意识,履行 数据安全保护义务。加强态势感知、测试评估、预警处置、灾难备份等安全能力建设,保障企业自身和用户的质量数据安全,构筑涵盖网络安全、系统安全、业务安全等的多方位质量数据安全保护屏障。六、创新质量管理数字化公共服务(十七)培育推广系统解决方案。鼓励装备制造商、软件服务商、企业、科研院所等围绕质量管理数字化发展需求, 联合研制推广关键亟需的方法和工具,分行业、分场景开展联合攻关和测试验证,形成集架构设计、方案咨询、关键装备、核心软件、数据集成、流程优化、运营评估于一体的系统性解决方案并进行推广。鼓励各地工业和信息化主管部门组织开展质量管理数字化系统解决方案试点示范,分行业、 分场景遴选和支持一批解决方案最佳应用实践,建设解决方案体验和推广中心,促进市场服务资源与企业需求精准对接。(十八)探索平台化数据共享服务。在生物医药、新材料、航空航天、船舶与海洋工程、电子制造、新能源与智能网联汽车等领域,鼓励相关行业协会和龙头企业建设产品质量大数据公共服务平台,提供质量信息在线查询、质量风险分析、质量成本分析和质量追溯等服务。鼓励专业机构基于平台提供质量管理数字化水平测评、诊断等服务,不断构建和完善诊断对标模型,加强对中小企业质量管理数字化的诊断、培训和辅导,提升质量管理整体绩效。(十九)完善标准和检测认证服务。在现有领域已发布的相关标准规范基础上,鼓励标准化组织、行业协会、社会团体、重点企业围绕质量管理数字化建立标准和规范,加强标准宣贯、应用服务和实施效果评估。面向产业集聚区,推动建立和完善面向质量管理数字化的标准研制、产业计量、 检测认证等公共服务体系,培育提供咨询诊断、项目实施和运行维护等全流程质量管理数字化提升服务的专业机构。七、完善政策保障和支撑环境(二十)加强组织落实。各地工业和信息化主管部门要结合本地区实际,加强与市场监管等相关部门在质量管理数 字化发展中重大问题、重大政策和重大工程等方面的协调配 合,建立健全政府、行业、企业、科研院所和专业机构的协 同推进机制。充分利用现有财政资金、产业投资基金,加大对制造业质量管理数字化薄弱环节和公共服务平台的支持力度。(二十一)强化宣贯引导。鼓励各地工业和信息化主管 部门加大质量管理数字化推进力度,加强政策宣贯解读,普及质量管理数字化知识,提高企业推进质量管理数字化的意识和实践能力,持续扩大企业质量管理数字化的影响力。支 持行业协会、产业联盟与企业共同推广质量管理数字化相关产品、技术、标准、服务,推动系统解决方案对外输出。(二十二)创建标杆示范。鼓励产业联盟、行业协会、专业机构等分行业建设质量管理数字化场景清单,持续开展质量管理数字化新模式遴选。总结提炼质量管理数字化的典型案例,培育和发现一批带动性强、可复制可推广的典型经 验。加强交流推广,以成效显著的企业标杆引领推动行业整体质量水平提升,营造良好质量管理数字化发展氛围。(二十三)加强人才培养。推动产业联盟、行业协会与 高校、科研院所等深化合作,共建质量管理数字化创新联合实验室,开展数字化质量先进方法体系培训。鼓励校企联合建设一批数字技能实训基地,培养知识型、技能型、创新型的质量管理人才。
  • 巴西新原油实验室选用赛默飞世尔质谱仪
    巴西新原油实验室选用 Thermo Scientific 组合质谱仪快速分析石油样品 -组合质谱仪将用于快速的同时分析石油样品中的多种成分。全球服务科学行业的领导者赛默飞世尔科技,今天公布汤姆森质谱实验室的新原油实验室购买了一台 Thermo Scientific LTQ FT Ultra 组合质谱仪 。该实验室隶属于巴西坎皮纳斯州立大学( State University of Campinas )化学研究所。这台 LTQ FT Ultra™ 将用于快速的同时分析石油样品中的多种成分,以加速生产并提高该实验室的工作效率。 石油是世界上最复杂的天然混合物和最具有化学分析挑战性的样品之一。新原油实验室是巴西石油巨头巴西国家石油公司( Petrobras )和巴西国家石油管理局( ANP )的合作伙伴。为了通过学术研究促进新分析技术的研发,巴西国家石油公司投资 250 万美元在汤姆森质谱实验室中建成了一个原油实验室。该原油实验室将会评估傅里叶变换质谱仪( FTMS )在原油生产加工中的应用。该实验室进行的实验已经突显了此技术在直接分析原油样品方面的优势,不需要额外的样品前处理和在线分离技术。 该实验室之所以选 择Thermo Scientific LTQ FT Ultra ,是因为它独一无二的快速鉴别多种化合物的能力,它仅用 10-15 分钟就能鉴别单个石油样品中的多达 10 , 000 种天然化合物的分子式。另外,它还能将最先进的离子阱和傅里叶变换离子回旋共振技术独一无二的结合在一台仪器上,为原油实验室提供优异的分析技术和多功能性。正因如此, LTQ FT Ultra 显著提高了所采集数据的质量和数量。 新实验室的协调员 Dr. Marcos Nogueira Eberlin 教授这样评价:“直到最近,巴西新原油实验室的研发主要还是通过公共资源来完成的。然而,巴西的石油公司现在越来越多地与科研实验室合作开发最新的先进分析技术。我们原油实验室应用了LTQ FT Ultra 组合质谱这样的先进技术,确保我们达到巴西国家石油公司对最快分析速度和最佳数据品质的要求。 LTQ FT Ultra 是我们实验室基础设施中一个非常重要的工具,它帮助我们显著提高了巴西国家石油公司的石油开采和生产加工的能力。” 关于赛默飞世尔科技( Thermo Fisher Scientific ) 赛默飞世尔科技有限公司( Thermo Fisher Scientific Inc. )(纽约证交所代码: TMO )是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到 105 亿美元,拥有员工 34,000 多人,为 350,000 多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。 Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。 Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请登陆: www.thermofisher.com (英文), www.thermo.com.cn (中文)。
  • Webinar在线网络讲座邀请--原油及润滑油酸值测定新方法(ASTM D8045-2016)
    瑞士万通网络讲座即将开始,名额有限,赶快报名参加吧!报告名称:原油及润滑油酸值测定新方法(ASTM D8045-2016)时间:2016-09-05 14:00 讲师:龚雁 (瑞士万通中国电位滴定产品经理,有多年电位滴定应用的丰富经验) 杨一晖 (广研检测 油品检测专家)相关领域:石油、化工人数上限:120内容简介: 石油产品酸值的测定现行国际标准为ASTM D664和国家标准GB 7304,这两种方法都是基于电位滴定的方法。但该方法长期以来一直存在的问题有:滴定时间长样品溶解性差各个实验室样品测定结果不一致电位电极需要按步骤进行维护瑞士万通公司温度滴定测定石油产品酸值的方法快速并且稳定,电极不需要特别维护。ASTM标委会在2016年已经通过了该方法的最终论证并给出标准号为ASTM D8045-2016。广研检测作为国内油品检测的专业机构,使用温度滴定的方法进行石油产品的检测具有丰富的经验。 心动不如行动! 快来报名了解我们最新的测定技术!报名地址:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2124
  • 国产大口径原油管道刮板流量计研制成功
    记者7月5日从国家管网集团获悉,该集团东部原油储运公司承担的国产大口径原油管道刮板流量计研制与应用科技项目经过1万余小时的工业试验,日前通过有关部门验收,正式投入使用。这标志着又一油气管道关键设备实现国产化,对有效降低管道建设和运营成本,更好保障国家能源安全具有重要意义。国产大口径原油管道刮板流量计。国家管网集团供图“当前,国家管网集团用于原油贸易交接计量的大口径进口流量计服役时间较长,即将面临着大批量更新。新建的原油管道重点工程对大口径原油管道刮板流量计也有着大量的采购需求。”国家管网集团东部原油储运公司生产运行部副经理张光表示,出于降低建设和运营成本等原因,自主研发国产大口径原油管道刮板流量计势在必行。2021年7月,国家管网集团启动原油管道刮板流量计研制与应用科技项目研究。项目主要研究内容包括技术规格书的编制、图纸设计和样机制造、样机功能和性能测试、工业性试验、国产化鉴定等。国家管网集团东部原油储运公司科技研发中心副经理曹旦夫介绍,通过科研攻关,项目组解决了刮板流量计凸轮设计、刮板选材、机械和电子双表头设计等关键技术难题,使自主研制的刮板流量计提高了准确度和重复性、提升了量程比,实现了双表头和双路脉冲输出功能,消除了流量计倒转或振动造成的发讯误差,满足精准计量需求。国家管网集团工作人员正在操作国产大口径原油管道刮板流量计。国家管网集团供图“该项目研发过程中,共生产制造了4台刮板流量计样机,其中两台分别在中国计量科学研究院和国家石油天然气大流量计量站进行第三方测试,另外两台分别安装在国家管网集团东部原油储运公司扬子作业区扬子站、山东省公司东营站进行工业性试验。”项目经理、国家管网集团东部原油储运公司物资供应中心经理刘波介绍。2022年6月,刮板流量计样机完成1万余小时的工业试验,试验成果运行平稳,满足工业性运行要求。该设备的成功研制,填补了国产大口径原油管道刮板流量计的空白。据了解,下一步,国家管网集团将开展国产刮板流量计的全系列化研制,为先进制造业自主创新助力。
  • IMCE发布双样品高温弹性模量仪新品
    双样品高温弹性模量仪HT1600-DS,在原有HT1600基础上,增加了双样品支座及测试系统;性能上,指标同HT1600相同,可以同时测试2个样品,提高测试效率一倍,并且可以添加可选件立式膨膨胀仪!创新点:双样品高温弹性模量仪HT1600-DS,在原有HT1600基础上,增加了双样品支座及测试系统;性能指标同HT1600相同,可以同时测试2个样品,提高测试效率一倍,并且可以添加可选件膨胀仪!双样品高温弹性模量仪
  • Diana700用于原油馏程测试,追求实现原油价值
    由于地质构造,生油条件和年代等不同,每个地区所产的原油性质和组成千差万别,通过原油评价确定原油类型,选择合适的加工方案可以实现原油价值较大化利用。原油的组成十分复杂,是由分子量数十到数千,数目众多的烃类和非烃类组成的复杂混合物,分子量分布宽,分类难度比较高。无论是对原油进行研究还是加工利用,必须采用分馏方法,将原油按其沸点的高低切割成若干部分。原油种类也可按照关键馏分判定,分为石蜡基,中间基和环烷基。原油中从常压蒸馏馏出初馏点到200℃(或180℃)之间的轻馏分为汽油馏分,200℃(或180℃)~350℃之间的中间馏分为柴油馏分,大于350℃称为常压渣油或重油,这里所提到馏分是指生产汽油和柴油的原料,不等同石油产品。原油是多组分的烃类混合物,含有盐类,泥沙和水分,原油中水分以游离水,悬浮水和溶解水形式存在,原油馏程测试过程中最常见的不安全因素是“冲样”和“爆沸”。输“冲 样” 是指原油在加热过程中由于油蒸汽升腾过快,得不到及时冷却,冲出冷凝器或者迫使蒸馏烧瓶塞冲出,导致测试结果无效。“爆 沸” 是指原油中油水相互包裹,形成油包水乳液,由于油、水受热膨胀系数不同,使水滴突然汽化,产生“小爆炸”现象。Diana700优势◾ 低电压加热器,全自动智能加热调节,自动升降加热器;◾ 电子半导体快速温控技术,用于冷凝管以及收集仓的快速精确温度控制;◾ 5合1多功能温度传感器,即是传感器,又能有效密封烧瓶;◾ 高精度体积检测;◾ 智能测试条件监控系统,智能检测所有的必须部件和动作,引导式操作,即使初学者也能轻松掌握。得益于Diana700的智能加热控制和高效的冷却技术,精确的体积检测,可用于原油的馏程评价。测试目的:依据汽油和柴油的馏分点所得出的回收体积评判原油的品质并制定相应的加工方案样品来源:西部某油区两口油井样品前处理:通常采用压力釜脱水,本次测试采用离心脱水法(离心前按一定配比加入破乳剂),具体设置条件如下:样品名称常温状态脱水条件水含量(脱水后),m/m1#样品半固态不流动离心脱水大于0.2%(标准要求)2#样品液态,流动性好大于0.2%(标准要求)测试步骤◾ 依据原油性质采用安东帕自定义方法;◾ 借助水浴使脱水后样品具有流动性,擦干净量筒内壁刻度处,仪器自动读取体积;◾ 读取结束,迅速将样品装入到装有适量沸石的蒸馏烧瓶中,选择方法,根据仪器提示完成相应操作;◾ 量筒放入回收舱,放入导流器,将蒸馏烧瓶安装在加热位;◾ 点击屏幕“开始蒸馏”,观察检测过程是否有爆沸和冲样现象,实验结束,仪器自动保存数据。样品测试结果测试温度回收体积,%1#样品2#样品205℃12.040.8310℃34.075.1结论1#样品和2#样品测试过程中,运行平稳,无“冲样”和“爆沸”现象,蒸馏速率始终保持在4-5mL/min,保证了原油蒸馏过程的安全性;1#样品:205℃回收体积为12.0%,310℃回收体积为34%;2#样品:205℃回收体积为40.8%,310℃回收体积为75.1%; 2#样品汽油和柴油馏分含量高于1#样品,更适合汽柴油加工;Diana700完全满足《GB/T 26984-2011原油馏程的测定》要求,能够适度放宽标准中关于水含量要求的相关条件,可以完美的执行原油馏程测试。
  • Theta Flow接触角测量仪在线演示&专家问答|Biolin直播
    Theta Flow Online DemoTeams线上直播 实机演示对我们的接触角测量仪感兴趣吗?不错的选择!我们新的光学接触角测量仪Theta Flow的演示环节即将到来。我们将向您介绍该仪器,向您展示如何运行测量,并简要概述软件功能。您还可以向我们的专家提问!• Theta Flow简介• OneAttension软件• 如何进行测量• 测量功能会议时间(注册链接按CEST显示):4月13日 下午14:00(April 13th, 8:00 AM)4月13日 晚上21:00(April 13th, 3:00 PM)只需在链接网页中注册,并选择合适的时间段加入演示。Teams见!扫码即可注册瑞典百欧林科技有限公司是一家专注于界面分析、薄膜制备与表征和分子间相互作用领域的先进科研仪器生产商,是该研究领域的开创者和领导者。应用领域涵盖表界面、材料科学、生物科学、药物开发与诊断等众多研究领域。大昌华嘉科学仪器部作为百欧林中国区Attension系列产品总代理,我们为接触角及表面张力的用户提供完善的售前、售后服务及全面的技术和应用支持。
  • Miconex 2011之“在线仪器分析检测技术”
    仪器信息网讯 2011年8月30日,由中国仪器仪表学会主办的“第22届多国仪器仪表学术会议暨展览会(Miconex 2011)”在北京中国国际展览中心隆重开幕。本届Miconex有500余家国内外公司参展,近万个品种的仪器仪表新型产品集中展出。  Miconex展会同期还组织召开了主题为“科学仪器服务民生”的大型学术会议,其中“在线仪器分析检测技术”分会场邀请了浙江大学金钦汉教授、国家海洋中心哈谦先生、天津大学赵友全教授、西安交通大学汤晓君书记及上海悦特精密科学仪器有限公司总经理俞嘉德博士作了精彩报告,30余位业内人士到场听取了报告。会议现场浙江大学金钦汉教授报告题目:过程分析控制技术的新发展—微型模块化在线采样和分析技术  金钦汉教授在报告中分别列举了几种应用于气相色谱(GC)、液相色谱(LC)、核磁共振(NMR)以及表面等离子共振仪(SPR)的微型采样装置,并指出,NeSSI(新型取样装置)可应用在石化、化工、炼油等行业的分析测量过程中,可以包括原料或最终产品的质控、环境的安全与保护、能耗的降低或过程的控制。  最后,金钦汉教授提出了两点建议:(1)能否在我国也组织一个类似于NeSSI的通用微型模块化在线分析控制平台,把有中国特色的“样品取样处理系统”等有自主知识产权的技术集成进去;(2)与美国相应的学术机构(会议)建立直接联系,加强国际学术和技术交流,加快提升我国在线分析控制技术。国家海洋中心哈谦先生报告题目:水下营养盐现场自动分析技术的研究  哈谦先生介绍到,目前营养盐的测量方法主要包括分光光度法、荧光法、紫外光谱吸收法及离子选择电极法,其中分光光度法可适用于海水、淡水中五种营养盐的测量,因此更为其他方法更为适用。  此外,国家海洋中心还研发了一款集化学分析、光学测量、机械设计和微机控制等技术于一体的海洋现场测量仪器,可安装到海洋浮标、岸边码头和监测船等多种试验平台,亦可用于陆地上的湖泊、河流和水库淡水中营养盐的监测,可在现场无人值守情况下,自动完成对五种营养盐的同时测量。天津大学赵友全教授报告题目:基于光学法的水中油在线分析仪器研究  赵友全教授在报告中首先提到了美国墨西哥湾原油泄漏、大连石化多次起火、陕西渭南柴油泄漏等恶性事件,指出油污染对环境生态破坏严重,具有不可预见的未来影响,且当前技术手段难以及时跟进的现状与启示。  目前,用于水中油的检测方法包括重量法、色谱法、光声色谱法、紫外吸收法、紫外荧光法、光散射法及红外法等,对此赵友全教授指出,基于光学法的监测技术是一种实时在线技术,可应用于船舶(舱底水)、码头、河流、管道泄漏、锅炉循环水、工业冷却水等石油类污染物的检测监测过程中,无需试剂,无二次污染;一次即可校正,操作简单、维护量少;分析速度快、有多种安装、通信方式。西安交通大学汤晓君副教授报告题目:油气探井傅里叶变换红外光谱气测录井仪  汤晓君副教授说到,气测录井是油气探井结果研判的重要手段,目前常用的油气探井气测录井仪是气相色谱仪。近年来,探井技术发展很快,探井速度获得了很大提升,气相色谱仪分析速度慢,不能放在井口录井,录井结果有平滑性和滞后性,且维护麻烦,已成为探井发展的障碍。  据此,刘君华教授、汤晓君副教授等人采用红外光谱分析技术,自2004年研制至今,历时7年,创建了一种全新的油气探井气测录井仪——YQJK井口远程测定仪,分析速度快、维护简单,尤值一提的是该仪器在保证动态特性的同时,还能保证分析结果的准确性。据悉,目前国内外还有采用光谱分析技术构建同类仪器的相关报道。上海悦特精密科学仪器有限公司总经理俞嘉德博士报告题目:最好液相色谱“紫外检测器”的要点及国内独创的“脉冲安培检测器”色谱应用创新点  俞嘉德博士介绍到,上海悦特精密科学仪器有限公司现拥有四个专利技术产品:紫外可见分光自动增益检测器、荧光双分光检测器及紫外可见-荧光双检测器、液相和离子色谱—脉冲安培检测仪、气相和液相色谱检测超灵敏仪。  其中,紫外可见分光自动增益检测器采用了自动增益等多种专利技术,克服了因波长变化导致灵敏度,噪音和漂移变坏的问题,还克服了计算机无法解决灵敏度,噪音,和漂移的问题 液相和离子色谱—脉冲安培检测仪采用世界独创的自动消除噪音和降低漂移的双重专利技术,仪器稳定,灵敏度,信噪比和性价比极高,可一机可以替代多种仪器分析,能替代紫外检测,荧光检测,电化学检测,示差折光检测,电导检测和生化检测等。
