当前位置: 仪器信息网 > 行业主题 > >

在线超声颗粒仪

仪器信息网在线超声颗粒仪专题为您提供2024年最新在线超声颗粒仪价格报价、厂家品牌的相关信息, 包括在线超声颗粒仪参数、型号等,不管是国产,还是进口品牌的在线超声颗粒仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合在线超声颗粒仪相关的耗材配件、试剂标物,还有在线超声颗粒仪相关的最新资讯、资料,以及在线超声颗粒仪相关的解决方案。

在线超声颗粒仪相关的资讯

  • 微颗粒的电磁在线监测技术与仪器装备
    table width="614" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="482" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"微颗粒的电磁在线监测技术与仪器装备/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中国科学院大学/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"王晓东/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="153" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Xiaodong.wang@ucas.ac.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:113px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="113"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"微颗粒(金属非金属氧化物颗粒、夹杂物、裂纹、气泡、缺陷、溶质、催化剂、大气污染物等等)在固相、液相和气相中的动态监测问题相当广泛地存在于不同的科学技术和工业领域里。中国科学院大学王晓东教授课题组提出基于电磁场理论的新原理,并根据监测体系和应用场合的不同,开发了一系列的系统解决方案(如下图)。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/3809cd5b-c3be-4592-9b68-234e6eadb6b2.jpg" title="4.png"//pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"/spanbr//pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"本项目新方法,主要有以下四方面的优势:1)原理上,测量量我们以矢量(如测力、第2磁场等代替标量(如阻抗),在测量精度上我们的新方法较传统涡流方法提高了1到2个数量级 2)并且由于测量量为矢量的原因,基本上消除了传统方法难以克服的“提离”效应,使检测精度大幅提高 3)检测速度大幅提高;4)可实现在线监测(传统方法为“线上”检测方式);5)检测信号易于解析。/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"相较已有技术,本项目具备实时、在线、连续、原位、定量、高速等六大特点;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"测量精度高:探测对象为微米、亚微米级颗粒物;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"适用范围广:从低温的弱导电溶液到高温的金属液(电导率:100-106S/m;温度:常温—1600/spanspan style=" font-family:宋体"℃/spanspan style=" font-family:宋体");/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"在化学化工、医药、环境领域,本技术大幅提高生产效率和质量、降低生产成本;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"突破了高温金属液洁净度的在线测量技术(世界性难题,目前尚无竞争技术);/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"在无损检测领域,突破了传统标量测量量的极限,测量精度提高了1—2个数量级;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"仪器特点:精度高、信号易于解析、微小型化(便携)、适应恶劣工业环境、可远程通讯监控。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"1/spanspan style=" line-height:150% font-family:宋体"、应用于无损检测领域——基于矢量测量的新涡流监测法/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"作为朝阳行业的无损检测在我国有着广阔的发展空间。按原理分可分为五大类,而无损检测设备器材可分为26类。应用无损检测技术的企业超过3万家,而且还在不断增长,检测与服务机构超过2000家,涉及到的无损检测器材制造商800多家。从业人员超过35万(铁路系统5万人以上,石油化工、油田、天然气、锅炉压力容器四个行业12万人以上,航空系统2万以上, 此外,航天、汽车、机械行业、电力、核电、军队、电子工业、食品医药卫生、轻工及其他行业领域未计算在内)。市场总容量超过100亿。国外某知名度和权威性很高的检测公司估计中国的第三方市场是一个超过500亿美元的巨大市场。 /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"涡流检测方法是五大类(超声波、涡流、磁粉、渗透和射线)无损检测方法应用最广泛方法之二(另一个为超声),涡流检测设备涵盖数字化涡流探伤仪、脉冲涡流检测系统、阵列涡流检测系统、大型自动化涡流探伤系统、导电率仪、金属探测器等。相关涡流检测制造厂家超过47家(2013年数据)。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2/spanspan style=" line-height:150% font-family:宋体"、应用于弱导电液中的(如电解质溶液、离子液体等)微颗粒监测/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"仪器应用对象:不仅适合于化学化工领域中的催化剂演化过程监测控、结晶工艺中控、化学提纯等领域,而且还可用于其他领域的工艺监控:磨料、墨粉、水质、稀土、化纤、陶瓷、滤材、材料、环境检测、化妆品、晶体、电子材料、食品工业、燃料、微球体、涂料和色素、造纸工业、石化、颜料、水污染检测等。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"3/spanspan style=" line-height:150% font-family:宋体"、应用于高温金属液洁净度的原位、在线、定量测量技术(冶金夹杂物监测)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"冶金过程中的夹杂物在线监控(采用光学等实验室化验方法属于非在线手段,对生产实际意义不大)是世界性难题(类似于空气污染物的监测,难度高于此!)。其价值在于能有效监控由于原材料或工艺工程中带入的非金属夹杂物,是生产洁净钢和超高洁净钢必须的关键技术。目前,基于库尔特原理的LiMCA技术只能应用于低温(熔点温度低于700度)。如能在钢铁工业、铜工业上实现夹杂物的在线监控,将是冶金领域里世界范围内技术革新。而我们的技术完全可以涵盖从低熔点到高熔点的全部范围。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"4/spanspan style=" line-height:150% font-family:宋体"、应用于大气颗粒物的监测/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"大气环境监测是所有的大气环境工作的物质基础,无论是进行大气环境质量监测、大气污染治理,还是进行大气环境科学与工程的研究,都必须是在科学、准确测定大气环境参数的基础上进行。目前,大气中悬浮颗粒物的存在,已对环境产生了严重影响,检测与监测大气颗粒物成为研究热点。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"申请美、德、中专利20项、其中7项已获授权/span/p/td/tr/tbody/tablepbr//p
  • 蔡小舒教授:浅谈光散射颗粒在线测量技术
    p style="text-align: justify text-indent: 2em "strong编者按:/strongSARI疫情无疑是当前最牵动人心的事件,肆虐的疫情对新冠病毒快速检测、肺部用药、医疗方案等方面的研究提出了越来越高的要求。而“粒度”作为重要的颗粒物理参数对于这些研究也有重要意义。例如,2019-nCoV病毒就属于纳米颗粒,而呼吸道不同位置的用药对粒度也有不同要求。因此在医药领域,颗粒在线测量还有巨大的潜力空间待科学家们挖掘。因此,仪器信息网特约span style="color: rgb(0, 176, 240) "strong上海理工大学蔡小舒教授/strong/span为广大网友畅叙颗粒在线测量技术的脉络。虽不能直接为抗疫一线带来助益,但在家隔离的诸位仁人志士若能有缘读到,或将对未来医学等的发展和颗粒检测技术的应用带来更多的思考和契机。/pp style="text-align: justify text-indent: 2em "在今天的文章中,蔡老师重点介绍了光散射在线测量方法(正文如下):/pp style="text-align: justify text-indent: 2em "颗粒,包括固体颗粒、液体颗粒(如喷雾液滴、水中的油滴等)和气体颗粒(如液体中的气泡,气体中悬浮的气泡等)在动力、化工、材料、医药、冶金等各行各业中广泛存在。据有文献报道,80%以上的产品与颗粒有关。/pp style="text-align: justify text-indent: 0em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d57d16e5-39e5-4d52-af56-4628425d716d.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png"//pp style="text-align: justify text-indent: 2em "颗粒的粒度是描述颗粒最重要的物理参数,不同的应用对于颗粒粒度的要求是不同的。如在呼吸道疾病治疗中用的鼻喷剂及喷雾剂,就需要控制药物雾滴的大小来达到雾滴沉积到呼吸道具体需要药物治疗部位的目的,这才能保证药液的效果。对于需要肺部用药,药液雾滴粒度应比较很小,才能随吸入的空气流动到达肺部。大一些的药液液滴会沉积在支气管或气管里,达不到肺部用药的目的。而对于喉部或气管的疾病,液滴的粒度就必须比较大,让它们能在喉部或气管里沉积。对于支气管部位的疾病,其雾滴的粒度就要介于2者之间。这就需要对鼻喷剂的喷嘴进行精心设计,以保证雾滴的粒度可以满足治疗不同疾病的需要。/pp style="text-align: justify text-indent: 2em "在工业生产等中,经常遇到需要对颗粒进行在线检测要求,如颗粒的制备、雾化、管道输运等过程中。对颗粒粒度进行在线实时检测,然后将检测结果实时送到控制系统,对生产系统进行调整和控制,不仅可以提高产品质量,还可以提高产品生产效率。如在燃烧过程中,在线实时检测燃料粒度可以提高燃烧效率,降低污染物的产生。磨料生产中在线检测磨料粒度并反馈控制,可以极大提高磨料的质量。这样的例子可以在许许多多的场合找到。/pp style="text-align: justify text-indent: 2em "目前已有许多颗粒粒度测量仪器能对从数纳米到数千微米的颗粒进行测量,但这些仪器基本上是用于实验室分析,并不能用于在线测量。颗粒在线测量的特点是:/pp style="text-align: justify text-indent: 2em "1. 测量环境复杂,条件恶劣,如可能有高温、高压、高湿、工作环境温度变化大、存在振动、颗粒流动速度快、信号发射和接收部分的污染等,还必须考虑测量装置的磨损等;/pp style="text-align: justify text-indent: 2em "2. 测量要求高,测量时间要短,实时性好,不能因为仪器问题影响生产过程等;/pp style="text-align: justify text-indent: 2em "3. 测量对象要求不同,如高浓度及浓度变化大、被测材料不同、粒度范围不同、或粒度范围变化大等;/pp style="text-align: justify text-indent: 2em "4. 希望在线测量仪器结构简单、可靠、抗干扰、易安装、易维护或免维护等。/pp style="text-align: justify text-indent: 2em "5. 不仅测量颗粒粒度及分布,还经常希望得到颗粒的浓度,流量、形貌等参数,甚至成分参数。/pp style="text-align: justify text-indent: 2em "在线测量按照取样方式可以分成直接在线测量(in-line)和取样在线测量(on-line)2类。在直接在线测量(in-line)方法中,测量装置不对被测颗粒进行取样,被测颗粒直接流过测量区进行测量。在这类测量方法中,由于不能对被测颗粒的浓度进行调整来满足测量方法的需要,并且用户对颗粒在线测量的要求和测量对象及环境等的不同,仪器的通用性差,必须精心考虑设计测量系统来满足测量的要求。因此,这类在线测量仪器一般都是个性化的仪器,需要根据测量现场要求来设计研制。而对于取样在线测量(on-line)中,由于连续取出的颗粒样品可以根据测量装置对于颗粒浓度的要求进行稀释调整,同时可以对其中的团聚颗粒采取分散措施,大都可以设计生产相对通用的在线测量仪器。/pp style="text-align: justify text-indent: 2em "目前常用的在线颗粒粒度测量仪器的基本测量原理有光散射,超声,图像等。其中光散射大都用于气固或气液颗粒的在线测量,而超声则用于液体中颗粒的在线测量,图像法既可以用于气固、气液颗粒的测量,也可以用于液固、液液颗粒的测量。下面先重点介绍光散射在线测量方法:/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 0, 0) "strong光散射在线测量方法/strong/span/pp style="text-align: justify text-indent: 2em "光散射的基本原理是当一束激光入射到颗粒时,颗粒会向整个空间散射入射光,如图是激光入射到有颗粒的水中,颗粒向各个方向散射入射激光的照片。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a6f9425c-dcf9-47c9-b4c9-22f75bfea916.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png"//pp style="text-align: justify text-indent: 2em "根据测量颗粒散射光原理的不同,可以把光散射颗粒在线测量方法分成几类:前向静态光散射法,侧向光散射法,后向光散射法,消光法,光脉动法等。在实际应用中针对不同的测量对象,须采用不同的测量方法。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "前向静态光散射法:/span/strong这与常用的激光粒度仪的测量原理一样,一束激光从被测颗粒一端入射,在透射端安装接收散射光信号的探测器,对测量得到的散射信号进行分析反演计算,最终得到颗粒的粒度分布和平均粒径等参数。