当前位置: 仪器信息网 > 行业主题 > >

原收法结构分析

仪器信息网原收法结构分析专题为您提供2024年最新原收法结构分析价格报价、厂家品牌的相关信息, 包括原收法结构分析参数、型号等,不管是国产,还是进口品牌的原收法结构分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原收法结构分析相关的耗材配件、试剂标物,还有原收法结构分析相关的最新资讯、资料,以及原收法结构分析相关的解决方案。

原收法结构分析相关的资讯

  • 国科仪器完成数千万元融资,聚焦X射线类结构分析设备研发
    10月11日消息,安徽国科仪器产业发展有限公司(下称:国科仪器)近日完成数千万元融资,由毅达资本投资。  国科仪器是一家专业从事X射线衍射仪、纳米结构分析仪等高端X射线结构分析设备研发、生产与销售的创新型企业。公司已成功研发出多款X射线检测分析类仪器及相关核心零部件,向客户提供全集成、高附加值全方位解决方案,突破了一系列核心关键技术,填补了国内相关领域的空白。  X射线类结构分析设备在在材料结构分析和成分分析领域应用非常广泛,在晶体结构分析、非晶态结构分析、物相定性分析、物相定量分析、结晶度分析等科研方向均有成熟的应用和丰硕的研发成果。  该设备已经成为各大科研院所、大学及工业企业在研发过程中必不可少的核心设备之一,在生物医药、化工、新材料、新能源、半导体等行业的研发及在线检测过程中有着十分广泛的应用,市场需求正在快速增长。  国科仪器创始团队是国内最早从事X射线相关领域产品研发和推广的团队之一,多年来持续专注于国际材料检测分析设备领域的先进技术发展,且熟悉国外一线企业的技术路径和市场布局,能快速准确地把握国内市场需求,进行针对性的产品研发及市场推广。2022年9月,公司研制的“小角X射线散射仪”入选安徽省首台套重大技术装备(第二批)评定名单。  国科仪器创始人王富康表示,X射线类结构分析设备作为重要的科研设备,国内市场规模可观,市场需求处于快速增长过程中。目前国内高端X射线分析设备仍以进口为主,国科仪器成功打破了进口依赖,成为国内高端X射线结构分析设备“第一人”。未来,公司将继续扩充团队,加大研发,争取进入更多应用领域,为高端仪器的国产化做出更大贡献。  毅达资本投资总监张俊涛表示,高端科研仪器是国内短板,很多顶尖科研仪器对国内处于禁售状态。国科仪器在高压XRD、小角散射仪等高端X射线结构分析设备领域,已经顺利实现设备定型与销售,先后获得国家级科研单位及上市公司的重复订单,并以其良好的性能指标、灵活的定制化能力及超高的性价比获得了客户的高度认可。期待通过此次合作,在资本助推和双方的共同努力下,国科仪器能够继续在上游核心零部件及工业领域取得更大进步,争取走到X射线结构分析仪器领域的最前端。
  • 成果|利用氢氘交换质谱分析糖原磷酸化酶的瞬时态的结构动力学
    大家好,本周为大家介绍一篇发表在J. Am. Chem. Soc.上的文章,Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry,文章作者是英国埃克塞特大学的Jonathan J. Phillips。  变构调节指在蛋白质的正构位点上的变化通过蛋白质内部传递,最终影响到变构位点的结构,从而调整白质功能。理解蛋白质功能转换背后的特定结构动态变化对于分子生物学和药物发现领域至关重要。尽管变构现象自从提出以来已有广泛的研究,但是关于信号如何在蛋白质内部长距离传递的具体机制仍然不甚清楚。很大程度上是由于缺乏能够在时间和空间上高分辨率测量这些信号的生物物理方法。糖原磷酸化酶(glycogen phosphorylase,GlyP)是研究变构调节常用的标准蛋白,GlyP与II型糖尿病和转移性癌症的治疗密切相关。GlyP作为一种典型的变构酶,其活性受磷酸化修饰、多种天然配体和药物的调控。本文旨在通过开发和应用非平衡毫秒级氢/氘交换质谱(neHDX-MS)技术,来精确定位GlyP在变构激活和抑制期间的动态结构变化。这项技术能够提供蛋白质在毫秒时间尺度上的局部结构动态信息,有助于揭示变构调节过程中的瞬态结构特征,从而为理解蛋白质的动态行为和设计变构调节剂提供重要的结构信息。  作者首先确定了能够完全激活或抑制GlyP的条件。25 mM 的AMP能实现GlyPb的最大激活(图1A)。32 mM咖啡因足以完全抑制GlyPa(图1B)。并且观察到50ms内AMP和咖啡因能够达到最佳激活/抑制状态(图1C和1D)。  图1.糖原磷酸化酶b的变构激活和糖原磷酸化酶a的抑制。  随后作者通过neHDX-MS捕捉由AMP引起的GlyPb变构激活过程中的局部结构扰动。通过激活过渡态与未激活和激活状态之间的HDX差异,作者将这些肽段分成了七个类群。其中重点值得关注的类群是c、d(其他类群对应区域及趋势不在此详细介绍),因为他们的HDX行为与未激活和激活时的稳定态都有明显差异,这些局部区域的结构变化是过渡态的独特体现(图2A)。其中,c类群主要涵盖了tower helix区(图2B),说明该区域在从未激活到激活状态的过渡态中,表现出相较于前后二者皆较高的动态性。d类群涵盖活性位点,说明活性稳点结构在因结合发生了结构稳定化现象。为了从原子水平理解这些瞬态结构变化,研究人员使用了一种基于Energy Calculation and Dynamics(ENCAD)的方法,Climber,来模拟从非活性状态到活性状态转变过程中的过渡态内部作用变化。结果显示,tower helix在激活过程中经历了氢键先断裂后形成的变化,这与观察到的HDX增加相一致(图4A)。  图2.GlyPB中表现不同结构动力学行为的类群。  图3.局部区域HDX动力学。  图4.GlyP在活性和非活性状态之间的结构插值。  随后作者探讨了咖啡因如何通过变构抑制影响GlyPa的结构动态。同样作者也比较了抑制过渡态与未抑制和抑制状态之间的HDX差异,分成了七个类群。在这几组类群中,仅有m表现出较未抑制和抑制状态都较明显的氘代上升趋势(图2C、图3C&D)。m区域涵盖了tower helix区(图2D),说明该区域在未抑制状态到完全抑制状态的过渡阶段内,发生了局部去结构化现象。此外,在280s loop和250′ loop区域也表现出类似的瞬时去稳定化现象。结合AMP激活实验中的现象表明,尽管咖啡因和AMP作用于GlyP的不同位点,但它们都可能通过类似的变构路径(即tower helix的去稳定化)来引起GlyP的变构调节,从而实现对该蛋白功能的调控。同样在Climber分析中,可以观察到对应区域发生了氢键重排,与neHDX-MS结果呼应(图4B)。  本文讨论了GlyP的变构调节中间态涉及的局部结构动态变化,并通过毫秒级neHDX-MS揭示了这些变化。结果表明激活和抑制过渡态都涉及到tower helix的氢键断裂和局部结构重排,这是两个途径的共同特点。本研究的亮点在于开发了一种新的neHDX-MS方法,能够在毫秒时间尺度上观察蛋白质的变构结构动态。这种方法不仅对理解GlyP的变构机制具有重要意义,而且可以广泛应用于不同蛋白质的变构研究,为理解蛋白质的变构调节提供了新的视角和工具。  撰稿:罗宇翔  编辑:李惠琳  文章引用:Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry  参考文献  Kish, M. Ivory, D. P. Phillips, J. J., Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J. Am. Chem. Soc. 2023, 146 (1), 298-307.