  • 华盛昌智能传感测量仪研发生产建设项目动工
    2023年6月9日上午,华盛昌(惠州)科技实业有限公司智能传感测量仪研发生产建设项目奠基动工仪式在惠州市仲恺高新区潼湖生态智慧区举行。   据悉,华盛昌(惠州)科技实业有限公司智能传感测量仪研发生产建设项目位于潼湖生态智慧区中韩(惠州)产业园起步区内,建成投产后主要进行数字万用表、数字钳形表、电力测试器、红外热像仪、红外测温仪等各类多功能测量仪器的研发生产和销售。项目规划用地面积约3.1万平方米,总建筑面积约11.7万平方米,总投资额约4亿元,项目全部建成并达产后预计年总产值约12亿元。   华盛昌(惠州)科技实业有限公司系深圳市华盛昌科技实业股份有限公司全资子公司,深圳市华盛昌科技实业股份有限公司作为国内集专业自主设计、研发、生产和销售各类测量仪器仪表于一体的企业,华盛昌坚持持续创新发展,为更好响应国家政策,其在原有的业务基础之上拓展了医疗和新能源领域。其建立了分子诊断技术平台、免疫层析技术平台,并推出了实时荧光定量PCR分析仪,另一方面,华盛昌创新设计研发充电桩、户外移动电源、家用储能等系列新能源产品,积极布局新能源板块海内外业务。
  • 原油检测标准汇总及常用仪器盘点
    p 原油,一般指未经加工处理的石油,是一种黑褐色并带有绿色荧光,具有特殊气味的粘稠性油状液体,是烷烃、环烷烃、 芳香烃和烯烃等多种液态烃的混合物。原油的主要成分是碳和氢两种元素 还有少量的硫、氧、氮和微量的磷、砷、钾、钠、钙、镁、镍、铁、钒等元素。原油经炼制加工可以获得各种燃料油、溶剂油、润滑油、润滑脂、石蜡、沥青以及液化气、芳烃等产品,为国民经济各部门提供燃料、原料和化工产品。原油按组成可分为石蜡基原油、环烷基原油和中间基原油三类 按硫含量分,可分为超低硫原油、低硫原油、含硫原油和高硫原油四类 按比重分类可分为轻质原油、中质原油、重质原油以三类。/pp  原油的性质包含物理性质和化学性质两个方面。物理性质包括颜色、密度、粘度、凝固点、溶解性、发热量、荧光性、旋光性等 化学性质包括化学组成、组分组成和杂质含量等。/pp style="text-align: center "strong原油现行标准/strong/ppstrong/strong/ptable border="0" cellpadding="0" cellspacing="0" style="" align="center"colgroupcol width="48" style=" width:48px"/col width="168" style=" width:168px"/col width="72" style="width:72px"//colgrouptbodytr height="18" style="height:18px" class="firstRow"td height="18" width="48" style="border: 1px solid rgb(0, 0, 0) padding: 5px "序号/tdtd width="168" style="border: 1px solid rgb(0, 0, 0) padding: 5px "标准号/tdtd width="242" style="border: 1px solid rgb(0, 0, 0) padding: 5px "标准名称/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span1/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 25104-2019/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油水含量的自动测定 射频法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span2/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 37160-2019/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"重质馏分油、渣油及原油中痕量金属元素的测定 电感耦合等离子体发射光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span3/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 26985-2018/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油倾点的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span4/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB 36170-2018/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span5/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 17280-2017/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油蒸馏标准试验方法 15-理论塔板蒸馏柱/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span6/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 34430.3-2017/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"船舶与海上技术 保护涂层和检查方法 第3部分:原油船货油舱/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span7/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 33976-2017/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油船货油舱用耐腐蚀热轧型钢/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span8/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18606-2017/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"气相色谱-质谱法测定沉积物和原油中生物标志物/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span9/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18610.2-2016/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油 残炭的测定 第2部分:微量法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span10/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18611-2015/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油简易蒸馏试验方法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span11/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 31944-2015/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油船货油舱用耐腐蚀钢板/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span12/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18610.1-2015/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油 残炭的测定 第1部分:康氏法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span13/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 31820-2015/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油油船货油舱漆/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span14/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 17674-2012/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油中氮含量的测定 舟进样化学发光法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span15/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18608-2012/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油和渣油中镍、钒、铁、钠含量的测定 火焰原子吸收光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span16/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 6532-2012/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油中盐含量的测定 电位滴定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span17/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 6533-2012/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油中水和沉淀物的测定 离心法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span18/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 28910-2012/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油流变性测定方法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span19/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 11059-2011/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油蒸气压的测定 膨胀法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span20/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18609-2011/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油酸值的测定 电位滴定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span21/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18612-2011/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油有机氯含量的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span22/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 26982-2011/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油蜡含量的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span23/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 26983-2011/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油硫化氢、甲基硫醇和乙基硫醇的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span24/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 26984-2011/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油馏程的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span25/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 26986-2011/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油水含量测定 卡尔.费休电位滴定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span26/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 13377-2010/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油和液体或固体石油产品 密度或相对密度的测定 毛细管塞比重瓶和带刻度双毛细管比重瓶法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span27/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18340.1-2010/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"地质样品有机地球化学分析方法 第1部分:轻质原油分析 气相色谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span28/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 18340.5-2010/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"地质样品有机地球化学分析方法 第5部分:岩石提取物和原油中饱和烃分析 气相色谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span29/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 17606-2009/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油中硫含量的测定 能量色散X-射线荧光光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span30/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 11146-2009/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油水含量测定 卡尔?费休库仑滴定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span31/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 21450-2008/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油和石油产品 密度在638kg/m3到1074 kg/m3范围内的烃压缩系数/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span32/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 20658-2006/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油和液体石油产品 粘稠烃的体积计量/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span33/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 8929-2006/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油水含量的测定 蒸馏法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span34/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 1884-2000/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油和液体石油产品密度实验室测定法(密度计法)/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span35/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 11715-1989/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油洗舱机/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span36/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 9110-1988/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油立式金属罐计量 油量计量方法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px "span37/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "spanGB/T 6531-1986/span/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="178"原油和燃料油中沉淀物测定法(抽提法)/td/tr/tbody/tablep  原油常用的检测项目包含酸值、残炭酸值、残炭、粘度、馏程、卤素、倾点、蒸气压、水含量、硫含量、氮含量、析蜡点、有机氯、密度、蜡含量、沉淀物、盐含量、比热容、粘温曲线、密度与相对密度、元素含量等。