DL/T 929-2005 矿物绝缘油 、润滑油结构族组成的红外光谱测定法 紧急求助,多谢各位!
矿物绝缘油中糠醛含量测定方法 DL/T 702—1999 Determination of furfural content in mineralinsulating oil by spectrophotometric method 1 范围 本标准规定了矿物绝缘油中糠醛含量的测定方法,适用于运行中矿物绝缘油的糠醛含量的检测。2 引用标准下列标准所包括的条文,通过在本标准中引用而构成为本标准的条文,本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方法应探讨使用下列标准最新版本的可能性。GB/T6683—1997 石油产品试验方法 精密度数据确定法GB 7597—87 电力用油 (变压器油、汽轮机油) 取样方法IP 297—1980 石油产品中的糠醛测定方法(英国石油协会标准)3 方法概要本方法采用水为萃取剂萃取油中的糠醛,以醋酸苯胺作显色剂,采用分光光度法对绝缘油中糠醛进行测定。测定范围为0.1mg/L~4mg/L。4 样品采集油样采集按GB 7597的有关规定进行,采样宜用250mL具塞棕色玻璃瓶,油样应充满至容器体积的95%左右。油样采集后不宜超过7d。5 仪器、设备和药品5.1 仪器5.1.1 分光光度计:721型或其它型号可见光分光光度计5.1.2 全玻璃蒸馏装置(见附录A)5.2 药品5.2.1 苯胺(分析纯)。5.2.2 糠醛(分析纯)。5.2.3 冰醋酸(分析纯)。5.2.4 脱脂棉。6 准备工作6.1 全玻璃蒸馏装置应洗净、烘干待用。6.2 测试前重新蒸馏糠醛、苯胺,蒸馏前应加入适量沸石以防爆沸(对油样进行蒸馏时亦应加入沸石)。蒸馏时,前10mL和后10mL遗弃,收取中间馏分待用。6.3 显色剂的配制显色剂的配制比例按冰醋酸∶苯胺=9∶1配制(体积比)。由于二者混合时要放出热量,在配制时应将新蒸馏的苯胺徐徐加入冰醋酸中,边加边搅拌,应使混合液温度低于20℃。配制的醋酸苯胺在常温下只能保存8h,在5℃~8℃时可保存3d。如发现颜色变黄,应重新配制。6.4 标准储备液的配制取新蒸馏的糠醛(淡黄色)1g左右(称准至0.0002g)置于1L棕色容量瓶中,用蒸馏水稀释至1L,摇匀即为糠醛标准水样储备液,置于避光处放置2d后备用。7 试验步骤7.1 绘制工作曲线取上述标准水样储备液1.00mL于1L棕色容量瓶中,用蒸馏水稀至刻度,摇匀,即为糠醛标准工作液,按表1配制标准色阶,同时记录制作工作曲线时的温度(表1以工作液的浓度为1.159mg/L为例)。表 1 油中糠醛含量工作曲线序 号 1 2 3 4 5 工作液取样量mL 1 3 5 7 10 糠醛含量µ g 1×1.159 3×1.159 5×1.159 7×1.159 10×1.159 最大吸光度A 0.079 0.080 0.165 0.235 0.336 试验温度:22℃ 按表1的数据分别取糠醛的标准工作液于25mL比色管内,在第一支比色管内加入10mL显色剂,加蒸馏水至刻度,摇匀,用30mm比色皿,在波长520nm处,以蒸馏水做参比液,测定溶液的最大吸光度。用同样的操作方法在第二支比色管内加入10mL显色剂,读取最大吸光度。照此方法分别读取其余标准工作液显色后的最大吸光度,并通过回归分析求出糠醛含量与最大吸光度的关系式,相关系数不得低于0.995,否则须重做。同时绘制糠醛含量—最大吸光度图。7.2 油样的测定取待测油样100mL于500mL烧瓶中,加55mL蒸馏水,装冷凝管进行蒸馏萃取。馏出液经滤纸和脱脂棉过滤,以滤去蒸馏带出的油组份。当馏出液至45mL时停止蒸馏(如馏出液未到45mL时油样开始剧烈爆沸,应停止加热。馏出液体积以实际馏出液体积为准),蒸馏液再过滤一遍,滤液待用。取10mL上述滤液(如糠醛含量过高,可减少取样量)于25mL比色管中,加入10mL显色剂,并加蒸馏水至刻度,摇匀,转移到30mm比色皿内,于520nm处进行比色。记录最大吸光度值,并由标准曲线得出25mL比色液中糠醛含量。7.3 结果计算P=aV/75V2式中: P——油样中糠醛含量,mg/L;a——25mL比色液中含糠醛的量,µ g; V——萃取液体积,mL;V1——萃取液取样量,mL;75——油样萃取率为75%。8 试验要求8.1 苯胺与糠醛的显色反应受温度影响较大,测试时室内温度波动不宜超过2℃,当条件变化时,应重做工作曲线。8.2 糠醛标准水样如果浓度高,在1000mg/L以上,则15d内吸光度无显著变化。对蒸馏萃取液,特别是低含量的油样萃取液,建议放置时间不超过3h。8.3 显色剂与水样混合后应充分振荡,使之完全混合。8.4 由于蒸馏过程中,油中轻组分会带入蒸馏液中而影响以后的比色效果,故应将馏出液通过滤纸、脱脂棉过滤,以确保滤液清彻透明。8.5 糠醛在水中溶解较慢,因此配制糠醛标准水样时,应充分振荡并于避光处放置2d,以保证混合均匀。8.6 室温较高时,配制醋酸苯胺应浸在冰浴中进行。8.7 被测油样中糠醛含量应小于4mg/L,如油样中糠醛浓度过高,则应用新油稀释后再萃取。9 精密度9.1 两次平行测试结果的差值不得超过下列数值:样品含糠醛范围 mg/L 允许差 mg/L0.82以下 0.110.82~3.8 0.369.2 取两次平行试验结果的算术平均值为测定值。附录A(提示的附录)蒸馏装置示意图1—500mL平底烧瓶;2—三通;3—温度计套管;4—温度计;5—直形水冷凝管(长330mm);6—漏斗;7—量杯图 A 蒸馏装置示意图
结果是以氧化物形式显示的,我想请教如何转化成矿物的分子式?谢谢各位
1. 样品准备 首先,准备好纯度较高的矿物样品。通常情况下,样品的纯度要求达到95%以上,以确保分析结果的准确性。样品应研磨成细小颗粒,并选择合适的溶剂进行溶解。溶剂的选择至关重要,应避免使用含有氢的溶剂,以免干扰氢核磁共振信号。常用的溶剂包括氘代氯仿(CDCl3)、重水(D2O)等。例如,在分析石英和长石等矿物时,可以使用D2O作为溶剂,以获得清晰的NMR谱图。 2. 仪器调试 在开始实验之前,需要对核磁共振仪进行一系列调试。首先,确保所有电源和供气系统处于打开状态,并检查磁体中的液氮和液氦液面高度是否在安全范围内。此外,还需检查仪器的温度控制系统,特别是探头的温度控制是否满足检测需求。例如,在探测碳酸盐矿物时,需要确保探头温度稳定在20°C左右,以保证数据的准确性。 3. 锁场与调谐 锁场是保证磁体频率稳定的关键步骤。通过不断发射共振频率来激发氘代溶剂产生氘信号,并对氘信号进行实时监测,实现对磁体频率漂移的补偿。例如,在分析含铁矿物时,由于铁磁性物质可能对磁场产生干扰,因此锁场过程尤为重要。 调谐则是为了使探头能够接收所有的发射功率,从而获得较好的信噪比。通过谐振调谐和阻抗匹配调节,使谐振回路中的谐振频率与谱仪发射到探头上的脉冲频率完全一致。例如,在探测粘土矿物时,通过精细的调谐,可以显著提高谱图的分辨率。 4. 数据采集与处理 在锁场和调谐完成后,就可以开始进行数据采集了。根据实验需要调整检测谱图宽度、扫描次数、相循环次数、弛豫时间等重要参数。例如,在分析硫化物矿物时,通过调整扫描次数和弛豫时间,可以有效提高信号强度。 采集到的数据需要进行进一步的处理和分析。通过对NMR谱图的分析,可以识别出矿物中的不同化学成分和结构信息。例如,在探测磷酸盐矿物时,通过分析谱图中的峰位和峰强度,可以确定磷酸盐的类型和含量。