  • easyXAFS发布台式X射线吸收精细结构谱仪新品
    台式X射线吸收精细结构谱仪(XAFS/XES) 美国easyXAFS公司最新推出台式X射线吸收精细结构谱仪(XAFS/XES),采用独有的X射线单色器设计,无需同步辐射光源,在常规实验室环境中实现X射线吸收精细结构测量和分析,提供XAFS和XES两种测量模式,并轻松相互切换。以极高的灵敏度和光源质量,广泛应用在催化、电池等研究领域,实现对元素的测定、定量和价态分析等。 XAFS300 XES100easyXAFS 产品参数 X射线源: XAFS: 1.2-kw XRD(Mo/w) XES: 100w XRF 空冷管(Pd/W)能量范围: 5-12keV 可达19keV分辨率: 0.5-1.5eV样品塔: 7位自动样品轮布拉格角: 55-85 deg检测器: SDD单晶尺寸: 球面单晶(Si/Ge) 直径10cm,曲率半径100cm软件: LabVIEW, 脚本扫描扩展: 仪器可外接设备,控制样品条件分析仪校准: 预先校准,快速插拔更换 easyXAFS 产品优势 - 无需同步辐射光源- 科研级别谱图效果- 台式设计,实验室内使用- 可外接仪器设备,控制样品条件- 可实现多个样品或多种条件测试- 操作便捷、维护成本低 easyXAFS 应用案例谱图展示 1、XAFS300 2、XES100 ■ XES Mode ■ XAFS Mode easyXAFS 已发表文章1. Jahrman, Seidler, et al., J. Electrochem. Soc. 2019.2. Jahrman, Holden, et al., Rev. Sci. Instrum. 2019.3. Bès, Ahopelto, et al., J. Nucl. Mater. 2018.4. Mundy, Cossairt, et al.,Chem Mater 20185. Jahrman, Seidler, and Sieber, Anal. Chem., 20186. Holden, Seidler, et al., J. Phys. Chem. A, 2018.7. Stein, Holden, et al., Chem. Mater., 2018.8. Padamati, Angelone, et al., JACS, 20179. Mortensen, Seidler, et al., Phys Rev B, 2017.10. Valenza, Jahrman, et al., Phys Rev A, 201711. Mortensen, Seidler, et al., XAFS16 conference proceedings.12. Seidler, Mortensen, et al., XAFS16 conference proceedings.13. Seidler, Mortensen, et al., Rev. Sci. Instrum. 2014.创新点:1、采用独有的X射线单色器设计,无需同步辐射光源即可进行测试;2、台式设计,方便实验室使用;3、提供两种测量模式:XAFS和XES。台式X射线吸收精细结构谱仪
  • easyXAFS发布台式X射线吸收精细结构谱仪新品
    台式X射线吸收精细结构谱仪(XAFS/XES) 美国easyXAFS公司最新推出台式X射线吸收精细结构谱仪(XAFS/XES),采用独有的X射线单色器设计,无需同步辐射光源,在常规实验室环境中实现X射线吸收精细结构测量和分析,提供XAFS和XES两种测量模式,并轻松相互切换。以极高的灵敏度和光源质量,广泛应用在催化、电池等研究领域,实现对元素的测定、定量和价态分析等。 XAFS300 XES100easyXAFS 产品参数 X射线源: XAFS: 1.2-kw XRD(Mo/w) XES: 100w XRF 空冷管(Pd/W)能量范围: 5-12keV 可达19keV分辨率: 0.5-1.5eV样品塔: 7位自动样品轮布拉格角: 55-85 deg检测器: SDD单晶尺寸: 球面单晶(Si/Ge) 直径10cm,曲率半径100cm软件: LabVIEW, 脚本扫描扩展: 仪器可外接设备,控制样品条件分析仪校准: 预先校准,快速插拔更换 easyXAFS 产品优势 - 无需同步辐射光源- 科研级别谱图效果- 台式设计,实验室内使用- 可外接仪器设备,控制样品条件- 可实现多个样品或多种条件测试- 操作便捷、维护成本低 easyXAFS 应用案例谱图展示 1、XAFS300 2、XES100 ■ XES Mode ■ XAFS Mode easyXAFS 已发表文章1. Mundy, Cossairt, et al.,Chem Mater 20182. Jahrman, Seidler, and Sieber, Anal.Chem., 20183. Holden, Seidler, et al.,J.Phys.Chem.A, 2018.4. Holden, Seidler, et al.,J.Phys.Chem.A, 2018.5. Stein, Holden, et al., Chem.Mater., 2018.6. Padamati, Angelone, et al.,JACS, 20177. Mortensen, Seidler, et al., Phys Rev B, 2017.8. Valenza, Jahrman, et al., Phys Rev A, 20179. Mortensen, Seidler, et al., XAFS16 conference proceedings.10. Seidler, Mortensen, et al., XAFS16 conference proceedings.创新点:1、采用独有的X射线单色器设计,无需同步辐射光源即可进行测试;2、台式设计,方便实验室使用;3、提供两种测量模式:XAFS和XES。台式X射线吸收精细结构谱仪
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 500万!中科院大连化物所X射线吸收精细结构谱仪采购项目
    项目编号:OITC-G230310457项目名称:中国科学院大连化学物理研究所X射线吸收精细结构谱仪采购项目预算金额:500.0000000 万元(人民币)最高限价(如有):500.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品1X射线吸收精细结构谱仪1套研究活性金属元素氧化态和键共价性,以及配位数,电子授体和原子间距等探索反应机理并为改善材料提供理论指导。能够深入研究催化剂/电池/环境等材料的构效关系,为高水平文章的机理解析提供重要数据支撑。合同签订后11个月内中国科学院大连化学物理研究所是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:合同签署后11个月内到货本项目( 不接受 )联合体投标。
  • 360万!上海交通大学元素精细局域结构分析系统采购项目
    项目编号:1447-234202300061项目名称:上海交通大学元素精细局域结构分析系统预算金额:360.0000000 万元(人民币)采购需求:1元素精细局域结构分析系统1套1.采用独有的X射线单色器设计,无需同步辐射光源,在常规实验室环境中实现X射线吸收精细结构测量和分析,以极高的灵敏度和光源质量,实现对元素的测定、价态和配位结构分析等。2.能够进行X射线发射谱测试(XES),超高能量分辨率的X射线荧光光谱(high-resolution XRF)分析。具体内容详见招标文件第八章合同签订后12个月内上海交通大学指定地点合同履行期限:合同签订后12个月内本项目( 不接受 )联合体投标。获取招标文件时间:2023年03月02日 至 2023年03月09日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外)地点:上海市静安区汶水路299弄25-26号10号楼2楼方式:凡愿参加的合格供应商可于采购文件获取时间内,通过邮件形式将报名所需资料发送至邮箱 wanbo1998@126.com)报名,报名费500元,通过公对公转账至上海健生教育配置招标有限公司 (开户银行:交通银行西藏南路支行、账号:310066564018150027780;备注项目编号+报名费)售后不退。售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:上海交通大学地址:上海市闵行区东川路800号联系方式:招采办经办人:陈老师 021-54744366 技术联系人:屠老师 021-547400582.采购代理机构信息名称:上海健生教育配置招标有限公司            地址:上海市静安区汶水路299弄25-26号10号楼2楼联系方式:益老师 021-53087656-1063.项目联系方式项目联系人:益老师电话:021-53087656-106
  • 第四届化学和药物结构分析上海年会通知
    第四届化学和药物结构分析上海年会(CPSA Shanghai 2013)将于2013年4月24-27日在上海淳大万丽酒店举行。本届会议主题是“利用转化科学、监管效率和创新模式振兴医药研发”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2013年已经在美国连续举办十五年。  CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。  CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。  CPSA上海2013年会大会主席是来自扬森药业的翁乃栋博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。会议将特邀全球制药巨头赛诺菲公司全球副总裁John Newton博士和宾夕法尼亚大学药理学专家Ian Blair教授做大会主题报告。  此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了“CPSA 青年科学家优秀奖”和“创新奖”两个奖项。“CPSA 青年科学家优秀奖”主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询。  会议日程概览:  2013年4月22日 卫星会议Workshop(地点:北京)  2013年4月24日 会前研讨会Workshops和欢迎晚宴  2013年4月25-26日 正式会议、游艇晚宴、午餐会、海报评选、企业展示、颁奖晚宴等  2013年4月27日 上海药物代谢动力学研讨会活动  会议注册费用:类别日期费用2013年1月22日前2013年1月23日-4月6日2013年4月6日以后4月24日Workshop注册费用640元800元1120元4月25-26日正式会议注册费用(教师和企业代表)1440元1728元2304元4月25-26日正式会议注册费(学生/博士后)640元800元1120元  付款账户信息:  账户全称:上海逸星商务咨询有限公司  开户银行:上海银行曹安支行  银行账号: 31661203001254927  有关会议的细节,注册方式及组委会名单可从以下网址获取:http://www.cpsa-shanghai.com  期待您的支持和参与。  如有疑问,请随时联系我们。  杨会娟老师  上海逸星商务咨询有限公司  CPSA Shanghai 2013年会组委会  电话:021-39152015  邮箱:star.yang@mice-partners.com  地址:上海市嘉定区祁连山南路2199号真新商务楼411室,邮编:201824
  • 高内涵——自动化智能化的上皮细胞管腔结构分析方案