/pp style="text-align: center "strong常见原油检测项目/strongstrong/strong/ptable border="0" cellpadding="0" cellspacing="0" width="564" style="" align="center"colgroupcol width="93" style=" width:93px"/col width="470" style=" width:471px"//colgrouptbodytr height="18" style="height:18px" class="firstRow"td height="18" width="93" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"项目内容/tdtd width="471" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"检测标准/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"酸值/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 18609 原油酸值的测定 电位滴定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"残炭 /tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 18610 原油残炭的测定 康氏法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"粘度/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 0520原油粘度测定 旋转粘度计平衡法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"馏程/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 26984 原油馏程的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"卤素/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 3185 原油中卤素含量的测定 氧弹燃烧-离子色谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"倾点/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 26985 原油倾点的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 7516 改性原油倾点的测定 熔化法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 7551 原油倾点测定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"蒸气压/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 11059 原油蒸气压的测定 膨胀法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"水含量/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 11146 原油水含量测定 卡尔· 费休库仑滴定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 26986 原油水含量测定 卡尔· 费休电位滴定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 8929 原油水含量的测定 蒸馏法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 5402 原油含水量的测定 电脱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 7552 原油 水的测定 卡尔· 费休电位滴定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"硫含量/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 17606 原油中硫含量的测定 能量色散X-射线荧光光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"氮含量/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 17674 原油及产品中氮含量的测定 化学发光法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"析蜡点/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 0521原油析蜡点测定 显微观测法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 0522 原油析蜡点测定 旋转粘度计法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"有机氯/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 18612 原油有机氯含量的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"密度 /tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 1884 原油和液体石油产品密度实验室测定法(密度计)/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"蜡含量/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 2698 原油蜡含量的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 0537 原油中蜡含量的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"沉淀物/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 6531 原油和燃料油中沉淀物测定法(抽提法)/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"盐含量/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 6532 原油及其产品的盐含量测定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 2782 原油中盐含量的测定 电测法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"br//tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 0536原油盐含量的测定 电量法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"比热容/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 7517 原油比热容的测定方法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"粘温曲线/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 7549 原油粘温曲线的确定 旋转粘度计法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"密度、相对密度/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 13377 原油和液体或固体石油产品 密度或相对密度的测定 /td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"简易蒸馏试验/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" GB/T 18611 原油简易蒸馏试验方法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"析蜡热特性参数/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 0545 原油析蜡热特性参数的测定 差示扫描量热法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"正辛烷及以前烃组分/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 7504 原油中正辛烷及以前烃组分分析 气相色谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"硫化氢、甲基硫醇、乙基硫醇/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 26983 原油硫化氢、甲基硫醇和乙基硫醇的测定/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"蜡、胶质、沥青质/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 7550 原油中蜡、胶质、沥青质含量测定法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"屈服值/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SY/T 7547原油屈服值测定 旋转粘度计法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"水和沉淀物/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 6533 原油中水和沉淀物测定法(离心法)/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"铁、镍、钠、钒 /tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"GB/T 18608原油中铁、镍、钠、钒含量的测定原子吸收光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"钠、镁、钙、铁、钒、镍、铜/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 3186原油中钠、镁、钙、铁、钒、镍、铜元素的测定 微波灰化-电感耦合等离子体发射光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"钠、镁、铝、硅、钙、钒、铁、镍、铜、铅、砷/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 3187原油钠、镁、铝、硅、钙、钒、铁、镍、铜、铅、砷的测定 波长色散X射线荧光光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"铅、汞、砷 /tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 3188原油中铅、汞、砷元素的测定 原子荧光光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"钠、镁、铁、钒、镍、铜、铅/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 3189原油中钠、镁、铁、钒、镍、铜、铅元素的测定 有机进样-电感耦合等离子体发射光谱法/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"铝、硅、钒、镍、铁、钠、钙、锌、磷/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"SN/T 3190原油及残渣燃料油中铝、硅、钒、镍、铁、钠、钙、锌、磷的测定 灰化碱熔-电感耦合等离子体发射光谱法/td/tr/tbody/tablepstrong/strongbr//pp  原油检测用到的仪器包括粘度计、差式扫描量热仪、离子色谱仪、X荧光光谱仪、气相色谱仪、电感耦合等离子体发射光谱仪、原子荧光光谱仪、原子吸收光谱仪等。/pp style="text-align: center "strong原油检测仪器  /strong/ptable border="0" cellpadding="0" cellspacing="0" width="421" style="" align="center"colgroupcol width="421" style=" width:421px"//colgrouptbodytr height="18" style="height:18px" class="firstRow"td height="18" width="421" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"原油检测仪器(点击可查看仪器专场)/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/1106.html" target="_self"酸碱浓度计/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/87.html" target="_self"旋转粘度计/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/24.html" target="_self"离子色谱仪/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/363.html" target="_self"石油低温性能测试仪(倾点/浊点/冰点/冷滤点/凝固点)/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/496.html" target="_self"红外水份测定仪、卤素灯水份测定仪/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/75.html" target="_self"能量色散型X荧光光谱仪/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/177.html" target="_self"密度计/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/1009.html" target="_self"盐含量测定仪/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/63.html" target="_self"差示扫描量热仪/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/1.html" target="_self"气相色谱仪/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/37.html" target="_self"原子吸收光谱/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/39.html" target="_self"电感耦合等离子体发射光谱仪/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/1080.html" target="_self"波长色散型X荧光光谱仪/a/td/trtr height="18" style="height:18px"td height="18" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/zc/36.html" target="_self"原子荧光光谱仪/a/td/tr/tbody/tablepbr//p
  • 上海精科公司成功研制出在线自动滴定仪