喝矿物质水补充矿物元素?不可能!?《喝矿物质水未必更健康》追踪——— 矿物质水由于其标准缺失,各生产厂家添加的矿物元素和添加量不统一而受到消费者及专家的质疑。本报也于7月11日在第2版以《喝矿物质水未必更健康》为题作了报道。不少消费者还致电本报热线对此展开了讨论,何先生就提出,在矿物质水没有统一标准的情况下,其质量是否稳定,它适合哪些人群食用呢?记者走访了四川大学公共卫生学院营养与食品卫生教研室副主任、博士李云。 “对矿物质水,我不是太主张。”李云开门见山地说。矿物质水主要是模拟矿泉水的构成,在水源中添加一定量的矿物质元素,使其发生反应,以达到水中含矿物质的效果。“矿物质水所使用的水源没有任何标识,加之所添加的矿物元素和添加多少没有统一标准,其质量可能不够稳定。” 矿物质水适合所有人群饮用吗?“只要是符合国家饮用水标准的产品,消费者都可以饮用。但严格说来,矿物质水每一瓶所添加的元素和含量都是一样的,而每消费者对矿物元素的需求量却不相同。”李云分析指出,比如有的人的体内所含钾元素已经达到饱和,如果喝的矿物质水中还添加了不少的钾元素,这就可能会对他的健康造成一定影响。 “总体而言,人体所必需的大部分矿物元素主要来自于粮食、水果等。也就是说,通过合理的膳食调整,是完全可以满足人体每天的矿物元素的需求的。”李云说。矿物质水通常情况只是起到补充水分的作用,它并不是补充矿物元素的主要途径。想以喝矿物质水来补充矿物元素,“这种作用可以忽略。”
[list][*]①定义:食品中所含的元素约有几十种,除去C、H、O、N这四种构成水分和有机物质的元素以外,其他元素统称为矿物元素。 [*]②分类: [list][*]a.营养角度:必需(人体需要)、非必需、有毒。 [/list][list][*]b.人体需要量角度(0.01%为界限):常量(钾钙钠镁等)、微量(铜锌铁锰等)。 微量元素的需求浓度严格局限在一定范围内,低于范围则组织功能减弱或不健全,高于范围则中毒反应。如硒的正常需要量和中毒量相差不到10倍,低于则心肌炎,诱发免疫功能下降和老年性白内障。正三价铬有益(参与糖和脂肪的代谢,人体必需的微量元素),正六价铬毒害很大。有机汞也比无机汞危害大得多。[/list] [/list
[b][font=微软雅黑]矿物油:[/font][/b][font=微软雅黑]通常是指经过开采和初加工的原油(或石油),mineral oil,石油是埋藏于地下的天然矿产物,经过勘探、开采出的未经炼制的石油也叫做原油。[/font][font=微软雅黑]在常温下,原油经过炼制后的成品叫做石油产品。依据习惯,把通过物理蒸馏方法从石油中提炼出的基础油称为矿物油基础油。提炼加工过程主要是将原油分成不同的部分以得到所需产品。主要的分离过程包括将原油分离成粗汽油、粗煤油、粗柴油、重柴油、各种润滑油馏分、裂化原料油及渣油(又称残油)的蒸馏分离和将各种润滑油提纯所使用的溶剂分离。生产过程基本以物理过程为主,不改变烃类结构,生产的基础油取决于原料中理想组分的含量与性质 矿物油在提炼过程中因无法将所含的杂质清除干净,因此得到的基础油流动点较高,不适合寒带作业使用 因此,矿物油类基础油在性质上受到一定限制。[/font][b][font=微软雅黑]合成油:[/font][/b][font=微软雅黑]通过化学合成或精炼加工的方法获得的,其工艺复杂,炼制成本高昂,拥有矿物油不可比拟的优势:合成油的黏度指数更高,所以黏温特性更好,高温时润滑更充足,低温下流动性好(室温条件下外观感觉比同级别矿物油稀)。同时用合成油调配的机油抗氧化性更强,大大地延长了换油周期,虽然在机油上增加了投入,但减少了更换机油和滤清器的次数。合成油因其蒸发损失小,所以机油消耗低,减少了添加机油的繁琐,并且能更好地保护三元催化器等昂贵的废气控制系统部件。[/font][font=微软雅黑]此外,合成油适应更高负荷的发动机,还拥有更强的抗高温抗剪切能力,在发动机高速运转下,机油也不会损失黏度,对发动机的保护更全面。 合成型基础油来自原油中的瓦斯气或天然气所分散出来的乙烯、丙烯,再经聚合、催化等繁复的化学反应(费托合成技术,即 GTL 技术)才炼制成大分子组成的基础油。在本质上,它使用的是原油中较好的成分,加以化学反应并通过人为控 制达到预期的分子形态,其分子排列整齐,抵抗外来变数的能力自然很强,因此合成油品质较好,其对热稳定、抗氧化反应、抗黏度变化的能力自然要比矿物油强得多。[/font]
[align=center][font=DengXian]矿物质[/font][/align][font=DengXian]矿物质([/font]Minerals[font=DengXian])是指食品中各种无机化合物,大多数相当于食品灰化后剩余的成分,故又称粗灰分([/font]Crudeash[font=DengXian],[/font]CA[font=DengXian])。矿物质在食品中的含量较少,但具有重要的营养生理功能,有些对人体具有一定的毒性。研究食品中的矿物质目的在于提供建立合理膳食结构的依据,保证适量有益矿物质,减少有毒矿物质,维持生命体系处于最佳平衡状态。[/font][font=DengXian]食品中矿物质含量的变化主要取决于环境因素。植物可以从土壤中获得矿物质并贮存于根、茎和叶中;动物通过摄食饲料而获得。[/font] [font=DengXian]食物中的矿物质可以离子状态、可溶性盐和不溶性盐的形式存在;有些矿物质在食品中以螯合物或复合物的形式存在。[/font]
http://ng1.17img.cn/bbsfiles/images/2017/03/201703130950_01_932_3.jpg事件始末近日,第三方检测机构优恪网连续发布食品检测报告,结论引发争议。该报告称,在德芙“丝滑牛奶巧克力”及老干妈、老干爹、海天等10款畅销油辣椒产品中,矿物质油大幅偏高或超大幅偏高,被评为警示(D-)(最差级别),并建议消费者“谨慎购买”。多家媒体援引该报道进行了连续报道,称“矿物油超标恐伤肝致癌 ”,在各大媒体平台广为传播,引发了公众恐慌。3月6日,德芙品牌母公司玛氏食品(中国)有限公司发言人回应称,该机构报告中对德芙产品“矿物油含量超大幅偏高”的指控是没有依据的。中国目前还没有对于矿物油的规范指标,因此该报告的结论属于“未经证实而传播的谣言”,违反了我国食品安全法。该发言人称已草拟律师函。老干爹等辣椒油企业也迅速回应,称公司产品是符合国家的相关标准,每年多次自检和被抽检合格,否则根本无法在市场上流通。优恪网在上述报告里称,“矿物油可能对肝脏、脾脏及淋巴结等器官造成危害”“德国实验室在10款辣椒油中均检测出了多环芳烃化合物(PAHs)。PAHs中的一些物质可致癌,其中最广为人知的就是苯并芘。”有害风险被夸大在优恪网的报告里,被指矿物油“大幅偏高或超大幅偏高”的食品均查询不到具体的检测结果。食用矿物油在各国并无确切标准,只有一些国际组织和风险评估机构进行了限值建议,其原因主要是该物质的风险可控以及目前的研究并没有得出确切结论。世界卫生组织(WHO)为矿物油制定了终生安全剂量,是每天每公斤体重20毫克。而欧盟更为谨慎,规定是每天每公斤体重12毫克,如一个成年人体重60公斤,每天摄入720毫克也没问题。而优恪网检测参照的标准,主要是德国联邦风险评估研究所(BfR)建议,“从包装迁移到食品中碳链长度介于C17—C20之间的MOSH迁移量应该控制在4毫克/千克以内”;以及 2014年,德国联邦食品及农业部在一份德国日用品法的修订草案中的建议,“碳链长度介于C20—C35之间的MOSH迁移量不应超过2毫克/千克”。这一标准可能存在误用。“这样比较是移花接木。”中华预防医学会科学传播分会常委、知名科普专家钟凯博士指出,德国的“迁移量”限值是指包装材料在特定实验条件下“溶出”的矿物油的量,不是食品或其他产品中矿物油含量的限量值,食品中的含量和特定迁移量无换算关系。