    上皮细胞是常见的细胞组织类型之一。最简单的上皮组织结构是一个由单层细胞构成的腔隙,类似管状内腔,细胞朝向管腔的一侧为顶层,远离管腔的一侧为基底层,上皮细胞的这一现象称为细胞极化。尽管多种调控上皮细胞极性的因素已经被发现,但它们在上皮细胞极性建立、极化膜生物合成和组织形成过程中是如何相互协调和整合的尚不清楚,可以明确的是这一机制在生物体发育和疾病过程中扮演了重要角色。MDCK细胞在生长的过程中会发生细胞极化的过程,单层细胞放射状围绕中心腔隙排列,形成特定三维结构,一些极化机制也首先在MDCK细胞模型中得到了印证,因此它是一个很好的研究上皮细胞极化和管腔结构形成的简化系统,目前已广泛应用于相关领域的研究。图1:MDCK细胞管腔结构形成示意图然而由于生长方式的特殊性,同一个视野中的不同管腔结构有可能位于不同的层面上,因此在以往的实验中想要对这样的样本进行高通量成像是一个很大的挑战,往往需要手动对每一个管腔结构进行单独拍摄,并在后期做图像分析,而使用高内涵成像分析技术则将这一繁复的操作过程变得自动化和智能化。Step1.智能预扫使用高内涵的智能预扫功能,可以先在低倍(5×)下对整孔进行全局扫描,拍摄的同时软件根据算法确定视野中每个空腔结构的定位和范围,剔除不含目的结构视野。图2:Optically section in Z → Max. project medial planesStep2.精细层扫然后再自动转换至高倍(20×或63×),分别对含有空腔结构的视野进行高分辨率的精细层扫,以确保位于不同层面的空腔结构都能够获取到图像。图3:Detect polarity orientation → Calculate lumen numberStep3.统计分析最后使用高内涵的分析功能模块对细胞的极性变化和形成的管腔数量直接进行统计分析。图4:Phenotype binning总结图5:细胞极化和管腔数量分析示意图。MDCK细胞团培养24-72h后进行染色,对不同Z轴层面(共8层,每层间隔2μm)成像后采用最大投影模式进行显示和分析,应用机器自学习模块对细胞极化进行自动检测,并在此基础上计算形成的内腔数量。由此可以看出高内涵可以很好的解决上皮细胞3D培养中不规则分散样本的定位成像问题,简化了成像流程,为样本中特殊结构的自动化成像和分析提供了高效的解决方案。点击链接了解更多高内涵仪器相关资料:https://y6n.cn/uSQLG参考文献1. Roman-Fernandez, et al. Complex polarity: building multicellular tissues through apical membrane traffic. Traffic 17, 1244–1261(2016).2. O' Brien, et al. Opinion: building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 531–537 (2002).3. Rodriguez-Boulan, et al. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242(2014).4. álvaro Román-Fernández, et al. The phospholipid PI(3,4)P2 is an apical identity determinant. Nat Commun. 9: 5041(2018).关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 显微 CT 成像在药物制剂结构分析中的应用
    显微 CT 成像在药物制剂结构分析中的应用引言药物是用于预防、治疗、诊断疾病的活性物质,需制成一定的剂型才能作用于人体。药物攸关人民生命安全,因此对药物制剂的质量进行控制和评价至关重要。制剂的结构影响药物的疗效发挥,同时也影响制剂的释药行为,因此制剂的结构在制剂设计和评价方面发挥着重要的作用。药物制剂结构表征常用的技术有光学显微镜、电子显微镜等技术工具,但这些技术手段仅能给出制剂的表面特征,无法有效地表征其内部特征。X 射线具有波长短、分辨率高和穿透力强等特点,能够实现对样品内部结构进行成像,曝光时间短、效率高,可用于观察分析多种微观物理、化学变化以及微纳米结构,在生物医学、材料科学上有着广泛的应用。利用显微 CT 成像研究药物制剂结构的应用包括:&bull 药物制剂的晶型研究&bull 制剂内部结构的表征研究&bull 制剂涂层结构的无损表征&bull 药物释放机制研究图注:NEOSCAN 台式显微 CT 扫描抗过敏药盐酸西替利嗪片本文通过文献资料摘录 3 个实际应用案例介绍显微 CT 技术在固体制剂药品领域的应用和功能。Part 01 利用显微CT对仿制药开展一致性评价昝孟晴等利用显微 CT 技术对盐酸特拉唑嗪片的内部微观结构进行观察分析,发现溶出度测定结果不满足标准限度要求的样品与参比制剂相比具有更大的孔隙率。将溶出度不合格样品和参比制剂的结构进行对比分析,二者局部孔径大小分布见下图。由图可知,二者的局部孔径尺寸大多数都分布在 10~20 μm,平均孔径大小分布没有较大差别。图注:参比制剂样品(蓝色)和溶出度不合格样品(橘色)的局部孔径大小分布但通过分析制剂的孔隙率(片剂表观体积中,除原辅料外,内部的孔隙占总体积的比例),发现溶出不合格样品的孔隙率远大于参比制剂,分别为 32.851%(仿制制剂)和 6.545%(参比制剂),见下图(图中白色部分代表主药和辅料, 红色部分代表孔隙)。从结构对比结果推测,溶出度不合格样品可能是由于孔隙率偏大,因而能迅速吸收大量水分,由于重力作用而沉积在普通溶出杯底部。显微 CT 技术能够提供药品固体制剂的高分辨率三维内部结构图像,包括活性成分的分布、空隙、颗粒大小和分布等,这有助于了解药品的均匀性和质量分布。图注:参比制剂(左图)和溶出度不合格样品(右图)的三维结构图Part 02 显微CT 中药制剂结构研究中药制剂重视药辅合一, 其剂型和辅料的运用蕴含着丰富的药方配比智慧。中药活性成分从剂型里溶出、释放受制于制剂的结构, 并影响其疗效的发挥。制剂结构的创新是中药制剂的发展趋势, 在以缓控释制剂和靶向给药系统等为代表的新剂型发展过程中, 制剂结构发挥着重要作用。微丸压制片是由可持续释药微丸与适宜辅料混合后压制成的制剂, 压片后具有体积小、可刻痕和可分剂量使用等优点。使用显微 CT 无损成像技术对微丸压制片的三维微结构与药物、辅料的空间分布的研究, 有助于进行深度的质量评价与控制。茶碱微丸片 (THEODUR) 为 24h 骨架型缓释制剂, 微丸在片剂径向上的分布均匀, 但在轴向上存在明显的微丸富集区。片剂内部呈现 3 种不同的区域: 基质层、保护缓冲层与载药微丸, 基质层和保护缓冲层并无特定的结构, 两层依次包裹在微丸周围。基质层主要分布有茶碱、蔗糖、乳糖和十二烷基硫酸钠, 而单硬脂酸甘油酯主要存在于缓冲层 (图 A)。琥珀酸美托洛尔微丸片 (倍他乐克) 遇介质快速崩解成单个微丸, 持续释放药物 24h。其中, 微丸在片剂内均匀分布, 且呈光滑球形, 具三层球形结构。此外, 片剂中基质并非十分紧实, 基质中以及基质和微丸之间均有一些空隙, 这不仅有利于片剂在介质中快速崩解, 也保证微丸在压片过程中结构的完整性 (图 B)。另外, 肠溶型微丸压制片的结构研究也有报道, 如埃思奥美拉唑微丸片 (耐信)。图注:显微 CT 分析茶碱微丸片Part 03 显微 CT 对原辅料粉体结构中药物晶型的辨别制剂是由药物活性成分和辅料组成, 原辅料粉体中的药物晶型、粉体粒径及其分布、 配比与规格直接影响药物制剂的质量。显微 CT 成像可以避免剂型中辅料的干扰, 准确识别药物的晶型, 且能无损伤、原位检测制剂内药物微粒的粒径及其分布。该方法解决了固体制剂内药物晶体的识别和药物粒径及其分布的测定难题, 具有重要应用价值, 为仿制药一致性评价中原辅料粉体结构的研究提供了新的视角和思路。例如,Yin 等采用 SR-μCT 研究多晶型混合物中硫酸氢氯吡格雷的晶型, 基于两种晶型颗粒表面的粗糙度差异, 有效地识别硫酸氢氯吡格雷的不同晶型。关于台式显微 CT可在不破坏样品的同时,得到样品的结构信息(空腔孔隙)、密度信息(组分差异),同时可以输出三维模型,进行仿真分析。 参考文献《采用高分辨显微成像技术从药物制剂结构角度分析盐酸特拉唑嗪片溶出度测定结果》昝孟晴,黄韩韩,张广超,马玲云,许鸣镝,牛剑钊*,刘倩*(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)《结构药剂学与中药制剂结构研究进展》杨 婷, 李 哲, 冯道明等(1. 中国科学院上海药物研究所;2. 江西中医药大学)《从结构出发的制剂一致性研究策略》张继稳, 孟凡月, 肖体乔(1. 安徽中医药大学药学院 2. 中国科学院上海药物研究所 3. 中国科学院上海应用物理研究所)《高分辨三维 X 射线显微成像在药物制剂结构分析中的应用》昝孟晴,黄韩韩,南楠等(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)
  • 纽迈分析核磁共振孔隙结构分析仪入围2017首届“分析仪器创新奖” ——“创新成果奖”
    p  7月12日,中国仪器仪表学会分析仪器分会公布2017年首届“分析仪器创新奖”——“创新成果奖”入围名单,共有10个项目入围,其中苏州纽迈分析仪器股份有限公司的核磁共振孔隙结构分析仪项目名列其中,终获奖名单将在2017年8月9-11号举行的“第四届中国分析仪器学术年会”上公布并同期举行隆重的颁奖仪式。/pp style="TEXT-ALIGN: center"img title="QQ截图20170712150123.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/69af3507-c103-419e-8fe5-a23fd0966355.jpg"//pp  据悉,“分析仪器创新奖”的设立宗旨是发现、鼓励、宣传分析仪器界在新原理、新方法、新技术及新应用方面的创新成果,加速推动我国分析仪器技术的发展,激发企业及广大科技工作者的创新热情,促使科技人员投身于中国分析仪器研发、制造与应用工作,为发展我国分析仪器做出应有贡献。其中“创新成果奖”范围包括:分析仪器的研究、设计、制造、应用有关的技术和产品 相关的基础材料、基础元器件、关键工艺、关键装备、重大工程应用。要求技术具有原创性,成果具有独创性,技术水平国际先进,国内领先 经实践,可重复、可推广 具有明显的技术进步作用,技术经济综合指标优越的项目。/pp /p
  • Angew成果|离子淌度调制提升空间脂质组分析的结构解析能力
    离子淌度调制提升空间脂质组分析的结构解析能力空间脂质组分析可揭示脂质在生物组织或器官中的含量及空间分布,是基础生物学和疾病研究的重要技术。空间脂质组分析的底层技术一般为质谱成像,其具有免标记、高空间分辨率和高灵敏度等优势,可同时表征大量脂质分子在生物组织中的空间分布。然而,脂质和代谢物的质谱成像主要依赖于质量测定,对分子结构的表征能力不足,常由于脂质和代谢物异构体的存在而导致分析偏差乃至错误。在质谱成像过程中,单个像素点的样品量和分析时间极为有限,对逐个离子串联分析会导致分析时间长和灵敏度降低等问题,因此如何在质谱成像的同时实现分子的结构解析一直是分析科学的挑战。此外,在成像过程中丰度、离子化效率各异的待分析离子同时进入质谱,存在显著离子抑制等问题,给中低丰度离子的检测和结构鉴定造成困难。近日,清华大学精密仪器系的欧阳证、马潇潇教授团队开发了一种多目标脂质结构质谱成像技术,通过离子淌度技术对待分析离子的快速时空聚焦和分离,在不增加质谱成像时间的情况下,显著提升了空间脂质组分析的结构解析能力。该技术采用数据非依赖采集方法,利用离子淌度分离对单像素点的母离子强度进行“调制”,将淌度分离后的母离子不经质量隔离而完全碎裂 (Mobility modulated sequential dissociation, MMSD)。根据母离子及相应子离子组成随淌度时间不断变化的特点,发展了智能谱图解卷积算法,实现40多种脂质的结构解析和20种脂质在组织上的空间可视化,包括磷脂酰胆碱、磷脂酰乙醇胺等。具备结构解析功能的质谱成像可实现传统空间脂质组分析难以实现的脂质异构体结构鉴定和空间可视化。在鼠脑组织中,该技术揭示了多种脂质异构体的差异性乃至互补性空间分布,如 PE O-18:2_20:4、PE O-16:0_22:6 和 PE 16:1_22:4、PE 16:0_22:5等。在对人肝癌的组织切片分析中,该方法揭示了磷脂酰乙醇胺 PE 36:2的一组异构体(PE 18:1_18:1、PE 18:0_18:2)在癌组织和癌旁组织中的特异性分布,并且PE 18:1_18:1集中分布于癌组织,可用于精准划分肿瘤组织边界,表明该技术可在更深层结构维度上揭示脂质癌症生物标志物。这项工作所提出的多目标脂质结构解析及空间成像方法,从原理上同样适用于多肽、代谢物等生物分子的空间可视化及结构解析。结构解析赋能的脂质质谱成像,是空间脂质组学技术发展的题中之义,也是精准脂质组分析和功能脂质组研究必不可少的技术基础。该技术的提出,为空间结构脂质组分析提出了一种解决方案,也有望促进质谱成像实现从质量测定到结构鉴定的研究范式转换。 论文作者:论文第一作者是清华大学博士研究生钱耀,通讯作者是清华大学精密仪器系欧阳证、马潇潇教授。清华大学郭翔宇博士和清华大学长庚医院王韫芳研究员对技术建立和生物医学应用做出了重要贡献。清华大学精仪系、清华大学精密测试技术与仪器国家重点实验室为第一作者单位。本项目得到国家自然科学基金委重点、面上项目及重点研发计划(前沿生物技术)青年科学家项目(2022YFC3401900)资助。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202312275