    一种可在现场即刻对工业企业等废水排放进行检测的ZDG-520在线自动滴定仪,最近由精科公司电化学仪器产品部研制成功,日前通过了市科委委托市技监局的技术鉴定。 精科公司电化学仪器产品部研制的该仪器(体积为170× 70厘米之间),属在线大型智能仪器,能在作业现场对工业废水排放进行快速检测,以确定工业企业排放废水是否有害物质超标,对水环境保护具有重要意义。该产品被列为市科委2007年环保在线测量仪器攻关项目(课题)。 精科公司电化学仪器产品部去年年底启动该项目,经10个月的努力开发,终于给项目划上了句号。520在线自动滴定仪配置了小型电脑,可方便用户直接并快速进行检测作业;仪器在国内目前处于领先水平。
  • 回顾近二十年我国齿轮量仪的发展(下)
    前文回顾:近二十年我国齿轮量仪的发展(上)5 CNC大齿轮测量中心和超大齿轮测量系统是CNC齿轮测量中心在大齿轮及超大齿轮测量的扩展和创新(1)1989年,工具所推出的局部CNC式1.2m大齿轮测量仪CZE1200D,如前所述,该仪器由单片式计算机控制步进电机二联动,首次实现齿轮量仪螺旋线的CNC数控数字化测量。其改进型为2015年的CZE1200DA齿轮测量仪(图24);图24 工具所CZE1200DA齿轮测量仪(2)2004年,哈量国内首次开发2m CNC大齿轮测量仪CNC3929,改进型为CNC L200(图25);图25 哈量L200 CNC大齿轮测量中心(3)2011年,精达创新设计开发2.5mCNC大齿轮齿轮中心,其改进型为JLR300(图26),在国内创新采用了三坐标三联动(θ,X,Y)的渐开线成形原理,实现沿端面啮合线对大齿轮渐开线齿廓精度的测量,即“NDG”法向展成测量原理;精达公司将该原理创新应用于小模数齿轮的测量中,取得了良好效果。图26 精达JLR300大齿轮测量中心(4)2017年,哈尔滨同和光学公司展出精密CNC大齿轮测量中心T150A(图27)。作为哈尔滨工业大学精密超精密加工和测量设备领域的科技成果产业化基地的哈尔滨同和光学展出的大齿轮测量中心,集成了超高精度气浮轴系、气浮托盘调心技术及直线电机驱动等先进技术。近年不少国产大型CNC齿轮测量中心,如哈量CNC L200(见图25)、精达JW型(图28)和智达ZD(图29)型大齿轮测量中心,都采用了5轴坐标系统结构布局,即径向坐标采用了上下二层,既简化机械结构又可减少测头阿贝误差,具有提高仪器稳定性和精度等优点。智达2020年新开发的Z系列大齿轮测量中心甚至采用了三种齿廓测量原理:法线极坐标、极坐标和啮合线测量原理,以适应不同用户需求。仪器采用全新分层控制理念的3U架构全闭环控制器实现动态位置全闭环控制,仪器性能得到了提升。图27 哈尔滨同和T150A齿轮测量中心图28 精达JW型齿轮测量中心图29 智达ZD型齿轮测量中心(5)2013年,北京工业大学成功开发了用于超大齿轮的双测量装置集成综合测量系统——“激光跟踪+三维平台”在位测量系统(图30),首次进行了大胆创新和探索,在超大齿轮的测量理论、技术和实践上,取得了令人可喜的成果。(a)(b)(c)图30 北工大超大齿轮旁置式双测量装置集成综合测量系统6 自动化智能化齿轮测量分选仪器/系统实现CNC齿轮测量中心在齿轮生产现场在线测量(1)2005年,工具所推出车间用齿轮在线三维双啮测量分选机CQPF2000, 随后哈量—北工大也成功开发出3501齿轮分选机(图31),能在线实现批产齿轮径向综合三维误差测量及分选功能。图31 工具所及北工大—哈量齿轮三维双啮测量机(2)2013年,精达为东风汽车变速箱生产线开发了JDFX-1型齿轮自动分选机,用机械手实现半自动盘/轴类齿轮的双啮检测和分选。2015年精达、智达及金量展出风格迥异的双啮式齿轮自动/半自动分选机(图32)。2015年,南京二机床展出了由六轴机器人操作的“智能化齿轮加工岛”(见图5),在实现齿轮无人化双啮自动检测的同时,通过网络连结,能根据测量结果进行反馈,对系统中的数控滚齿机和剃齿机的加工参数进行智能化调整后再加工,实现批产齿轮闭环质量控制与制造,在我国圆柱齿轮制造业的数字化、智能化和自动化中树立了发展标杆。哈量于2017年推出具有时代感的3503齿轮分选机(图33)。此外还有2005年秦川机床推出的在数控磨齿机上的数字化在机测量装置,近年在国内也得到重视,国产全自动流水线齿轮分选机的开发发展迅速。其中,哈尔滨精达和智达(图34)都有相应产品系列相继问世,服务于齿轮制造企业。以上齿轮分选机基本上都是以齿轮双啮仪为检测仪器。在提升齿轮双啮仪的自动误差补偿功能上,精达于2017年展出了获得专利的补偿式齿轮智能双面啮合检查仪产品,既提高仪器测量精度也满足了国际市场标准要求,该双啮仪的补偿功能引起行业的关注与好评。(a)(b)图32 精达半自动在线分选机(a)(b)图33 哈量3503齿轮分选机(a)和秦川机床在机测量(b)(a)(b)图34 精达JFE全自动流水线齿轮分选机(a)及智达2020年为浙江双环传动改造的日本制造桁架式齿轮在线检测分选设备(b)(3)2020年,智达为株洲齿轮有限公司提供了2台六轴机器人齿轮在线快速智能检测系统(见图6),集成了包括国产CNC齿轮测量中心和齿轮双啮测量仪以及意大利光学图像测量仪在内的3台检测功能各异的齿轮精密测量仪器,实现在线轴类齿轮零件的精度检测和质量统计及分选,充分显现了我国齿轮在线检测成套技术和装备的开发制造能力,在数字化、智能化和自动化方面已经提升到了一个崭新高度。7 齿轮整体误差测量仪技术传承难能可贵,新的发展令人期待和鼓舞1970年前后,由工具所黄潼年为首的我国齿轮制造与测量业界众多科研技术人员共同努力,创新开发的成套齿轮整体误差测量技术,致力于研究分析,力图探索齿轮的几何形状及位置精度和齿轮的啮合运动综合精度之间的因果关联。齿轮整体误差技术目前可大致分为三类:即采用坐标式几何解析测量法的齿轮静态整体误差测量技术、采用啮合滚动点扫描测量法的运动态齿轮整体误差测量技术以及与虚拟数字化测量齿轮或虚拟数字化配对工件齿轮进行啮合滚动的虚拟啮合滚动点扫描测量技术,三者都归类于运动几何测量原理。测量项目有:静态齿轮整体误差曲线族、运动态齿轮整体误差曲线族以及虚拟齿轮整体误差曲线族。期待今后会有传动动力态齿轮整体误差测量技术及相应曲线出现。(1)2002年,工具所持续开发锥齿轮整体误差测量技术,建立了锥齿轮局部互换性测量的相对测量体系,实现锥齿轮齿廓二次局部基准误差的补偿(图35),曾应用于青岛精锻齿轮厂。(a)(b)图35 工具所锥齿轮整体误差测量仪及局部互换性测量体系(2)至2007年,工具所不断改进并生产齿轮整体误差测量仪系列产品,包括CZD1200EA齿条式圆柱渐开线齿轮整体误差测量仪(见图24)、CZ450蜗杆式圆柱齿轮整体误差测量仪(图36)及用于小模数圆柱齿轮的CZ150蜗杆式测量仪(图37)。图36 工具所CZ450齿轮整体误差测量仪图37 工具所CZ150小齿轮测量仪(3)2015年,工具所和北工大相继成功开发出齿轮单面啮合差动式小模数齿轮整体误差测量仪(图38)。(4)2015年,北工大在蜗杆式圆柱渐开线齿轮整体误差测量理论和啮合计算上取得重大突破,在大幅提高齿轮误差测量范围评定精度和可靠性的基础上,成功开发出齿轮在线快速测量机及相应测量系统(图39)。测量机采用蜗杆式间齿单啮整体误差测量原理,集成了实施自动上下被测齿轮工件的工业机器人,组成了可用于汽车齿轮生产线的在线检测系统。该齿轮在线自动检测系统已于2015 年底在北齿和浙江双环二个企业的生产现场中得到了实际使用。图38 差动式整体误差测量仪图39 北工大齿轮在线测量机(a)(b)图40 基圆智能小模数齿轮影像测量系统和虚拟整体误差曲线(5)2021年,原北工大博士后和基圆智能科技(深圳)有限公司合作,在2015年齿轮整体误差测量与啮合计算的突破成果基础上,成功开发出CVGM小模数齿轮测量软件和配套的小模数齿轮机器视觉影像测量系统(图40),实现微小/小模数齿轮的在线快速测量。该CVGM软件系统除了采用齿轮整体误差测量理论,能够按照齿轮精度标准迅速计算得到传统小模数齿轮的单项几何误差,还能以虚拟(静态、运动态)齿轮整体误差(曲线)方式表达测量误差数据,从而大大扩展了该测量系统的齿轮误差分析和综合能力,为我国批量小模数精密齿轮快速测量开创了一个新局面,也大大丰富了我国开创的齿轮整体误差测量理论和实践。8 齿轮传动链综合测量仪呈现良好势头,开辟了齿轮测量仪器发展新天地从单个齿轮的几何精度测量与质量评价,进入到对齿轮副传动链的使用性能测试和评估,这可以看成是我国齿轮质量保障体系更为重要的一个环节和阶段,是我国齿轮制造从单个零件制造向关键传动部件制造发展质量保证提升的重要标志。近年国产齿轮传动链综合测量仪的蓬勃发展也揭示了这个发展趋势。秦川机床工具集团近期荣获的2021年度中国机械工业科学技术进步奖一等奖的项目“工业机器人精密减速器测试方法与性能提升技术研究“ ,充分显示了我国在国产减速器测试技术与实践领域所取得的丰硕成果。(1)2005年,重庆工学院和内江机床厂合作开发并提供的YKN9550锥齿轮滚动检验机产品(图41);图41 YKN9550滚动检验仪(2)2017年,北京国际机床展览会上,精达首次展示了国产齿轮传动装置/传动链综合测量仪产品(图42),该仪器可实现齿轮装置运动性能和传动性能的综合检测,包括速度、载荷及温度等参数变量下传动链综合性能的精确测量与分析。智达展示了为谐波减速器开发的综合性能测试仪(图17)。图42 精达传动链综合检测仪(3)2019年,北工大、北京市精密测控技术及仪器工程研究中心在国际机床展览会上展出新开发的RV减速器传动链测量仪和小模数锥齿轮综合误差滚动测量仪(图43a);2021年又开发了用于额定输出扭矩达1500Nm的RV减速器综合性能测试台(图43b)。该测试台集先进传感器、数据采集、控制技术与一体的高精度测试仪器,可测量RV减速器的传动误差、回差、扭转刚度、背隙、空载摩擦扭矩、启动转矩、反向启动转矩、传动效率等多种性能参数,选配不同附件可实现多种规格RV减速器的综合性能测试,已为厦门理工大学、集美大学及河南科技大等提供了产品。(a)(b)图43 北工大精密中心RV减速器综合性能测试仪及测试台9 一级齿轮精度基准的精心制作创建,成绩斐然;非渐开线基准的新途径探索,别有洞天(1)大连理工王院士团队通过几十年埋头实干,以工匠精神铸造出我国精品齿轮样板:研制出一级精度渐开线基准样板(图44)和标准齿轮;成套的超精加工测量理论、超精加工测量技术和制造工艺、成套超精加工的技术装备,为我国齿轮精加工和超精加工奠定了坚实基础。图44 大连理工一级精度渐开线基准样板(2)近年国家计量院研制开发了我国首个国家级直径1m齿轮形渐开线齿轮精度基准(图45),其技术参数供参考(见表1)。表1 中国计量院标准大齿轮参数图45 计量院基准齿轮(3)北工大研制开发了我国非渐开线齿廓精度基准:2011年开发的双球式非渐开线齿廓精度样板和2021年的双轴圆弧形齿廓精度样板(图46)。尝试探索一条新的途径来解决高精度及超高精度渐开线实物基准,尤其是解决大尺寸高精度渐开线实物基准的制造难题,以利于更切实地建立起具有我国特色的大尺寸齿轮几何精度的实物溯源体系。(a)(b)图46 北工大双球和双轴圆弧非渐开线样板10 结语北京国际机床展览会作为我国机床工具制造业改革开放的窗口和平台,是我国机床工具行业技术进步和发展的重要标杆和旗帜。自1989年创办以来,北京国际机床展览会是迄今为止我国规模最大、历时最久的机床工具展览会。经过多年不懈努力,已荣登当今世界四大国际机床工具展览会之列, 成为推动我国机床工具行业对外技术交流和商贸合作的重要平台。近20年来,北京机床展览会上真切展现了我国精密数控齿轮量仪的发展历程,揭示出我国精密数控齿轮量仪的发展方向是数字数控化、信息网络化、自动智能化,集成融入生产制造全过程是必由之路;从被动地在计量室进行齿轮精度质检,到生产一线现场批量齿轮的在线自动化快速检测,再进一步融入生产过程,通过测量数据处理实时反馈调整加工参数、实施齿轮的闭环制造,甚至实现了包括齿轮刀具在内的闭环齿轮物联网制造系统的建立。作者不能不由衷感叹我国齿轮量仪制造行业所取得的可喜成就和坚守实干敬业的奋发精神,更体会到党和政府领导下改革开放方针政策的英明正确。“制造业是国民经济的主体,是立国之本、兴国之器、强国之基。十八世纪中叶开启工业文明以来,世界强国的兴衰史和中华民族的奋斗史一再证明,没有强大的制造业,就没有国家和民族的强盛。打造具有国际竞争力的制造业,是我国提升综合国力、保障国家安全、建设世界强国的必由之路。” 为响应“中国制造2025”国家发展战略,支持并强化国产齿轮量仪制造业关键部件国产化精制化和齿轮测量与加工制造信息的网络闭环智能化,打造具有国际竞争力的齿轮量仪制造业,是我国齿轮制造业大国向齿轮制造业强国发展的必由之路。近来由北工大石照耀教授牵头的“小模数粉末冶金齿轮(MM/PM)高速高效大规模制造成套技术与产业化”项目,荣获“2021年度广东省科学技术奖”科技进步一等奖。该项齿轮制造成套技术与产业化的成功实施,显示了我国向齿轮制造强国目标阔步前进的强劲步伐。
  • 新型冰雪粒径测量仪和硬度测量仪助力“科技冬奥”
    高山滑雪最高时速达248km/h,滑雪赛道也需要“塑胶跑道”“更快,更高,更强”是奥林匹克的口号,充分反映了奥林匹克运动所倡导的不断进取、永不满足的奋斗精神。奥运会纪录的频频打破,不但有运动员的刻苦训练,教练员的辛勤指导,科技尤其是对于运动场地的科技提升也扮演了重要的角色。就拿大家熟悉的田径运动场而言,最初的跑道是煤渣跑道(相信很多70后、80后的老伙伴们都跑过吧),后来改成了人工合成的塑胶跑道,与煤渣跑道相比,其弹性好,吸震能力好,为运动员的发挥和成绩的提高提供了物质基础。在1968年的墨西哥奥运会上,在首次使用的塑胶跑道赛场上创造了诸多的奥林匹克纪录。2022年中国北京即将举行冬季奥林匹克运动会,中国提出了“科技冬奥”的概念,中国冰雪运动必须走科技创新之路。高山滑雪比赛是冬季奥运会的重要组成部分,被誉为“冬奥会皇冠上的明珠“。高山滑雪的观赏性强,危险性大,比赛时运动员最高时速可达到248km/h。高山滑雪比赛均采用冰状雪赛道。什么是冰状雪?所谓冰状雪,是指滑雪场的雪质形态,其表面有一层薄的硬冰壳,用于减小赛道表面对于滑雪板的摩擦力。可以说冰状雪赛道就是高山滑雪项目的塑胶跑道,其制作的质量对提高运动员的成绩及滑雪的舒适感,保护运动员的身体,延长运动寿命有着十分重要的作用。看似简单的冰状雪赛道,制作起来却大有讲究。冰状雪的制作过程十分复杂,目前采用的是向雪地内部注水的方案。但是注水的强度和注水的时间把握需要根据不同的赛道地点以及当时注水时的气温进行相应的调节,以保证冰状雪赛道既有一定的强度,又有足够的弹性,使得运动员能够在高速的高山滑雪比赛中舒畅的进行滑降、回转等比赛项目。与田径场塑胶跑道不同的是,每次比赛每一个运动员在进行高山滑雪比赛时,由于技术动作的需要,都或多或少的会对冰状雪的赛道产生一定损伤,为了保证比赛的公平性,前后出发的滑雪运动员的赛道雪质状态需要保证一致,因此冰状雪赛道还需要有一定的厚度以及均匀性。研制新型冰状雪测量仪器,保障赛道质量既然冰状雪赛道有如此多的要求,那么过去是如何判断冰状雪赛道的雪质的呢?主要是采用人工判断的方法,即找一些有经验的裁判员用探针安装在电钻上进行触探工作,通过触探工作反馈的手感判断冰状雪赛道的建造质量。这种带有一定“盲盒”性质的判断工作往往会显得很不透明,也不利于这项运动的推广。助力2022北京冬奥会,依托科技部国家重点研发计划“科技冬奥”重点专项2020的“不同气候条件下冰状雪赛道制作关键技术”项目,中国科学院南京天文光学技术研究所南极团队和中国气象科学研究院共同合作研发了用于判断冰状雪赛道质量的冰雪粒径测量仪和冰雪硬度测量仪,其目的在于将冰状雪质量的人工主观判断,变成清晰可见的客观物理数据,通过对这些物理数据的科学分析,结合有经验的运动员的滑雪体验,掌握不同地点,不同天气条件下冰状雪赛道的制作方法。主要有如下两种仪器:冰雪粒径自动测量仪和冰雪硬度自动测量仪。积雪颗粒的形状及大小是影响雪的力学性质的主要因素,不同大小雪粒之间在自然状态下空隙不断变小,雪中含有的空气降低,使得雪粒间的化学键合力增强,从而影响雪的硬度。那么如何测量积雪的颗粒呢,科研人员采用漫散射原理:近红外光经过粗糙的表面会被无规律的向各个方向反射,会造成光强度减弱,光减弱的大小跟表面的粗糙相关,而积雪表面的粗糙程度是由粒径决定的。通过测量光减弱的比例间接的测量出冰雪的颗粒大小。冰雪粒径自动测量仪测量注水雪样雪的硬度测试是反映冰雪强度的重要指标之一,冰雪硬度测量仪的原理是通过电机带动滑轨驱动探头打入冰状雪赛道内部,并读取探头受到的反作用力的大小来判断冰雪的硬度条件。该方法的好处是可以做到基本无损的对赛道进行冰雪硬度的测量,不影响赛道的后续使用,并且可以通过读取力和冰状雪深度的曲线了解冰状雪赛道的均匀性。针对高山滑雪的赛场坡度较陡,人工攀爬十分困难,科研人员在仪器的便携性上做了特殊的设计,设计了一款折叠式的硬度测量仪,方便携带,可以从坡顶沿雪道一直测量到坡底,实现了仪器的“就地展开”和“指哪测哪”的功能。冰雪硬度测量仪现场工作照片2020年11月-2021年3月,抓住冬奥会举办前的最后一个冬季的机遇,在冬奥会举办地北京延庆、河北张家口以及黑龙江哈尔滨亚布力冬季体育训练基地对不同气候条件、不同注水强度的冰状雪赛道,使用研制的冰雪粒径自动测量仪和冰雪硬度自动测量仪进行了粒径及冰雪硬度测试,获得了不同深度冰雪粒径的变化图以及不同深度的冰雪硬度的曲线图。冰状雪赛道压强-深度关系图该项目的首席科学家,中科院西北研究院冰冻圈科学国家重点实验室副主任王飞腾研究员认为“雪粒径及硬度计等新型冰雪仪器的研究,将过去以人工经验为主的冰状雪赛道状态判断变为了客观、清晰的科学指标,为冰状雪赛道制作标准的透明化提供了参考依据”。项目攻关团队的带头人,国际冰冻圈科学协会副主席,中国气象科学研究院丁明虎研究员认为“雪粒径和硬度计的设计充分考虑了不同于自然雪的人工造雪的特殊情况,仪器在项目工作中表现优异,性能稳定,可靠性高。”未来将在南极天文台发挥作用冰雪强度、硬度的测量不仅可以应用于滑雪相关的体育运动中,在未来的极地工程建设上也能发挥作用。遥远的南极虽然不是适合人类居住的地方,但是却有着良好的天文观测条件。根据2020年在 Nature 上发表的一篇文章,证明昆仑站所在的冰穹A地区的光学天文观测条件优于已知的其他任何地面台址。这项研究成果确认了昆仑站有珍贵的天文观测台址资源,为我国进一步开展南极天文研究奠定了科学的基础。但是如何在南极地区安装大型望远镜又有很多实际的困难,其中之一就是普通的大型望远镜的基墩都是直接安装在地球的基岩上,这样基墩比较扎实稳固,能保证望远镜在观测时不会因为地基不稳产生晃动,但是冰穹A地区的冰大约有4000m那么厚,相当于1500层楼房那么高,如果再想将望远镜基墩打入基岩显然难以做到。那么大型望远镜如何能够平稳的伫立在南极浮动的冰盖上呢?这就需要科学家们对冰穹A地区的冰雪进行特殊的加固处理,使其能够满足基墩的设计要求。在加固处理完后,我们的雪粒径和硬度测量仪就可以对加固后的冰雪强度进行测量,通过科学的数据检验其是否能够满足南极大型望远镜的需求。
  • 如何检测称量仪器的超差与不确定度?