其次,在衡量危害时,“离开剂量谈毒性”是食品安全风险评估的黄金法则之一。钟凯说,根据欧盟的限值计算,食用矿物油对人体有害需要达到相当数量级,换算为巧克力“相当于每天吃这款巧克力240斤”。而实际上,中国人的巧克力年人均消费量仅有2两左右。所以,上述提到的食品远远达不到对人体产生“致癌”“有毒”危害的程度。“所谓的肝肾损害,可能来自于一些动物研究,但欧盟食品安全局明确表示,生化指标的变化并不能得出有损健康的结论。”钟凯强调,还有一些研究发现矿物油可以影响维生素的吸收,不过前提是“长期大量”摄入。“事实上,矿物油在食品和化妆品中的应用已经超过一个世纪,长期应用实践并没有发现它会导致健康问题。矿物油的使用和污染需要控制,这在国际上是比较一致的看法,但也是在合理可行的前提下。食品安全是高度专业化的领域,言论自由、舆论监督并不等于可以脱离科学的轨道。”钟凯对由检测机构发布报告引发的恐慌表示担忧。原文链接:http://www.wanhuajing.com/d715012图片转自微博“辟谣与真相”http://ng1.17img.cn/bbsfiles/images/2017/03/201703131031_01_932_3.png
[align=center][b]包装材料和食物中矿物油的检测方法[/b][/align]矿物油是石油原油经过物理分离(蒸馏,萃取),化学转化(加氢反应,裂解,烷基化和异构化)过程形成的烃类化合物,包括由直链,支链及环状饱和烃矿物油(MOSH)以及聚芳烃化合物组成的的芳香烃矿物油(MOAH)两大类[sup][/sup]。食物中矿物油问题由来已久,严重损害人们的身体健康和造成大量的经济损失。1981年世界最大的食品中毒案就是因误食被矿物油污染的菜籽油引起的。1999年8月,广州肇庆发生一起参杂液体石蜡的食用油,引发集体食物中毒事件,中毒人数多达700人;2008年,震惊国际的乌克兰10万吨葵花籽油被不明来源的矿物油污染事件,导致乌克兰葵花籽油被禁止出口欧盟国家。前几年,我国出现的“毒大米”和“毒瓜子”事件都是由于抛光引起的矿物油污染事件。2017年3月,海天,老干妈等矿物油超标事件,引发了国内对矿物油危害的关注[sup][/sup]。[b]1 食品中矿物油的来源[/b]食品中矿物油污染主要有三种方式。第一,食品接触材料中矿物油的迁移[sup][/sup]。食品接触材料导致的食品中矿物油污染情况最为严重,而接触材料中矿物油的来源主要是回收纸或再生包装中残留的胶印油墨的连接料,脱模剂,塑料包装中的润滑剂,蜡纸,麻袋包装中的粘合剂等。第二,食品加工过程中使用矿物油作为加工助剂。如我国GB2760-2011中规定矿物油和白油可作为加工助剂(润滑剂,消泡剂,脱模剂等)用于油脂,糖果,膨化食品和豆制品等的生产。第三,环境污染。食品从原料的收割,晾晒到加工过程中接触到才有发动机的润滑油,没有完全燃烧的汽油,轮胎和沥青的碎屑以及不洁净空气等,都会使食品收到矿物油污染[sup][/sup]。[b]2 矿物油的毒理学[/b]研究表明,C16-C35的饱和烃矿物油(MOSH)会蓄积在人体的各种组织和器官中,如皮下腹部脂肪组织,肠系膜淋巴结,脾脏,肝脏等[sup][/sup]。MOSH呈中低等毒性,大量蓄积容易引发微粒肉芽肿,诱发浆细胞瘤形成,改变免疫功能或诱发自身免疫反应,高剂量的长链MOSH甚至是肿瘤的启动因子[sup][/sup]。芳香烃矿物油(MOAH)可能含有可致癌的多环芳烃,已有研究表明对于男性的肝脏和女性的子宫具有较强的致癌作用[sup][/sup]。工业用的矿物油被人误食后,对人体造成的危害主要油急性中毒和慢性中毒,急性中毒严重时会引发油脂性肺炎,慢性中毒可引发皮炎,神经衰弱综合征等[sup][/sup]。[b]3 矿物油的相关法规和每日允许摄入量建议[/b]随着矿物油毒理学数据的不断披露,国际上陆续开展了人群膳食烃类矿物油暴露风险评估和立法工作。2005年,瑞士颁布Verordmung 817.023,21,2005法规,规定矿物油MOAH迁移量11[/td][td=1,1,179]≧500[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)一级[/td][td=1,1,155]0~10[/td][td=1,1,223]8.5~11[/td][td=1,1,179]450~500[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)二级[/td][td=1,1,155]0~0.01[/td][td=1,1,223]7.0~8.5[/td][td=1,1,179]400~480[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)三级[/td][td=1,1,155]0~0.01[/td][td=1,1,223]3.0~7.0[/td][td=1,1,179]300~400[/td][/tr][/table][/align]4. [b]矿物油检测方法研究现状[/b]目前国内还未明确食品中矿物油的限量要求和检测方法,主要是由于检测方法的限制。关于食品中矿物油的定量检测,国内较先进的方法为使用离线[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-氢火焰离子化检测器(SPE-GC-FID)检测。但其缺点是检出限高,选择性和灵敏度差。随着对矿物油危害的重视,国内越来越多的学者重视矿物油检测方法的研究。如广东省检疫检验局检验技术中心,用SPE-GC-FID检测食品包装中矿物油,其最低检出限为7.79mg/kg(表1中MOSH的迁移限制为2mg/kg,无法满足),且只能检测矿物油中的MOSH[sup][/sup]。北京理化中心开发了银离子固相萃取-程序升温大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法检测巧克力中的MOSH,因为采用的是离线萃取方法,人为影响特别大,重现性差[sup][/sup]。中国食品发酵工业研究院国家食品质量监督检验中心也采用离线SPE-GC-FID对食用植物油中的MOSH定量分析。并且自制SPE复合柱净化。由于自制的净化柱存在一定差异,进一步降低了实验重现性[sup][/sup]。总之,国内目前开发的矿物油检测方法,具有三大检测技术难题。一,采用离线检测方法,这种方法人为误差较大,实验重现性差,很难实现稳定,快速,准确的矿物油检测。二,具有局限性,只能检测矿物油中的MOSH,无法检测MOAH。三, 检出限太高,难以满足国际颁布的相关标准。国际上公认理想的食品中矿物油的检测方法是在线联用LC-GC检测技术,其大体积,不分流的GC进样方式能够更好的富集矿物油,降低检出限。LC-GC-FID在线联用检测矿物油的特点是可以将矿物油中的MOSH和MOAH分离,同时可以将样品提取液中的使用油脂,胡萝卜素,角鲨烯,以及植物中的天然奇数碳烷烃等干扰矿物油测定的物质分离除去,实现矿物油的富集。避免了人工样品前处理,加快了分析速度,提高了分析效率;降低了样品损失和遭受污染的风险,从而提高分析方法的可靠性和重现性[sup][/sup]。目前在许多应用方法中均使用了在线全二维LC-GC联用技术。特别是K.Grob博士和Maurus Biedermann[sup][/sup]使用了Brechubuhler AG公司生产的LC-GC仪器对矿物油进行检测,推动了矿物油检测方法的发展。Luigi Mondelo撰写的文章,Online Coupled LC-GC: Theory and Applications。详细解释了LC-GC在线联合方法的理论和应用。