国内外一些颗粒仪器测量公司都有基于该原理的激光在线测量仪。该类仪器的特点是:颗粒粒度测量范围大,可以从亚微米到数百微米,测量速度快,一般采用连续取样方式(on-line)实现连续实时测量。但仪器复杂,安装使用要求高,无法识别颗粒是否团聚,而团聚颗粒会造成较大的测量偏差。为防止环境振动对测量的影响,除在仪器结构上采取措施外,在安装结构上也要采取措施,尽量保证仪器运行时的稳定。为防止被测颗粒对激光器和接收透镜表面的污染,须设置无油无水的压缩空气保护(俗称扫气或气帘)光学元件表面。/pp style="text-align: justify text-indent: 2em "基于该原理的在线激光粒度测量仪器可用于管内粉体颗粒的粒度在线测量和喷雾液滴测量。在在线测量管内粉体粒度时,由于颗粒浓度较高,都配有连续取样系统,将被测颗粒样品连续从管道中取出,经分散和稀释到合适浓度后送到仪器的测量区。下图是安装在现场的激光颗粒粒度在线测量仪以及仪器输出的在线测量结果。根据需要,软件可以输出实时的颗粒粒度分布,以及D50等随时间变化的曲线。为防止取样出来的颗粒发生团聚,影响测量的准确性,在取样系统中应布置使颗粒分散的气流,以尽可能保证进入测量区的颗粒处于分散良好的状态。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/b22b2599-d21f-4f9e-b16e-537e32d204fc.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong消光法:/strong/span当激光入射到被测颗粒时,部分入射光被颗粒散射,偏离原入射方向,部分被颗粒吸收,其余部分则透射到另一侧。透射光强由于消光作用而衰减,其衰减程度含有被测颗粒的粒度信息和浓度信息。当采用多个不同波长的激光入射,颗粒对不同波长光的散射作用不同,透射光强的衰减也不同。根据多波长消光法的理论模型,由测得的不同波长的透射光强的衰减,可以反演计算得到被测颗粒的粒度和浓度。/pp style="text-align: justify text-indent: 2em "该方法的特点是结构简单,对振动不敏感,但粒度测量范围较小,合适的测量范围是大约0.05微米到5微米左右。对于浓度不高的测量对象,发射和接收可以直接安装在管道2侧。在管道上开设装有石英玻璃的透明测量窗,激光束从1侧从测量窗入射,在另一侧测量窗外布置光接收器件和信号放大电路等。为防止颗粒污染测量窗口,同样需要设置无油无水的压缩空气进行保护。下图是消光法测量原理的示意图和测量装置安装在工业管道上在线测量颗粒粒度和浓度,以及烟道上在线测量烟尘的浓度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/06be3f94-1969-48f0-a900-3db071faadcd.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em " /spanbr//pp style="text-align: justify text-indent: 2em "由于消光法的光路结构简单,可以做成探针形式,用于浓度相对较高的颗粒在线测量。下图是用于汽轮机内湿蒸汽水滴粒度和浓度测量的探针系统。在探针端部的矩形窗口就是测量区。含有细微水滴的蒸汽高速流过该测量区,仪器就可以测得水滴的大小和浓度,进而得到蒸汽的湿度。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2cf913f6-abe3-41f3-b835-2248a3818d08.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong光脉动法:/strong/span在消光法测量中,测量光束的直径远大于被测颗粒的粒度,在测量区中颗粒数目巨大,透射光强的变化仅与测量区中的颗粒浓度变化有关,与颗粒粒度无关。但将测量光束减小到与被测颗粒粒度同一数量级时,且测量区长度较小时,透射光强信号会出现随机变化,这种随机变化是由于在测量区内颗粒数目和大小随时间变化造成的。分析这种随机变化的信号,根据光脉动原理,可以得到颗粒的平均粒度和浓度。并可能可以得到颗粒的粒度分布。下图是光脉动法的原理示意图和透射脉动光强信号。/pp style="text-align: justify text-indent: 2em "这种测量方法的最大特点是测量原理简单,易于实现在线测量,粒度测量范围可根据测量对象的大小,通过改变光束直径来调整,可以在10-数千微米之间。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d69f90e5-d64b-409e-9232-b2c847816b4c.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png"//pp style="text-align: justify text-indent: 2em "根据该原理可以在线测量粉体颗粒的粒度和浓度。如果间隔一定距离布置1对测量光束,对2个随机序列信号用互相关法原理处理,不仅可以得到颗粒的粒度,还可以得到颗粒的速度,span style="text-indent: 2em "进而得到颗粒的流量。下图是安装在现场的基于该原理的颗粒粒度在线测量装置。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a489deae-c7cf-405b-a5f6-765c92c0bdf5.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong消光起伏相关光谱法: /strong/span与消光法和光脉动法不同,在该测量方法中,光束的直径小于被测颗粒的粒径,其透射光强不再是如消光法那样是平稳的,也不是如光脉动法那样是连续的高频脉动信号,而是如下图所示,成不连续的脉动信号。当颗粒通过测量光束时,由于颗粒尺寸大于测量光束的直径,入射激光被完全遮挡住,透射光强为零。当没有颗粒通过测量光束时,透射光强为1。采用消光起伏相关光谱法的模型对测得的时间序列信号进行分析,同样可以得到被测颗粒的粒度分布。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/788dfd6a-64c4-4942-a74b-a23cd1c19bbf.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "后向散射法:/span/strong对于高浓度悬浮液、乳剂等,光无法透射过被测颗粒,散射光也会被颗粒所吸收或散射,但会产生后向散射。颗粒浓度越高,这种后向散射光的强度也越高,且与颗粒的粒度有关。根据该原理,可以采用后向散射方法进行高浓度液液或液气颗粒体系,如悬乳剂、高浓度微气泡等的在线测量。该测量方法的特点是浓度测量范围大,可以到体积浓度百分之几十,而粒度测量范围较小,从亚微米到数微米。经过标定,还可以测量颗粒的浓度。/pp style="text-align: justify text-indent: 2em "合适的光路设计还可以用于气固颗粒的在线测量,以及测量气、液、固3相流动中的离散相颗粒的粒度和浓度。/pp style="text-align: justify text-indent: 2em "后向散射法测量可以做成结构非常紧凑的光纤探针形式,带尾纤的激光器发出的激光经光纤入射到被测颗粒,其后向散射光被同一根光纤接收,也可以是另一根光纤接收,然后由光纤另一端的光电探测器将后向散射光信号转换成电信号进行反演计算处理,最后得到颗粒的粒度。下图是后向散射测量的原理示意图和后向散射探针。该探针可以插入如悬乳液等高浓度颗粒两相流中进行在线测量。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/40bb4eb7-28dd-4fb5-8750-9533e649894a.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png"//pp style="text-align: justify text-indent: 2em "strong style="text-indent: 2em "作者简介:/strongbr//pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% width: 300px height: 217px float: left " src="https://img1.17img.cn/17img/images/202002/uepic/1a4277d5-fe8a-48ce-a42e-05a480160d54.jpg" title="蔡小舒.jpg" alt="蔡小舒.jpg" width="300" height="217" border="0" vspace="0"/蔡小舒,上海理工大学教授。研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、湍流等,近年来开始涉足生命科学的测量研究。先后承担了国家两机项目、国家自然科学基金重点项目、仪器重大专项项目、面上项目、科技部和上海市项目等纵向项目,国际合作项目以及企业委托项目。/pp style="text-indent: 2em text-align: justify "曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/spanbr//pp style="text-align: center text-indent: 0em "strongspan style="text-indent: 2em "欲知相关仪器可点击进入/spanspan style="text-indent: 2em text-decoration: underline "a href="https://www.instrument.com.cn/zc/670.html" target="_self" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) "在线粒度仪/span/a/spanspan style="text-indent: 2em "专场/span/strong/p
  • 中科院“大气细颗粒物在线监测”技术荣获国家科技进步奖
    雾霾频频来袭,治理迫不及待。作为国家科技进步二等奖获得者,中科院合肥物质科学研究院 “大气细颗粒物在线监测关键技术及产业化”项目,为科学认知雾霾奠定重要技术基础。  在刚刚结束的省“两会”上,“绿色发展”“健康安徽”成为代表、委员关注的热点。随着雾霾天气日益增多,如何科学治霾成为亟待解决的重要难题。日前,中科院合肥物质科学研究院安徽光学精密机械研究所主持完成的“大气细颗粒物在线监测关键技术及产业化”项目荣获国家科技进步二等奖,为我国环境监测技术现代化和监测仪器国产化作出突出贡献。  雾霾治理亟需技术支撑“十多年前,很多人不相信中国会出现严重的雾霾天气,但我们早已预测到这种可能性的存在,于是先期开展大气细颗粒物在线监测技术研究和科技攻关。”中科院合肥物质科学研究院研究员、“大气细颗粒物在线监测关键技术及产业化”项目主要完成人刘建国说,这种前瞻性研究为我国开展环境质量准确监测、发展自主产权的环境监测仪器打下良好的基础。  近年来,随着工业化、城镇化快速推进,我国大气污染形势严峻,高浓度大气细颗粒物导致雾霾频发、大气能见度下降,严重影响大多数城市空气质量和人体健康。为准确掌握大气细颗粒物污染现状、正确认识大气细颗粒物来源,快速准确地测量大气细颗粒物质量浓度、成分、粒径谱分布和大气能见度,成为我国大气环境科学研究和业务监测的迫切之需。  然而,由于雾霾本身的复杂性,我国以城市为中心的空气质量自动监测站所提供的监测数据,难以满足雾霾追因与控制需求。 “治理雾霾,监测数据非常重要。”中科院合肥物质科学研究院研究员、项目主要完成人桂华侨介绍,发展先进的大气细颗粒物监测设备与观测平台,准确全面掌握大气雾霾污染特征,认识其发展和演变规律,是科学制定雾霾防治措施的基础。  “大气细颗粒物在线监测关键技术及产业化”项目,由刘建国研究员牵头,中科院安徽光学精密机械研究所科技攻关、安徽蓝盾光电子股份有限公司产业化开发而形成的科研成果。 “这一‘十年磨一剑’的成果,立足环境监测和科学研究之需,也符合‘健康中国’的时代需求。 ”刘建国表示,源源不断的监测数据可以进一步了解污染源清单,让未来大气环境治理措施更加科学。  “火眼金睛”瞄准细颗粒物  大气细颗粒物PM2.5监测仪、粒径谱仪、有机碳/元素碳分析仪、大气能见度仪...走进中科院安徽光机所实验室,一系列已走向产业化的监测设备,让记者眼睛一亮。 “别小看这些设备,有了它们就如同有了‘火眼金睛’,能够快速准确查出大气细颗粒物质量浓度、成分等。 ”桂华侨透露,早在6年前,我省就在全国率先建成“安徽省高速公路恶劣气象条件监测预警系统”,利用他们自主研发的大气能见度仪,可实时监测高速公路大气能见度变化情况。由于预警及时,该系统自试运行以来,全省高速公路死亡3人以上交通事故起数和死亡人数同比下降40%以上。  “关键技术的突破,使得我国大气细颗粒物在线监测技术达到国际先进水平。 ”刘建国介绍,通过动态加热系统、采样管升降装置/走纸装置、碳临界温度的精确定位、差分电迁移分级和快速分析、稳定的场致电离电荷源技术、大气能见度标定和野外校准、光学透镜测污装置等一系列关键技术的突破,他们创新设计了一整套大气细颗粒物高灵敏探测技术工程化解决方案,解决了大气细颗粒物多参数准确、快速、在线监测的技术难题,一举满足了我国环境、气象、交通、科研等多部门对大气细颗粒物在线监测的技术需求。  “稳定性强、灵敏度高,可实时在线、无人值守,这是我们设备最显著的优势。 ”桂华侨表示,围绕该系统关键技术的研发和仪器设备的研制,他们已累计获得8项发明专利授权、5项软件著作权登记以及8项实用新型专利授权。其中,大气细颗粒物PM2.5监测仪,通过环保部环境监测仪器质检中心技术认证 大气细颗粒物切割器,通过中国疾控中心检测 大气能见度仪,以零故障和96%的数据准确率通过中国气象局定型认证 大气颗粒物有机碳/元素碳分析仪,通过省科技厅科技成果鉴定,关键技术指标达到国际同类产品的先进水平。  监测设备告别进口时代“由于我们技术的投入使用,使得国内至少三分之二以上的大气细颗粒物在线监测设备实现国产化。 ”刘建国骄傲地说,过去,我国大气细颗粒物在线监测核心设备主要从美国、日本、德国等国家进口,国产设备在品种、数量、性能、质量上远远满足不了实际工作需要,安徽光机所技术成果产业化后,打破了长期以来高档环境监测设备依赖进口的局面。  我国地域辽阔、气候差异大,对环境监测仪器的适应性要求也比较高。 “进口设备高价买回来后,有时会‘水土不服’,服务也跟不上。 ”桂华侨告诉记者,他们与企业合作生产的国产设备不仅价格低、服务好,性能也与进口设备相当,可以24小时全天候稳定运行。 2008年以来,项目组利用该监测系统先后在珠三角、长三角和北京等地区开展综合应用示范,验证了监测数据的准确性,并参与2008年北京奥运会、2010年上海世博会、广州亚运会以及2014年北京亚太经合组织会议空气质量保障任务,用科学数据评估了国家重大活动空气质量保障措施的效果。  目前,中科院安徽光机所研制的大气细颗粒物在线监测设备,已批量应用于环保部城市空气质量自动监测网、重点区域和城市大气灰霾监测超级站、中国气象局气象观测网、气溶胶质量浓度监测网络,以及安徽、贵州等省“高速公路恶劣气象条件监测网”。近3年,全国20多个省市已安装大气细颗粒物监测设备2100余套,实现新增产值2.5亿元,新增利税9533万元。  “下一步,我们将更加关注与百姓健康有关的研究,比如纳米量级的大气超细颗粒物监测。 ”刘建国透露,超细颗粒物对于人体健康、环境、气候变化的影响可能更大,其在线监测难度也更大,需要更多的技术研发,这是一个重大挑战。另外,大气环境领域臭氧、挥发性有机污染物监测,也需要更多高灵敏度的仪器设备。 “科学研究任重而道远,需要持之以恒的科技攻关。 ”他坦言,国产仪器推广应用的时候,也面临一些困境,很多人对国产仪器抱有怀疑和不信任的心态,国家还应加大对国产仪器的政策支持,为推广应用提供便利。