  • 直播预告!第四届材料表征与分析检测技术网络会议之结构与形貌分析分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/结构与形貌分析主题专场会议日程:报告时间报告题目报告人专场三:结构与形貌分析(12月15日)09:00--09:30电子束辐照敏感材料的电子显微表征方法探索上海科技大学研究员 于奕09:30--10:00牛津仪器 EBSD 技术最新发展及应用牛津仪器科技(上海)有限公司应用科学家 杨小鹏10:00--10:304D超快电子显微镜及其在低维材料非平衡态动力学中的应用南开大学教授 付学文10:30--11:00布鲁克电子显微分析技术在材料表征中的应用布鲁克纳米分析应用工程师 韦家波11:00--11:30电子显微学在光电材料及器件开发研究中的拓展应用北京工业大学副研究员 卢岳11:30--12:00现代扫描电子显微学功能化方法研究进展和应用浙江工业大学副研究员 李永合直播抽奖:30元京东卡5个嘉宾介绍:上海科技大学研究员 于奕于奕,上海科技大学助理教授。2008年获得北京科技大学材料物理学士学位,2013年获得清华大学材料科学与工程博士学位,2013-2017年在美国加州大学伯克利分校和劳伦斯伯克利国家实验室从事博士后研究工作,2017年至今任上海科技大学助理教授、研究员、博士生导师。于奕博士从事材料微观结构的像差校正电子显微学研究,迄今发表科研论文60余篇,引用5000余次,部分重要成果以通讯或第一作者形式发表在Nature,Science,Nano Letters,J.Am.Chem.Soc等期刊。目前于奕博士的研究聚焦在辐照敏感能源材料的原子尺度电子显微分析。【摘要】 透射电子显微技术是表征和分析材料微观结构与成分的重要手段。对于不耐电子束辐照的材料,在进行显微观察的过程中,电子束会对样品的本征结构产生破坏,导致原始结构、特别是纳米和原子尺度的精细结构难以得到表征。这是一个现有技术手段还无法有效解决的难题。在本报告中,我们以辐照敏感的卤化物钙钛矿半导体材料和锂金属材料为例,介绍我们在显微样品制备、显微成像和谱学分析过程中探索到的能够缓解材料辐照损伤的一些方法,并利用这些方法实现对这两类材料的高分辨原子尺度结构解析。牛津仪器科技(上海)有限公司应用科学家 杨小鹏杨小鹏,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。【摘要】 牛津仪器一直致力于推动 EBSD 技术的发展,最新发布了第三代 Symmetry EBSD探测器 S3,最快采集速度超过5700 花样/秒。同时更新的还有高性价比的C-Nano+ 和C-Swift+ EBSD探测器,最快速度分别达到 600 花样/秒及2000 花样/秒。所有三种型号探测器都可以配置高温荧光屏,满足原位加热EBSD的需求。在软件方面,新发布了花样匹配标定技术 MapSweeper,相比传统EBSD标定技术,对质量差的花样也能标定,提高标定率,改善对大变形样品和TKD样品的分析。MapSweeper还能提高EBSD数据的精度,帮助区分伪对称、相似相、倒反畴界等,这些应用需要对花样进行精细的识别。南开大学教授 付学文 付学文,南开大学物理学院教授,博士生导师,天津市杰出青年基金获得者,入选国家四青人才,南开大学“百名青年学科带头人”,担任国家重点研发计划青年项目首席科学家。2014年获北京大学凝聚态物理博士学位(导师:俞大鹏院士),曾荣获北京市优秀博士毕业生、北京大学优秀博士毕业生和优秀博士论文奖。曾先后在美国加州理工学院(诺贝尔奖得主Ahmed Zewail教授研究组)和美国布鲁克海文国家实验室 (Yimei Zhu教授研究组)做博士后和助理研究员。2019年受聘于南开大学物理科学学院担任教授,牵头建立了南开大学超快电子显微镜实验室。长期从事4D超快电子显微镜、超快阴极荧光等超高时空分辨电子成像与探测技术开发及其在低维量子功能材料的结构、载流子及自旋等动力学中的应用研究。在Science、Science Advances(3篇)、Nature Communications、Advanced Materials、PNAS、ACS Nano(5篇)、Nano Letters等知名国际期刊发表学术论文40余篇,获授权发明专利1项。研究成果多次被 Science、Phys.org、Physicsword、Nanotechweb、Advances in Engineering等科学媒体选为研究亮点进行报道。【摘要】报告将主要介绍4D超快电子显微镜及其在低维材料非平衡态动力学中的应用。布鲁克纳米分析应用工程师 韦家波韦家波,布鲁克纳米分析应用工程师,负责EDS、EBSD、TKD等产品的技术支持工作,对电子显微镜的相关应用具有多年实操经验。【摘要】 主要分享布鲁克高分辨EDS, EBSD/同轴TKD等产品的技术优势及其在材表征方面的应用。北京工业大学副研究员 卢岳 卢岳,北京工业大学固体微结构与性能研究所副研究员、博士研究生导师。长期从事原位电子显微学、光电及光电催化材料与器件研究。作为项目负责人,承担多项国家自然科学基金和省部级以上科研基金,以第一作者或通讯作者在Joule, Nat. Commun., Adv. Mater., Appl. Catal. B-Environ., ACS Nano, Chem. Eng. J., Adv. Funct. Mater., J. Mater. Chem. A等国际期刊发表SCI论文40余篇。【摘要】报告中主要介绍电子显微学在光电材料及器件开发研究中的拓展应用。浙江工业大学副研究员 李永合李永合,男,副研究员,北京工业大学工学博士学位,德国卡尔斯鲁厄理工学院 (KIT)电子显微学研究室博士后。近年来,针对电池离子输运和催化剂活性反应的基础问题,集中发展工况材料动态结构演变的原位电子显微学可视化方法。以此研究基础,主持承担科技部重点研发子任务、国家自然科学基金青年项目、浙江省自然基金探索项目3项,完成德国洪堡基金项目1项,曾入选德国“洪堡学者”和校高层次人才培育计划。【摘要】 扫描电子显微镜长期以来在材料介观尺度表面形貌、成分、结构表征方面具有举足轻重的作用。然而随着对材料研究的深入,对扫描电镜的技术方法的要求也日益苛刻。扫描电镜透射化可以实现扫描电镜的透射成像功能(STEM-in-SEM)来获得体相二维投影信息,FIB-SEM重构进一步实现材料形貌的三维重构可视化,同时原位技术装置引入又可以实现材料外场下的动态形貌结构演变观察,这些最新方法极大地丰富和发展了现代先进扫描电子显微学。基于此,本报告将着重介绍1)发展的STEM-in-SEM方法和FIB-SEM三维重构在弱衬度材料表征应用,以及2)循环条件下,全固态电池失效行为的原位研究等工作。会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 《RISE大招》无机材料之结构分析和结晶度分析
    《RISE大招》前情回顾:这是一个荡气回肠的相遇、相知、相恋、相爱的故事。本系列前两集讲述了RISE从传统扫描电镜“心有余而力不足”的分析困境下一跃而出到它对于无机相鉴定和金属夹杂分析的武功路数,相信大家对RISE电镜-拉曼一体化系统已经有了基本了解。(然而小编还是无比体贴的放上了前两集链接:点击下列文字即可快速阅读)。01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!科研无涯,却无需苦作舟。路即在此,英雄闻声而至。话不多说,今天呢,接着上次的招式,给大家讲讲RISE在无机材料结构分析和结晶度分析上的套路。无机材料之结构分析对于无机材料来说,经常会碰到同分异构的情况。但是仅仅通过扫描电镜和能谱,我们只能得到形貌和成分数据,而没有办法对样品进行准确的结构分析。而结构作为物质的基本特性,极大的影响着热、力、光、电、磁等性能,因此也是微区表征不容忽视的方面。而目前在SEM系统中,能够进行结构表征的也只有EBSD,但是前提依然是要有严格的样品制备,局限性很大。而成分相同结构不同的同分异构材料的拉曼光谱,往往表现出较大的差异,因此拉曼光谱分析手段是很好的表征结构的手段。因此,通过SEM+EDS+Raman (RISE) 的综合分析手段,我们就可以对同分异构材料进行全面准确的形貌、成分和结构分析。 如下图,试样为TiO2粉末,TiO2有锐钛矿和金红石两种结构,并且两者表现出完全不同的拉曼光谱特征。因此在RISE系统中通过拉曼光谱的面扫描分析,可以轻易的区分出蓝色区域为锐钛矿结构,红色区域为金红石结构。再例如下图,通过EDS数据知道电镜分析区域为Sm2O3 ,然后在此基础上进行拉曼面分布分析。虽然试样并不平整,完全不够EBSD的测试要求,但是RISE系统依然可以发现其中红色区域为立方结构的Sm2O3 ,蓝色区域为单斜结构的Sm2O3 。无机材料之结晶度分析对于无机材料来说,结晶度也是重要的参数。目前能够很好的表征结晶情况的主要是XRD,并且是基于宏观分析,能在微区尺度对结晶度进行表征的手段则很少。而无机晶体材料的结晶度却会对特征拉曼峰产生较大的影响。结晶度程度高,特征拉曼峰高而尖锐;反之,若结晶度低,则特征峰会变宽。因此,可以通过特征拉曼峰的宽度来对结晶度进行评判。由此可见,原位一体化的RISE对微区领域的结晶度分析提供了新的途径。如下图,用SEM-FIB双束电镜在硅表面进行图形加工。由于Ga+离子的注入效应、热效应等会使加工区域的硅产生一定程度上的非晶化。仅凭形貌是无法知道非晶化程度的。而在此区域用RISE进行拉曼面扫描,并用每一个测试点的Si的特征拉曼峰的半高宽为依据进行RISE成像,红色区域为半高宽较窄,蓝色区域为半高宽较宽。由此形成的RISE图像,对于研究FIB加工产生的非晶化一目了然。RISE七十二般武艺,招招新奇,但一招一式,每一个路数都为更好的帮助您的科研分析而生。除了切实突破并解决了传统扫描电镜分析能力薄弱的问题,针对传统意义上的电镜-拉曼联用系统的种种分析弊端,RISE系统采用了扫描电镜-拉曼光谱一体化的硬件和软件设计,使得综合分析更加行之有效。 故事刚开始,我们已相遇,还有相知、相恋、相爱̷̷跑远了,下面请收看“下集预告”:《RISE大招》下集看点:无机材料之微量元素分析、取向分析、取向应力分析。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN中国官方微信“TESCAN公司”,更多精彩资讯。↓ ↓ ↓ 观看RISE大招全系列,请戳:01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!