Brechubuhler AG公司的在线全二维矿物油分析系统(LC-GC)不仅可以突破一次进样检测矿物油中MOSH和MOAH两类物质的技术壁垒。而且检出限极低,一般情况为0.6ppm,在对米中矿物油的检测低至0.24ppm。同时,它通过在线富集,避免离线检测时的人为误差,提高实验重现性。下图是使用LC-GC检测矿物油色谱图[sup][/sup]。[align=center] [/align][img=,692,440]file:///C:/Users/Anne/AppData/Local/Temp/ksohtml/wpsE2B6.tmp.jpg[/img] [align=center]图1. 回收纸板中MOSH和MOAH[/align][align=center]从上到下的三张图分别为:LC色谱图中的MOSH和MOAH;GC色谱图中的MOSH;GC色谱图中的MOAH[/align][align=center][img=,692,441]file:///C:/Users/Anne/AppData/Local/Temp/ksohtml/wpsE2C8.tmp.jpg[/img] [/align][align=center]图2. 大米样品中MOSH的检出限为0.24ppm[/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][b]参考文献[/b][align=left] World Health Organization Evaluation of certain food additives.Geneva: WHO,2002[/align][align=left] EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on Mineral Oil Hydrocarbons in Food . 2012[/align][align=left] BarpL, KornauthC, WuergerT, RudasM, BiedermannM, ReinerA, ConcinN, GrobK. FoodChem. Toxicol., 2014, 72: 312-321[/align][align=left] GrobK. J.Verbr. Lebensm., 2014, 9:231-219[/align][align=left] 固相萃取-大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法定量分析油茶籽油中的矿物油. 刘玲玲,武彦文,李冰宁,汪雨,杨一帆,祖文川,王欣欣. 分析化学. 2016,44(9):1419-1424[/align][align=left] MondelloL, ZoccaliM, PurcaroG, FranchinaFA, SciarroneD, MoretS, ConteL, TranchidaPQ.J. Chromatogr.A, 2012, 1259:221-226[/align][align=left] Vollmera, Birdermannm, Grudbckf, IngenhoffJE, BiedermannBremS, AltkoferW, GrobK. Eur. Food. Res. Technol., 2011,232:175-182[/align][align=left] 银离子固相萃取-程序升温大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法定量分析市售巧克力中的饱和烷烃矿物油.李冰宁,刘玲玲,张贞霞,武彦文. 分析化学,2017,45(4):514-520[/align][align=left] 矿物油超标危害有多严重 海天,老干妈等油辣椒产品卷入. 周子荑,中国商报。2017(P05)[/align][align=left] 食品中烃类矿物油的污染情况及迁移研究进展. 杨春艳, 柯润辉, 安红梅, 王丽娟, 黄新望, 尹建军, 宋全厚. 食品与发酵工业, 2017, l43:258-264[/align][align=left] 警惕化妆品美丽背后的伤害.王本进. 首都医药, 2005(11): 26-27[/align][align=left] 食用植物油参入矿物油的鉴别. 白满英,李芳,魏义勇. 中国油脂, 2001, 26(3): 64-65[/align][align=left] Fifty-ninth report of the WHO Expert Committee on Food Additives: Evaluation of certain food additives . Geneva: WHO, 2002[/align][align=left] SPE-GC-FID法检测食品包装纸中的矿物油.李克亚, 钟怀宁, 胡长鹰, 陈燕芬, 王志伟. 食品工业科技, 2015, 19(048): 281-285[/align][align=left] SPE-PTV-GC-FID法定量分析食用植物油中的饱和烃类矿物油.杨春艳, 张九魁, 柯润辉, 王烁, 尹建军, 宋全厚.中国食品添加剂, 2018(1): 165-174[/align][align=left] Enrichment for reducing the detection limits for the analysis of mineral oil in fatty foods . Michael Zurfluh,Maurus Biedermann,Koni Grob. Journal für Verbraucherschutz und Lebensmittelsicherheit . 2014 (1) [/align][align=left] On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 2: Migration from paperboard into dry foods: Interpretation of chromatograms . Maurus Biedermann,Koni Grob. Journal of Chromatography A . 2012[/align][align=left] Determination of mineral oil paraffins in foods by on-line HPLC-GC-FID: lowered detection limit contamination of sunflower seeds and oils . Katell Fiselier,Koni Grob. European Food Research and Technology . 2009 (4) [/align][align=left] On-line HPLC-GC-FID for the evaluation of the quality of olive oils through the methylethyl and wax esters. Maurus Birdermann, Carlo Mariani, Urs Hofstetter.[/align][align=left] Mineral oil, PAHs in food, Maurus Birdermann,Koni Grob[/align][align=left] MOSH MOAH Application note, Philippe Mottay, Brechubuhler AG.[/align]