  • 镁、镱等超硬颗粒的研磨方法
    研磨对象:镁、镨、镱等颗粒,粒度级别5mm及以下研磨目的:金属基材料制备、机械合金化研磨难度:超硬性、延展性、氧化性所用仪器:天昶科技 D-Vibrate Miller三维震荡研磨仪研磨原理:研磨罐带动物料,做上下左右三维式旋转摆动、振动、冲击运动,运动幅度是:上下60mm,左右20mm,前后20mm,震动频率为:Speed Max=2800rpm,磨球和罐壁对物料的三维无序撞击摩擦,撞击能远远高于常规行星球磨仪,使得微纳米颗粒成为可能。该仪器自重120kg,空载噪音75dB,连续运转时间72h,可供您选择的研磨罐体容积50~250ml,同时3个罐体运转,可以获得3种不同实验材料。可提供高分子、PTFE、玛瑙、氧化锆、碳化钨等多种类罐体材质,适应无铁研磨、干法研磨、湿法研磨,可通N2、Ar等惰性气体气氛保护。研磨罐方便拆卸,可在真空手套箱中装卸物料,防止超细金属自燃。 研磨方法:将磨球25mm 1粒,5mm 5粒,3mm 20粒,一定质量初始直径5mm的镁颗粒,放入50ml不锈钢研磨罐中,研磨罐为椭球形结构,如图示。加入溶剂,或者加无水乙醇并通入惰性气氛保护,利用上下左右三维式震击研磨仪,研磨时间2h,即可得细度微米级的悬浊液。
  • 在线颗粒检测助力水泥、平板玻璃行业碳减排技术的发展及应用
    一、背景介绍水泥、平板玻璃作为两个能耗性传统企业,在碳排放领域面临着巨大压力。作为两个关乎民生的行业,想通过一刀切式的减产来达到碳排放减少并不具有可持续性,因此通过改善和提升生产等各个环节的技术才是减少碳排放的终极之路。受工业和信息化部原材料工业司委托,由中国建筑材料联合会牵头组织全行业科研院所、试点企业及相关单位,编制完成了《水泥行业碳减排技术指南》和《平板玻璃行业碳减排技术指南》,为建材(水泥、平板玻璃)企业开展节能降碳技术改造提供参考。根据指导文件,节能减排技术的改善是多方面、多维度和多层次的,牵扯到从设备到工艺各个层面。本文特邀丹东百特仪器有限公司技术总监李雪冰博士从在线颗粒检测维度分享其对以上两个指南的看法。二、在线粒度检测技术在《水泥行业碳减排技术指南》中,提升能效技术是排在第一位的,而在这16项提升能效的措施中,其中跟研磨有关的就有6项,换句话说,研磨过程对于提升水泥生产能效有重要作用。但我们如何优化水泥、钢渣、矿渣以及生粉的研磨工艺?粒度检测方案就是其中重要的一环,在线粒度仪通过与研磨机联用,能够及时反馈粉料粒度的变化,优化磨机方案。另外,在《平板玻璃行业碳减排技术指南》优化方案中,控制原料粒度和化学成分也是减少玻璃液生成热的重要手段。相比较传统的离线粒度检测,在线检测对于生产来说意义更加重大。首先,在线检测设备能够跟生产设备联用,可以实时给出磨机中颗粒的粒度大小和分布,相比较实验室具有更好的时效性;其次,在线粒度检测不需要人工取样、人工检测、人工记录结果,可减少人为的误差;最后,在线粒度解决方案可以实现远距离数据传输,跟中控系统直接对接,更加高效。在线粒度解决方案三、在线粒度检测技术的创新随着激光粒度分析技术的持续进步,粒度检测设备已经越来越向自动化和智能化方向发展。相比离线的实验室粒度分析仪,在线仪器采用的镜头防污染技术、自动取样技术、测试浓度判定和自动调整技术以及测试数据自动诊断技术等,可以更好地适应产线的实时检测。离线的激光粒度仪如果发生样品池污染,可在测试过程中随时终止测试,然后简单的擦洗维护镜片即可;然而在自动化生产过程中,产线不能随意停机去维护设备,必须保证仪器长时间无维护运行。在线仪器采用的气幕法镜头防污染技术,就是采用特殊的气幕设计来防止颗粒物污染镜头,从而使得相比较实验室仪器,可长时间连续运行。此外,如何从管道中自动连续地取样也是一大挑战,这些技术的完善都是在线技术进入实践的重要保障。随着物联网的崛起,智能化也是碳减排领域的一项重要工作,在线粒度仪除了在满足实时监测粒度的功能外,进一步朝自动化和智能化的方向发展。比如,其采用的全新负反馈技术,不仅使粒度仪和中控系统实现了实时通讯,还可以反过来实时控制和调整磨机以及分级机的转速;这就意味着在线粒度仪不仅仅只是一个粒度检测仪器,还肩负起磨机和分级机自动调整的功能, 相比人工的判断和指令,该技术无疑会进一步提高生产效率,优化研磨过程。同时“一拖二”或者“一拖多”等技术的实现,使得一个主机可实现多个产线管道的监测和控制,进一步提高了生产效率,为节能减排提供了重要动力。四、总结对于传统能源产业,碳减排是一个重大的课题,也是一个难题,需要生产、工艺、设备以及流程多个维度的优化和提升。作为物性检测的一个指标,粒度仪已经在水泥和玻璃行业得到了广泛的应用,然而随着在线检测技术的发展,其可以进一步优化磨机方案,提升生产效率,为碳减排做出相应的贡献。生产应用案例
  • 广州禾信推出实时在线单颗粒气溶胶飞行时间质谱仪
    仪器信息网讯 7月30日,2010年全国质谱大会暨第三届华人质谱大会在长春国际会展中心盛大开幕,广州禾信分析仪器有限公司在会议期间向与会者介绍了最新推出的“移动式实时在线单颗粒气溶胶飞行时间质谱仪(Single Partical Aerosol Mass Spectrometer)SPAMS 05-- 系列”。其中SPAMS0515可实现单颗粒气溶胶粒径和化学成分同时检测;升级的SPAM0516除具有SPAMS0515功能外还可实现颗粒光学特性同步测定。SPAMS 05-- 系列  SPAMS05 系列,采用空气动力学透镜、双光束粒径测量系统、激光电离系统及双极有网反射飞行时间质量分析器,融合国际上气溶胶真空采集、质谱分析检测的最新技术以及气溶胶光学特性和密度测量技术,是当前国内最复杂的商品化质谱仪器,国外同类进口产品售价在400万元左右。  SPAMS05--系列的实时在线检测技术克服传统离线分析采样时间长、样品在采集、贮存和运输过程中可能发生如挥发、结晶、气-粒转化等反应的缺点,还原气溶胶单颗粒的真实状况,可灵活转场满足跨地区实验要求,为研究人员提供真实可靠的实时颗粒信息。广泛应用于大气环境监测、工业过程监测以及全球气候变化、大气化学、气溶胶药物-释放、吸入毒理学等研究领域,是功能强大而精准的新型分析测试工具。  SPAMS05--系列移动式实时在线单颗粒气溶胶飞行时间质谱仪,可根据用户的工作环境和研究要求定制或改制仪器、达到最优的检测效果。领先的质谱原创团队为用户量身定做最优的检测方案以及提供强大的技术支持。  关于广州禾信分析仪器有限公司    广州禾信分析仪器有限公司——坚持“做中国人自己的质谱仪”,是一家专门从事质谱类仪器研发、生产、销售及服务的高新技术企业。拥有自主知识产权的飞行时间、四级杆质谱及多种离子源核心技术。产品包括:工业在线气体检测系列、大气气溶胶在线分析SPAMS05--系列、500-10000分辨率飞行时间质谱检测器系列、四级杆检测器系列、离子源、高速数据采集卡、高精密电源等,同时为用户提供个性化服务,提供各种高端专用质谱仪器的定制服务。  公司地址:广州科学城开源大道11号A3栋第三层  电话:020-82071906(直线) 82071911、82071902(总机)—8017  传真:020-82071902  邮编:510530  网址:www.tofms.net  邮箱:hexintofms@163.com
  • 国际在线研讨会—多维颗粒表征 (LUM)
    2021年1月27日至29日,Erlangen合作研究中心(CRC1411) -“颗粒产品设计”,2045优先项目 -“工业精细颗粒系统的高度特异性,多维组分化” 与德国LUM公司联合举办了一个关于颗粒系统多维表征的国际研讨会。来自工业以及学术界的专家将使用最新技术和最新开发的方法来探讨多维粒子表征的现状。 第六部分的分散体的沉降分析第二环节,Dietmar Lerche教授将给大家介绍“分析离心技术的进展 - 纳米颗粒的多维表征”,届时会结合LUMiSizer新的多波长功能做相关的分析。 参加研讨会是免费的,但必须注册才能通过ZOOM登录在线活动。 有关更多信息和注册信息,请扫描二维码访问以下研讨会网站链接: 注册成功后会收到会议详细内容,注册截至时间为2021年1月24日德国时间24时。 本次在线研讨会的官方语言为英语,时间为德国当地时间。 下面是3天的会议议程:
  • 科研突破-在线颗粒计数器新品发布
    “科学仪器和设备的研发是推动科学和技术发展的重要力量,科研仪器研发的水平实质上是科技硬实力的一个重要指标。在过去的几十年里,我们国家在很多技术领域取得了很大进步,但科研仪器研发的底子相对薄弱。科研领域许多方面受制于人,就是因为我们在科研仪器研发实力不够。”近年来,我国在科学仪器发展取得了一些可喜的进展,但是离国际水平的发展还有较大的差距。但是我们也在不断加大仪器仪表科研技术研发投资,是的缩短与国际水平的差距。下面这台仪器是北京得利特公司新升级的一款油品颗粒度检测仪,它在内置标准方面有了新的突破,接下来赶紧跟随得利特来详细了解一下吧!A1033在线颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。仪器特点1、采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定2、适用于现场的在线检测,可实时监测用油系统中的颗粒污染度3、内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级4、可选配减压装置用于在线高压测量5、具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护6、可设定任意报警级别,实现污染度或洁净度检测7、RS232或RS485接口,可连接电脑或其它设备进行数据监控、处理8、超大存储,可选择存储在仪器内部或外部存储设备中9、坚固外型结构,适合复杂工作环境技术参数 光源:半导体激光器 流速范围:20-500mL/min 检测样品粘度:≤350cSt 在线检测压力:0.1-0.6Mpa(选配减压装置压力可达40Mpa) 粒径范围:1-500μm(选用不同型号传感器) 接口:USB接口、RS232接口、RS485接口 数据存储:提供1000组数据存储空间,并支持优盘存储 灵敏度:1μm或4μm(c) 极限重合误差:10000粒/ml 计数体积:1-999ml 计数准确性:±0.5个污染度等级 防护等级:IP56 测试时间间隔:1秒-24小时 检测样品温度:0-80℃ 工作温度:-20-60℃ 供电: AC 220V±10%、50/60Hz或? DC12-40V 重 量:1.1kg 体 积:115×100×70mm升级点:内置ISO4406、NAS1638、SAE4095、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准。内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准。
  • 2010年颗粒学术盛会在西安隆重开幕
    中国颗粒学会第七届学术年会暨海峡两岸颗粒技术研讨会在西安召开  仪器信息网讯 为了总结交流近年来我国颗粒技术方面的研究开发成果,探讨本领域国际上最新的研究进展和发展动向,2010年8月16日,“中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会”在西安市陕西宾馆(陕西丈八沟宾馆)隆重开幕。  本届会议由中国颗粒学会、中科院地球环境研究所、西安建筑科技大学、台湾大学、大同大学主办,中国颗粒学会测试专业委员会、上海市颗粒学会、北京粉体技术协会、陕西省颗粒学会、中国科学院过程工程研究所协办。来自颗粒学及粉体技术领域的数百位专家学者、企业代表等参加了本次会议,仪器信息网作为特邀媒体应邀参加。会议现场  同时,大会还邀请了8位颗粒学及粉体技术领域的著名专家做了精彩的大会报告。西安建筑科技大学徐德龙教授报告题目:中国水泥工业的生态化  作为我国水泥工程领域惟一的院士,徐德龙教授首先向大家介绍了生态水泥工业的深刻含义、高固气比理论以及超细粉技术在中国的应用,同时,徐德龙教授还着重阐述了其在节能减排方面所取得的巨大成就,并表示十分看好水泥工业生态化的前景。辅仁大学姚永德教授报告题目:Formation of Fe and Pt nanorods on nanoporous anodic aluminum oxides by controlled nucleation sites  姚永德教授解释到,通过在纳米多孔型阳极氧化铝模板上形成铁/铂双层垂直对齐和类似倒锥结构的这项研究,磁性纳米粒子的磁化反转机制可以得到证实。另外,降低铁或(和)铂的指定厚度,可降低磁化程度,就可以得到独立旋转逆转相互作用的结果。香港理工大学李顺诚教授报告题目:Carbonaceous aerosol - Past, now and future  李顺诚教授首先简要回顾了碳气溶胶的国内外发展、碳气溶胶对环境、气候及人类健康的影响和碳元素分析仪器的研究进展情况,并指出:“环境问题日益严重,我们节能减排的挑战也将不断加大。但是,节能减排并不只针对二氧化碳和碳气溶胶,应该是控制所有污染物的排放量,对环境、气候、人类健康的保护起到协同作用。”北京化工大学陈建峰教授报告题目:纳米颗粒的工程及应用  陈建峰教授通过超重力法成功合成了纳米颗粒材料,在国内外引起了强烈反响。另外,陈建峰教授还表示:“目前,纳米颗粒材料制备工程的关键科学问题集中在分子热力学、纳米材料生成动力学、分子反应工程三方面。若采用纳米技术合成药物制剂,国际市场前景可高达3800亿美元。”英国Leeds大学王学重教授报告题目:Multivariate SPC of emulsion and nanoparticle slurry processes based on process tomography, dynamic light scattering and acoustic spectroscopic data  王学重教授通过过程层析成像、动态光散射以及超声波的数据,对悬浮液和纳米颗粒浆液过程的多变量进行了统计控制,同时,王学重教授还指出:“在线测量对于产品生产工艺的质量控制很重要,但是目前在线测量的应用工作还不普遍,需要我们做进一步的努力。”清华大学骆广生教授报告题目:粉体材料的可控制备及其工业应用  骆广生教授说到:“微化工系统的高效混合和传质性能可为纳米材料的大规模制备提供均一的反应环境,可较好地实现对成核和生长过程的控制。另外,多相微分散体系流型的有序性为调控粉体材料的样貌提供了好的手段。但是,这方面的研究还有待于进一步的研究。”国家纳米科学中心张忠研究员报告题目:兼备塑料和陶瓷优点的纳米复合材料  张忠研究员谈到:“纳米复合材料最重要特点之一是由于纳米颗粒在基体中引入了巨大的界面区域,因而纳米颗粒能够提高高分子材料的关键性能,其中包括抗疲劳、耐蠕变和耐摩损等特性,这些材料在汽车、生物材料、电子封装材料、造纸工业等领域有很强的应用前景。”宝洁(中国)研发中心粉体工艺研发首席工程师沈睿先生报告题目:Powder technology in consumer product industry  沈睿先生首先介绍了一些涉及到粉体工艺生产的日常消费品,如牙膏、肥皂、洗发水、电池、洗衣粉等,并指出了粉体工艺当前所面临的挑战。同时,沈睿先生还表示:“宝洁公司为开放式创新,追求‘联系+发展’,中国有着巨大的市场、技术与创新潜力,更应重视‘联系+发展’。”仪器设备展示会粉体技术及产业化交流会  为丰富年会内容,同时促进粉体行业产、学、研、投等领域更好的对接,本届年会还组织了“粉体加工设备、颗粒测试仪器及科技成果展”、“粉体技术及产业化交流会”,以期通过此平台更好地为行业企业服务。英国马尔文、贝克曼库尔特、瑞士华嘉、日本堀场、欧美克、日本岛津、丹东百特、济南微纳、上海福里茨、德国莱驰、成都精新等公司纷纷参展。  另外,会议同期还举办了中国颗粒学会第五次会员代表大会及理事会换届工作会议,并分别以“颗粒测试与应用”、“气溶胶”、“流态化基础研究与应用”、“颗粒制备与应用技术”以及“超微颗粒材料”为主题举办了分场报告会。  同时,会议还将评选并将在年会闭幕式上颁发“中国颗粒学会青年颗粒学奖”、“宝洁青年优秀论文奖”和“宝洁优秀研究生论文奖”。“中国颗粒学会青年颗粒学奖” 设立于1997年,与每2年一届的学会年会同步。 2007年8月初,经国家科学奖励办公室正式批准,“中国颗粒学会青年颗粒学奖” 已经成为国家承认的社会力量设立的科学技术奖。  备注:仪器信息网将跟踪报道中国颗粒学会第七届学术年会暨海峡两岸颗粒技术研讨会,敬请关注!