  • 欧盟采用高精度质谱分析毒蛇毒液生物结构 开发各类新药
    以毒攻毒,充分利用自然界天然的复杂合成毒素,一直是世界医学界研制开发新药物的有效路径。为开发高效、负担得起的糖尿病或肥胖新药,欧盟第七研发框架计划(FP7)提供600万欧元资助,总研发投入940万欧元,由欧盟5个成员国法国(总协调)、西班牙、葡萄牙、比利时和丹麦,以及跨学科生物化学科研人员和联合制药工业组成了欧洲VENOMICS研发团队。从2011年11月开始,该团队致力于毒蛇毒素新药的研制开发,并取得了积极进展。  研发团队首先在全球范围内成功优化筛选出“高效毒素”的200余种毒蛇,进行人工培育。采用最新开发的高精度质谱仪技术和其它先进技术,对203种最具活力的毒蛇毒液样本、复杂的生物化合物分子结构开展研究分析,成功分类出4000余种毒素“微蛋白”。根据毒性的峰值,将其应用于各类新药的开发。  目前,该团队的大部分研发创新活动已转向糖尿病、肥胖症、心血管疾病、人体过敏和癌症等靶向药物开发,其中收集的各项研究数据已证实,毒蛇毒素对抑制和治疗糖尿病或肥胖具有明显疗效。新药物的发现和定性定量通常需要2-3年时间,尚需10年或15年时间进行临床试验、产品认证和商业开发,最终才能进入市场。
  • 电子探针显微分析探索锰结核的结构及成因
    导 语多金属铁锰结核即锰结核的形态、结构构造、矿物种类和化学成分综合反映了结核的形成环境和生长机制,其生长过程中因为记录着这些海洋地质作用及变化的信息,备受相关学者的关注。使用岛津电子探针EPMA可对海底采集的多金属铁锰结核进行了微观形貌观察、成分分析和元素面分布特征测试,从而可以研究其结构及成因。 岛津电子探针EPMA优势: 岛津电子探针EPMA可在微区领域进行高灵敏度的分析,观察及分析只需要使用鼠标键盘即可完成,方便高效。 岛津电子探针(EPMA-1720 & EPMA-8050G) 岛津电子探针EPMA通过配置 统一四英寸罗兰圆半径的兼具灵敏度和分辨率的全聚焦分光晶体以及52.5°的特征X射线高取出角 使之对于微量元素的测试更具优势,不会错过微量元素的轻微变化。 图解:从微米级别空间尺度产生的元素特征X射线经过全聚焦晶体衍射后还会汇聚到微米级别范围,不会有检测信号的损失,也无需在检测器前开更大尺寸的狭缝,从而具有更高的特征X射线检测灵敏度和分辨率。 图解:高取出角可获得特征X射线试样在基体内部更短的穿梭路径,减少基体效应的影响,即更少的基体吸收更少的二次荧光等,从而具有更高的特征X射线检测灵敏度。 岛津电子探针EPMA对锰结核的分析: 通过岛津电子探针EPMA分析发现,此锰结核的中心成核部位发现了较多的全自形斑晶,斑晶主要为长石与辉石,可能来自于海底火山喷发在海水中的冷却结晶,在火山岩碎屑基质中还有后期充填形成的杏仁体构造。在火山岩碎屑边部也观察到快速冷却的火山玻璃晶相特征。 而根据相关元素的协变关系,结合各元素元素分布特征,表明此多金属结核的初期经历了一次较长周期的快速生长,形貌特征呈较为疏松的花瓣状和纹层状构造,其后经历了反复多次的快速和慢速结核的交替,反映了当时复杂多变的海洋地质环境,最外层是慢速生长的瘤状富Fe、Co外壳。整个结核壳层中,相对于内部原生构造的花瓣状和纹层状构造形貌,外面几层有裂隙及充填脉状形态,可能来自于次生构造。 图解:面分析(Mapping分析过程)反应多金属结核整体元素分布特征,Mn+Ni和Co元素分布富集具有负相关关系。
  • 第五届化学和药物结构分析上海年会通知
    尊敬的同仁:  第五届化学和药物结构分析上海年会(CPSA Shanghai 2014)将于2014年4月16-19日在上海淳大万丽酒店举行。本届会议主题是&ldquo 个性化药物新时代:药物研发的创新方法&rdquo 。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2013年已经在美国连续举办十五年。  CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。  CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。  CPSA上海2014年会大会主席是来自诺华中国的张继跃博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。  此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了&ldquo CPSA 青年科学家优秀奖&rdquo 和&ldquo 创新奖&rdquo 两个奖项。&ldquo CPSA 青年科学家优秀奖&rdquo 主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询。  会议日程概览:  2014年4月16日 会前研讨会Workshops和欢迎晚宴  2014年4月17-18日 正式会议、游艇晚宴、午餐会、海报评选、企业展示、颁奖晚宴等  2014年4月19日 上海药物代谢动力学研讨会活动  会议注册费用:类别日期费用2014年1月22日前2014年1月23日-4月6日2014年4月6日以后4月16日Workshop注册费用700元900元1200元4月17-18日正式会议注册费用(教师和企业代表)1700元2100元2800元4月17-18日正式会议注册费(学生/博士)800元1100元1400元  付款账户信息:  账户全称:上海逸星商务咨询有限公司  开户银行:上海银行曹安支行  银行账号: 31661203001254927  有关会议的细节,注册方式及组委会名单可从以下网址获取:http://www.cpsa-shanghai.com。  期待您的支持和参与。  如有疑问,请随时联系我们。  杨老师  电话:021-39152015-801  邮箱:star.yang@mice-partners.com  地址:上海市嘉定区祁连山南路2199号真新商务楼411室,邮编:201824  上海逸星商务咨询有限公司  CPSA Shanghai 2014年会组委会  二零一三年十二月十二日
  • 第八届化学和药物结构分析上海年会
    p  第八届化学和药物结构分析上海年会(CPSA Shanghai 2017)将于2017年4月12-14日在上海淳大万丽酒店举行。本届会议主题是“从发现到监管批准的临床和药物成功:生物标记、建模和分析技术”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2016年已经在美国连续举办十八年。/pp  CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。/pp  CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。/pp  CPSA上海2017年会大会主席是来自匹兹堡大学 (University of Pittsburgh)的Nathan Yates博士。本届会议上,国际知名科学家将再一次就制药、临床、分析相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。/pp  其中,备受行业专家和学者关注的以下议题也将在本次会议上得到讨论:药物代谢 蛋白质生物分析 药物活性 SM Bioanalysis 定量技术与应用 生物标志物的挑战 生物/生物仿制药 In vitro ADME Combined DMPK/BA 生物分子和核酸分析 蛋白质组学与新技术 药物研发最新进展 Regulated Bioanalysis等等。/pp  此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了“CPSA 青年科学家优秀奖”和“创新奖”两个奖项。“CPSA 青年科学家优秀奖”主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。/pp  会议日程概览:/pp  2017年4月12日 会前研讨会Workshops和欢迎晚宴/pp  2017年4月13-14日 正式会议、晚宴、午餐会、海报评选、企业展示、颁奖晚宴等/pp  有关会议注册、赞助、参赛和评奖的细节,欢迎访问会议官网:a href="http://www.cpsa-shanghai.com" target="_self" title=""http://www.cpsa-shanghai.com。/a/pp  期待您的支持和参与。/pp  如有疑问,请发邮件给我们:邮箱:Info@mice-partners.com/ppbr//p
  • 700万!同济大学高能型X射线吸收精细结构谱仪采购项目
    项目编号:Z20230348(招标代理机构内部编号:SHZC20232104)项目名称:同济大学高能型X射线吸收精细结构谱仪采购项目预算金额:700.0000000 万元(人民币)最高限价(如有):700.0000000 万元(人民币)采购需求:高能型X射线吸收精细结构谱仪一套。无需同步辐射光源即可提供XAFS测试,实现对材料中元素的氧化态、电子结构、对称性、3D立体结构、原子间距、配位数、配位元素等进行分析(具体项目内容、采购范围及所应达到的具体要求,以招标文件第三章—招标需求相应规定为准)。本项目不采购进口产品【根据财政部《政府采购进口产品管理办法》(财库[2007]119号)规定:进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品】。合同履行期限:2023年10月31日前完成并验收合格交付使用(具体内容详见招标文件第三章—招标需求)本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月20日 至 2023年02月27日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外)地点:上海市静安区天目中路380号11楼会议室方式:现场获取或通过电子邮件(daixiaojun@shzfcg.cn)获取售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:上海市杨浦区四平路1239号联系方式:段老师;021-659826702.采购代理机构信息名称:上海政采项目管理有限公司地址:上海市静安区天目中路380号11楼联系方式:戴小军、付荣021-62091273*8009、021-62091253*8004 3.项目联系方式项目联系人:戴小军、付荣电话:021-62091273*8009、021-62091253*8004
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 无需同步辐射光源,台式X射线吸收精细结构谱仪(XAFSXES)最新发布!