组合方法在矿物样品分析中的应用前言由于矿物样品的基体比较复杂,矿石中通常都是多金属元素,如果是定性分析那倒是很容易得到大概是含什么元素之类的结果,要想通过一种方法给出全部需要的元素准确含量几乎是不太可能的事情。由于有的元素用王水或者四酸法就全部溶解了,而有的元素用酸溶解不彻底或者根本不溶解,需要用碱熔法才可以;有的元素含量低,可以用原子吸收(AAS)或者耦合等离子体原子发射光谱仪(ICP-OES)测出,而有的含量高就需要通过传统的化学分析方法如滴定法或者重量法分析得到结果。针对不同的矿物样品,要想得出主次含量的准确数据,组合方法是一种不错的选择。所谓组合方法,简单的来说,就是几种不同方法结合在一起,针对不同的元素采用不同的分析方法,最后综合所有的结果就是矿物样品的结果;处理起来是比较繁琐,但是要想得到准确的结果,很有必要。组合方法在矿物样品分析中应用极其普遍,下面以口岸铁矿石含量及杂质分析为例来说说组合方法在矿物样品分析中的应用。这里将会用到滴定法、四酸法以及碱熔法。下面就简单说说这几种方法吧。一、滴定法http://ng1.17img.cn/bbsfiles/images/2014/10/201410212221_519353_1657564_3.jpg1.既然是铁矿石,那铁的含量通常不会太低,用经典的滴定分析方法是首选方法,准确可靠。2.全铁的滴定方法原理为试样用盐酸分解,过滤,滤液作为主液保存;残渣以氢氟酸除硅,用氨水使铁沉淀,过滤,沉淀用盐酸溶解与主液合并。用氯化亚锡还原,再用氯化汞氧化过剩的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定,借此测定全铁量。3. 试剂和材料3.1 盐酸(ρ 1.19g/ml )3.2 盐酸( 1+2 )3.3 氢氧化铵(ρ 0.90g/ml )3.4 氯化汞饱和溶液3.5 氯化亚锡溶液( 6% ):称取6克氯化亚锡溶于20ml热盐酸(4.1)中,用水稀释至100毫升,混匀。3.6 硫磷混酸:将150ml浓硫酸在搅拌下缓慢注入700ml水中,再加150ml磷酸,混匀。3.7 二苯胺磺酸钠溶液(0.2% ):称取0.2克二苯胺磺酸钠溶于纯水,定容至100毫升。3.8 硫酸亚铁铵溶液:称取19.7克硫酸亚铁铵溶于硫酸(5+95)中,移入1000毫升容量瓶,用硫酸(5+95)稀释至刻度,摇匀。3.9 重铬酸钾标准溶液(C=0.008333mol/l ):称取[/siz
食品包装材料中矿物油的迁移前段时间,一德国民间食品监察组织对当地20多款零食进行了测试,在三大知名品牌旗下的几款巧克力、牛轧糖中检测到了可致癌物芳香烃矿物油。其中,某主打巧克力品种中矿物油芳香烃含量最高,达1.2mg/kg。那么,矿物油是何方圣神,真的有这么可怕吗?请看下文。矿物油 矿物油是什么,跟平常吃的植物油动物油有什么区别呢?矿物油(MOH,mineral oil)是原油经过物理分离(蒸馏、萃取)和化学转化(加氢反应、裂解、烷基化、和异构化)过程形成的烃类混合物,包括由直链、支链及环状组成的饱和烃矿物油(MOSH, mineral oil saturated hydrocarbons)及由聚芳香烃化合物组成的芳香烃矿物油(MOAH, mineraloil aromatic hydrocarbons)。植物油与动物油的主要成分是脂肪酸的甘油酯,跟矿物油的组成几乎完全不同。矿物油的毒性 矿物油是低毒性物质(EFSA2012),经口LD(半数致死量)大于5000mg/kg。研究表明,含有MOAH的矿物油可致突变,特别是包含多于三个苯环的多环芳烃矿物油具有致癌性(皮肤上皮肿瘤)。 由于碳数小于10的矿物油烃类在室温或者更高温下容易挥发,所以不容易在食品残留而引起食品污染,而碳数大于50的矿物油烃类因不能被人体消化吸收,所以不会对人体的健康造成影响。因此目前重点关注矿物油的烃类碳数主要集中在C10-C50。矿物油主要经过小肠和肝脏代谢为脂肪酸和脂肪醇,但也不能排除其在人体内的蓄积。矿物油主要蓄积在人体的肝脏、肾脏和肠系膜淋巴结。研究表明,具有生物蓄积作用的矿物油碳数主要集中在C24,矿物油烃类碳数范围是从C16-C35。
水中的矿物油来自工业废水和生活污水;工业废水中石油类(各种烃类的混合物)污染物主要来自原油开采、加工及各种炼制油的使用部门。矿物油漂浮在水体表面,影响空气与水体界面间的氧交换;分散于水中的油可被微生物氧化分解,消耗水中的溶解氧,使水质恶化。矿物油中还含有毒性大的芳烃类。 测定矿物油的方法有重量法、非色散红外法、紫外分光光度法、荧光法、比浊法等。 (一)重量法 重量法是常用的方法,它不受油品种的限制,但操作繁琐,灵敏度低,只适用于测定10m8儿以上的含油水样。方法测定原理是以硫酸酸化水样,用石油醚萃取矿物油,然后蒸发除去石油醚,称量残渣重,计算矿物油含量。 该法是指水中可被石油醚萃取的物质总量,可能含有较重的石油成分不能被萃取。蒸发除去溶剂时,也会造成轻质油的损失。 (二)非色散红外法 本法系利用石油类物质的甲基(—CH:)、亚甲基(—吧Hz一)在近红外区(3.4f4m)有特征吸收,作为测定水样中油含量的基础。标准油可采用受污染地点水中石油醚萃取物。根据我国原油组分特点,也可采用混合石油烃作为标准油;其组成为:十六烷:异辛烷:苯z 65:25:10(y/y)。 测定时,先用硫酸将水样酸化,加氯化钠破乳化,再用三氯三氟乙烷萃取,萃取液经无水硫酸钠层过滤、定容,注入红外分析仪测其含量。 所有含甲基、亚甲基的有机物质都将产生干扰。如水样中有动、植物性油脂以及脂肪酸物质应预先将其分离。此外,石油中有些较重的组分不镕于三氯三氟乙烷,致使测定结果偏低 (三)紫外分光光度法 石油及其产品在紫外光区有特征吸收。带有苯环的芳香族化合物的主要吸收波长为250一260nm;带有共扼双键的化合物主要吸收波长为215—230ngl。一般原油的两个吸收峰波长为225nm和254nm;轻质油及炼油厂的油品可选225nm。 水样用硫酸酸化,加氯化纳破乳化,然后用石油醚萃取,脱水,定容后测定。标准油用受污染地点水样石油醚萃取物。 不同油品特征吸收峰不同,如难以确定测定波长时,可用标准油样在波长215—300nm之间的吸收光谱,采用其最大吸收峰的位置。一般在220一225nm之间。
摘要阐述了变压器油中微水的状态及危害,论述了变压器绝缘油中微水的测试方法,以期为变压器绝缘油中微水监测提供参考。关键词变压器 绝缘油 微水监测[img=QQ图片20220126094803,461,300]http://news.isweek.cn/wp-content/uploads/2022/01/QQ图片20220126094803-461x300.png[/img]目前电力变压器不仅属于电力系统最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一。变压器在发生突发性故障之前,绝缘的劣化及潜伏性故障在运行电压的作用下将产生光、电、声、热、化学变化等一系列效应及信息。因此,国内外不仅要定期做以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷[1-4]。变压器绝缘油中微水的含量也是确定变压器绝缘质量的参数。[b]变压器在线智能诊断设备能够自动采集、分析油中微水的含量并得出故障原因[/b],提供解决方案,使用户及时解决变压器中存在的隐患,防止事故发生。[b]变压器油中微水的状态及危害[/b]变压器在运输、贮存、使用过程中都可能由外界进入或油自身氧化产生水,产生的水分会以下列状态存在:一是游离水。多为外界入侵的水分,如不搅动不易与水结合。