  • 蔡小舒教授:颗粒粒度及气溶胶在线测量的图像魔法
    p style="text-align: justify text-indent: 2em "说起图像法,大家很自然会联想到相机。对,图像法就是用相机作为传感器测量颗粒粒度。其实,图像法并不是一种新的测量方法,这是一种已有很多年历史的测量方法。早期的相机采用胶片作为传感器,记录被测物体的影像,然后将影像投影到工具投影仪上,在投影仪上用标尺或后期发展的坐标传感器量出被测物体的大小。下图是一种显微投影仪的照片,显微物镜把胶片上的图像投影到屏幕上,在屏幕上量出物体图像的尺寸。对于颗粒样品,则可以直接在显微镜下进行观测测量。很显然,在用胶片作为传感器的时期,图像法是不可能用于在线测量的。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/21f18409-d7be-4568-a7cb-255a0d29561b.jpg" title="图片1.jpg" alt="图片1.jpg"//pp style="text-align: center text-indent: 0em "strong显微投影仪/strong/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "(友情提示:移动端用户下方点击阅读全文,/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "再点击取消即可阅读全文,也欢迎下载APP体验阅读新感受)/span/pp style="text-align: justify text-indent: 2em "图像法作为颗粒粒度测量,尤其是颗粒粒度在线测量的新方法再次出现并得到日益广泛的应用,得益于CCD和CMOS的发明,数码相机的飞速发展,以及光学镜头、光源、计算机技术以及图像处理算法的飞速发展。数码相机的核心是CCD/CMOS传感器,尤其是近年来CMOS技术的发展使其性能得到很大提高,几乎占据了绝大部分的数字传感器。下图是CMOS传感器的照片。在CCD/CMOS传感器中,代替胶片中感光粒子的是按矩阵排列的像素。如果在每个像素前按规律设置红(R),绿(G)和蓝(B)三色滤色片,则可以得到彩色图像。这样CCD/CMOS就将图像自然分解成了成可以用计算机处理的离散信号。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc747ae3-b89b-426c-8014-114e41854faa.jpg" title="图像2.png" alt="图像2.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量装置主要包括:相机、镜头、光源、取样装置等。其中相机是最关键的设备。为得到清晰的被测颗粒的影像边缘,一般在在线测量中采用逆光(背光)照明方式,相机在测量区一侧,光源在测量区另一侧,如图所示。span style="color: rgb(0, 176, 240) "strong由于光的穿透能力不强,因此图像法不能用于高浓度颗粒的直接在线测量(in-line)。对于高浓度颗粒,必须采用取样方式测量(on-line)/strong/span。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc188c81-6aa1-4737-96b1-bf330735261e.jpg" title="图片3.jpg" alt="图片3.jpg"//pp style="text-align: center text-indent: 0em "strong图像法在线测量原理示意图/strong/pp style="text-align: justify text-indent: 2em "与图像法静态测量要求不同,在图像法在线测量中,被测颗粒不是静止不动的,而是在运动的,甚至运动速度很高。为得到清晰的颗粒图像,就要“冻结”运动颗粒的影像,这就要求图像的曝光时间要与被测颗粒的运动速度相匹配。对于高速运动的颗粒,要求的曝光时间要短,低速的可以稍长。 曝光时间还与拍摄图像时所用镜头的放大倍率有关,放大倍率大,要求的曝光时间就短,放大倍率小,曝光时间就可以长一些。 曝光时间可以由相机的快门控制,也可以由光源的脉冲宽度控制。目前工业相机的电子快门时间最短可以到1微秒,而作为照明光源的脉冲激光的脉冲宽度可以达到几个纳秒。曝光时间越短,需要的光源强度就越大,这就给光源提出了高的要求。工业相机的电子快门分成滚动快门(rolling shutter)和全局快门(global shutter)2类。span style="color: rgb(0, 176, 240) "为保证曝光时运动颗粒图像不发生畸变,在图像法在线测量中必须采用全局快门/span。/pp style="text-align: justify text-indent: 2em "作为在线测量,图像法装置不能像显微镜那样通过更换不同放大倍率的显微物镜来适应不同大小颗粒的测量,这就希望像素尺寸尽量小,以得到高的图像分辨率。通常,滚动快门的CMOS的像素小于全局快门,目前滚动快门的CMOS的最小像素已达到1.5微米,而全局快门的最小的像素是3.8微米。/pp style="text-align: justify text-indent: 2em "在图像法测量中,相机镜头是关键的设备。图像法能进行在线颗粒测量,很大程度上是依赖于strongspan style="color: rgb(0, 176, 240) "远心镜头/span/strong的发明和发展。用相机拍摄物体,通常图像存在远小近大的现象。而在线测量不能控制被测颗粒一定会处于镜头的焦平面位置,这就会造成颗粒的影像大小与颗粒的真实尺寸不同。远心镜头的出现,很好解决了这个问题。被测颗粒处于不同位置时,远心镜头获得的颗粒图像大小并不会随位置变化而变化。这就使得图像法可以用于颗粒的在线测量。远心镜头有定倍率和工作距离,以及可变放大倍率和工作距离2类,可以根据需要采用其中一种。/pp style="text-align: justify text-indent: 2em "在图像法在线测量中最大问题是被测颗粒不仅存在于测量区中,有些还处于离焦位置,颗粒图像是不清晰的。下图中就同时存在清晰颗粒、离焦程度不大和离焦尺度大的模糊颗粒影像。strongspan style="color: rgb(0, 176, 240) "对于离焦颗粒图像,可以有2种处理方法/span/strong,对于离焦程度大的模糊影像,直接剔除,不予处理。对于离焦程度不大的模糊图像,可以采用图像处理算法来恢复,得到颗粒的粒度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "在图像法在线测量中,一般都需要用取样装置将被测粉体样品从生产工业管路中去出,在取样时,必须采取措施防止颗粒样品发生团聚,如用无油无水的压缩空气分散样品颗粒。下面3个图给出了在在线测量取样中没有对颗粒采取分散措施,分散不足和充分分散后的颗粒图像。可以明显看出充分分散的重要性。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/59590f06-6860-4880-955a-367e24cc5746.jpg" title="图像4.png" alt="图像4.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量不仅可以给出被测颗粒的粒度,还可以得到被测颗粒的形貌参数,这是其它颗粒测量方法不能做到的。/pp style="text-align: justify text-indent: 2em "strong图像法与RGB三波段消光法融合在线测量/strong/pp style="text-align: justify text-indent: 2em "受光学原理和硬件的限制,strongspan style="color: rgb(0, 176, 240) "图像法在线测量下限一般在2-3微米/span/strong。但在工业过程中存在着大量亚微米颗粒中同时存在有少量较大颗粒,并都需要测量其粒度的情况。这时可以strongspan style="color: rgb(0, 176, 240) "将图像法与多波长消光法相结合,用图像法测量较大颗粒的粒度,而用多波长消光法测量亚微米颗粒的粒度/span/strong。/pp style="text-align: justify text-indent: 2em "彩色相机中的CMOS传感器可以认为是RGB三个波段光探测器件,当采用白光作为光源,对获得的图像可以分别用图像处理算法处理其中的大颗粒影像,用多波长消光法处理背景图像中的RGB信息来分别获得大颗粒和亚微米颗粒的粒度。如下图是用彩色相机获得的高速流动中的湿蒸汽两相流图像,其中高速流动的较大水滴的轨迹宽度对应其粒度,而长度对应其速度,背景是较高浓度的小水滴,无法用图像识别。此时,可以分别对如圆圈中的大水滴影像用图像处理算法处理,得到其粒度和速度,而对矩形框内的亚微米颗粒用RGB三波段消光法进行数据处理,得到小水滴的粒度及分布。/pp style="text-align: justify text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/009bf84a-9554-447d-945d-c6bdbe8cb4f2.jpg" title="图片5.jpg" alt="图片5.jpg"//pp style="text-align: center text-indent: 0em "strong同时存在大小颗粒的图像/strong/pp style="text-align: center text-indent: 0em "strong图像法与后向光散射融合测量大气颗粒和排放烟尘浓度/strong/pp style="text-align: justify text-indent: 2em "图像法不仅可以测量成像的颗粒的粒度,还可以strongspan style="color: rgb(0, 176, 240) "与光散射结合测量无法成像的大气中气溶胶颗粒的浓度和排放烟尘的浓度/span/strong。气溶胶是空气中悬浮颗粒与大气构成的体系,悬浮颗粒包括固体颗粒,液体颗粒,生物颗粒等。由于气溶胶颗粒粒度很小,受气流和布朗运动的作用,会在大气中长时间扩散传播,PM2.5就属于气溶胶范畴。下图分别是室内和大空间悬浮的气溶胶颗粒在激光照射下的散射光。strongspan style="color: rgb(0, 176, 240) "该散射光强与悬浮颗粒的粒度、浓度和测量散射角度有关/span/strong。用相机作为传感器,将相机聚焦于激光照射的要测量区域,得到气溶胶后向散射强度后,用米散射理论和相关数学模型进行数据处理,可以得到空间的气溶胶浓度。该方法可以用于烟囱排放烟尘浓度的远距离遥测。如果同时用多个波长的激光进行测量,还可能可以得到悬浮颗粒的平均粒度和分布。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2f6469fd-9884-41c8-9b57-af11b16bc8b0.jpg" title="图像6.png" alt="图像6.png"//pp style="text-align: justify text-indent: 2em "strongimg style="max-width: 100% max-height: 100% float: left width: 125px height: 125px " src="https://img1.17img.cn/17img/images/202002/uepic/01e065bd-c5ef-4e1a-9570-1808f883e70a.jpg" title="蔡小舒_.jpg" alt="蔡小舒_.jpg" width="125" height="125" border="0" vspace="0"/span style="color: rgb(0, 176, 240) "作/spanspan style="color: rgb(0, 176, 240) "者简介:/span/strong曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/p
  • 【霍尔德】液体在线式颗粒计数仪保障机械设备正常运行
    【液体在线式颗粒计数仪←点击此处可直接转到产品界面,咨询更方便】根据国内外资料统计,液压润滑系统故障中,70%~85%是由油液中的颗粒污染引起的。因此,液压润滑行业对油液的颗粒污染问题给予了高度重视,对油液的监控也变得至关重要。油液的清洁度直接关系到液压润滑系统的正常运行。液体在线式颗粒计数仪是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
  • 恒美-在线式油液颗粒计数器对机油检测的帮助-新品