    美国easyXAFS公司新推出无需同步辐射光源的台式X射线吸收精细结构谱仪——可以放置在实验室内使用的XAFS! 1. 什么是XAFS?X射线吸收精细结构(X-ray absorption fine structure,XAFS)原理: X射线通过光电效应被物质吸收,产生光电子(出射波);经过周围原子散射,产生散射波;相位不同的两列波在吸收原子处产生干涉,影响吸收原子处的光电子波函数,即吸收系数μ。随能量E变化的μ(E)曲线即XAFS。 由上可知,XAFS信号由吸收原子周围的近程结构决定,可提供小范围内原子簇结构信息,包括配体种类、配位数、配位距离等结构信息和元素价态分析等电子结构信息。 2. 哪里可以做XAFS测试?目前XAFS测试需要依赖同步辐射光源,国内仅有三家:北京高能物理所,上海光源、中国科学院大学;XAFS测试服务也只是同步辐射实验室内的一小部分应用,实在难以满足广大科研用户的使用需求。不过不用担心,台式XAFS谱仪将为您提供服务! 3. 台式XAFS/XES谱仪由美国easyXAFS公司研发的台式X射线吸收精细结构谱仪(XAFS/XES),无需同步辐射光源即可提供XAFS和XES测试;台式体积,可放置于实验室内随时使用,大节省了科研等待时间!同时具有操作简单、方便;配有7位自动样品轮;可集成辅助设备,控制样品条件;后期维护成本低等优势。 XAFS300XES100 4. 应用案例4.1 不同配体化合物的鉴别应用台式XAFS谱仪可以快速实现不同配体化合物的鉴别,直观明了!尤其对广泛应用而言,操作使用无压力。如下图中CoP和CoP标准品。 Mundy, Cossairt, et al., Chemistry of Materials 2018 4.2 同步辐射&台式XAFS/XES经过不同温度处理的橡木的生物炭样品,其同步辐射实验结果和台式XAFS/XES实验结果相一致,即随着温度升高,氧化态S的样品含量在减少。XES:CS500 (800 ppm S) 50min;Oak600 sample (150 ppm S) 6hSynchrotron XANES:CS500(800 ppm)24min;Oak 600sample(150ppm S)114minHolden, Seidler, et al., J. Phys. Chem. A, 2018 4.3 固体核磁&台式XAFS/XES通过对比P的MAS NMR和XES的结果,证明了用P的Kα 的XES谱图可以定量检测LnP量子点的氧化程度和磷酸盐的种类。而且仅从几毫克的样品量即可获得高分辨结果,时间短,将会是更好的测量工具。XES:<5mg样品量,30min内SSNMR:10—20mg样品量,长达数天 在SSNMR谱图中,0ppm位置的峰对应的是表面磷酸盐,而该组分显示在约2014.41 eV的Kα1能量位置。 不同价态的含P化合物的谱图出峰差异,可以判断化合物种类。 -3 -1 +5Stein, Holden, et al., Chem. Mater., 2018. 5. 仪器用户台式XAFS/XES一经推出,便受到广泛的关注,其的性能,得到越来越多的用户认可。目前已安装的用户单位有:催化剂研究方向格罗宁根大学 马克思普朗克研究所 苏黎世理工大学 电池研究方向 克劳斯塔尔工业大学乌尔姆赫尔姆霍兹研究所放射性核素研究方向 谢菲尔德大学
  • 安捷伦再次盛装出席第二届化学和药物结构分析研讨会
    安捷伦再次盛装出席第二届化学和药物结构分析研讨会(CPSA Shanghai 2011)  CPSA(Chemical & Pharmaceutical Structure Analysis, 化学和药物结构分析研讨会)是每年在美国举办的化学和制药行业领域的顶级盛会,深受广大药物研发和药物分析科学家的欢迎。继去年4月CPSA Shanghai 2010首届中国年度研讨会在上海成功登陆之后,CASA Shanghai 以先进技术与解决方案汇集一堂,东西方文化迸发出卓越思想的独特理念在广大中国药物研发和药物分析的高端科研人员之间引起了广泛的期待和良好的口碑。2011年4月13-16日,CPSA Shanghai 2011 在中国上海浦东Renaissance酒店如期举行,三百余位来自五湖四海,汇聚全球顶尖国际跨国制药公司,药物研发外包公司(CRO)及中国一流药物研发和药物分析的科研人员济济一堂,共同探讨了化学和药物结构分析领域的热点问题和需求,结构分析策略和业绩基准,深度审视创新型技术和药物研发的实践方法。  安捷伦公司再次以特别赞助商盛装出席了本次CPSA Shanghai 2011 ,安捷伦美国总部的众多公司高管和科学家应邀积极参与了晚宴主题报告,主持并参加了部分分会报告,以及展会,墙报等系列学术活动。  4月 14日晚,安捷伦公司再次举办了本次研讨会的大会欢迎晚宴----&ldquo 安捷伦之夜(Agilent Night)。在安捷伦公司大中华区生命科学市场部经理庄晨杰先生的主持下, 安捷伦公司副总裁及生命科学集团全球业务总经理John Pouk 先生,安捷伦公司副总裁及全球LC/MS业务总经理John Fjeldsted 先生,以及安捷伦公司生命科学集团大中华区总经理赵影女士带领他们的全球经理团队和中国团队热烈祝贺CPSA 2011 的再次成功召开,并诚挚感谢多年来一直支持和关心安捷伦中国业务成长的广大用户。安捷伦公司全球LC/MS产品经理Lester Taylor博士应邀作了Simultaneous Determination of the PK Profile of Clozapine and its Metabolites in Rat Plasma Using a High-Resolution 6540 QTOF Instrument的晚宴主题报告,博得全体与会专家,学者和与会科研人员的热烈掌声。席间,祥和欢乐之余,欢迎晚宴仍然充满高度互动的学术交流气氛,东西方文化再次交汇,大家热切期待明年再相逢。                    安捷伦公司副总裁及生命科学集团全球业务总经理John Pouk 先生致辞                      安捷伦公司全球LC/MS产品经理Lester Taylor博士做主题报告                          CPSA Funder Mike Lee 与Lester Taylor关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2010财政年度的业务净收入为54亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 郁鉴源教授:仪器分析要与多学科发展相结合——《仪器分析之路-我的记忆》系列采访
    回顾仪器分析之路,找寻曾经的记忆,用真实的故事传递正能量。《仪器分析之路-我的记忆》系列采访寻访到的第二位分析测试人是清华大学郁鉴源教授。他,1956年考入清华大学机械系,1959年服从学校分配抽调进入了基础课化学培训班,立志终身做一名化学工作者,终身做一位人民教师。肩负国家希望的那一代人,是这么说的,也是这么做的。在后续的几十年里,从化学,物理化学,到分析化学,一直到1985年世界银行贷款引进了一批先进的大型分析仪器后,郁鉴源教授开始在清华大学分析中心做拉曼光谱的相关工作。这期间,他不仅给学生讲授大学分析化学基础课程,还给高年级学生及研究生开设激光拉曼光谱的专题讲座,为学校培养了一批又一批学生,切实担起了教书育人的责任。从事多年的分析化学教学工作,郁鉴源教授对分析化学学科发展有切身的体会,他特别强调,分析化学既是化学的一个重要分支,也应该要跟材料学科、生物学科、医学科等其他学科相结合,才能使学生在今后实践中不断创新,为国家做出更大的贡献,更好地服务于社会。采访中,郁鉴源教授还就拉曼光谱的应用谈了他的看法。他介绍说,拉曼光谱在化学物质鉴定、材料分析以及生物蛋白质二级结构鉴定中都能起到重要作用。回顾中国拉曼光谱的发展过程,郁鉴源教授说,他开始进入到这个领域的时候,国内有拉曼光谱仪的高校不到5家。但是现在,随着国家的发展,拉曼光谱已经成为分子光谱类仪器中非常重要的仪器类别,不仅在高校中得到很大的普及,在工业、农业等更多单位也得到了广泛的应用。他最近发现,在我们国家,小型、便携拉曼光谱仪已经应用到现场的产品测试中,这是一个十分可喜的现象。最后,郁鉴源教授表示,当前年轻的分析化学工作者遇到了更好的大环境,希望他们投身到祖国的科学发展事业中,踏踏实实的贡献自己的青春和力量,为社会做出更多贡献。
  • 蛋白质结构分析新技术创测定速度纪录
    《自然-方法学》:蛋白质结构分析新技术创测定速度纪录  过去需几年时间完成的工作现在仅用几天即可完成  据美国物理学家组织网7月20日报道,隶属于美国能源部的劳伦斯伯克利国家实验室的科学家开发出一种利用小角度X射线散射技术测定蛋白质结构的新方法,大大提高了蛋白质结构研究分析的效率,使过去需要几年时间完成的工作仅需要几天即可完成,这将极大地促进结构基因组学的研究进程。  结构基因组学是一门研究生物中所有蛋白质结构的科学。通过对蛋白质结构的分析,可大致了解蛋白质的功能。结构基因组学重视快速、大量的蛋白质结构测定,而快速结构测定技术正是该学科研究面临的一个瓶颈问题。目前通常使用的两种测定技术,X射线晶体衍射和核磁共振质谱技术,虽然精确,但速度很慢,测定一个基因的蛋白质结构,动辄就需要几年的时间。随着新发现的蛋白质及蛋白质复合物越来越多,目前的分析速度远远不能满足研究的需要。  为解决这个瓶颈问题,劳伦斯伯克利国家实验室的科学家们借助了该实验室的先进光源(ALS)。他们运用一种称为小角度X射线散射(SAXS)的技术,对处于自然状态下(如在溶液之中)的蛋白质进行成像,其分辨率大约为10埃米(1埃米等于1/10纳米),足够用来测定蛋白质的三维结构。ASL产生的强光可以使实验所需材料减至最少,这使得该技术可以用于几乎所有生物分子的研究。  为了最大限度提高测定速度,研究小组安装了一个自动装置,可自动使用移液器吸取蛋白质样品到指定位置,以便利用X射线散射进行分析研究。他们还使用美国能源部国家能源研究科学计算机中心(NERSC)的超级计算资源进行数据分析。利用这一系统,研究小组取得了惊人的研究效率,在1个月内分析测定了火球菌的40组蛋白质结构。如果使用X射线晶体衍射技术,这可能需要花几年时间。同时,他们所获取的信息十分全面,涵盖了溶液中大部分蛋白质样本的结构信息。相比于在结构基因组学启动计划中使用核磁共振和晶体衍射技术仅能获取15%的信息量来说,这是十分巨大的进步。  高通量蛋白质结构分析有助于加快生物燃料的研究步伐,帮助解读极端微生物在恶劣环境中的繁荣之谜,更好地理解蛋白质的功能。研究小组之所以首先选择火球菌进行实验分析,就是因为它可用来生产清洁能源——氢。同时,在许多工业流程中都会出现高酸高热的环境状态,而这正是火球菌喜欢的生存环境。  但这种技术也有不足之处,追求速度会造成一种失衡,使成像质量相应打了折扣。与X射线晶体衍射成像的超高分辨率相比,小角度X射线散射成像的分辨率比较低,大约是10埃米。但这并不妨碍该技术的应用前景,因为并不是所有的研究都需要超高精度成像。对于结构基因组学研究来说,有时只要知道一种蛋白质与另一种蛋白质具有相似的结构,就可以了解其功能。而且,小角度X射线散射技术能够提供溶液中蛋白质形状、结构及构造变化等方面的精确信息,足以弥补其在成像精度方面的不足。  该研究成果刊登在7月20日《自然—方法学》杂志网络版上,美国斯克利普斯研究所和乔治亚州大学的科学家亦参与了该项研究。