不影响油的击穿电压,但也不允许,表明油中可能有溶解水,需立即处理。二是极度细微的颗粒溶于水。通常由空气中进入油中,急剧降低油的击穿电压。介质损耗加大,真空滤油。三是乳化水。油品精炼不良,或长期运行造成油质老化,或油被乳化物污染,都会降低油水之间的界面张力,如油水混合在一起,便形成乳化状态。加破乳化剂。其危害:一是降低油品的击穿电压。100~200mg/kg击穿电压大幅度降至1.0kV,油中纤维杂质极易吸收水分,在电场作用下,在电极间形成导电的“小桥”,因而容易击穿。二是使介质损耗因数升高。悬浮的乳化水影响最大,不均匀。三是促使绝缘纤维老化,绝缘纤维的分子是葡萄糖(C6H12O6)分子,水分进入纤维分子后降低其引力,促使其水解成低分子的物质,降低纤维机械强度和聚合度。实验证明,120℃,绝缘纤维中的水分每增加1倍,纤维的机械强度下降1/2,当温度升高,油中的水增加,纤维的水降低,温度降低,则相反。因此,应监视油中的微水,进而监视绝缘纤维的老化。四是水分助长了有机酸的腐蚀能力,加速了对金属部件的腐蚀。综上所述,油中含水量愈多,油质本身的老化、设备绝缘老化及金属部件的腐蚀速度愈快,监测油中水分的含量,尤其是溶解水的含量十分必要。为确保变压器:安全可靠的运行,需要实时测量矿物油基变压器油的击穿电压、含水量和温度,为此工采网推荐[b]德国Passerro [/b][u]在线击穿电压传感器[/u][b] 绝缘油测试装置 BDVB TrafoStick TS4x :[/b][u]BDVB TrafoStick TS4x[/u]传感器是专为变压器现场永久使用而开发的,专门用于持续实时测量矿物油基变压器油的击穿电压、含水量和温度。变压器介电强度的自动实时监测可以观察变压器的安全状态,识别趋势,最重要的是,及时采取措施提高变压器和整个供电区域的安全性。[img=德国Passerro 在线击穿电压传感器 绝缘油测试装置,300,300]https://www.isweek.cn/Thumbs/300/0220114/61e123e4a356e.jpg[/img][b]德国Passerro 在线击穿电压传感器 绝缘油测试装置 BDVB TrafoStick TS4x 参数:[/b][table=673][tr][td]测量参数[/td][td] [/td][/tr][tr][td]击穿电压(BDV)[/td][td]10kV ~ 120kV ( ± 2.5%)[/td][/tr][tr][td]含水量(WC)[/td][td]2 ppm ~ 80 ppm (± 2%)[/td][/tr][tr][td]温度[/td][td]-40 ~ 120 ± 0,2°C[/td][/tr][tr][td]测量间隔[/td][td]max. 0.1s[/td][/tr][tr][td]工作环境[/td][td] [/td][/tr][tr][td]环境温度[/td][td]-20°C ~ 70°C[/td][/tr][tr][td]油温范围[/td][td]-20°C ~ 85°C[/td][/tr][tr][td]工作压力[/td][td]高达3bar[/td][/tr][tr][td]输入和输出[/td][td] [/td][/tr][tr][td]电源[/td][td]4.5V ~ 7.5V(5.0V建议值)[/td][/tr][tr][td]输出[/td][td]数字协议[/td][/tr][tr][td]接口[/td][td]MODBUS TCP/IP[/td][/tr][tr][td]内部数据记录能力[/td][td]动态锁存缓冲器缓存链(64-256-1024)[/td][/tr][tr][td]一般信息[/td][td] [/td][/tr][tr][td]电缆[/td][td]标准MODBUS(可变长度)[/td][/tr][tr][td]外壳材料[/td][td]EN-AW-6063[/td][/tr][tr][td]机械连接[/td][td]Parker RI1EDX3/471[/td][/tr][tr][td]测量区材料[/td][td]EN-AW-7075[/td][/tr][tr][td]装配外壳类别[/td][td]IP68[/td][/tr][tr][td]控制软件( Windows 7及更高版本)[/td][td]Ver. 2.0[/td][/tr][tr][td]绝对最大额定值[/td][td] [/td][/tr][tr][td]最大工作电压[/td][td]9.0V[/td][/tr][tr][td]工作温度[/td][td]-40°C ~ 100°C[/td][/tr][tr][td]最大压力[/td][td]5bar[/td][/tr][tr][td]储存温度(不带MODBUS电缆)[/td][td]-65°C ~ 150°C[/td][/tr][/table]
用三波长法红外测水中矿物油时,要用到正十六烷、甲苯配置一定浓度的溶液来计算校正系数,请问这些试剂需要怎样级别的?分析纯?优级纯?HPLC级?急救呀
矿物样品的酸溶前处理针对不同探矿要求和资源评价的需求,介绍几种常用的矿物样品酸处理消解方法。化学试剂:盐酸、硝酸、氢氟酸、高氯酸(均为优级纯)、去离子水(二级)仪器设备:5ml,10ml,20ml,50ml瓶顶移液器;电子天平、PP塑料管、特氟龙试管、试管架、混合器、薄膜、计时器、电热炉(带温控)、试剂瓶、通风橱安全要求:因氢氟酸能造成严重烧伤,处理氢氟酸时需特别小心,;使用这种酸的所有人员必须懂得采取安全预防措施和良好的急救知识,以防止氢氟酸烧伤。(更详细请参考相关的MSDS );操作使用氢氟酸的所有人员应穿戴个人保护装备,如面罩、橡胶手套、橡胶靴子、围裙及长袖工作服;样品消解必须在通风橱里进行。http://ng1.17img.cn/bbsfiles/images/2013/07/201307121219_450878_2595817_3.jpg装在试管架上的PP塑料管http://ng1.17img.cn/bbsfiles/images/2013/07/201307121219_450879_2595817_3.jpg装在试管架上的特氟龙试管http://ng1.17img.cn/bbsfiles/images/2013/07/201307121219_450880_2595817_3.jpg电子天平http://ng1.17img.cn/bbsfiles/images/2013/07/201307121220_450881_2595817_3.jpg带瓶顶移液器的试剂瓶http://ng1.17img.cn/bbsfiles/images/2013/07/201307121221_450882_2595817_3.jpg40孔试管架http://ng1.17img.cn/bbsfiles/images/2013/07/201307121221_450883_2595817_3.jpg80孔温控电热炉http://ng1.17img.cn/bbsfiles/images/2013/07/201307121221_450884_2595817_3.jpg四酸法样品消解过程图http://ng1.17img.cn/bbsfiles/images/2013/07/201307121221_450885_2595817_3.jpg自制的混合器第一种:75%王水方法的适用性以及局限性75%的王水对于溶解硫化矿物以及释放被吸附在泥土颗粒中或收集在锰、铁氧化物和氢氧化物中的元素,是一种非常理想的媒介。试验表明:稀的混酸对某些元素,尤其当其含量较大时有很好的回收率。难熔的矿石和包含在硅酸盐中的元素,当使用上述方法时,只能部分的溶解。该方法的准确性主要取决于样品中不同矿物的溶解性。此消解方法几乎能彻底溶解普通矿物中Ag、As、Bi、Ca、Cd、Co、Cu (蓝铜矿除外)、Hg、