    天平称量的一般要求,包括超差的结果及其影响、称量对流程质量的影响、称量不确定度和最小称量值、安全因子、称量仪器的日常测试(频率、砝码、最小称量值评估、自动校正等)等要求 1. 介绍 在制药实验室中,称量仅是药物开发和质量控制的整个分析链中的一个步骤;但它却对最终结果的整体质量和完整性有着重要影响。此外在生产中,称量对获得批次的统一性和一致性(例如,在分装或配方过程中)具有决定性作用。在食品行业,准确的称量过程对该行业的两个最严峻的挑战具有重要作用:提高公众健康和消费者安全,以及提高生产力和竞争力。其它行业(例如化工、香料或汽车工业)也普遍存在相同或类似的问题,此外,检测实验室以及研发外包和代加工的企业也出现此类问题。在全球各地,准确称量对确保始终符合预设定的过程要求并避免频繁出现不合格结果 (OOS) 而言至关重要。 2. 超差结果及其影响 多年来,制药行业一直深受不合格结果的困扰,自 1993 年 Barr Labs 法院裁决后尤为严重。在该案例中,法院判决 Barr Labs 一方获胜,该实验室坚持认为 OOS 结果不一定会导致批次不合格,应查明是否存在诸如实验室错误等其他原因。2006 年 10 月,FDA 对其有关如何处理 OOS 结果以及如何进行正确调查的指南进行了修订。自此,FDA 已发出了大量 483 缺陷调查警告信。由此看来,即使在该指南发表 7 年后以及 Barr 裁决过去 20 年后的今天,我们在这方面仍有大量工作要做。 此外,FDA 在上述指南中还声明:“实验室错误应该是极少发生的。经常发生的错误更可能是由于分析员培训不足、维护不当或设备未正确校准或工作粗心而导致。” 在我们看到大量有关 FDA 483 缺陷调查警告信后,罕见的实验室错误可能就不会像我们所希望的那么罕见了。遗憾的是,由于没有公开数据显示所获得的每个 OOS 结果,因此存在更多没有导致 OOS 结果的小错误。这些错误可能被分类为“注意记录”,或只是简单地在实验室记事本上记录为错误。即使这些错误可能预示分析方法或过程将出现更严重的问题,许多企业也不会对其进行调查。应强调,OOS 也可能导致因调查引起的正常运行时间减少、批次释放延迟,或甚至可能导致成本昂贵的召回事件,这将对公司的效率和生产力产生负面影响,并可能会影响其声誉。不只是制药行业面临上述问题。食品行业也是如此,近几年食品安全和质量管理条例要求越来越严格。GMO(基因改造生物)或纳米技术的开发给食品安全和质量带来了新的挑战;此外,国际供应和食品交易以及供给的增加,预计也会使这一趋势更加明显。随着这些趋势的发展,以及国际和国家法律发生相应变化,标准和检查过程会进行定期修订。近期一个影响行业的立法案例就是于 2011 年 1 月开始实施的《美国食品安全现代化法案》(FSMA) 该法案将联邦监管机构的工作重心由应对安全问题转为预防问题的出现。该新法目前正在实施中,其中包括加强预防控制以及增加 FDA 强制性检查的频率。 3. 称量对过程质量的影响 称量是大多数实验室中的关键环节,但始终未得到足够的重视,其复杂性也经常被低估。由于称量质量对最终结果质量的影响很大,美国药典 (USP) 特别要求在定量分析过程中应获取准确度较高的称量结果 “应利用准确称量或准确测量的分析物制备定量分析溶液 如果规定测量值应为‘准确测量’ 或‘准确称量’,则应遵守相应的通则:容器 和天平 中的规定。” 上述通则中的要求非常严格,而其它仪器通常不执行类似标准,最常见的情况是由分析开发团队制定方法要求。与实验室相比,在生产环节中大部分情况下都低估了称量结果的重要性。天平和秤被视为生产工具,受到卫生状况、防护等级、腐蚀、火灾或爆炸风险,操作人员的健康和安全,以及生产力等外界因素的影响。在当前天平和秤的选择和操作标准中,相比其他计量要求,需更优先考虑所有这些因素。因此,未能充分考虑计量标准。通常情况下,生产环节中的操作人员资质等级低于实验室技术人员。这将导致生产过程中的操作错误比实验室更加频繁。因此,可以预料到生产过程中出现不合格结果的频率要高于实验室。 另一种做法是重新调配现有天平,把它们用于其他用途,而非其原有的应用。在这种情况下也一样,原有天平的功能可能无法满足新应用中的计量要求。生产中的不合格结果不仅预示质量可能存在风险,而且预示可能对消费者的健康和安全带来实际风险,可能违反贸易规则并给公司造成经济损失。一旦某个过程中出现低质量产品,会增加原材料、人力和资产损耗。产品必须重新加工或处置。在许多情况下,发生错误可能会导致漫长且昂贵的召回行动,给品牌带来负面影响。 4. 测量不确定度和最小称量值 4.1 称量系统的测量不确定度 满足始终准确且可靠的称量要求的最新策略包括:采用科学方法选择和测试仪器 。这些方法也解释了在行业中普遍存在的称量误解。 “我想购买读数精度为 0.1 mg 的分析天平,因为这是我的应用所需的精度。” 在制定设计认证时,经常会听到类似这样的表述。按照这一要求,用户可能会选择量程为 200 g 且读数精度 为0.1 mg 的分析天平,因为用户认为该天平“精确度达到 0.1 mg。”这是一种常见的误解,原因很简单:仪器的读数精度不等于其称量准确度。 称量仪器技术参数中的几大可测量参数限制了其性能。这些重要参数是重复性 (RP)、偏载 (EC)、非线性 (NL) 以及灵敏度 (SE)要回答这个问题,必须先讨论术语“测量不确定度”这一术语。《测量不确定度表示指南》(GUM) 将不确定度定义为“测量结果与被测变量实际值之间合理的数值分散特性”。 称量不确定度(即称量物体时的不确定度)可通过天平或秤的技术参数(一般在进行设计认证时),以及仪器安装后通过称量仪器的校准(一般通过操作认证中的初始校准,之后通过性能认证过程中的定期校准)测算得出。《非自动称量仪器国际准则》规定了称量不确定度评估的详细说明 [9, 10]。相关校准证书中清楚地阐明了校准结果。 一般来说,称量仪器的测量不确定度是一条特殊斜线 — 天平或秤上的载荷越高,测量不确定度(绝对值)越大4.2 天平参数与称量不确定度的关系 称量不确定度的表现特性更加明显,图中显示了导致量程为 200 g 分析天平的称量不确定度的各个因素(重复性、偏载、非线性和灵敏度)。可根据样品质量将不确定度分为三个独特的区域: 1. 区域 1 的样品质量小于拐点下限质量(即不确定度主要受重复性因素影响的最大样品质量)。在该具体示例中,样品质量大约为 10 g,以红色标示。此区域中,由于重复性受总载荷(如果有的话)的影响极小,因此相对不确定度与样品质量成反比。 2. 区域 2 的样品质量大于拐点上限质量(即不确定度主要受灵敏度偏置和偏载因素影响的最小样品质量)。在该具体示例中,该数值约为 100 g, 以绿色标示。此区域中,相对不确定度不受样品载荷的影响;因此,合起来的相对不确定度基本上仍保持不变。 3. 区域 3 是过渡区,样品质量在拐点质量下限和上限之间,相对不确定度由反比变为常量。 此外,对于大部分实验室天平而言,由于非线性在整个样品质量范围内对相对不确定度的影响小于其它因素,因此对相对不确定度几乎不起作用。秤所遵循的原理与天平一样,但其所使用的技术会产生一些额外的限制。大多数秤都采用分辨率比天平低的应变片式称重传感器。某些情况下,化整误差可能是主要原因,但对于分辨率较高的秤来说,重复性也是仪器在小量程段中测量不确定度的决定性因素,即计算出的标准偏差通常大于 0.41d。 线性偏差通常也被认为是一大因素,但是在称量小样品时,通常会被忽略。鉴于在称量较大样品时相对测量不确定度逐渐变小,我们可以推断,非线性在将仪器的测量不确定度保持低于规定工艺允差中仅起到很小的作用。我们需要重点关注重复性,以规定高精度工业秤的临界限值,实验室天平也是如此。 4.3 关于最小称量值的常见误解 最后,我们想指出行业中普遍存在的一个主要误解:许多企业错误地认为,是否可以加上去皮容器的重量以符合最小称量值的要求。换而言之,这些企业认为如果去皮容器的重量大于最小称量值,则可以添加任何重量的物质,而最小称量值要求也会自动满足。这将意味着,您甚至可以使用足够大的去皮容器在量程为 3 吨的工业地磅上称量一克的物质,并仍能够获得要求的过程准确度。由于称量示值的化整误差是仪器的最低不确定度限值,因此,显然无论在任何去皮容器中称量如此小的物质都不会获得满意的准确度结果。这个极端例子表明,这种普遍理解是错误的。同样,假如在一个去皮容器中称量不止一个样品(例如,作为配方过程的一部分),每一个样品均必须符合最小称量值要求。 修订版 USP 通则 中也阐述了这一误解: “在称量样品时,为了满足规定的称量允差,样品质量(即净重)必须等于或大于最小称量值。最小重量是指样品净重量,而不是皮重或毛重。” 最近,我们遇到的另一个误解是关于最小称量值约 100 千克磅秤的分装应用和所测量的最小称量值。该公司称,他们每次分装 20 千克的物质,然而为了遵照最小称量值要求,往往会在容器中留下超过 100 千克的物质。该公司不明白,为了符合自己的准确度度要求,他们需要称量至少 100 千克(而不是 20 千克)的物质。 简而言之,不论是称量前或称量后,在配方、分装和类似应用过程中,每一个组件都必须符合最小称量值要求。为了强调必须考虑样品净重,皮重与是否符合最小称量值标准无关,最小称量值通常指最小样品净重量。
  • 我国首个近红外原油快速评价系统运行
    2月22日,我国首个近红外原油快速评价系统在中国石油大连石化正式运行。  大连石化原油评价实验室是中国石油三大原油评价重点实验室之一。这个实验室包括三个子平台:常规原油评价实验室子平台、原油快速评价系统子平台和全球原油数据库系统子平台。  大连实验室投用后,除完成大连石化的原油评价外,还要完成中国油集团每年计划的20个新增原油品种的全面评价和约30个已有原油品种的全面更新评价任务,建成国际先进水平并拥有完全自主知识产权的全球原油数据库,并达到国际主流原油数据库的数据更新速度 建立和扩充中国石油自己的原油光谱数据库,实现原油快速评价,为原油性质的实时监控、运输、储存、加工提供可靠的技术支持。
  • 原油国标实施 这些指标有限值要求
    p  原油是一种矿产品,也可以说是中间产品,但不是终端产品。在成为终端产品(如汽油)之前要经过一系列加工处理,将危害人身安全、污染环境的有害元素(如硫)脱除,用来生产附属产品(如硫磺)。随着我国市场经济的快速发展,原油的需求量会越来越大,原油这种能源对国民经济发展也越来越重要。/pp  现代原油炼制工艺完全能够在生产出满足安全环保要求的石油产品的同时,排放也能满足国家相关法规要求。因此,确定原油质量参数及限值时,既要考虑反映原油本身品质参数,也要考虑对最终产品质量的影响,还要考虑原油参数是否满足炼油装置及工艺要求。/pp  在此之前,国内的原油生产和贸易中,对原油的质量控制一般按SY/T7513-1988《出矿原油技术条件》执行,但是该标准由于质量参数较少,具有一定的局限性。进口原油贸易中质量检验一般按SN/T 2999-2011《进口原油质量评价要求》、SN/T 2930-2011《海上油田外输原油检验鉴定规程》,和SN/T 2418.1-2011《进口原油检验规程第1部分:岸罐检验》执行,这三个标准只对原油进行分类,并推荐了检验项目,缺少质量控制指标。/pp  12月1日,《GB 36170-2018 原油》正式实施,该标准规定了原油基属的确定、技术要求和试验方法、检验规则、包装、贮存和运输及安全,适用于商品原油。/pp  本标准将密度、硫含量、酸值、水含量、盐含量、蒸气压、机械杂质含量、有机氯含量列在技术要求中,并对有些参数提出了限值要求。/pp  详细技术要求和试验方法如下:/pp style="TEXT-ALIGN: center"img title="01.jpg" alt="01.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/2f6318d1-8cd0-40eb-b690-950339721e31.jpg"//pp style="TEXT-ALIGN: center"img title="02.jpg" alt="02.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/e36ea510-e1a1-47f0-9c0d-039b887514bc.jpg"//pp  了解更多,请点击a href="https://www.instrument.com.cn/list/sort/030.shtml" target="_blank"span style="COLOR: rgb(255,0,0)"strong石油专用分析仪器》》》/strong/span/a/p
  • 原油评价好帮手,实沸点蒸馏
    原油是炼化企业最基础、最核心、最根本的生产资料,在原油加工过程中,原油采购成本占总加工成本的90%以上。在生产过程中,原油评价数据不但可以为一次加工提供依据,而且也是二次加工,如重整、加氢、润滑油生产、渣油加工、焦化、沥青生产和科研的技术工作者提供可靠的分析数据。可见原油评价工作在石油加工和石油研究中处于重要的地位。实沸点蒸馏是原油评价的首道工序。是根据原油中各组分的沸点不同,用加热的方法从原油中分离出各种石油馏分。而实沸点蒸馏仪针对实沸点蒸馏,是原油评价中最重要和最基础的设备,能够根据要求对原油进行窄馏分和宽馏分的切割,得到原油各馏分的效率,然后对宽馏分和窄馏分进一步分析,从而*得到全面的原油评价数据。其中TBP系统(常压蒸馏法)最/高切割温度能够达到400℃,蒸馏柱的效率在全回流时具有14 – 18块理论塔板数。根据需要,在回流比5:1的条件下切割出不同的馏分。剩下常压渣油,其中含有沸点较高的蜡油、渣油等组分。将常压渣油经过加热后,送入PS系统(罐式蒸馏法),是常压渣油在避免裂解的较低温度下进行分馏,PS系统最/高切割温度能够达到常压相当温度565℃,分离出润滑油料、催化料等二次加工原料,剩下减压渣油。 PD400CC原油实沸点蒸馏仪德国Pilodist PD 400系列原油实沸点蒸馏仪可分成两部分:原油蒸馏标准试验仪(PD 100系列)和重烃类混合物蒸馏仪(PD 200系列)。☑ PD 100系列符合ASTM D2892标准方法,切割范围从脱丁烷到400℃,他在全回流状态下具有15块理论塔板,蒸馏柱中装满不锈钢填料,在5:1的回流比下蒸馏。☑ PD 200系列符合ASTM D5236标准方法,切割范围从150℃到565℃,压力从10mmHg到0.1mmHg,蒸馏柱较短,没有填料,只相当于一块理论塔板。仪器特点:① Pilodist原油实沸点蒸馏仪完全符合ASTM D 2892和ASTM D5236标准方法;② 蒸馏过程由计算机控制,基于WINDOWS系统的操作软件操作方便,参数设置灵活,通过计算机输入测试运行参数,控制蒸馏运行,记录测试数据,显示测试曲线,蒸馏过程中操作人员可以随时对各技术参数进行修改设置,具有很强的灵活性;③ 蒸馏速率控制:自动闭环控制,根据样品回收质量速率或体积速率控制蒸馏加热功率,严格符合标准方法要求;④ 馏分切割,自动进行减压馏出温度和常压AET温度的换算,并根据预先设置AET切割温度实现自动馏份切割、收集、质量称量和体积测量;⑤ 数据处理:计算机实时显示测试过程数据,测试结果直接用EXCEL文档显示。试验结束显示和打印wt%、vol%实沸点蒸馏曲线。