    点击咨询更多详情→在线式油液颗粒计数器 随着时间的推移和使用条件的变化,发动机油会逐渐受到污染,从而降低其性能和保护发动机的能力。为了及时了解发动机机油的污染程度,保证发动机的正常工作,在线式油液颗粒计数器成为了重要的工具。通过污染程度的检测和分析,提供及时的油品质量数据。这对于机油的检测和保养有很大的帮助。 机油在使用过程中会受到燃烧产物、空气中的灰尘、金属颗粒等污染物的影响。这些污染物会导致发动机油的性能下降,从而影响发动机的正常工作。 通过定期使用在线式油液颗粒计数器检测机油的污染程度,可以根据具体情况调整更换机油的时间,避免机油更换过早或过晚。这不仅节省了维护成本,还减少了废油排放对环境的影响。 在线式油液颗粒计数器对机油的检测有很大的帮助。它可以帮助及时检测和预测发动机油老化和污染问题,延长发动机油的使用寿命,并帮助排除发动机故障。
  • 全新升级|在线式颗粒计数器 现场测量油液污染度
    霍尔德上市新品啦!2024年01月09日上市了一款在线式颗粒计数器【在线式颗粒计数器←点击此处可直接转到产品界面,咨询更方便】配电变压器多暴露在露天环境中,其绝缘油(变压器油)受外部杂质、空气接触以及设备高温运行的影响,逐渐变质。一旦绝缘油变质,它原有的灭弧、冷却和绝缘功能就会丧失。为了防止因油质变差导致的安全运行问题,我们必须对正常运行的配电变压器定期进行油样化验分析,并根据分析结果采取相应的处理措施,确保油质的稳定,从而保障变压器的正常运行。在线式颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
  • 华嘉公司发布最新代理在线/实验室颗粒图像分析产品
    华嘉(香港)有限公司与德国安娜泰克有限公司(AnaTec Deutschland GmbH)经过多方面的深入了解,决定在中国独家代理其最新产品,在线/实验室系列颗粒图像分析仪。前身为著名的Norsk Hydro集团的研发机构,二十多年来,安娜泰克一直致力于在线及实验室用颗粒图像分析技术的研究与生产,开发出一系列针对不同应用领域的高性能分析仪器,采用比常规图像分析方法更为先进的专利技术,为终端客户量身定制,提供颗粒图像分析的全套解决方案,包括硬件配置,软件设计,系统安装,技术支持及反馈。安娜泰克的所有产品结构牢固,操作简单(兼容LIMS系统),在建筑材料,食品工业,矿物加工,制药原料,石油石化等领域有着广泛的应用前景。screen.width-300)this.width=screen.width-300"华嘉(香港)有限公司作为一家著名的国际贸易集团公司,其仪器部专业提供各种分析仪器及设备,经过多年的专业市场化运作和高素质员工的敬业精神,华嘉公司在中国的诸多领域拥有稳定的客户关系,这次,华嘉(香港)有限公司与德国安娜泰克有限公司再次携手,希望能得到国内在线/实验室颗粒图像分析领域专家与用户的支持,实现技术合作与产品应用的双重收获。
  • 项目案例|在线水中颗粒计数器opc-2300在某地表水厂稳定运行
    项目案例|在线水中颗粒计数器在某地表水厂稳定运行在线水中颗粒计数器在某地表水厂的稳定运行,犹如一位勤勉的哨兵,时刻守护着水质的纯净与安全。这款精密的仪器,以其高效的颗粒检测能力和稳定的运行性能,为水厂的水质监测提供了强有力的技术支持。 在这家地表水厂中,在线水中颗粒计数器发挥着至关重要的作用。它运用光阻法原理,能够迅速而准确地检测出水中各种大小的颗粒物的数量和颗粒大小,从而帮助水厂及时掌握水质状况,确保出厂水的安全卫生。 该计数器的稳定运行,得益于其精密的制造工艺和严谨的质量控制。从设计到生产,每一个环节都经过了严格把关,确保产品能够在恶劣的工业环境中长期稳定运行。此外,该计数器还具备自动校准和故障诊断功能,能够在出现问题时及时发出警报,为水厂的维护人员提供便利。 在线水中颗粒计数器的稳定运行,不仅提高了水厂的水质监测效率,还为水厂的节能减排做出了贡献。传统的水质监测方法往往需要耗费大量的人力和物力,而在线颗粒计数器则能够自动完成检测任务,降低了人力成本。同时,由于它能够实时监测水质状况,水厂可以根据实际情况调整处理工艺,减少不必要的能源消耗和污染物排放。 总的来说,在线水中颗粒计数器在某地表水厂的稳定运行,为水厂的水质监测提供了有力保障,同时也推动了水厂的节能减排工作。在未来,随着技术的不断进步和应用领域的不断拓展,相信这款仪器将在更多领域发挥重要作用。
  • 老中青专家学者齐聚西安颗粒学术盛会
    仪器信息网讯 2010年8月16日,“中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会”在西安市陕西宾馆隆重开幕。 其中,“颗粒测试与应用”分会场的专家学者报告简介如下:法国鲁昂大学任宽芳博士报告题目:小粒子光散射理论和测量技术的新发展  任宽芳博士主要介绍了三种光学测量技术的新发展:“相多普勒仪、新的彩虹测量术和数字全息。相多普勒仪是流体测量中不可或缺的测量技术;新的彩虹测量术可通过测量散射场的角分布快速准确地测量粒子的尺寸及其分布,且不需严格角度定标;新发展的数字全息和相多普勒仪利用特殊的椭圆形高斯波,可以同时测量粒子的尺寸分布及三维速度场。”上海理工大学苏明旭副研究员报告题目:颗粒超声层析成像的散射特征分析  苏明旭副研究员通过边界元方法计算了单个球形颗粒的散射特征,对比分析了用于颗粒超声层析成像的颗粒散射场特性。对于管内放置有单个和三个球形颗粒的声场进行的数值模拟,并由二值逻辑反投影图像重建算法对其进行了空间分布的重建,分析了重建图像的误差。结果验证了基于边界元方法的数值模拟和重建过程是有效的。西安电子科技大学李祥震博士报告题目:高斯波束入射梯度折射率微珠的散射强度分析  李祥震博士表示:“近年来,随着工程应用的需要,玻璃微珠研究和制备得到了较快的发展。其中,梯度折射率玻璃微珠的研究开始兴起。利用几何光学近似方法,计算出在轴高斯波束入射情况下梯度折射率微珠的散射强度分布,再通过与广义洛伦兹-米理论计算结果的对比,就可以分析不同散射角度上表面波等因素的影响。”南京理工大学陈守文副研究员报告题目:纳米TiO2生产及应用现场浓度检测方法的研究——二安替吡啉甲烷分光光度法  陈守文副研究员在现有相关标准的基础上,提出了纳米TiO2生产及应用现场空气中纳米粉尘采集与分析一体完成的方法。通过对二安替吡啉甲烷分光光度法对纳米 TiO2 测定可行性的研究,详细分析了该方法的性能,包括测量范围、检测限、精密度、准确度和稳定度的分析,结果表明,该方法能较好的满足纳米TiO2 的分析需要。华南师范大学韩鹏副教授报告题目:一种新的用于光子相关光谱法的反演算法——累计加权函数法  韩鹏副教授介绍说:“基于抑制噪声,增加信号差别的思路,研究开发了一种有利于光子相关光谱反演运算的累计加权函数法。目前,新研制出的光子相关器仅有名片大小,物理通道有245个,并内置了光子技术器,每秒的最大光子数为3M。而其后续的研究包括严格的数学证明、合适后续算法的选择、累计函数的改进等方面。”上海理工大学沈嘉琪博士报告题目:电流模式动态光散射纳米颗粒测量技术研究进展  沈嘉琪博士说到:“动态光散射技术常用于胶体稳定性的表征和某些过程的连续监测,但粒径测量分辨率较低。传统的基于90°散射角光子计数的动态光散射技术的高浓度效应大多表现为多次光散射。实践证明,通过减小散射区域可以有效抑制多次光散射,从而提高动态光散射技术的浓度上限。”清华大学于溯源教授报告题目:不均匀荷电对细颗粒相互作用的影响  于溯源教授介绍到:“通过对颗粒荷电机制的分析,认为颗粒所带的外来电荷应视为一种不均匀分布电荷。同时,给出颗粒荷电不均匀程度的定量表示和比较方法,计算其产生的电势。应用偶极子近似方法计算两个球形不均匀荷电颗粒的相互作用能,并通过不均匀模型和点电荷模型的相互作用能之比讨论两个颗粒的相互作用。”上海石油化工研究院祁晓岚高工报告题目:复合孔道分子筛的孔结构表征  祁晓岚高工谈到:“基于Canny算子原理的基础上,详细讨论了NMS图像灰度统计值的特点和影响因素,发现通过找到直方图上双峰间的‘谷’,将两端的灰度值作为Canny算子的双阙值,这在处理颗粒图像方面是最行之有效的方法。经实验证明,该方法比已有的自适应算法更加准确,它能够最大程度地去除噪声,保留有效边界。”中国石油大学陈胜利教授报告题目:单分散聚苯乙烯微球和SiO2微球粒度标准物质的研制  陈胜利教授首先介绍了国内外研制粒度标准物质的现状,并通过研究,建立了溯源NIM和NISI的微球粒径定值方法-紧密排列-光学显微镜和紧密排列-扫描电镜两种绝对定值法,研制了11种国家一级粒度标准物质和11种国家二级粒度标准物质,单分散微球合成水平与粒度标准物质的定值水平与NISI相当。哈尔滨工业大学甘阳教授报告题目:Surface Chemistry of Aluminum (Hydro-)oxide Particles by Site-Specific AFM Colloidal Probe Technique  甘阳教授利用技术使一个SiO2(已知半径及表面能)的小球粘附在氢氧化铝001晶体面上,通过原子力显微镜(AFM)定位在此区域测量两者之间的粘附力。研究结果与传统观点相悖,测得该区域的表面活性为5.9,表明氢氧化铝颗粒化学表面有活性,也同时证实了国外Bickmore团队对表面官能团的研究结果,云林科技大学陈文章教授报告题目:Au/Polypyrrole 奈米混材于葡萄糖生物感测器之应用  陈文章教授指出:“利用同步辐射X-光可单步骤合成分散均匀的Au-PPy奈米混材,并可有效地控制颗粒粒径,同时,Au-PPy奈米混材能有效提升电极电活性面积约达16倍。另外,Au-PPy奈米混材修饰性葡萄糖感测器的线性范围广(为0~600mg/dl),且感测器灵敏度可达0.511μA/mM,比未修饰前提升了约65%。”全国颗粒学标准化技术委员会李兆军秘书长报告题目:颗粒标准化发展情况  李兆军秘书长首先介绍了国外标准制定组织以及当前有关于颗粒的标准情况。李兆军秘书长表示:“ 2007年我国批准筹建颗粒学标委会,目前已列入国家标准化体系工程工业二组体系表,目标是赶上国际标准的步伐,转化国际标准,发展成为我国自己的颗粒标准化体系,同时还要尽可能将我国自主知识产权转化为标准(国家/国际标准)。”  另外,本次会议还设置了“优秀研究生论文奖”,因此“颗粒测试与应用”分会场邀请了一部分研究生做报告。部分学生报告简介如下:  南京理工大学峁平  报告题目:纳米粉尘湿法采集与检测技术研究  上海理工大学呼剑  报告题目:超声衰减谱法表征纳米颗粒的粒度分布  上海理工大学秦授轩  报告题目:粉体颗粒粒度分布在线测量方法技术研究  上海理工大学王华睿  报告题目:布朗运动和定向流动下激光自混频的研究  上海理工大学于彬  报告题目:关于逆向傅立叶变换颗粒测量技术的讨论  上海理工大学薛明华  报告题目:基于超声法的颗粒两相介质多参数测量  相关链接:中国颗粒学会第五届理事会成立
  • TSI 公司举办“大气环境颗粒物、超细颗粒物检测进行技术交流会”
    美国TSI 公司于2016年11月4日在广西南宁举办了“大气环境颗粒物、超细颗粒物检测进行技术交流会”,此次交流会邀请了当地的环境监测部门、高校科研机构和当地仪器代理商。TSI公司现场介绍和展示了大气气溶胶检测的系列产品,特别是关于1nm 扫描电迁移率粒径谱仪,该款产品将气溶胶研究和检测提升到新的一个量级。交流会还就气溶胶粒径谱在关于灰霾源解析和常规大气环境监测中的重要作用进行探讨以及对粒径谱监测数据收集和处理进行了交流。交流会后还参观了广西环科院大气PM2.5研究监测站。TSI最新推出的SMPS™ 扫描电迁移粒径谱仪,被广泛用于测量1微米以下的气溶胶粒径分布的测量标准。选配3777型纳米增强仪以及3086型DMA差分电迁移分析仪(1nm-DMA)组件后,SMPS粒径谱仪能够测量纳米的粒径范围扩展至1nm。 3321 空气动力学粒径谱仪(APS™ ) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。TSI 3330型光学颗粒物粒径谱仪简单轻便,能够对颗粒物浓度和粒径谱分布进行快速和准确的测量。基于TSI公司40年气溶胶仪器设计的经验,本款产品使用120度光散射角收集散射光强度和精密的电子处理系统,从而得到高质量和高精度的数据。同时,TSI工厂严格的标定标准也确保仪器的精确性。该产品是广大环境研究机构和环境监测部门进行颗粒物监测分析和源解析的最佳仪器。关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 斯派超推出同时进行颗粒自动计数、磨粒智能识别和铁磁性颗粒浓度和数量检测的LNF多功能磨粒分析仪