  • 共价标记质谱分析抗体药物高阶结构的细微变化
    单克隆抗体(mAb)是制药行业增长最快的治疗方法之一,mAb的高阶结构(HOS)影响药物与靶标的结合特异性,从而影响治疗效果和副作用。若储存而导致HOS发生变化,例如蛋白质错误折叠和聚集,会导致稳定性降低、功效丧失或可能的免疫原性。因此,监测HOS对保证mAb疗法的有效性和安全性至关重要。X射线晶体学和核磁共振(NMR)光谱可以提供原子级分辨率,但存在费时费样品的缺点;生物物理技术,如差示扫描量热法(DSC)、动态光散射(DLS)、荧光光谱、红外(IR)光谱和圆二色(CD)光谱只能提供低分辨率的整体构象。焦碳酸二乙酯(DEPC)作为亲电子试剂能够修饰溶剂可接近的亲核侧链(Cys、His、Lys、Thr、Tyr、Ser)和蛋白质的N末端,这些残基产生的羧基化产物具有+72.021Da的质量转移,经过蛋白水解消化、液相色谱分离和串联质谱分析后,可以识别和半定量特定的蛋白质修饰位点。将一种条件(例如天然)与另一种条件(例如加热)进行比较时,特定残基处共价标记程度的变化可用于探测蛋白质的HOS变化(图1)。在这篇文章中,作者使用DEPC共价标记联用质谱,以利妥昔单抗作为单抗药物的模型,以期在远低于mAb治疗药物熔点的温度下能够特异性检测细微HOS变化,并通过活性测定进行验证。图1. DEPC 标记与质谱联用分析单抗药物结构的流程在通过共价标记研究热应力(heat stressed)利妥昔单抗之前,作者使用CD光谱、荧光光谱和动态光散射(DLS)来识别加热对蛋白质结构的干扰。发现当在低于其熔点的温度下加热利妥昔单抗4小时时,这三种技术在45°C或55°C时无法检测到显著的结构变化,而在65°C时仅显示出轻微的变化。随后作者团队使用DEPC CL-MS探测利妥昔单抗的细微结构变化。在45°C压力下的利妥昔单抗样品中发现DEPC标记水平的变化较少,大多数变化是由于蛋白质受热去折叠导致的标记增加(图2),且可变区的变化远少于恒定区。超过70%的标记变化发生在Tyr、Ser和Thr残基处,而发生在His和Lys残基处的标记变化始终小于20%。标记变化表明,45°C时的结构变化主要是局部微环境的变化,而非溶剂可及性差异显著的大结构变化,也就是说修饰位点分散在整个蛋白质结构中,而不是集中在蛋白质的某些区域。图2. 45°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。活性测定能反映一定程度的结构变化对利妥昔单抗活性的影响,从而验证DEPC标记结果。桥接ELISA的结果表明,在预热至45°C后,利妥昔单抗的Fc结合活性没有显著变化(图3a),Fc区域的CDC活性估计在45°C热应激后保持不变(图3b),利妥昔单抗的Fab结合活性估计与对照样品没有差异(图3c)。活性测定结果表明蛋白质在45°C时没有发生显著的结构变化。在Fab和Fc区域中标记变化的残基数量相对较少,主要标记对局部微环境变化更敏感的Tyr、Ser和Thr残基。修饰位点分散在整个蛋白质中,对Fab和Fc区域的构象几乎没有影响,与共价标记质谱联用的测定结果相吻合。图3.使用单抗活性测定验证CL-MS实验揭示的结构变化。Fc区的结构完整性通过(a)测量Fc与捕获抗体结合的利妥昔单抗桥接ELISA和(b)测量补体依赖性细胞毒性的Alamarblue测定来评估。Fab区域的结构完整性通过(c)Raji细胞下拉试验评估,测量Fab与B细胞CD20抗原的结合。55°C加热4h后利妥昔单抗所有结构域的残基修饰程度都发生了显著的变化,尤其是Fab区域的VH和VL结构域。(图4)加热至55°C时,His和Lys残基处发生的标记变化几乎是45°C的两倍,表明蛋白质在这些区域展开;Fab区域标记水平发生显著变化,特别是在VH、VL和CL域。这表明利妥昔单抗的Fab区域存在局部结构变化,据报道这也是IgG1分子中对热应激最敏感的区域。Fc区域中没有观察到类似的发生标记变化的残基聚集,Tyr、Ser和Thr处的大多数标记变化为中度或高度变化,这些结果表明蛋白质拓扑结构可能发生变化。图4. 55°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。尺寸排阻色谱(SEC)测量表明在65°C加热条件下存在高分子量物质。将DEPC CL-MS方法应用于65°C热应力的利妥昔单抗后,发现所有利妥昔单抗结构域的标记发生显著变化(图5),主要体现为标记的减少,这可能是因为蛋白质聚集。利妥昔单抗的Fab和Fc区均发现标记减少的残基簇,活性测定结果显示Fc结合和CDC活性的降低(图3),说明了Fc区特别是CH3结构域的标记变化,与DEPC标记结果一致。图5. 65°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。总结DEPC标记技术的结构分辨率和灵敏度足以探测细微的蛋白质构象变化,该技术与质谱联用可在低于Tm的温度下揭示利妥昔单抗中的细微HOS变化,与经典的生物物理技术互补。总体而言,鉴于CL-MS简便、灵敏的特点,该方法将适用其他抗体药物的结构研究。
  • 重要成果!1000 mA/cm²高活性OER,easyXAFS台式X射线吸收精细结构谱仪解析电催化剂
    电化学分解水是一种将间歇性能源(如风能,太阳能)转化为氢能的有效途径,有利于推动碳中和。开发廉价高活性的氧析出(OER)电催化剂是该技术走向实际应用的关键之一。研究表明,过渡金属催化剂在OER过程中可重构形成具有更高活性的羟基氧化物,且杂原子的加入可促进这一表面重构反应。基于此,太原理工大学与新南威尔士大学合作提出一种原位重构策略,以FeB包覆的NiMoO作为预催化剂进行表面重构,获得了高活性的OER催化剂。作者利用美国easyXAFS公司研发的台式X射线吸收光谱仪XES150解析了催化剂的精细结构,并结合多种其他表征技术及理论计算,证明重构过程形成的稳定高价态Ni4+物种可促进晶格氧活化进而提升OER反应。该项工作揭示了催化活性的提升机理,并实现了1000mA/cm2级别的超高反应电流,以“Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities”为题发表于期刊Applied Catalysis B: Environmental。 本文中使用的台式X射线吸收光谱仪XES150无需同步辐射光源,可以在实验室内测试XAFS和XES数据,谱图数据与同步辐射光源谱图数据完全一致。仪器推出至今,已在全球拥有100+用户群体,市场份额遥遥领先,久经时间考验,细节打磨更完善,稳定性可靠性更高。设备还可实现1wt %载量样品的XAFS、 0.1wt %载量样品的XES测试以及原位拓展测试,如原位的锂电池或电催化实验测试,监测电极/催化材料的结构变化等。凭借设备的上述优势,台式X射线吸收光谱仪XES150为本研究的电催化剂解析提供了重要的技术支撑。图1. 台式X射线吸收精细结构谱仪-XAFS/XES 图一展示了催化剂的合成示意图,NiMoO/FeB 预催化剂通过原位重构形成NiFeOOH,其中的准金属硼诱导形成纳米片/纳米棒结构。所得的催化剂的OER活性高于纯NiOOH和贵金属RuO2(图2a)。该催化剂仅需1.545 V vs. RHE即可驱动1000 mA/cm2电流,性能优于其他文献报道(图2b)。作者利用台式XES150 system (Easy XAFS LLC, USA)测试了样品X射线吸收谱。通过Ni-K边 X射线吸收近边结构 (XANES) 光谱分析Ni的电子态。白线峰与 1 s 到 4p 跃迁相关。在 NiFeOOH 的 XANES 光谱中白线峰峰值位于 8352.66 eV,高于 NiOOH(图 2c),这表明NiFeOOH中Ni的平均氧化态高于NiOOH中的平均氧化态,并且NiFeOOH中形成了更多的Ni4+物种。 同时,由于金属 4p 轨道的离域,NiFeOOH吸收边向较低能量移动,峰展宽且边缘跃迁强度增加(即 1 s→4p),这些对配体-金属共价性敏感的特征性变化表明Ni-O 共价键增加(图 2d)。作者进一步分析拟合了Ni K-边的傅立叶变换扩展X射线吸收精细结构(EXAFS)的k3χ数据,以探究局部原子结构(图2e-2h)。与NiOOH 相比,NiFeOOH 的 Ni-O 散射路径原子间距离从 1.98 &angst 减小到 1.85 &angst ,证明 Ni-O 键的共价性质的增加。 Ni-O 散射路径的偏移归因于NiOOH 和 NiFeOOH 中不同的局部配位环境,这是由于其中NiOOH 和 NiO2物相的比例不同。 上述结果表明,NiFeOOH 中的稳定态物种主要是 Fe 掺杂的 NiO2 物质,这是由 Fe 掺杂和重构过程(即中等高电位下的电化学极化)引起的。 Ni4+生成量的增加导致Ni-O共价性增大,从而促进晶格氧的活化,提升OER催化反应活性。图1. NiMoO/FeB 预催化剂与NiFeOOH 催化剂的合成示意图。图2. (a) 催化剂的LSV曲线。(b)本文催化剂过电势与其他文献报道对比图。(c)(d)Ni-K边XANES谱图。(e)Ni-K边EXAFS谱图。(f)NiO, (g) NiOOH,及 (h) NiFeOOH的EXAFS拟合结果。参考文献:[1]. Yijie Zhang et al., Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities, Applied Catalysis B: Environmental, Volume 341, February 2024, 123297.相关产品1、台式X射线吸收精细结构谱仪-XAFS/XEShttps://www.instrument.com.cn/netshow/SH100980/C327753.htm
  • 2019年7月-材料微观结构分析样品制备培训通知