  • 红外成像搭载底部原油装置在西北油田首次运用
    近日,由西北油田完井测试管理中心完成的红外成像搭载底部原油装置在顺北4-9H井首次运用,顺北4-9H井是顺北4条带一口重点开发井,由于该井生产原油为密度每立方厘米0.77毫克的轻质油,具有高含硫化氢、易挥发的特征,在试采装车过程中,不同的原油罐车装油口的大小与鹤管装油装置存在一定间隙,轻质原油挥发伴随硫化氢逸散,给现场施工带来一定安全隐患。该装置在实现全密闭打油的同时,人员不上罐观察,就可以通过红外热成像监测到液面的位置,既不影响原油装车,又保证了人员的安全。据悉,配套装置将在5月底在西北油田各完井测试现场全部配置到位。图为:在顺北4-9H井施工现场,施工人员正对红外成像搭载底部原油装车进行巡检图为:施工人员在顺北4-9H井施工现场,正在安装底部原油装车管线。
  • 回顾近二十年我国齿轮量仪的发展(上)
    1 引言受中国机床工具工业协会工具分会特约,作者于2001-2019年间参访两年一度在北京举办的国际机床展览会,并撰写了十届展会的量具量仪述评。十届展会时间跨度近20年,我国经历了改革开放、加入WTO以及金融和经济风险等诸多重大历史事件和风雨涤荡,机床工具制造业及量具量仪行业在经受风雨历练的同时,就整体制造能力而言,无论在技术质量水平和产品品种性能上,都得到了显著的提升和蓬勃的发展。基于对精密测量仪器的感触体验,作者撰文回顾了近二十年来我国齿轮测量技术和仪器的发展历程和部分成果。我国齿轮量仪的生产始于哈量,哈量建厂源于苏联的156项经济援助项目;在国家经济改革开放时期,通过精密传感技术、数字技术、数控技术、计算机技术和坐标测量仪精密量仪制造技术的引进开发和自我发展,推动了我国齿轮测量技术和仪器向基于计算机的数字化数控坐标式测量技术和仪器的发展。CNC齿轮测量中心代表了当今齿轮测量技术和仪器的先进水平,也是齿轮及齿轮刀具制造精度质量检测领域的主流需求。从上世纪80年代开始到90年代,CNC齿轮测量中心逐步形成了系列化产品,同时也是精密机械制造技术、精密位移探测传感技术、数字信息技术、计算机技术和数控技术在齿轮测量仪器上集成的结晶。它基于坐标式几何解析测量原理,对齿轮单项几何形状误差进行测量,是坐标式齿轮测量仪器发展中的一个里程碑。CNC齿轮测量中心实质上是由笛卡尔式直角三坐标系和一个回转角坐标所构建而成的四坐标测量机——圆柱坐标测量机,主要用于齿轮单项几何精度的检测,也可用于(静态)齿轮整体误差的测量。除了齿轮以外,也可用于齿轮刀具(如滚刀、插齿刀、剃齿刀)、蜗杆、蜗轮及凸轮轴等复杂型面回转体的单项几何误差进行高精度测量。由国外首先推出的、基于计算机技术的数字坐标式CNC齿轮测量中心取代了传统机械展成式的齿轮量仪,成为单个齿轮几何精度测量中独占鳌头的齿轮测量仪器和技术。国内通常认为,美国Fellows公司于七十年代成功开发的Microlog 50(图1)是世界上首台高水平的CNC数控齿轮测量中心,它采用了花岗石基座、四轴独立伺服驱动系统、激光干涉仪长度位移测量系统和光栅角度编码盘,其技术起点很高。图1 美国MICROLOG 60齿轮测量中心我国齿轮测量中心的开发历经了艰辛和曲折。成都工具所和哈量于1986年开始着手计划立项开发齿轮测量中心,直至1995年底在陕西省教委和陕西省机械局的支持下,西安工业大学和汉江工具厂合作成功开发出了我国第一台CNC齿轮测量中心CCZ40(图2)。这是一台由计算机控制的、可实现数控四轴联动的圆柱四坐标式齿轮测量仪器样机。经专业技术鉴定,确认达到预期目标,填补了国内空白。随后,哈尔滨精达公司经过努力,在2001年于国内首先开发研制出齿轮测量中心产品(图3),成功推向了首家用户——重庆宗申公司,并逐渐形成强大批产能力和竞争实力,打破了由国外齿轮测量中心产品一统国内市场的局面。此后,哈量、工具所、智达、爱德华、同和光学及秦川等公司陆续推出了自行设计开发的CNC齿轮测量中心,开创了我国齿轮测量仪器发展新面貌,品种和质量的持续提升令人鼓舞,和国外先进齿轮测量中心的技术与质量差距日益缩小,竞争力明显上了一个台阶。图2 西安工大汉江工具首台国产样机CCZ40图3 精达公司首台国产CNC齿轮测量中心经过近15年持续不断的努力和坚持,取得了阶段性成果,并分别在CIMT展会上展示,通用技术集团所属的哈量集团于2019年成功推介出配套完整、集成度高、技术含量水平高、完全拥有自主知识产权的“成套螺旋锥齿轮闭环专家生产制造系统”和技术(图4),其硬件涵盖了螺旋锥齿轮齿面的数控加工机床(铣齿机、硬齿面加工机床和磨齿机)。螺旋锥齿轮齿面的数控刀具和装备包括铣刀刀盘刀条装调仪、硬齿面刀具测量机以及螺旋锥齿轮齿轮测量中心等。这标志着我国锥齿轮的成套制造和加工测量技术跃上了一个新水平。(a)(b)(c)图4 哈量成套螺旋锥齿轮闭环专家生产制造系统随着我国数字化、信息化、网络化、智能化的发展,机器人近年来快速集成进入在线齿轮自动化智能测量生产线。2015年南京二机床在北京展会上展示的“智能化齿轮加工岛”,吹响了国内汽车齿轮自动化在线测量技术集成于齿轮制造加工过程的号角(图5);而2020年精达为株洲齿轮公司提供的“智达快速齿轮检测自动线”配备2台六轴机器人,将意大利光学影像测量仪、自产CNC齿轮双啮仪和CNC齿轮测量中心等3台仪器有机联结,构建了一条齿轮快速智能检测系统(图6),将我国齿轮在线自动检测装备技术水平提升到一个数字化、信息化、自动化的新台阶。(a)(b)图5 南京二机床“智能化齿轮加工岛”(a)(b)图6 智达齿轮在线快速智能检测系统在近20年的十届北京国际机床展览会上,可以清晰看到我国齿轮测量仪器制造业的显著进展。如上所述,这正是我国齿轮测量技术与仪器装备行业“管(官)用产学研”,凝聚共识,坚持不懈,科学实干,以开发CNC齿轮测量中心为标志,在我国齿轮量仪制造行业的奋发自强和努力下,从无到有;从打破国外垄断到自主创新,不断推进我国齿轮制造业从齿轮制造大国向齿轮制造强国的蜕变,是不断提升国产齿轮质量做出重大功绩和历史贡献的20年。可以毫不夸张地说,近20年我国齿轮量仪的发展历史,就是我国CNC齿轮测量中心发展所引导的历史,是我国齿轮测量技术和仪器装备制造业在数字化、信息化、数控化、网络化和智能化的发展道路上阔步前行、转型升级和追赶世界先进水平而成效斐然的20年。本文根据这近20年间北京国际机床展会上我国齿轮测量仪器展品的概况,按类别和年代进行分述,以便读者能从中看到我国齿轮量仪的发展脉络。2 CNC齿轮测量中心融合并集中体现了当今齿轮测量技术和制造技术的发展水平和趋势(1)1989年工具所推出CZE1200D大齿轮测量仪(图7)。它由一台单板计算机同时控制二台步进电机联动,采用“粗传动精测量”技术实现CNC式齿轮螺旋线的测量(齿廓误差由棒状单齿测头啮合测量实现)。经上海计量所鉴定后当年成功交付用户上海冶金机械厂;同期,工具所还成功开发出CNC式步进电机光栅式/激光式滚刀检测仪GCW200(图8)。(a)(b)图7 工具所的CZE1200D大齿轮测量仪及齿廓测量原理(a)(b)图8 工具所GCW200光栅式滚刀检测仪(2)1995年西安工业大学和汉江工具厂合作,成功开发出我国首台CNC齿轮测量中心CCZ40样机,成果通过专业鉴定(图2)。该仪器采用计算机控制步进电机四轴(θ,X,Y,Z)联动,首次实现圆柱渐开线齿轮的齿廓、齿向螺旋线和齿距等单项几何精度以及齿轮刀具精度在国产CNC齿轮测量仪器上的测量。(3)2001年,哈尔滨精达成功生产出我国第一台国产CNC齿轮测量中心产品,用户为重庆宗申摩托。该测量仪器产品的问世,打破了国外同类产品十余年来对国内市场的垄断,填补了国产CNC齿轮测量中心产品空白(图3),开启了我国“齿轮测量中心”的规模制造生产以及进入国内外市场参与竞争的发展进程。(4)2003年北京国际机床展览会哈量和精达分别展出了各自开发的CNC齿轮测量中心(图9,图10)。此后在北京展会上展出CNC齿轮测量中心的有:2005年工具所CV450(图11)和西安交大思源GMC500(图12);2007年精达新开发JA系列齿轮测量中心(图10),该中心采用DDR电机直接驱动工作台主轴、直线电机驱动测量滑板花岗石底座,提升了产品测量精度和稳定性;2011年,哈量、精达及智达等公司纷纷推出花岗石结构的CNC齿轮测量中心。哈量展出的L45型齿轮测量中心(图13),采用测量运动轨迹全闭环控制,可对K形齿廓、凸形齿廓及螺旋线鼓度等项目进行评定;西安爱德华秉承了三坐标测量机的成熟精密量仪设计加工制造技术,成功开发并于2011年展会上展出了G40高精度齿轮测量中心(图14);2015年智达测控展出平行簧片结构的三维光栅数字式扫描测头Z3DDP(图15),并成功地应用于CNC齿轮测量中心,打破了该关键精密扫描测头部件产品的国外垄断。2017年展会上,青岛海拓推出了专用的平面二包测量中心(图16)。这实际上是通用齿轮测量中心的变型仪器,其主要功能是实现对我国首创的二次包络环面蜗杆/蜗轮/滚刀等复杂型面零件的高精度检测;2019智达则展出了以“谐波齿轮测量”为主题的成套测量仪器,包括检测谐波齿轮单项几何误差的齿轮测量中心和谐波减速器综合性能检查仪(图17),成为该届展会上国产齿轮量仪的一条亮丽风景线。(a)2003年产品(b)2005年产品(c)图9 哈量CNC齿轮测量中心(a)2003年产品 (b)2007年产品(花岗石基座)图10 精达CNC齿轮测量中心(a)2005年产品(b)2007年产品图11 工具所2005-2007年CV450齿轮测量中心图12 西安交大思源GMC500齿轮测量中心(a)L45(b)PREC40(近年开发新型号)图13 哈量L45和PREC40齿轮测量中心图14 爱德华G40齿轮测量中心图15 智达三维测头图16 海拓测量仪图17 智达谐波齿轮测量成套测量系统(5)2014年,中国计量科学研究院几何量所开发的“螺旋线(齿轮)测量基准仪器”项目完成验收。在完成与德国PTB的国际比对工作后,于2019年仪器通过鉴定和国家基准评审(图18)。该基准仪器采用了独立的激光跟随测量系统和独立的CNC测头运动轨迹生成系统(“驱动”和“测量” 两套系统独立又关联的设计)。该基准仪器的技术特点可归纳为:具有一维气浮回转工作台具有负载偏心下的角度自校准、二维激光干涉测长布局降低仪器阿贝误差、三维平行位移机构探测系统的测杆变形补偿、六轴联动主从级闭环精密驱动控制和采集等技术,以及自主建立的仪器精度补偿模型和相应误差补偿软件。这台由西安爱德华协助开发的超高精度和高稳定性的新一代齿轮螺旋线/渐开线测量装置的研制成功,标志着我国可直接溯源的复合式齿轮螺旋线/渐开线基准测量装置的技术指标达到了国际先进水平。该基准仪器实现了齿轮参量最短溯源链的直接溯源,其二路激光跟随测长误差0.1μm,修正后的探测系统误差0.3μm,修正后的回转台角误差≤0.15”;经比对测试,其螺旋线偏差测量不确定度为0.9μm/100mm (k=2)。其对外提供校准测量服务能力为:测量范围:β(0°-60°),d ( 25-400 ) mm 测量不确定度:螺旋线倾斜偏差(0.9-1.2)μm/100mm(k=2),螺旋线形状偏差0.8μm(k=2) 螺旋线总偏差(1.2-1.5)μm/100mm(k=2)。值得提及的是,2009年,中航工业北京长城计量测试技术研究所更新研制的JLC齿轮测量中心基准仪器,测量齿轮渐开线样板基圆半径的不确定度: 当rb=100mm,U=1.1μm(k=3) ;测量齿轮螺旋线样板螺旋角的不确定度:当β=15°,U=1.0μm/100mm(k=3),因此也成为代表当时我国齿轮测量中心制造/升级再制造的顶尖水平之作。(a)(b)(c)图18 国家计量院“齿轮测量基准仪器”设计原理和消除周期误差的有12个读数头光栅的圆光栅(6)2021年,通用技术集团哈量公司研发了具有自主知识产权的 ”L45P高精度计量型三维齿轮测量中心“(图19),该仪器具备高精度机械主机、误差修正补偿技术、多功能智能化实时测控系统及三维齿轮测量软件等多项自主关键核心技术,具有在线分析、自我诊断功能,具备稳定性高、扩展性强、抗干扰等优点。其配套的三维齿轮测量软件具有圆弧圆柱齿轮、弧锥齿轮、转子、弧齿刀盘等检测功能,仪器还具备测针库管理、空间修正、数据安全与管理等功能,是我国高精度计量型齿轮量仪又一突破,整体技术达到国际先进水平,是中国科协2021 “科创中国” 榜“突破短板关键技术榜(装备制造领域)”十个项目之一。图19 哈量计量型L45P三维齿轮测量中心3 弧锥齿轮测量中心及其闭环制造系统使CNC齿轮测量中心集成弧锥齿轮的测量和制造(1)2005年哈量和精达分别在北京国际机床展会上展出拥有弧锥齿轮测量功能软件的CNC齿轮测量中心。哈量展出3903A齿轮测量中心(见图9a),与重庆工学院合作、在国内首先成功开发的齿轮测量中心锥齿轮测量软件所测得的锥齿轮三维齿廓误差(见图9c);此后精达、智达也各自开发了相应的锥齿轮测量软件应用于齿轮测量中心产品。(2)2015年哈量在展会上重点推介“锥齿轮数字化网络化闭环制造系统”。该系统将哈量生产的数控锥齿轮切齿机床和数控锥齿轮磨齿机床与数控锥齿轮测量仪器——锥齿轮测量中心等整合集成,融通锥齿轮的设计加工及检测软件,实现锥齿轮加工参数的反馈调整,成功构建了锥齿轮闭环制造系统(见图20);中大创远集团和智达合作于同年展出了类似锥齿轮闭环制造成套技术和仪器产品。该年展会呈现了我国锥齿轮智能化制造技术与装备发展的新景象、新格局。2017年哈量集团长沙哈量凯帅(现更名为长沙津一凯帅)还展出了HCS260硬齿面螺旋伞齿轮加工刀盘调刀仪(见图22)和CNC L65G高精度螺伞齿轮测量中心。(a)(b)(c)图20 哈量锥齿轮数字化网络化闭环制造系统和齿廓反调计算图形图21 工具所GCW300 CNC滚刀测量仪图22 哈量硬刀盘检测仪(3)2019年,哈量展出了具有自主知识产权、最新版本成套“螺旋锥齿轮闭环制造系统”(见图4)。它包括螺旋锥齿轮铣齿机/磨齿机/铣齿刀刀盘/刀条/刀具装调机和齿轮测量中心等螺旋锥齿轮和切齿刀具的所有加工制造和测量装置的硬件和软件,(借助于物联网)进行数据信息的融合集成,对我国螺旋锥齿轮制造业的发展,具有标志性的示范引领作用。4 齿轮刀具测量中心及其闭环制造系统是CNC测量齿轮中心在齿轮刀具制造中的数字化应用在齿轮刀具测量领域,工具所于1989年开始开发专业的卧式CNC光栅式齿轮滚刀测量仪GCW200,经不断改进后于2005年前后推出花岗石底座的GCW300(图21),具有一定的卧式齿轮测量中心的功能。哈量集团2017年展出的弧齿锥齿轮的铣刀盘和硬齿面螺旋伞齿轮刀盘的CNC刀盘装调检测仪(图22),在弧齿轮加工刀具的数字化闭环制造上,为我国做出了突破性重大贡献。值得一提的是,西安工业大学和汉江工具厂在1995年合作开发了我国首台CNC齿轮测量中心样机后,又于2009年在北京展出了成功合作开发的全套国产数控刀具离线闭环制造系统和装备——数控齿轮刀具磨齿机+CNC齿轮测量中心+数控砂轮修整机+数据处理平台(图23)。首次实现齿轮测量中心与数控砂轮修整机之间的数据整合集成,成功构建了国内首套离线齿轮刀具闭环制造系统。据悉,近期西安工业大学和秦川机床及汉江工具合作,正在进一步开发高新水准的、数字化网络化智能化的齿轮刀具制造闭环系统。图23 西安工业大学-汉江工具联合研发的齿轮刀具离线闭环制造本文作者:谢华锟,邓宁
  • 18个研发项目曝光,各大厂商在研制哪些测量仪器?