    Spectro- LNFQ200系列用于油液分析、状态监测和制定可靠性维护计划,是一个功能强大的分析平台。它分为颗粒计数器、磨粒形貌分类器和有铁磁性颗粒计数器三个模块,客户能自由搭配。LNF技术是与美国海军合作开发的,提供了颗粒计数与清洁代码,外来污染、异常磨损分类,铁磁性磨粒测量和游离水计算。Q200系列检测设备简单易用、检测速度快。 “LNF Q200系列能帮助使用者简单快速地进行设备状态监测。所有此系列仪器均无需校准,并具有直观、易于使用的图形用户界面(GUI),因此,操作人员培训可以在几小时内完成,而无需若干天。”公司首席执行官Brian Mitchell解释说。LNF Q200系列现已推出三种配置,力求最大限度地满足不同设备监测的需要。Q210是业界最好的颗粒计数器,并具有将磨粒与进入设备的外来污染物区别出来的独特能力,而Q220是在Q210的基础上添加了LNF自动磨粒形貌分类的功能。Q230的配置包括颗粒计数器、自动形貌分类器以及磁力计,其中磁力计能对铁磁性磨粒进行量化和趋势分析,以ppm为单位。所有型号均可选配粘度测量功能和自动进样器。Q200系列是专门为在用润滑油分析而设计的。该系统可检测高达500万颗粒/毫升很脏的油样或烟炱含量高达2%很黑的油液,也能区分水珠和气泡。商业实验室管理人员和PDM管理人员非常看重 Q200能够计算自由水,能区分污染物(二氧化硅)和设备磨损磨粒(金属),通过鉴定磨损类型、磨损模式以及潜在来源来对磨粒形貌进行分类。 关于斯派超科技公司斯派超科技公司及其全资子公司专门提供工业油液性能分析仪器和软件。斯派超科技是一家全球性润滑油、燃油和水处理分析仪器供应商,主要应用于工业和军事。行业客户包括石油石化、矿山、电力和水处理公司以及商业检测实验室。欲了解更多信息,请访问www.spectrosci.com
  • 千人大会精彩预告:超微及纳米颗粒分析表征技术百花齐放
    随着纳米科技的迅猛发展,超微及纳米颗粒在材料科学、生物医学、环境科学等领域展现出巨大的应用潜力。然而,要充分发挥超微及纳米颗粒的潜能,离不开对其精准、高效的分析表征技术的支持。这些技术能够帮助科研人员深入理解纳米颗粒的结构、形貌、成分及性能,为纳米材料的设计、合成及优化提供坚实的科学依据。为促进超微及纳米颗粒领域的研究与应用交流,推动纳米科技的创新与发展,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“超微及纳米颗粒分析表征”专场。点击图片直达报名页面 会议特邀上海理工大学蔡小舒教授,国家纳米科学中心高级工程师郭玉婷、刘忍肖,以及HORIBA、丹东百特、安捷伦资深工程师,分享颗粒粒度、形貌、浓度、成分、Zeta电位等多元化表征技术及相关国家标准。上海理工大学教授 蔡小舒《纳米颗粒和微纳气泡的粒度、形貌和浓度测量新方法》(点击报名)蔡小舒教授研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、生命科学等测量方法、技术和应用的研究。先后负责了两机重大专项项目、973、863、国家自然科学基金重点项目、仪器重大专项项目和面上项目、科技部等纵向项目,欧共体项目、通用电气全球研发中心、日立估算研究中心、美国电力研究院和德国、捷克、波兰等大学的国际合作项目以及企业委托项目。发表论文200多篇,获发明专利20多项。 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等副理事长、常务理事、理事、理事长等,担任4个SCI刊物副主编、编委和多个国内学术刊物编委,多个国内外学术会议的名誉主席,主席等。纳米颗粒的粒度和形貌是表征纳米颗粒的最重要参数,也是纳米颗粒应用的最主要参数。对于不同的应用,对纳米颗粒的粒度和形貌有不同的要求。而对于微纳气泡,其粒度和数量浓度以及随时间变化等参数是最重要参数。在纳米颗粒的制备中,一些纳米颗粒的浓度非常高,对其进行稀释可能会影响体系的平衡,破坏了纳米颗粒的结构。为满足对纳米颗粒粒度和形貌表征,微纳气气泡的粒度和数量浓度测量的需要,以及直接测量高浓度纳米颗粒的要求,蔡小舒团队发展了图像动态光散射纳米颗粒粒度快速测量方法,偏振图像动态光散射纳米颗粒形貌及形貌分布测量方法,后向动态光散射高浓度纳米颗粒粒度测量方法和多波长消光法微纳米气泡粒度和数量浓度测量方法等。根据这些方法研制的仪器都采用笔记本电脑供电,可以方便携带到任何需要测量的场合进行测量。本报告将介绍这些测量新方法的原理,以及应用实例。HORIBA(中国)应用工程师 李倩《颗粒表征关键技术新进展》(点击报名)李倩现任HORIBA粒度产品应用工程师。主要负责粒度仪的方法开发以及技术支持,熟练掌握仪器特性及使用维护,为不同应用领域的粒径测试用户开发和优化粒径测试方法、提供解决方案,在半导体、能源、材料、环境、生命科学等多个领域积累了丰富的经验。颗粒表征对产品的研究开发和质量控制发挥着越来越重要的作用,如何根据需求和应用场景选择最合适的测量工具显得尤为重要。为了更好地帮助客户用颗粒表征结果指导自己的研究或生产,本次报告为大家介绍 HORIBA 颗粒表征技术以及相关产品的最新进展。丹东百特仪器有限公司产品总监 宁辉《动态光散射测试功能的延伸》(点击报名)宁辉博士为全国纳米技术标准化技术委员会委员,现任丹东百特仪器有限公司产品总监,具有十几年产品研发和产品应用的研究经历,是一位具有丰富实践经验的颗粒表征技术专家。对于纳米材料的相关应用具有较为深刻的理解。动态光散射技术是一种基于检测颗粒的布朗运动来获取样品的粒径信息的颗粒表征手段。基于传统的动态光散射技术,结合更多的光学和分离手段,可以拓展动态光散射的应用领域和检测能力。在这个报告中,宁辉将介绍动态光散射流动模式,进行高分辨率的粒径测试;窄带滤光片的应用及其对于荧光样品的测试,及其VV和VH模式对于各向异性样品的测试。国家纳米科学中心高级工程师 郭玉婷《单颗粒电感耦合等离子体质谱法检测纳米颗粒国家标准制定及应用研究》(点击报名)郭玉婷为中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组 (SAC/SWG27)委员,国际标准化组织纳米技术委员会(ISO/TC229)WG2和WG3工作组专家,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定六项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。随着纳米材料和纳米技术产品的广泛使用,纳米颗粒的检测成为纳米技术应用和潜在风险评估的重要环节。单颗粒电感耦合等离子体质谱法使用高时间分辨模式检测、分析速度快、所需样品少、颗粒浓度检出限低,可同时测量稀溶液中纳米颗粒的成分、粒径、粒径分布、数量浓度及溶解离子浓度等。郭玉婷所在实验室牵头制定了单颗粒ICP-MS检测水相中无机纳米颗粒的国家标准,开展了纳米产品和生物组织等复杂基质中纳米颗粒的检测研究。本报告将介绍国家标准内容,交流相关研究进展,以推广该方法在更多领域的应用。安捷伦科技(中国)有限公司工程师 董硕飞《应用单颗粒(sp)ICP-MS法对环境样品中的颗粒物进行定量检测》(点击报名)董硕飞为安捷伦资深原子光谱应用开发工程师,于2012年获得英国帝国理工学院地球化学博士学位,之后分别在美国和法国做博士后研究员。主要研究金属元素的生物地球化学循环,以及其作为环境污染物的分布和传输机制。在2017年加入安捷伦全球市场开发团队后,主要从事ICP-MS新应用方法开发工作,以合作研究的形式开展颗粒物在复杂基体中的分离、检测方法研究,以及应用元素指纹图谱法和同位素示踪法进行源解析等方面的研究,并在相关领域发表论文30多篇。应用单颗粒(sp)ICP-MS技术对纳米颗粒物进行定量分析的方法在近些年趋于成熟,特别是在环境研究领域被更多的研究人员接受。本报告概述(sp)ICP-MS技术对降尘、海水、底泥和土壤中的纳米颗粒物进行分析的研究方案,同时拓展该方法对单细胞中的元素进行定量分析,以及对微塑料颗粒进行分析的应用案例。国家纳米科学中心教授级高级工程师 刘忍肖《量子点材料及产品特性测试方法开发与标准化》(点击报名)刘忍肖主要从事典型纳米材料(量子点、石墨烯、碳纳米管等)特性参数测试方法开发,针对产业应用的国际标准、国家标准的研制,迄今作为负责人/技术骨干共研制国际标准7项、国家标准18项、国家标准物质6项、主导2项VAMAS国际比对、发表学术论文18篇、参编专著3部。作为项目/课题负责人承担十三五、十四五科技部国家重点研发计划、国家自然科学基金青年基金项目标准研制项目等。担任国家标准委审评中心标准审核专家、国际标准化组织纳米专业领域ISO/TC 229、IEC/TC113技术专家,担任全国纳米标委会(SAC/TC279)委员观察员、全国颗粒分委会(SAC/TC168/SC1)委员观察员、全国纳米光电显示技术标准工作组(SAC/TC279/WG10)委员兼秘书长等。量子点作为一类最典型的代表性纳米材料,具有独特的量子尺寸效应并展现出优异的光学特性,现已广泛应用在生物医学、信息显示等产业领域,尤其促生了纳米光电新型显示技术产业的革新升级。本报告针对量子点材料关键特性参数测试分析方法开发、纳米光电显示技术产业应用所关注的量子点部品应用性能评测技术开发、体系性技术标准研制等进行介绍。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • “大气颗粒物中重金属的在线监测”视频讲座报名启动
    心存绿色、环保随行。继“关注生命之源水质污染监测”网络专题后,天瑞仪器将再次呈上一场环境监测技术盛宴:题为“大气颗粒物中重金属的在线监测”的视频讲座,将于2月28日14:30开始。目前,报名系统已经启动。 “大气重金属污染防控”近年引起公众聚焦及热议。针对各地接踵曝光的重金属污染事件,国务院于2011年2月19日正式批复首个“十二五”专项规划——《重金属污染综合防治“十二五”规划》,重点防控包括“铅、汞、镉、铬、砷”及“铊、锰、铋、镍、锌、锡、铜、钼”在内的两类重金属;而新《环境空气质量标准》的颁布,更加大了对大气污染的防控力度。 环保新政的陆续颁布抑或给中国众多城市带来压力。对此,国内各大环境监测部门该如何应对?城市大气污染源(冶金、水泥、燃煤电厂等烟气排放企业)需怎样自处?大气在线监测仪器在空气中的工作原理是什么?最新监测技术能否帮助环监部门及相关企业成功应对环保新标? 2月28日,由天瑞仪器环保产品线主管吴升海博士带来的题为《大气颗粒物中重金属的在线监测》视频讲座,将为你一一揭晓上述疑问。分享研发成果之余,您还可以借助语音、提问板等形式在线提问。 更多分享、更多交流,敬请报名参加“大气颗粒物中重金属的在线监测”视频讲座!报名网址:http://www.instrument.com.cn/webinar/meeting/meetingInfo.asp?infoID=325 天瑞仪器 江苏天瑞仪器股份有限公司是具有自主知识产权的高科技企业,注册资本11840万。旗下拥有北京邦鑫伟业公司和深圳天瑞仪器公司两家全资子公司。总部位于风景秀丽的江苏省昆山市阳澄湖畔。公司专业从事光谱、色谱、质谱、医疗仪器等分析测试仪器及其软件的研发、生产和销售。网址:www.skyray-instrument.com
  • 禾信质谱成功举办2016年在线单颗粒气溶胶质谱仪高端用户培训会
    2016年9月1日~9月2日,由广州禾信仪器股份有限公司主办的2016年在线单颗粒气溶胶质谱仪(spams)高端用户培训会在成都顺利举办,吸引了来自全国各地环境监测中心、科研院所等单位的100多名专家和用户参会。 本次会议特邀中国环科院高健研究员、四川省环境监测总站罗彬副站长、成都市环科院田红副院长、广东省环境监测中心陈多宏主任、暨南大学李梅副研究员等多位专家作会议报告,分享spams在pm2.5动态源解析及其它领域的最新研究进展和成果,探讨spams在重大活动/赛事空气质量保障中、重污染天气及常态化源解析工作等热点问题中的应用。 会议现场 会议伊始,禾信董事长、暨南大学质谱仪器与大气环境研究所所长周振教授作大会致辞,周教授首先向长期以来支持和关心禾信公司发展的专家和用户表示衷心的感谢,同时介绍了近年来禾信公司和暨南大学质谱与大气所的发展,并承诺禾信团队会继续努力在环境监测领域不断开发新技术和新方法,为我国的环境监测事业做出新的贡献。 禾信董事长、暨南大学大气所所长周振教授致辞 中国环科院高健研究员作了题为“颗粒物动态源解析研究、应用与展望”的精彩报告,分别从颗粒物动态源解析进展、应急管理应用实例及存在问题与展望等三个方面进行了阐述,提出发挥不同源解析技术方法的优势,融合多种源解析方法分析颗粒物污染源类贡献。 四川省环境监测总站罗彬副站长分享了四川省在细颗粒物在线源解析与快速源识别方面的研究进展,提到四川省将spams运用到浮尘天气影响、秸秆燃烧、烟花爆竹、机动车尾气、冬季重污染天气等污染事件的快速识别中,均取得了较好效果,颗粒物快速源识别技术能够对主要污染事件进行快速源识别,提高了颗粒物污染防治工作的及时性、针对性和科学性。 中国环科院 高健研究员报告题目:颗粒物动态源解析研究、应用与展望 四川省环境监测总站 罗彬副站长报告题目:四川省细颗粒物在线源解析与快速源识别研究应用 成都市环科院田红副院长介绍了在线源解析技术在成都市g20峰会期间大气环境保障中所起到的积极作用,并提到利用在线源解析技术可以快速获得会议期间污染天气成因,及时对管控措施进行快速高效评估。 陈多宏主任针对广东省鹤山超级站基于spams、颗粒物在线监测仪等仪器建立规范监测方法、开展区域大气细颗粒物污染成因快速分析方法等一系列研究成果进行了详细阐述,对其它单位spams规范监测分析方法的建立起到了积极的示范作用。 成都市环科院 田红副院长报告题目:成都市g20会议大气pm2.5实时在线源解析监测报告 广东省环境监测中心 陈多宏主任报告题目:区域大气细粒子污染特征快速诊断研究与应用 西安市环境监测站刘焕武高工用幽默风趣的语言详细介绍了spams在常态化颗粒物来源解析工作中的应用及颗粒物来源解析基本程序,刘工首次尝试利用spams的数据结合pmf模型进行西安市颗粒物来源解析,不仅取得了新颖的研究成果,同时为接下来spams动态源解析的发展提供了新的思路和建设性意见,引起了现场与会人员的热烈反响。 暨南大学李梅副研究员做了题为“基于spams的动态源解析技术体系及其应用进展”的报告,全面介绍基于spams动态源解析技术进展及系统构建思路,分享了其在重污染天气应急监测、突发性污染事件应急监测、重大赛事/活动的保障、管控措施/治理成效评估等方面的成功案例,并提出动态源解析未来的发展思路及趋势。 西安市环境监测站 刘焕武高工报告题目:单颗粒气溶胶质谱在常态化颗粒物来源解析工作中的应用 暨南大学 李梅副研究员报告题目:基于spams的在线源解析技术体系及其应用进展 除此之外,还有众多行业专家分享了精彩的报告,全面展示了spams在不同城市、不同领域的研究成果。 此次研讨会全面展示了spams在不同领域和不同城市的最新应用进展,并探讨了基于spams的动态源解析技术未来的发展方向和面临的挑战,能够帮助用户更好地了解动态源解析技术和方法,高效开展动态源解析工作,为各地进一步推动动态源解析工作起到良好的促进作用,从而为各地的大气污染防治提供技术支撑。此次会议得到了与会专家和用户的积极评价,禾信公司承诺以后会定期组织此类研讨会,为专家、用户和禾信之间的沟通交流建立有效的平台。参会人员合影留念