内标法在矿物检测中的应用引言:定量分析需要建立标准曲线,由于干扰的存在,同等浓度的待测物在标准溶液和样品中的光谱轻度是不一样的。内标法是消除这种干扰最好的方法。这种方法的原理是以内标元素的谱线来控制分析元素由于物理干扰而引起的强度变化。矿物样品基体比较复杂,为了消除基体干扰(属于物理干扰),引入内标法是一种不错的选择。下面就以几个我们常分析的几种矿物样品为例,来说一说内标法在矿物分析领域的应用吧。首先来个大众化的,就是普通金属元素的多元素分析,这个相信不少版友也在论坛讨论过,基体的影响对元素的检测结果还是蛮大的。图1是检测元素及条件:http://ng1.17img.cn/bbsfiles/images/2014/07/201407271258_508051_1657564_3.png图2是检测多元素及内标http://ng1.17img.cn/bbsfiles/images/2014/07/201407271259_508053_1657564_3.png可能有人会说,多元素之间也会存在干扰,这个hi元素之间的干扰需要用IEC或者FACT技术,这里就不在赘述了。应用之二:贵金属含量分析图3:贵金属元素及其分析条件参数http://ng1.17img.cn/bbsfiles/images/2014/07/201407271306_508054_1657564_3.png图4:贵金属内标分析http://ng1.17img.cn/bbsfiles/images/2014/07/201407271307_508055_1657564_3.png应用之三、矿物中氧化物的测定应用图5:氧化物及条件参数http://ng1.17img.cn/bbsfiles/images/2014/07/201407271312_508056_1657564_3.png图6:氧化物分析http://ng1.17img.cn/bbsfiles/images/2014/07/201407271312_508057_1657564_3.png应用内标法还是有不少优势的,首先,在检测过程中可以很方便的得知检测过程是否有异常,如果有,内标波动会很大,只要在excel中画内标曲线图就一目了然。其次,内标可以看出基体溶液和标准曲线溶液是否一致,通常来说,碱性溶液的内标要比酸性的要大,假如我们定义标准溶液空白内标为1的话,那么碱性溶液的就会大于1,而酸性溶液的接近1.再次,我们可以根据内标的高低来应该仪器软件来调整最后的检测结果,使得结果更接近样品的实际浓度而不会产生特别大的偏差。那么,我们在选择内标元素的时候需要注意哪些地方呢?1) 在样品和标样中浓度一定2) 加入内标溶液的体积尽量小3)加标方式:可手工加入,也可利用蠕动泵加入4)内标元素的加入量必须使在选择的波长处能够达到较好信噪比5) 内标元素和待测元素在等离子体中具有相似的激发能6) Eu、Y、In等常用作内标元素7) 内标元素和待测元素的谱线互相不干扰8) 为保证测定准确,可选定多个波长为了实现准确快捷的加入内标而不影响分析效率,我们的操作是样品和内标同时进样,这样既做到了同步又避免加入不均匀产生的误差,如下图http://ng1.17img.cn/bbsfiles/images/2014/07/201407281041_508106_1657564_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407281042_508107_1657564_3.jpg当然,应该内标法也有一些不足之处,至少成本上是增加了不少。但是总的来说,矿物样品应用内标法的优势还是要多一些,不是吗?如果既要消除物理干扰又要消除元素干扰,那就需要用内标法结合IEC一起使用了,那效果会更好。总结:矿物样品基体复杂,物理干扰对元素含量的测定影响很大,加入内标法可以消除这一影响,从而提高测量结果的准确性,个人认为值得推崇。
我们单位想要做一些矿物类的物相分析有做过的朋友么?我想请教几个问题1,做矿物的XRD分析对衍射仪有什么特殊要求么?2,样品需要进行什么处理么,有特殊要求么?3,在谱图分析时有什么特别注意的或特殊处理的么?(之前做过几个矿物类的样品,但分析的结果都不太好,离所需的分析结果差距甚大)谢谢了先
[img]http://ng1.17img.cn/bbsfiles/images/2007/02/200702131414_42279_1631012_3.jpg[/img]关渡平原证实有大面积砷污染,污染源砷铅铁矾矿在北投溪床可以看到矿脉的露头(圆圈处)。[img]http://ng1.17img.cn/bbsfiles/images/2007/02/200702131415_42280_1631012_3.jpg[/img] 北投地热谷曾是台湾十二景之一,传出该水域及土壤有砷污染,以后不能再在当地做亲水活动。(来源:台湾《联合报》) 台北市关渡平原农地土壤被验出重金属砷污染,表土与里土超过管制标准的面积达100多公顷,是全台最大单一面积污染区。台大生态工程研究中心团队并追查出污染源是地热谷附近河床的砷铅铁矾矿物,这矿物在台湾地质史上是首度发现。 据台湾《联合报》报道,主持这项研究调查计划的台大生物环境系统工程系教授张尊国建议,“政府”应进行风险管理设法降低风险。针对这项研究结果,台北市政府计划竖立告示牌,呼吁民众不要到地热谷下游北投亲水公园边的北投溪戏水。 这项调查缘起于2004年、2005年度台北市土壤重金属调查与地下水调查,在关渡平原发现土壤重金属砷浓度异常过高,不过因采测地点太少,无法一窥污染全貌。去年8月,台北市环保局委托台大生态工程中心,针对七星农田水利会所属灌区大约842公顷农地进行细密调查。 调查发现,关渡平原砷含量异常的面积颇大,且浓度超过管制标准60PPM(毫克/公斤)的污染区,里土含砷浓度比表土略高,显示砷已渗入土壤深层。如果依土壤比重与砷浓度推估,在调查污染区里地表至地下30公分内土壤中纯砷的总重量,高达约50公吨。 张尊国表示,即便是西南沿海或兰阳平原乌脚病曾流行区,土壤中砷含量都甚少超过30PPM,像关渡平原接连大面积的污染区十分罕见。 研究团队发现,污染范围主要在七星农田水利会北投水利小组的灌溉区,由于邻近北投工业区,居民原猜测与早期大型陶瓷工厂有关。但张尊国分析,工业污染排放这么大量砷的机率极低,经访谈七星水利会长陈益荣与地方里长,获悉早期引用磺港水系磺水上圳、磺水下圳灌溉农田,称为“磺水”。 研究团队循水源往上游包括地热谷、硫磺谷、菠萝宅桥等地点采样,在地热谷附近河床发现岩层中砷浓度极高,部分测点砷的值高达1万多PPM。 研究小组在现场采集数种矿物,经台大农化系教授王明光协助鉴定分析,意外找到台湾首度被发现的砷铅铁矾矿物。 张尊国说,关渡平原大面积砷污染原因是火山温泉的自然环境,加上水稻灌溉的人文因素,百年累积造成。虽然大业路开辟后,原灌溉系统已改变,目前改引水磨坑溪水源,但环境中的危机仍存在。