    伴随各大上市仪器公司2021年度财报陆续发布,仪器信息网于前段时间特别制作专题,以#财报解读全球仪器市场格局 #。在上市仪器公司披露的海量数据中,有一项数据特别引起了编辑的注意,其中涉及各大国产仪器厂商当前在研的重点仪器项目,以及项目进展、项目意义,甚至项目的投入金额。各大仪器厂商正忙着研制什么创新仪器?仪器信息网本周带您关注仪器厂商在研项目,本期关注测量仪器篇。注:以下信息由仪器信息网整理自上市仪器公司公开资料。麦克奥迪项目名称:正置显微镜  项目目的:开发一款研究级正置生物显微镜。  项目进展:正在推广拟达到的目标:可提供明场、荧光、相衬、暗场等多种观察方式,支持数字切片扫描功能,以满足科研需要。预计对公司未来发展的影响:填补公司在研究级生物显微镜的空白,进军高端显微镜市场领域。项目名称:金相显微镜  项目目的:开发一款多用途的工业金相显微镜,丰富公司工业产品的产品线。  项目进展:正在推广拟达到的目标:可提供落射、暗场、DIC、偏光等多种观察方式,为面板和晶圆等工业行业提供较为完善的检测。预计对公司未来发展的影响:丰富公司在工业显微镜领域的产品系列,提高在工业市场的竞争力。项目名称:无线数码互动  项目目的:开发一款用于国内外校园的全无线显微镜互动教学系统  项目进展:正在国际市场推广拟达到的目标:提升互动产品的交互性能,并实现自动配置,使安装和维护更为简单。预计对公司未来发展的影响:丰富公司在显微镜互动教学产品的产品系列,进一步将强国内互动教学的领先地位,增加国际市场的占有率项目名称:新一代数码显微镜  项目目的:开发一款性价比优的数码相机系列和数码显微镜系列  项目进展:正在推广拟达到的目标:为教学市场提供一系列更高成像速度和易于使用的数码显微镜预计对公司未来发展的影响:丰富公司数码相机的高中低端产品系列,形成全方位的数码相机和数码显微镜的产品系列苏试试验项目名称:60 吨电动振动试验系统  项目目的:实现单台推力 60 吨,为大型整机试件进行振动可靠性试验,如卫星、汽车、飞机等。  项目进展:整机调试阶段拟达到的目标:突破单台超大推力电动台关键技术,满足市场对大推力电动振动试验系统的需求。预计对公司未来发展的影响:使公司无论在单台、多台并激等技术方向,均达到行业领先,为航空、航天、汽车等领域提供有力保障。项目名称:数字化液压试验系统样机  项目目的:全系列数字化液压振动试验系统,主要用于地震、汽车道路模拟等试验。  项目进展:样机调试阶段拟达到的目标:创新公司液压台产品结构形式,为后续液压台产品系列化改型夯实技术基础。预计对公司未来发展的影响:开辟新的技术形式,满足低频振动方面的应用需求,改变地震、汽车道路模拟等领域设备进口依赖现状,打造新的业绩增长点。项目名称:感应振动试验系统  项目目的:主要用于航空航天、汽车零部件等高随机加速度振动测试,如四代机的动力部分零部件测试。  项目进展:样机完成测试拟达到的目标:提高系统可靠性,为高加速度和高频振动提供技术支撑。预计对公司未来发展的影响:补充公司原有产品应用细分领域,实现国内同领域产品进口替代,打造新的业绩增长点。项目名称:THV系列智能型综合环境应力筛选试验系统的研发及产业化  项目目的:实现THV 系列产品智能化、节能、高可靠性和一体化;利用冷量的即时流量控制技术,使系统能耗在节能的工况下运行;应用智能化、互联网化、数字化及模糊控制技术实现远程监控  项目进展:已完成系列化产品拟达到的目标:实现 THV 系列产品一体化。预计对公司未来发展的影响:成为公司特色产品,实现“智能控制技术和互联网+” 应用,提升产品模块化、自动化、精细化,扩大市场占有率项目名称:ATH-1000-815W四综合试验箱  项目目的:实现四综合试验箱产品优化升级。  项目进展:已完成样机拟达到的目标:实现两种产品型式。预计对公司未来发展的影响:推动公司ATH 系列产品形成规模产业化,提高产品市场竞争力,扩大市场份额。项目名称:半导体元件材料缺陷透射电镜分析  项目目的:建立 TEM 平面样品缺陷观察与截面 3D 源头分析。  项目进展:已完成拟达到的目标:可在 TEM 中直观且清晰的观察到平面结构缺陷的详细形貌,看到缺陷走向和源头。预计对公司未来发展的影响:有望建立关键技术,持续扩大产业专利布局,在半导体元件材料缺陷透射电镜分析的推广上具有绝佳优势。福光股份项目名称:一米级光学天文望远镜研发  项目目的:国内领先  项目进展:前期研发阶段拟达到的目标:实现国内在米级大视场透射式望远镜研制方面的突破预计对公司未来发展的影响:时域天文观测、空间目标和碎片观测等;深度服务于高海拔地区科研及科普项目投入:6000000元三德科技项目名称:量热仪项目  项目目的:开发新产品  项目进展:样机调试拟达到的目标:提升仪器精密度预计对公司未来发展的影响:新产品布局,拓展盈利空间项目名称:库仑定硫仪研发项目  项目目的:对原有产品或技术迭代升级  项目进展:小批量阶段拟达到的目标:提高可靠性预计对公司未来发展的影响:产品迭代升级,提升市场竞争力项目名称:碳氢氮元素分析仪迭代项目  项目目的:对原有产品或技术迭代升级  项目进展:小批量阶段拟达到的目标:提高结果稳定性预计对公司未来发展的影响:产品迭代升级,提升市场竞争力项目名称:工业分析仪产品开发项目  项目目的:对原有产品或技术迭代升级  项目进展:样机装配与调试拟达到的目标:提升可靠性和稳定性预计对公司未来发展的影响:产品迭代升级,提升市场竞争力项目名称:灰熔融性测试仪产品研发项目  项目目的:开发新产品  项目进展:小批量阶段拟达到的目标:开发全新的灰熔融性测试仪预计对公司未来发展的影响:新产品布局,拓展盈利空间奥普光电项目名称:全国产化高分辨率相机及其相关成像产品  项目目的:攻克核心关键技术,进而实现产业化  项目进展:初步完成几款不同型号的样机研制,并实现了关键器件全国产化的目标拟达到的目标:量化生产、销售预计对公司未来发展的影响:为公司增加新的利润增长点远方信息项目名称:金属材料检测方法研究与实验室建设  项目目的:新能源汽车配套零件等检验有委托第三方实验室完成的趋势。建立相应的金属材料检测实验室,补足相关配套检验的短板。  项目进展:在研拟达到的目标:建立满足新能源汽车零件金属材料检测的认可实验室,具备自研检测技术能力,并对外提供检测校准服务。预计对公司未来发展的影响:实验室建成后其检测能力符合国内外对于新能源汽车零件相关金属性能检测标准的要求,可以为市场提供第三方高精度新能源汽车等金属材料、零件检测服务,为公司带来一定的经济效益。
  • 2021年原油资源高效加工利用技术交流会会议通知
    各有关单位:为了推进原油评价和原油高效加工新技术发展,经研究,兹定于2021年9月16日至17日在北京召开“原油资源高效加工利用技术交流会”。会议将邀请国内石油公司、研究院所、炼化企业的有关专家学者与会,重点就原油资源现状、原油加工、原油优化选择利用、分子水平原油评价、智能炼化以及炼化转型等方面展开深度交流,助力炼化企业实现高质量转型发展。本次会议将作为“2021年石油炼制科技大会”的分会场与其同期召开。现将会议有关事项通知如下。一、会议时间及地点 时间:2021年9月16日-17日,16日全天报到。会期1天。地点:中国石油科技交流中心(附件1)北京市昌平区沙河镇西沙屯桥西中国石油科技园会服电话:010-80166666,010-53399077二、会议主题高效利用原油资源,助力企业转型发展。在碳减排、碳中和形势下,实现原油资源的高效加工利用,助力原油资源从燃料型向新材料原料型转型。三、会议组织单位1. 主办单位中国石油化工信息学会石油炼制分会中国石油化工信息学会智能化分会2. 承办单位中国石油天然气股份有限公司石油化工研究院中国石油天然气集团有限公司原油评价重点实验室3. 协办单位仪器信息网四、会议学术委员会主 任:何盛宝副主任:李文乐 田松柏委 员:(按姓氏汉语拼音顺序)曹 青 崔 鹏 代振宇 范文军 龚俊波葛少辉 黄德先 何 京 何 沛 侯经纬华伦松 鞠林清 李凤岭 路 鑫 史 权王艳斌 吴建国 肖占敏 薛慧峰 姚成斌袁洪福 杨 超 张 彦 张汉沛 周 锋五、会议日程安排会议将特邀国内相关领域专家作主旨报告,同时从投稿论文中择优进行大会报告。9月16日全天报到9月17日上午1、 开幕式2、 专家报告下午1、 主题报告2、 优秀论文颁奖六、其他1、本会场不收取会议费,食宿统一安排,费用自理。(科技交流中心双人标间550元/天,单人大床房500元/天,单人标准间400元/天)。2、参加本会场会议的代表请于9月16日24:00前报到,报到地点为中国石油科技交流中心A座一楼大厅。3、同时参加石油炼制科技大会和其他分会场的代表需另行注册。4、本次会议不安排接站,请自行前往会场。七、会议联系人赫丽娜,15116987016,helina010@petrochina.com.cn修 远,18511795858,xiuyuan@petrochina.com.cn八、注意事项参会代表请于2021年8月30日前将会议回执(附件2)发送至会议联系人邮箱。报告人请务必参会,以免影响会议进程,如确不能参会,请委派代表参会。附件1 中国石油科技交流中心方位图附件2 参会回执表 中国石油化工信息学会 二〇二一年七月三十日附件1 中国石油科技交流中心方位图附件1 中国石油科技交流中心方位图附件2:参会回执表姓名性别民族身份证号职称工作单位职务联系方式通讯地址邮编办公电话手机电子邮箱住宿要求入住时间退房时间□ 双人标准间550元/天□ 单人大床房500元/天□ 单人标准间400元/天□ 自行安排住宿备注请最晚于8月30日之前以电子邮件形式发送至会议联系人邮箱。
  • 原油催化裂解技术实现全球首次工业化应用
    近日,中国石化所属石油化工科学研究院自主研发的原油催化裂解技术在扬州石化成功进行工业试验,直接将原油转化为轻质烯烃和芳烃等化学品。这是原油催化裂解技术的全球首次工业化应用,标志着我国原油直接制化学品技术取得突破性进展,成为世界上原油催化裂解技术路线领跑者。原油催化裂解技术,是原油直接制化学品技术路线之一。该技术可以“跳过”传统炼油的常减压蒸馏和原料精制等过程,直接将原油转化为轻质烯烃和芳烃,大幅增加乙烯、丙烯和轻芳烃等高价值化学品产量,同时显著降低综合能耗和碳排放。试验结果表明,低碳烯烃和轻芳烃总产率提升2倍,高达50%以上,即采用该技术每加工100万吨原油可产出高价值化学品约50万吨,经济价值巨大。该技术的成功应用对化解我国炼油产能过剩、化学品供应不足矛盾具有重要意义。该院院长李明丰表示,这一技术为原油制化学品开辟了一条新的途径,预计化学品收率最高可达70%,这意味着每加工100万吨原油可产出高价值化学品约70万吨。未来这一技术将应用于新建化工型炼厂或炼厂现有催化裂化装置的升级改造,为保障我国化学品供应链安全、缓解行业供需矛盾、助力企业转型升级作出更大贡献。
  • 德图在线温湿度系列产品抢占行业制高点
    作为全球最大的便携式测量仪器制造商,德图的大部分产品是便携式的,但德图还有一条特色的在线温湿度产品系列。由于用户和市场需求的变化,从2008年上半年开始,德图公司开始在中国大力推广德图的温湿度变送器产品系列,为各行业提供完善的在线测量产品及技术解决方案。德图在线温湿度系列产品线包括testo6621、Hygrotest600、testo6651、testo6681 。其中,testo6621、testo6651和testo6681应用最为广泛。  testo6621 是为中低端市场提供的温湿度解决方案,是暖通空调专用的温湿度变送器,用于检测室内环境。testo6651应用于特殊环境监测,如洁净室等。testo6681应用于检测工业环境,如干燥过程、高温环境、高湿环境、重工业环境、压力露点测量等。相对于testo6621,testo6651和testo6681 这两款新的温湿度测量变送器则定位在高端应用,适合监测关键环境参数,也适合在压缩空气环境下使用。  针对苛刻的使用环境,德图还提供了高品质的传感器,保证了在针对特殊应用时如高湿度、低湿度等场合也可以完成高精度的测量。关于人们对公司产品的稳定性的顾虑,在线产品经理吴保东先生胸有成竹:德图温度传感器通过九大国际权威实验室验证,品质得到了世界各地专家的认可。历经为时5年世界各地实验室不同方式的检验,德图的温度传感器都表现出了优异的品质,精度均优于1%rH,拥有最高的精度。这个验证给广大客户注入了极大的信心。  德图在线产品的湿度应用的经典案例很多,仅以云南玉溪卷烟厂卷包车间的应用实例简单介绍。传统的温湿度传感器的温度范围为0-50摄氏度,相对,湿度的精度维持在5%以内。在新的生产工艺中,空调进风口的温度大于50摄氏度,卷包车间风温上限为120摄氏度,这就需要精度更高、量程更大的温湿度变送器。Testo6651温湿度变送器具有以下特点:经验证的长久稳定、数字式可更换探头、相对湿度为1.7%的精度,温度范围达到120摄氏度、先进校准概念,能够满足最新的卷包车间工艺要求。因此,云南玉溪卷烟厂选择德图testo6651温湿度变送器应用于工艺空调系统中的温湿度监测,替代原有系统。目前卷包车间温湿度控制值为相对湿度57%,温度24摄氏度。玉溪卷烟厂空调系统总负责人张工程师给于肯定:“德图testo有一流的温湿度产品!”另外,厦门卷烟厂在烟草膨化加湿工艺中也启用了德图的温湿度变送器。  药厂洁净室,食品的存储,建筑环境及秦兵马俑发掘过程中的温湿度监测,都是德图在线温湿度系列产品大显身手的地方。德图在线温湿度系列产品已经走进中国华能电厂、加申节能、庄怡实业、龙博科技等知名企业。中国环保节能的标杆工程深圳建科大厦全部的变送器都选用了德图,用于监测调控大厦的环境。在不到两年的时间里,德图在线温湿度系列产品迅速地抢占各行业温湿度监测的制高点。