  • 细/超细微颗粒物检测相关仪器设备取得阶段成果
    2016年6月15日下午,北京市基金办和北科院共同组织召开了联合资助项目交流研讨会。会议由北科院科研开发处李功越副处长主持。本次项目交流研讨会聚焦大气细颗粒物监测与健康风险评估,共有来自11家单位的近20位相关科研人员参会。北京大学、北京航空航天大学、中国疾病预防控制中心等单位的5位项目负责人分别介绍了项目研究进展和阶段性研究成果,其中健康评价研究方面已构建空气微细颗粒物暴露生物评价模型,细微颗粒物监测方面已研制出具有湿度自调节功能的颗粒物测量仪和能区分纳米级细颗粒物数目的原型样机。  与会科研人员围绕空气微细颗粒物成分精确监测、微细颗粒物人群暴露评价及干预机制、微细颗粒物与人体健康模型建立等方面展开了热烈讨论,建议在后续工作中应重点关注以下问题:(1)不同来源细/超细微颗粒物特征与生物毒理学效应 (2)细/超细微颗粒物在生物体内的表征方法学研究 (3)细/超细微颗粒物对生物体健康效应研究及动物模型的构建 (4)吸入细/超细微颗粒物引起呼吸和心血管系统损伤的内在机制研究 (5)细/超细微颗粒物分级精确检测相关仪器设备的研发。【原标题:市基金办-北科院组织联合资助项目交流研讨会】
  • TSI公司推出Environmental DustTrak颗粒物在线监测仪
    颗粒物测量领域的世界级领导者TSI公司,推出了Environmental DustTrak颗粒物在线监测仪,对其颗粒物监测仪DustTrak系列的创新产品线进行了进一步的拓展。Environmental DustTrak颗粒物监测仪是为了便于长期室外环境监测应用而精心设计,简便可靠且测量精确的解决方案。该监测解决方案易于设置且能快速投入使用,通常有三种配置,可以分别或同时监测PM10和PM2.5。 整个系统被安装于一个紧凑的全天候监测箱中,以保护新款增强型的Environmental DustTrak光度计以及全新设计的耐用关键组件。长寿命泵,内置自动调零模块以及可选的加热除湿进样调节器和内部加热组件使得仪器能够适应各种温度和湿度条件,增强了仪器的运行时间以及测量的精确性。在监测箱中额外的空间同样可以用于增加第三方即插即用传感器以满足特定的监测需求。将其与云数据管理系统结合能够组成多合一的多参数环境监测系统,当超出设定的环境浓度限值时系统能够通过文字提醒和email方式提供警报。TSI的全球产品经理Bob Anderson说:“我们的目标是提供超出市场需求和预期的最灵活的环境监测平台--我们确实也做到了。DustTrak监测技术每天被数以千计的人使用,我们加强了这一已经证明的监测技术,并且制定了最有效、灵活且经济适用的对粉尘测量数据进行实时、便捷访问的解决方案。”关于TSI公司 TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 在线讲座 - STEP® 技术用于颗粒表征
    本次在线讲座将为配方专家们带来一个创新的理念,想要更好的了解如何快速优化以及改进您产品的配方,尽情关注LUM6月份的系列讲座。特别适合从事化妆品、医药、食品饮料、涂料、乳胶、颜料、胶粘剂、涂料等行业的研发人员。课题之二: STEP技术应用于颗粒表征高速发展的市场需求,对于研发部门快速开发新产品配方具有挑战性。以往确定产品的稳定性需要长时间的等待。LUM公司的STEP技术 可以让你的工作变得更轻松,帮助您在短时间内高效地开发新产品。 主讲人:Dr. Arnoal Uhl ( LUM 全球技术销售负责人) 会议持续时间:45分钟会议语言:英语会议时间:2021年6月17日15:00 (北京时间) 报名方法:扫描下方”二维码”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。如有问题,请联系 event@lum-gmbh.de
  • 康姆德润达公司颗粒物在线监测仪APM-2加入APEC会议空气质量保障行列
    河北新闻网11月1日讯(河北日报、河北新闻网记者赵建)今天是《亚太经合组织会议河北省空气质量保障措施》启动第一天,河北省副省长张杰辉带领省直有关部门负责同志,就空气质量保障措施落实情况,到保定、廊坊等地进行暗访。他要求,要进一步提高执行力,再认真、再深入、再细致,令行禁止,不折不扣执行保障措施,不折不扣完成空气质量保障任务。 张杰辉一行深入涿州、固安、涞水、易县等地的企业和工地,实地察看保障措施执行情况。对检查中发现的个别工地未停工、个别地方焚烧秸秆等问题,相关部门当场责令整改。 张杰辉要求,省有关部门要进一步加大督导检查力度,会议期间再组织几次暗查暗访,加强联合执法,发现问题公开曝光、严肃查处。要严格执行应急响应措施,加强监测和预判,按规定及时启动应急预案,切实保障会议期间空气质量。 (张杰辉一行现场视察) (工作人员操作康姆德润达公司APM-2仪器) 康姆德润达公司便携式颗粒物在线监测仪(型号:APM-2)作为本次检查中的重要监测仪器之一,实时准确的提供了空气颗粒物浓度数据,充分发挥了便携式设备的优势,为监测人员带来了极大的的灵活性和便捷性,为本次监测工作作出了重要贡献。 该设备基于带湿度补偿功能的光散射技术设计制造,通过两次冲击切割,可实现对空气颗粒物中PM10和PM2.5进行实时交替检测(最短两分钟),且后期运行维护费用低。它不仅可以固定在线使用,更可以作为便携设备使用。 应用领域举例: 城市路边点位监测 农村背景点位监测 区域性空气质量调研的可移动性监测 (颗粒物在线监测仪 APM-2)更多参数:http://www.instrument.com.cn/netshow/C182268.htm 销售热线:0510-85205009转1
  • GRIMM EDM系列气溶胶粒径谱仪/在线环境颗粒物监测仪
    2012年5月新推出GRIMM EDM系列气溶胶粒径谱仪/在线环境颗粒物监测仪(德国GRIMM气溶胶技术公司研制生产)。该系列监测仪采用激光散射原理,可同时获得环境大气中PM10、PM2.5、PM1的质量浓度值,并可下载0.25 ~ 32 um范围的31个粒径通道数浓度值。EDM180型在线环境颗粒物/气溶胶粒径谱仪,符合欧洲标准EN 12341 (PM10) 和EN 14907 (PM2.5),并获得美国EPA认证(PM2.5,认证号:EQPM-0311-195)。EDM180型粒径谱仪是目前唯一通过按重量参考认证的光学系统的环境颗粒物监测仪(PM10和PM2.5)。并成为仅有的一款通过认证的能够同时在线监测PM10和PM2.5的分析仪。
  • 陈建民团队ES&T封面文章:超细颗粒物浓度可以作为评价空气污染对健康影响的指标吗?
    图文摘要02成果介绍 近日,复旦大学陈建民教授团队在ENVIRONMENTAL SCIENCE & TECHNOLOGY上发表了题为“Diverse Metabolic Effects of Cooking Oil Fume from Four Edible Oils on Human BEAS-2B Cells: Implications for Health Guidelines”的研究论文。该工作采用高分辨率设备对四种常见食用油在烹饪过程中产生的油烟(COFs)理化特征进行在线监测和离线分析,并进行了原位细胞暴露研究,以评估COFs对BEAS-2B细胞代谢组学的影响。结果表明,尽管COFs之间的的超细颗粒物粒径浓度分布相似、且主要化学成分相似,但不同COFs暴露后BEAS-2B细胞的代谢组学变化仍存在显著差异。世卫组织(WHO)2021年空气质量指南建议监测超细颗粒数浓度(空气动力学直径小于等于100nm的颗粒物数目浓度)以评估空气污染对健康的影响。本研究结果表明空气中颗粒物的数目浓度结合其化学成分的研究可更有效的探索其对人体的健康影响。03全文速览 空气污染物对公众健康的全球影响日益明显,室内和室外空气污染每年在全世界造成650多万人死亡,这一数字还在继续上升。与此同时,世界卫生组织(WHO)2021年发布了新的空气质量指南,建议PM2.5年浓度为5µ g/m³ ,并建议监测超细颗粒物的数目浓度以评价空气污染对健康的影响。本研究以烹饪油烟(Cooking oil fumes, COFs)为研究对象,采用了暴露组学方法评价了超细颗粒物对人体BEAS-2B细胞的代谢影响。COFs是在高温烹饪过程中热分解或热解产生的颗粒和气态物质的复杂混合物,占全球城市地区有机气溶胶的10-35%,是重要的室内空气污染源之一。04引言 本研究采用高分辨设备实时分析烹饪油烟(COFs)的特性,并评估其对BEAS-2B细胞代谢的影响。结果表明,大豆油与橄榄油、玉米油与花生油之间COFs粒径浓度分布差异不显著,主要化学组分相似,但COFs造成的代谢损伤具有明显的差异,表明相对少量的特异性COFs化学成分也可以影响呼吸系统内的颗粒行为,从而影响生物反应。05图文导读Fig.1 (a) Particle number size distributions of COF particles by applying SMPS. (b) Real-time monitoring four categories of chemical components of COF particles monitored by TOF-ACSM. (c) Mass spectrometry analysis of COF particles by using HPLC-Q-TOF-MS.利用SMPS、TOF-ACSM和HPLC-Q-TOF-MS分析不同类型食用油加热后产生的COFs颗粒的粒径分布和化学成分。结果表明,大豆油和橄榄油的粒径分布情况相似、玉米油和花生油的粒径分布情况相似;相对而言,四种COFs在化学成分上有显著差异。Fig. 2 (a) Real-time monitoring VOC species, (b) four categories of chemical components, (b)VOC species fractions of COF gaseous pollutants measured using PTR-TOF-MS.利用Vocus PTR-TOF-MS分析不同类型食用油加热过程中挥发性有机化合物的种类。结果表明四种COFs的在VOC的种类上具有显著差异。Fig.3. (a) Hierarchical clustering heatmap of differential metabolites separates the control group samples from those of different kind of oil treated groups. (b) Score plot of partial least-squares discriminant (PLS-DA) analysis overview of metabolites among the control, corn oil, soybean oil, peanut oil and olive oil groups.分层聚类热图显示出五组之间的代谢产物的明显差异,PLS-DA结果表明,在相同培养条件下,暴露于大豆、花生、橄榄油、玉米油中COFs的细胞与对照组不同(图3b),表明暴露于COFs会诱导细胞代谢改变。Fig.4. (a-d) The up-regulated and down-regulated pathway analysis of different oil treatment with cells.基于这些代谢物进一步分析了不同代谢途径的变化。结果表明,在接触四种不同类型油烟的实验组中,可以观察到COFs会影响细胞的代谢通路向上和向下调节。Fig.5. (a) Venn diagram analysis of different metabolites. (b) After cells are treated with or without the four kinds of oil, cells are collected for the RT-PCR analysis. Statistical analyses are done by using one-way ANOVA followed by the analysis of variance with Tukey correction. Data are means SEM. * p0.05 ** p0.01. (c) The pathway analysis in olive oil-treated cells. (d) The pathway analysis in peanut oil-treated cells. (e) The pathway analysis in corn oil-treated cells.接下来,我们又聚焦于对照组相比,不同油烟暴露组中特异性上调的代谢物上,并通过维恩图进一步分析它们。结果表明,橄榄烟显著增加了炎症基因的表达,尤其是TNF-α;另一方面,橄榄油COFs可以上调雄激素和雌激素的代谢途径。06小结 超细颗粒物的数量浓度对于评估与空气污染相关的健康风险很有价值,但了解颗粒的化学成分和伴随的气态物质也同样重要。感谢王丽娜老师提供素材!原文文献:Lina Wang, Bailiang Liu, Longbo Shi, Jiaqian Yan, Wen Tan, Chunlin Li, Boyue Jia, Wen Wen, Ke Zhu, Zhe Bai, Wei Zhang, Lidia Morawska, Jianmin Chen*, and Jiaxi Wang*. Diverse Metabolic Effects of Cooking Oil Fume from Four Edible Oils on Human BEAS-2B Cells: Implications for Health GuidelinesEnviron. Sci. Technol. 2024, 58, 3, 1462–1472.备注:翻译仅供学习和参考,内容以英文原文为准。文中图片版权均归ES&T杂志社所有。