眼下的市场是由消费者驱动的,这意味着消费者拥有了绝对的选择权。但选择的多样化并不一定代表着物美价廉,因为繁杂的商品信息降低了消费者理性思考的能力,同时商家也能在摸透消费者选择机制后发出各类误导信息。 消费者如同握有非凡权利的令牌却不知道该指挥哪支军队。 据报道,矿物质水在06年异军突起,已经霸占了中国瓶装水大片江山。这个根本原因应该是消费者随着生活水平提高的健康需求,也要“归功”于某品牌近年来迎合这种需求强力推出的“更健康”的概念。但是当这样一瓶所谓“更健康”的水拿在手中细细端详,不禁要对这拥有美丽的名字的饮用水提出五大疑问。 矿物质水到底是什么水?它是自来水制成的!? 目前矿物质水还有没国家标准(这也是让人感到不安的一个原因),从浙江等几个省的地方标准来看,矿物质水是指纯净水经添加矿物质类食品添加剂或天然矿物提取液后制成的饮用水(浙江省饮用矿物质水地方标准DB33/339-2001)。纯净水一般都是用自来水加工灌装而成的,一直受到专家和消费者的诟病。那么以纯净水为基础的矿物质水是否也是用自来水制成的呢? 2004年,可口可乐在英国市场销售的Dasani矿物质水被揭露是由自来水生产的,从而引起英国人的强烈指责。从水质讲,英国的自来水比中国自来水更加安全(欧盟的饮用水指标比中国大陆更为严格);从生产技术和企业责任来说,可口可乐公司也应当比国内的一些企业更优秀;从监督机制来看,英国的力度更是强于中国大陆。试想,可口可乐的Dasani矿物质水尚且受到指责,那国内的矿物质水安全和质量究竟该如何评判呢? 矿物质水真的可以补充矿物质吗?它的矿物元素是人工添加的!? 众所周知,补充人体所需的矿物质和微量元素是一个综合概念,单独补充某一样的做法早已过时。矿物质和微量元素存在一个微妙的平衡关系,片面补充某一种,往往导致另外好几种的排泄增加,适得其反。比如过多的补充钙,就可能导致大量镁被尿液带走从而补了钙缺了镁。镁与钙的合理比例应该为:2:1。因此有医学专家认为,补充矿物质应该“协同作战”,最好就是自然态下的均衡吸收。 在自然态下,优质的天然水中所含的矿物质和微量元素呈现一个均衡的比例,或者说人类在漫长的进化过程中适应了这种奇妙的和谐。因此天然状态下的水中所含营养物质能起到一个“协同作战”的效果。比如优质天然水中的镁与钙比例就正好接近2:1。这就是为什么世界顶级瓶装水都始终强调自己含有“天然的”、“均衡的”矿物质和微量元素。 然而我们在矿物质水中看不到这种上苍赋予的和谐。矿物质水往往只往纯净水中添加某几种矿物质。比如前面提到某大品牌只加了只含有镁、钾两种矿物质,当然是只比纯净水“多一点”矿物质了。 如果人体长期只补充镁、钾两类矿物质,就可能导致相应比例的钙和铁,以及其他维生素族营养物质的流失。因此,矿物质水补充矿物质的作用值得质疑! 人体需要额外的硫酸盐和氯酸盐吗? 国内矿物质水添加的矿化液主要成分一般为硫酸镁和氯化钾。因此矿物质水在具有了镁离子和钾离子的同时,也具有了额外的硫酸根离子和氯离子。 硫酸镁又成为泻盐,超过390毫克每升便会引起腹泻。更为关键的是,硫酸根离子并非营养物质,所有国家的任何饮用水标准都只标明其含量不得超过多少,而没有必须达到多到的标准。氯酸盐也存在着同样的尴尬。 矿物质水怎么是酸性的? 随着生活品质的提升,人类对饮用水的要求也由单纯的安全上升到健康。健康水有一项重要指标就是pH值呈弱碱性。这项指标对标榜含有阳离子矿物质的矿物质水来说原本不算难事。 然而令人失望的是,国内矿物质水都呈酸性,有的甚至低于6.0。饮用水中矿物质的一个重要作用就是维持水的弱碱性。矿物质水中的矿物质显然没有这个用途。这样,“多一点”或者“更健康”也无从谈起了。 矿物质水怎么可以没有QS标志? “QS”标志是“质量安全”的英文名称Quality Safety缩写,也是食品质量安全市场准入标志,表明食品符合质量安全基本要求。食品加印(贴)QS标志后有两点含义。1、该食品的生产加工企业经过了保证产品质量必备条件审查,并取得了食品生产许可证,食品包装、贮存、运输和装卸食品的容器、包装、工具、设备安全、清洁,对食品没有污染。2、该食品出厂已经经过检验合格,食品各项指标均符合国家有关标准规定的要求。 由此可见,QS标志乃是食品安全的第一道防线。然而目前所有的矿物质水,包括某些知名企业生产的水在内,都没有QS标志,这样的情况实在让已经身患“食品安全恐惧症”的中国人感到不安。 要知道,水是人体必需的生命物质,人体的70%是由水组成的,如果我们连喝水的安全都无法得到保证,我们又还能相信什么呢?
各位前辈:因工作需要向诸位请教如下问题,期望得到帮助,不甚感激。1.我的样品是膨胀性的粘土矿物,具有吸水性能,HRTEM制样及测试过程中有没有好的办法?2.这种矿物经过了有机改性,现在我想看到有机分子在矿物层间的排列方式。请问高分辨有没有实现这种愿望的可能?或者是其他途径?
请教:矿物的d值是不是确定的几个值,比如已知一个d值,能都判断这个是属于什么矿物的?还是说矿物的d值是不定的,在一个范围内都可以。谢谢。
土壤矿物具体包括哪些且用什么方法和仪器定量测定土壤矿物
矿物油的确切含义是什么?汽油和柴油都是矿物油吗?
1.矿山矿物的取样方法.2.矿物的样品制备3.矿物中各种元素的检测方法.4.X-荧光光谱的使用.各位朋友不好意思,我原来是土壤分析和农产品农药残留检测,现在想去国外的矿山工作,有哪位朋友有上面各种资料请提供一些.谢谢了!
[font=&]生石灰干燥剂[/font][font=&] 22g生石灰干燥剂,遇上100ml清水,稍作摇晃后,出现一些微小的气泡。当加入88g生石灰干燥剂时,液体温度开始快速上升,矿泉水瓶受热 后彻底变形,无法站立。[/font][font=&] 不到2分钟,测温枪显示液体温度已经达到66摄氏度,这时意外发生,瓶子发生爆炸,瓶口凸出的部位被炸出一个大洞,瓶内的白色物质远喷射出去了近5米。[/font][font=&]矿物干燥剂[/font][font=&] 在矿泉水瓶中加入100ml清水,逐步加入矿物干燥剂,当含量达到88g时,摇晃静置后,液体的温度从27摄氏度上升到了29摄氏度,但是没有剧烈的化学反应。[/font][font=&]硅胶干燥剂[/font][font=&] 硅胶干燥剂加水后,立即出现奇特的声响。响声持续5分钟后消失,此时,液体温度从28摄氏度上升到29摄氏度,并有气泡不断冒出。[/font][font=&]注意:避免将干燥剂存放在有水的密闭空间里;防止孩子接触;不慎将生石灰干燥剂弄入眼睛,用自来水冲洗,不要用手去揉搓;遇水生石灰接触皮肤,要用大量流动清水冲洗,及时就医。[/font]
生石灰干燥剂 22g生石灰干燥剂,遇上100ml清水,稍作摇晃后,出现一些微小的气泡。当加入88g生石灰干燥剂时,液体温度开始快速上升,矿泉水瓶受热 后彻底变形,无法站立。 不到2分钟,测温枪显示液体温度已经达到66摄氏度,这时意外发生,瓶子发生爆炸,瓶口凸出的部位被炸出一个大洞,瓶内的白色物质远喷射出去了近5米。矿物干燥剂 在矿泉水瓶中加入100ml清水,逐步加入矿物干燥剂,当含量达到88g时,摇晃静置后,液体的温度从27摄氏度上升到了29摄氏度,但是没有剧烈的化学反应。硅胶干燥剂 硅胶干燥剂加水后,立即出现奇特的声响。响声持续5分钟后消失,此时,液体温度从28摄氏度上升到29摄氏度,并有气泡不断冒出。注意:避免将干燥剂存放在有水的密闭空间里;防止孩子接触;不慎将生石灰干燥剂弄入眼睛,用自来水冲洗,不要用手去揉搓;遇水生石灰接触皮肤,要用大量流动清水冲洗,及时就医。
矿物油中pah的测定:用了两个方法进行测定 zek01.2-08和sn/t 结果却相差很大 不知道原因何在 sn/t中净化的小柱用的是硅胶小柱 直接加标的回收率只有40%-50% 而就算回收率是100% 换算到结果上 还是和zek的方法的结果 差的很大 请高手指教 如何进行前处理才能有比较好的结果 。 两个方法以谁的结果为准。
我合成了一些矿物,因以后的实验要求需要把矿物表面的杂质离子清洗掉,我以前用过电渗析法,但速度很慢,两三个月也洗不干净,请问用什么方法比较好。我急呀
今天做矿物的消化,本来是想一次消化后连续测多个元素,结果消化的时候怎么也不彻底,我是用的湿法,加氢氟酸也无济于事、这是为什么呢?请高手指点。