  • VOC检测报警仪与VOCs在线监测系统的区别
    1.不同的仪器结构VOC检测报警仪的结构相对简单,只包括探头(传感器)和传感器信号转换电路。然而,VOCs在线监测系统不仅配备有探头(传感器),还配备有一整套气体回路系统,即一整套气体回路系统,其将样品气体引入仪器,然后导致仪器的排气或回收。2.测定条件的不同控制方法VOC检测报警仪不配备样气工艺技术条件的调控部分,同时不考虑样气存在的环境条件直接检测。VOCs在线监测系统内部一套完整的气体回路系统和外部配套设备构成一套相对完整的化学工艺流程。气体分析仪内样气的工作条件调节和控制,达到传感器正常稳定运行的目的。这是VOCs在线监测系统能够获得准确测量数据的保证。3.不同的检测方法VOC检测报警仪使用探头直接暴露在被测空气或样品气体环境中进行检测。VOCs在线监测系统通过特殊的测量方法将被测气体(样气)引入仪器,然后将其导出仪器进行排气。4.完成整个测定过程的操作方法是不同的应用VOC检测报警仪时,只需将仪器置于被测大气中,仪器就可以显示数值。但是,VOCs在线监测系统必须小心地将样气引入仪器,然后严格调整工艺条件,如温度、压力、流速等。只有当操作员调整仪器直到实现稳定的化学过程时,才能获得准确的测量数据。但是,在此之前获得的数据是不正确的,必须丢弃。5.在检测过程中,考虑了不同的方法来消除干扰因素VOC检测报警仪直接测量大环境大气中的传感器,装置的结构设计和检测过程的实际使用不考虑大环境大气中干扰因素的存在与否,也不具备消除各种干扰因素的设计能力。然而,在设计、选择和使用VOCs在线监测系统时,必须充分考虑影响测定的各种内部和外部因素,并逐个小心排除。只有这样才能保证检测数据的准确性和真实性。否则,某个影响因素会被不适当地忽略,这是测试所不允许和不可接受的。6.数据的不同准确性VOC检测报警仪只能提供定性分析结果和相对粗略的定量分析数据。该仪器显示的数据经不起仔细检查,不能用于误差分析(只有当分析数据偏离真实值时,才能提及“误差”)。因此,它不能用作准确的分析数据来确定(决定)重要过程改进和调整的措施。VOCs在线监测系统是一种严格的测量仪器,在进行定量分析时,它可以提供非常准确的数据。这些数据可作为改善和提高天然气生产和安全生产的依据,可用于指导和实施生产管理、质量管理和企业管理。
  • 卡外国“脖子”,大量仪器技术限制出口
    近日,中华人民共和国商务部关于《中国禁止出口限制出口技术目录》修订公开征求意见。为加强技术进出口管理,根据《对外贸易法》和《技术进出口管理条例》相关规定,商务部会同科技部等部门对《中国禁止出口限制出口技术目录》(包括商务部、科技部2008年第12号令和商务部、科技部2020年第38号公告,以下简称《目录》)进行了修订。本次修订拟删除技术条目32项,修改36项,新增7项,修订后《目录》共139项,其中,禁止出口技术24项,限制出口技术115项。此次修订对《目录》进行较大幅度删减,细化部分技术条目控制要点,为加强国际技术合作创造积极条件。值得注意的是,本次《目录》中涉及大量仪器与检测技术并限制出口。部分仪器技术如下:行业领域技术名称技术名称通信设备、计算机及其他电子设备制造业空间仪器及设备制造技术1. 通道数500的遥感成像光谱仪制造技术2. 空间环境专用器件设计和工艺、评价方法和设备、空间润滑方法和润滑件;3. 高分辨率合成孔径雷达技术的总体技术方案和主要技术指标;4. 高分辨率可见光、红外成像技术的总体方案及指标;5. 毫米波、亚毫米波天基空间目标探测技术的总体方案及指标无人机技术1. 不同级别的固定翼和旋翼类无人机中的微型任务载荷,自主导航、自适应控制、感知与规避、高可靠通信及空域管理等关键技术2. 无人机制造中所涉及的惯性测量单元、倾角传感器、大气监测传感器、电流传感器、磁传感器、发动机流量传感器等集中类型传感器的关键技术3. 电磁干扰射线枪等反无人机技术4. 无人机任务载荷关键技术(光电/红外传感器、合成孔径雷达及激光雷达的制造技术等)5. 无人机飞行控制系统(自主导航、路径及避障规划等相关的算法及软件)激光技术利用自主研发的KBBF单晶体制造深紫外固体激光器的关键技术激光雷达系统车载激光探测及测距系统技术传感器制造技术1. 电子对撞机谱仪用霍尔探头的设计制造与标定技术2. 远场涡流测试探头的设计与制造技术微波技术高功率(百兆瓦级)微波技术1. 脉冲功率技术与强流电子束加速技术2. 爆炸磁压缩技术仪器仪表制造业热工量测量仪器、仪表制造技术同时具有下列指标的双涡街流量计制造技术1. 用于管道直径50~2,000mm2. 测量精度高于0.5%3. 流速≥0.2m /s4. 管道介质为水与温度≤300℃蒸汽机械量测量仪器、仪表制造技术高精度圆度仪1. 大尺寸(Ф250~Ф1,000)圆度与圆柱度在线测量技术2. 为提高主轴回转精度和测量精度(±0.017μm)的误差分离与误差补偿技术无损探伤技术探伤用驻波电子直线加速器用加速管的制造技术材料试验机与仪器制造技术1. 贴片光弹性在线、动态、同步检测技术2. 液氢高速(>4万转/分)轴承试验机设计技术(1)主轴低温(低于-240℃)变形控制技术(2)热传导及热隔离技术(3)加载系统计时仪器制造技术1. CCD(光电耦合器件)终点摄象计时及判读专用设备中成象传感技术及控制方式2. 游泳(蹼泳)成套计时记分专用设备中的触摸板传感方式及制作工艺精密仪器制造技术1. 高精度(在5.1mm处分辨率20μm)反射式声显微镜(1)声镜制造技术(2)声镜成象和V(Z)曲线原理和阴影成象法2. 柴油机振型现代激光光测研究(1)非球面透镜设计和制造技术(2)二路光路系统设计结构技术3. 四坐标探针位移机构技术(1)四坐标位移机构的设计及制造工艺(2)高频率响应(≥20kHz)压力探针的设计制造工艺地图制图技术1.我国地理信息系统的关键算法和系统中具有比例尺1:100万的地形及地理坐标数据2. 直接输出比例尺≥1:10万地形要素的应用技术地震观测仪器生产技术1. 观测频带到直流,灵敏度≥1,000Vs/m的地震计生产技术2. 井孔径130mm,周期1s,灵敏度≥500Vs/m的井下三分向地震计生产技术玻璃与非晶无机非金属材料生产技术1. 镀膜机多头小离子源制造技术(1)离子束辅助蒸发工艺(2)离子束斑合成技术2. 制作坩埚用F1强化铂的成份及其制作技术专业技术服务业海洋环境仿真技术1. 海洋环境仿真、背景干扰仿真2. 内插滤波技术和模拟通道时延误差的修正技术3. 建模大地测量技术我国大地控制网整体平差方法及软件技术精密工程测量技术我国重点工程精密测量的技术和方法真空技术真空度<10-9mPa的超高真空获取技术声学工程技术1. 专门设计用于航空、航天、船舶、火车的有源噪声控制的系统设计技术和算法软件2. 声功率>10,000W的气动声源设计技术和制造工艺计量测试技术1. 六氟化硫微量含水量测量技术(1)检测限十万分之三(体积分数)的传感器制造技术2. 氯化钠温度定点技术(1)相平衡态时氯化钠密度值(2)密封腔改善热传导技术和防腐蚀技术(3)定点黑体防泄漏技术地质勘查业地球物理勘查技术地磁场测定灵敏度≤0.01nT(包括单光系、多光系)氦光泵磁力仪探头制造技术医药制造业组织工程医疗器械产品的制备和加工技术1. 组织细胞分离和培养技术2. 组织细胞培养基的配方技术3. 材料支架的加工技术4. 组织工程产品的培养加工技术5. 组织工程产品的保存技术6. 医用诊断器械及设备制造技术(包括国产新一代基因检测仪、第三代单分子测序仪)附件:中国禁止出口限制出口技术目录.doc
  • 国际领先!石科院配方原油成套技术鉴定通过
    近日,由石科院牵头、中国石化广州分公司参与研发的“配方原油技术及在原油资源优化中应用”项目通过中国石化科技部组织的技术鉴定。鉴定专家组一致认为,配方原油成套技术在原油分子组成和光谱拟合技术相结合用于配方原油计算方面达到国际领先水平。为什么需要配方原油技术?原油资源关乎国家能源安全和国民经济发展,原油资源的波动对炼厂的经济效益会产生很大的影响。我国石化企业加工原油的品种复杂,原料的频繁变化导致石化企业安全生产和提质增效无法得到有效保障。有的企业从装置运行一开始加工的原油就不是当初设计所用的原油,有的企业加工的合适原油供应不足或价格高企,还有企业加工的原油不是优化的目标原油… … 以上这些因素都会导致蒸馏装置进料性质的频繁变化,使得石化企业配套建设的装置很难按设计要求协调运转,影响企业的正常生产及整体加工效益的提升。配方原油技术可以针对性解决国内石化企业这一共性问题,提升企业经济效益。什么是配方原油技术?配方原油技术是采用先进计算方法,在原油评价数据库和原油近红外光谱库采集的大数据基础上,通过原油品种和数量的优化配伍,形成多种原油性质及加工性能与目标原油相似的原油调合配方供炼厂选择利用,从而达到稳定炼厂加工原油的目的。配方原油技术怎么发挥作用?石科院配方原油成套技术的先进算法既考虑原油宏观物性一致性,还注重原油相容性、炼制性能。同时,还可以利用自主开发的基于分子水平的油品调合规则、燃料油黏度预测模型、二次加工装置机理模型等技术,提升技术经济评价模型,全面评价配方原油的可加工性能以及对全厂加工效益的影响,优化确定可实际执行的原油配方。应用效果怎么样?目前,配方原油成套技术已在中国石化广州分公司成功应用。石科院利用该技术对广州分公司1#蒸馏装置实际加工的两种目标原油进行了配方设计,遴选出优质的配方原油,优化了催化原料和低硫船用燃料油生产。工业应用试验数据表明,实际加工的配方原油与目标原油相似度均超过0.9,馏分收率和性质相近。广州分公司长期应用的结果表明,配方原油技术满足装置对加工原油性质稳定的要求,同时经济效益显著。业界评价如何?在中国石化科技部组织的技术鉴定会上,鉴定专家组一致认为:配方原油成套技术配方原油技术在原油分子组成和光谱拟合技术相结合用于配方原油计算方面达到国际领先水平,首次提出了动态原油相似度的概念,并用于衡量配方原油与目标原油的定量化接近程度,具有自主知识产权,建议加快开展推广应用。
  • 上海精科研讨如何发展质谱仪和在线环保仪器
    近期,上海精科公司召开为期两天的企业发展战略专题研讨会,重点研讨如何在精科发展高端科学仪器质谱仪和在线环保仪器及解决方案。上海市发改委高新技术处副处长朱明林、上海市经委产业投资处副处长厉德豪、上海市科委专家马兰凤、张露璐等、仪电集团副总裁邵礼群和制造业事业部副总经理金新、中国仪器仪表学会分析仪器分会理事长闫成德、中国化学所研究员王光辉、上海环境监测中心高级工程师钱瑾、华东理工大学教授陈焕文出席了研讨会。研讨会由公司副总经理殷传新主持。  研讨会上,中国仪器仪表学会分析仪器分会理事长闫成德作“国内外分析仪器发展趋势”报告、华东理工大学教授陈焕文和中国化学所研究员王光辉先后作“质谱仪器发展”报告一、“质谱仪器发展”报告二、上海环境监测中心高级工程师钱瑾作“水质在线仪器及系统发展”报告、公司副总经理殷传新作“精科公司发展战略”报告。期间,与会者重点就精科公司研发质谱仪和发展在线环保仪器“两翼并进”进行了深入探讨 专家们还就精科公司如何规避研发质谱风险、引进高端人才、导入质谱市场和在线环保仪器向高质量、多功能、集成化、自动化、系统化、智能化等一系列技术性强的关键问题提出了宝贵的建设性意见与建议。  质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪 按分辨本领分为高分辨、中分辨和低分辨质谱仪 按工作原理分为静态仪器和动态仪器。该类仪器属于高端科学仪器,广泛用于有机化学、生物学、地质学、矿物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。在线环保仪器主要用于对水环境和大气的现场监测,起到控制污染、保护环境的重要作用 在经济社会越来越重视环保、低碳的情况下,在线环保仪器的市场前景非常看好。  上海精科公司党委书记、总经理樊志强、常务副总经理汤志东、党委副书记项敏、副总经理袁为立和公司本部各部室负责人以及各事业部负责人均出席了研讨会。
  • 上海精科公司电化学仪器产品部研制出ZDG-520在线自动滴定仪
    一种可在现场即刻对工业企业等废水排放进行检测的ZDG-520在线自动滴定仪,最近由我公司所属电化学仪器产品部技术中心研制成功,日前通过了上海市科委委托市技监局的技术鉴定。 公司电化学仪器产品部技术中心研制的该仪器(体积约为170× 65厘米),属在线大型智能仪器,能在作业现场对江、湖水环境资源或工业企业的废水排放进行快速检测,以确定水环境受污染程度。该仪器被列为市科委下达的2007年环保在线测量仪器项目。电化学仪器产品部于去年年底启动该项目,经10个月的努力开发和艰苦攻关,终于给圆满完成此项目划上了句号。 ZDG-520在线自动滴定仪配置小型电脑,可方便用户直接并快速进行检测作业,其技术指标、测量方法等在国内处于领先水平。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制