  • 2012年颗粒学术盛会将在杭州召开
    中国颗粒学会第八届学术年会暨海峡两岸颗粒技术研讨会(第一轮通知)  为交流国内外颗粒学研究与技术的最新进展,“中国颗粒学会第八届学术年会暨海峡两岸颗粒技术研讨会”将于2012年9月5-8日在浙江省杭州市举办。本届会议由中国颗粒学会主办,中国科学院地球环境研究所、浙江大学承办,中国颗粒学会气溶胶专委会、中国科学院过程工程研究所、杭州市环境监测站协办。会期3天,9月5日报到。  本届年会将设立分会场9个,专业课程培训班2个。学术交流形式包括大会特邀报告、分会邀请报告、口头报告以及墙报。年会面向广大颗粒学工作者征集学术论文及摘要,并印制论文摘要集,论文全文收入会议论文光盘。会议预计规模500人。衷心欢迎海峡两岸广大从事颗粒技术研究的学者、工程技术人员、企业界代表及研究生踊跃投稿,积极参会。  年会同期还将安排企业交流专场、仪器设备展览、新技术新产品与新设备推介会。欢迎相关企业、高校、科研院所积极参与。  中国颗粒学会第五届理事会会议暨第二届青年理事会会议、中国颗粒学会期刊(《颗粒学报》、《中国粉体技术》)编委会会议将同期举行。  一、 组织机构  名誉主席:郭慕孙  主 席:李静海  执行主席:陈运法、张仁健、林鸿明*  学术委员会:(按音序排列,*为台湾代表)  主 席: 李静海  委 员: 艾德生、白志鹏、蔡小舒、曹军骥、岑可法、陈宏勋、陈建峰、陈建民、陈良富、陈文章*、陈晓东、程 易、崔福德、戴明凤*、邓茂华*、丁玉龙、董青云、都有为、冯连芳、顾兆林、郭庆杰、郭新彪、胡 敏、胡荣泽、胡宇光*、黄建平、简淑华*、金 涌、李伯耿、李春忠、李 泓、李洪钟、李经民*、李顺诚、李星国、刘如熹*、卢春喜、卢寿慈、骆广生、马光辉、任中京、沈志刚、宋延林、苏党生、陶 俊、铁学熙、王 丹、王格慧、王勤辉、王体健、王燕民、韦文成*、魏 飞、吴溪煌*、徐德龙、许光文、颜 鹏、颜富士*、杨 辉、杨 毅、叶君棣*、叶旭初、袁中新*、张 忠、张福根、张立德、张连众、张美根、张仁健、张文阁、张晓山、赵跃民、郑水林、周素红、周 涛、朱庆山、卓清松*  组织委员会:  主 席:曹军骥、吴忠标、马光辉  委 员:王 丹、周素红、白蕴如、周家茂、韩秀芝、郭 峰、杨 志  二、 学术分会  第1分会:颗粒的测试与表征 分会主席:任中京、周素红  (1)颗粒性能表征和测试技术:几何性能、物理性能、表面性能、力学性能 (2)在线测量与控制 (3)颗粒特性对粉体产品性能的影响。  第2分会:气溶胶 分会主席:张仁健、曹军骥  (1)气溶胶基本特性、监测与分析 (2)气溶胶环境气候健康效应 (3)气溶胶污染与控制。  第3分会:流态化基础研究及应用 分会主席:魏 飞、朱庆山  (1)流化床中的传热、传质和化学反应,特殊流化床(磁场、声场、超重力、振动等) (2)计算机数值模拟与放大 (3)多相流与旋风分离器、流化床的工业应用。  第4分会:颗粒制备与应用技术 分会主席:沈志刚、郑水林  (1)颗粒制备技术、表面改性处理技术 (2)颗粒应用技术 (3)颗粒制备与应用技术中的新理论、新方法、新技术、新工艺、新产品等。  第5分会:超微颗粒材料 分会主席:张立德、林鸿明  (1)制备、表征及应用方面的新进展,特别是新思想、新材料、新技术 (2)在环境、能源、保健等领域的应用 (3)产业面临的市场和技术挑战,及其应对策略。  第6分会:生物颗粒材料 分会主席:马光辉、崔福德  (1)工业生物技术颗粒材料的制备及应用 (2)医药生物技术颗粒材料的制备及应用 (3)农业、食品和环境生物技术颗粒材料的制备及应用。  第7分会:能源颗粒材料 分会主席:苏党生、丁玉龙  (1)新型能源颗粒材料(电池材料、超级电容器材料和多晶硅等)的制备及应用技术 (2)碳纳米相关材料的能源应用 (3)能源转化催化剂。  第8分会:纳米颗粒复合材料及其应用 分会主席:张 忠、宋延林  (1)纳米颗粒改性聚合物复合材料研究与应用 (2)纳米颗粒改性涂层材料研究与应用 (3)绿色印刷中的纳米复合材料研究与应用。  第9分会:聚合物颗粒材料 分会主席:李伯耿、骆广生  (1)聚合物颗粒材料的制备与调控、改性与应用 (2)聚合物颗粒材料的制备新方法和新理论。  三、 专业课程培训(9月4日报到,5日全天上课)  大气PM2.5专业课程培训 主席:曹军骥  伴随国务院颁布新的PM2.5标准,PM2.5污染在全国范围内引起广泛关注,各地环保、气象、高校等部门纷纷采取行动,加强PM2.5监测与研究。为此,本课程将邀请国内外PM2.5领域著名专家,向与会者讲解国际上最前沿的PM2.5污染监测、研究和控制技术。  培训的主要内容:(1)PM2.5采样与分析 (2)PM2.5来源解析 (3)PM2.5与灰霾及能见度 (4)PM2.5的健康影响 (5)PM2.5的数值模拟 (6)PM2.5污染控制对策与技术。  能源颗粒材料专业课程培训 主席:苏党生  能源颗粒材料不仅可作为催化材料催化能源转化过程、也可作为储能材料参与能源存储与转化。能源颗粒材料在二次电池、超级电容器、光伏转化、燃料电池、可再生能源等领域具有广泛应用前景。为此,特邀请该领域的国内著名科学家围绕能源颗粒的处理、加工、表征及应用技术等进行讲解。  主要内容及主讲人:(1)能源颗粒(清华大学魏飞教授) (2)能源颗粒的制备和加工(厦门大学陈晓东教授) (3)能源颗粒的表征(中科院过程所丁玉龙研究员) (4)能源颗粒在储能中的应用(中科院物理所李泓研究员)。  四、 同期展览、企业交流会  为了便于企业宣传、展示最新的产品,促进科研成果的转化,推动产、学、研的结合,将在会议同期举办颗粒/粉体技术及设备展,展览内容包括:测试分析仪器、颗粒/粉体制备技术及设备、颗粒/粉体材料及产品、颗粒/粉体应用技术等。展期与会期同步,烦请计划参展者尽快与学会秘书处郭峰联系(电话:010-62647647,E-mail:fguo@home.ipe.ac.cn),并沟通具体事宜。  届时还计划举办“新技术、新产品、新设备推介会及企业交流会”,希望参与会上交流的企业若需解决哪些问题,烦请于会前告知会务组,以便提前协调、联系相关专家及单位。热忱欢迎相关企业及单位积极参与。  五、 学会奖励奖项的评选与颁发  年会闭幕式上将颁发“中国颗粒学会青年颗粒学奖”、“中国颗粒学会–赢创颗粒技术成果奖”、年会“青年优秀论文奖”和“研究生优秀论文奖”。  1、中国颗粒学会“青年颗粒学奖”和“颗粒技术创新奖”  (1)学会将自本届年会起(2012年)设立“颗粒技术创新奖”,计划每次奖励2位在颗粒学研究及应用方面做出贡献的杰出人才。本奖项由德国赢创德固赛公司赞助。  (2)“中国颗粒学会青年颗粒学奖”为国家承认的社会力量设立的科学技术奖,欢迎青年科技工作者积极申请(申请者年龄不得超过42周岁)。  注:以上两奖项的申请截止日期为2012年6月30日。奖项详情及申请表下载请登陆中国颗粒学会网站(www.csp.org.cn)。  2、青年优秀论文奖和研究生优秀论文奖  本次年会继续面向参会并宣读论文的青年学者及研究生设立“青年优秀论文奖”(40岁以下)和“研究生优秀论文奖”。  六、 会议征文  1、本次会议出版的文集将被中国学术期刊(光盘版)电子杂志社出版的《中国重要会议论文全文数据库》和CNKI系列数据库网络,以及北京万方数据电子出版社出版的《中国学术会议速递联盟》和“万方数据”全文收录并网络出版。以上数据库将同步提供检索和全文服务。不希望所投文章被以上数据库收录及出版的作者,务请在投稿时注明。  2、会议将出版论文摘要集,论文全文将收录入会议论文光盘。  3、论文要求为全文投稿或详细摘要,稿件请采用Word排版,下载年会论文模板请登陆学会网站。论文投稿请注明分会场,并直接发送电子邮件至学会秘书处:Email:klxh@home.ipe.ac.cn,或直接投稿至会议网站(www.csp.org.cn,点击第八届学术年会进入会议网站)。投稿截止日期为2012年6月15日。  4、会后将推荐部分优秀的论文至《中国粉体技术》(核心期刊),或《颗粒学报》(英文)(SCI与EI收录,IF=1.317)。  七、 参会指南  1、广告服务:会议文集热诚为国内外企事业提供各种宣传专页(刊登单位自行设计)、LOGO及全称的宣传(手提袋、签字笔和纸质笔记本)、单页印刷品等,请有意企业或单位于2012年6月30日之前与会务组联系。  2、会议重要时间节点 2012年3月 会议第一轮通知 2012年6月15日 会议论文接收截止 2012年6月 会议第二轮通知 2012年9月4日 专业课程培训班报到 2012年9月5日 年会报到、专业课程培训班上课 2012年9月6-8日 会议进行、考察   3、会议注册费(不含代表住宿费)  开户行及账号:北京工商银行海淀西区支行 中国颗粒学会 0200004509014413416  (注:需要办理会员证的代表,请登陆中国颗粒学会网站(www.csp.org.cn)下载会员报名表。)  4、会议地点及住宿:杭州花港海航度假酒店(杭州市杨公堤1号,电话:0571-87998899,紧邻西湖)  详情请见会议第二轮通知或请登陆学会网站(www.csp.org.cn)了解。  5、会务组联系方式:  地 址:北京海淀区中关村北二条1号(100190) 中国颗粒学会秘书处  电 话:010-62647647/62647657 传真:010-82629146 E-mail: klxh@home.ipe.ac.cn  联系人:郭峰(15110169497)、杨志(15210502004)、韩秀芝(13521432868)中国颗粒学会2012 年3月  下载:中国颗粒学会第八届学术年会回执     中国颗粒学会第八届学术年会论文模板
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 / 3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • 祝贺普洛帝在线颗粒计数器成功入选某航空科技公司
    在当今这个高速发展的时代,航空业作为连接世界的桥梁,对设备和技术的要求日益严格。某航空公司,凭借其前瞻性的视野和不懈的创新精神,经过多家评估后的严格筛选,最终选择了普洛帝在线颗粒计数器,以进一步提升其航空安全和服务质量。 普洛帝在线颗粒计数器以其卓越的性能和精准度,在众多竞争对手中脱颖而出。该设备采用先进的双激光技术和图像处理算法,能够快速、准确地检测和计数液体中的微小颗粒,为航空公司的油液管理提供了强有力的技术支持。航空公司的发动机油液是其“心脏”的血液,油液中的微小颗粒会对发动机造成严重的磨损和损害。普洛帝在线颗粒计数器的应用,使得航空公司能够实时监控油液质量,及时发现并处理潜在问题,从而极大地延长了发动机的使用寿命,降低了维护成本。 此外,普洛帝在线颗粒计数器的智能化和自动化特点,也极大地提高了航空公司的运营效率。通过实时监测和数据分析,航空公司能够更加精准地安排维护和检修计划,减少了因油液问题导致的设备磨损,提升了设备使用性能,延长设备使用寿命。 某航空公司的这一重要选择,不仅是对普洛帝在线颗粒计数器技术的高度认可,更是对科技创新在航空业中重要作用的深刻诠释。展望未来,某航空公司将继续携手普洛帝,以科技创新为引领,不断提升航空设备安全和质量,为航空事业提供更加有价值、可靠的服务保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制