    材料微观结构分析样品制备邀请函 尊敬的客户,您好!为更好的服务于客户,我们特别为金相技术员或者要学习先进制备工艺的金相学者设计了SumMet™ 材料微观结构分析样品制备课程。该课程通过理论学习和实践操作,涵盖了切割、镶嵌、研磨和抛光的知识,这些知识也是标乐在过去80多年历史中的经验累积。此外,学生还可学习有关硬度测试和微观结构解读方面的知识。 基本信息 培训时间:2019年7月8-10日(三天)培训主题:材料微观结构分析样品制备培训地点:标乐中国上海实验室(依工测试测量仪器(上海)有限公司)具体地址:上海市闵行区漕河泾开发区新骏环路88号13A二楼 主要内容 三天的课程涉及多种材料的微观结构分析样品制备和硬度测试的知识。课程内容涉及到样品切割,镶嵌,研磨和抛光的技术知识,对于各种材料的样品制备提供大量实习课程。课程内容包括: 取样和切割(理论和实践) 样品镶嵌(理论和实践) 样品研磨和抛光(理论和实践) 硬度测试原理(理论)注:学员实践操作中可自行携带需要得到解决方案的样品。 特邀讲师 Dr. Mike Keeble 毕业于威尔士大学(The University of Wales),主修材料科学与工程。获得了钢的蠕变性能(creep properties of steels)博士学位及部分熔融铝合金的力学试验和有限元模拟(mechanical testing and FE modelling of partially molten aluminium alloys)硕士学位。Dr. Keeble 之前在英国国防评估和研究机构(现QinetiQ)担任先进金属材料研究员,研究新材料和制造工艺的疲劳、损伤容限和---失效分析。Dr. Keeble 目前在美国标乐担任美国实验室和技术经理的职务,他有超过12年的在金相分析方面提供技术支持和培训的工作经验。Dr. Keeble 曾在伯明翰大学(Birmingham University)担任荣誉讲师,并在华威大学(Warwick University)担任访问学者。Dr. Keeble 是 ASM 和 IMS 的成员,也是金相和硬度测试标准组织(Standards Organizations in metallography and hardness testing)的成员。【助教】 Leo-柳文鹏,标乐应用工程师毕业于西北工业大学材料学院,获得硕士学位。曾多年就职于英业达集团,负责电子材料的可靠性及失效分析;之后就职于德国双立人公司,担任主管金相工程师,主要负责金属材料金相分析及硬度测试;加入标乐公司后,每年前往美国总部接受金相制备高级课程培训,现担任标乐应用工程师,在汽车、航空航天及电子等行业积累了丰富的经验。 Kevin-程凯,标乐应用工程师毕业于河海大学材料科学与工程学院,曾就职于无锡鹰普集团,担任理化工程师、热处理工程师;此后分别就职于通标标准服务(上海)有限公司(SGS),担任金相工程师;莱茵技术(上海)有限公司(TUV Rheinland),担任高级金相工程师。主要负责金相及硬度实验室的所有测试及管理。在金属材料检测以及失效分析方面都有较丰富的经验。现任标乐公司应用工程师,为亚太用户提供全面的技术支持,解决金相制备方面的难题,在原材料、汽车、电子等行业样品的制备积累了丰富的经验。注:课程全英文教学,全程有中文翻译。 费用说明 费用:5000RMB/人说明:费用包含:SumMet教材、培训期间中餐,以及9日晚宴,其他住宿交通等费用自理。汇款账号:名称:依工测试测量仪器(上海)有限公司开户行:农业银行上海浦江支行 行号:103290003237账号:03408800040017687 报名方式 烦请可以填写下方报名回执后发送 info.cn@buehler.com,本次培训小班教学,名额有限,先到先得! 住宿交通 (住宿仅供参考,请学员自行预定)培训地点:依工测试测量仪器(上海)有限公司培训地址:上海市闵行区漕河泾开发区新骏环路88号13A二楼附近交通: 浦东机场:打车:距离35.3KM,打车约138元,约30min;公交:磁悬浮地铁16号线796路(鹤坡塘桥站下), 约134min 虹桥机场:打车:距离30.9KM,打车约108元,约47min;公交:地铁10号线地铁8号线796路(鹤坡塘桥站下), 约90min 虹桥火车站:打车:距离31.8KM,打车约111元,约45min;公交:地铁10号线地铁8号线796路(鹤坡塘桥站下), 约90min 上海火车站(上海站):打车:距离22.3KM,打车约77元,约34min;公交:地铁1号线地铁8号线796路(鹤坡塘桥站下), 约75min周边住宿(仅供参考,请学员自行预定) 名称:新奇士国际酒店(浦江店) 地址:浦江镇三鲁路3585号(近江月路) 名称:上海浦江智选假日酒店 地址: 浦江镇联航路1188号10号楼3楼H座诚挚地期待您的参加! 标乐市场部2019年5月20日 附件一 报名回执报名人员*单位*姓名*部门*职务*电话*邮件兴趣及关注项目 (如材料、零部件等):工作范畴 (如研究、品质控制、失效分析等):*单位业务范围 □ 金属 □ 航空/航天 □ 热处理 □ 电子 □ 政府研发/教育 □ 测试实验室(第三方实验室) □ 国防 □ 生物医药 □ 汽车/其他运输工具 □ 能源 □ 其他__________________________________说明:务必准确填写,其中 * 为必填项。填写完毕请发送至:info.cn@buehler.com 。
  • 200万!武汉理工大学原位X射线三维结构分析仪采购项目
    项目编号:HBHD-ZC-2022-039项目名称:武汉理工大学原位X射线三维结构分析仪预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:采购需求:武汉理工大学原位X射线三维结构分析仪的供货、安装、调试、验收及售后服务,具体技术规格、要求详见“第三章 项目采购需求”。序号货物名称数量是否接受进口产品中小企业划分标准所属行业主要功能要求1原位X射线三维结构分析仪1套否工业检测样品内部特征结构(亚微米级)的空间分布状态,以及特征结构的定量计算,为材料声学、力学性能提供全面评估质量标准:合格合同履行期限:合同签订后6个月内交货本项目( 不接受 )联合体投标。
  • “绿色技术范式”,分析化学未来发展方向——访中国分析测试协会副理事长、辽宁省分析科学研究院原院长刘成雁教授
    “范式”是指“特定的科学共同体从事某一类科学活动所必须遵循的公认的“模式”,它包括共有的世界观、基本理论、范例、方法、手段、标准等等与科学研究有关的所有东西。“范式”是一个科学哲学概念,由美国著名的科学史家、科技哲学家托马斯库恩在1962年出版的《科学革命的结构》一书中首先提出来的。他在深入地研究人类社会科学进步的历史中发现,科学发现不是简单的累积、堆栈的过程,而是有着结构性发展规律的,即是“范式“的转换过程。那么,具体到科学的一个分支——分析化学,它的“范式”是怎样的?刘成雁教授提出的“分析化学绿色技术范式”是否是分析化学未来发展方向?其面临的困境又有哪些?带着这些问题,仪器信息网编辑采访了提出“分析化学绿色技术范式”概念的第一人,刘成雁教授。刘成雁教授“要找准未来发展的大方向,必须要加强哲学与本门学科的激荡”作为一个科学哲学概念,日常工作中并不常听到“范式”这个词。刘成雁教授首先为我们简单科普了一下。托马斯库恩早期在完成物理学方面的博士论文写作时,查阅了大量的科学史学资料,他发现科学进步是要革命的,是有着规律的。在深入地研究人类社会科学进步的历史时,他发现,科学发现不是简单的累积、堆栈的过程,而是有着结构性发展规律的,即是“范式”的转换过程。“当时,托马斯库恩在谈到用‘范式’这个词来描述这个规律过程时说到,用‘范式’这个词,是因为我找不到一个更合适的词来予以描述这个过程。”刘成雁表示,当前正像总书记指出的那样,人类社会正在发生着百年未有之大变局,正是站在发展新质生产力和未来产业的新起点上,我们必须为本学科、本领域未来发展方向进一步深刻地思考“我们过去走过的过程和我们未来将向何处去”这一常谈的问题。“要找准未来发展的大方向,必须要加强哲学与本门学科的激荡。”刘成雁谈到,“哲学”是指导我们的世界观和方法论的科学,正像一些伟人说的那样,“缺少了哲学的科学是盲目的,而缺少了科学的哲学将是空洞的”一样,我们必须要花费一定的时间和精力,对于分析化学这门学科和领域未来的发展方向进行深入的思考,只有这样,才能使分析化学学科健康的发展,服务于人类社会文明发展,服务于子孙后代、永续健康地发展下去。新时期大变革背景下,“分析化学绿色技术范式”应势而起分析化学,有着与其他实验科学不同的特点,它的劳动成果主要是测试的数据与分析的结果。所有为取得这个结果所消耗的试剂耗材,特别是剧毒、有毒有害的危险化学品,都将会以不同形式产生出来。有人做过考察,实验室能耗是办公室的10倍,水的消耗是办公室的4倍。据国家市场监督管理局对检验检测服务业市场的统计,2022年全年检测服务收入4275.84亿元,纳入统计的检验检测机构52769家。“然而,全国没纳入统计的检验检测机构、研究类和教学类实验室会有多少家?每年消耗多少能源资源、水资源、危险化学品和各类试剂资源?实验做完了它们都哪儿去了?这些都不得而知了。但肯定会是个惊人的数字,对环境的影响一定会是很大很大的!”刘成雁谈到。“从事分析化学的专业技术人员,一定要深入思考,我们是不是要走出一条即能得到准确稳定的分析测试结果,又能够少消耗,特别是能源、水资源和化学制剂等等的新路子来。这也就是我按照总书记的指示,站在新时期大变革的起点上,要把“范式“理论引入到分析化学中,通过激荡、争论、讨论达到学科快速发展的目的。”自从2015年以习近平为核心的党中央提出了“创新、协调、绿色、开放、共享”五大理念以来,经过近十年的发展,充分证明了五大发展理念已经深入人心,自觉地成为我们工作生活的总的指导理念。去年9月初,总书记在东北考察指导工作时又提出了新质生产力这一具有重大历史意义的新概念,并且在今年1月31日中共中央政治局第十一次集体学习时进一步指出,“绿色发展是高质量发展的底色,新质生产力本身就是绿色生产力”等等。刘成雁表示,我们要紧跟总书记的指示精神,做好分析测试新质生产力的培育和发展,打好专业领域未来产业发展的基础。基于此,他提出了“分析化学绿色技术范式”这一概念;目的是将哲学理论在分析化学这一学科中能有一个结合和新的应用,为分析化学在新时代找准未来的发展方向。马克思主义的自然观、习近平的人类命运共同体、五大发展理念、新质生产力就是绿色生产力、未来产业等等,这些都是绿色范式转换的理论基础和重要的组成部分。分析化学学科以往主要重视了结果,但忽视了这一结果获得的过程和成本消耗,特别是对能源、水资源、危险化学品和试剂等等的消耗,这些都严重的与时代发展不相适应;不从观念、信仰、价值观层面出发,不推动“范式“的转换,就很难使分析化学健康快速的发展。不过,刘成雁也指出,目前“分析化学绿色技术范式”还刚刚起步,处于“初探”阶段,希望边学习边与同行专家学者一起交流讨论,共同探索。当前,尽管我们已经在工作中注意到了水电等消耗,但是在统一思想方面还有大量的工作需要去做。刘成雁谈到,“由于这一概念刚刚提出来,还面临着许多问题。首先要解决的是信念和价值观问题,要学习一些本学科以外的科学理论,特别是哲学理论的学习。同时,我们还要深入学习五大发展理念、新质生产力、未来产业和高质量发展等指示精神。只有这样,我们遇到的难以统一的思想、建立统一的理想信念和价值观等问题就会迎刃而解了。”绿色范式基础之分析仪器,绿色发展三要素近年来,我国在制造业领域持续深入推进节能降耗、绿色制造,加快绿色低碳技术变革。科学仪器是现代科学技术的“眼睛”和高端制造业“皇冠上耀眼的明珠”,重视节能、环保方面的设计,对于促进我国制造业绿色转型有重要意义。而“分析化学绿色技术范式”的提出,对分析仪器技术的发展也提出了明确的方向。刘成雁谈到,首先,仪器分析要采用绿色方法。方法的原理要符合绿色化学的原子经济性原则,如像诺贝尔奖“点击化学”。使用的化学试剂尽可能无毒、低毒、普通;方法尽可能采用一步法;少能耗、少水耗、少排污、不排污;遥测、原位、在线、非接触;样品不用制备或处理;离子液体制备方法的替代;改变仪器设备使用条件来开发仪器的功能;选用常温常压试验方法;等等。其次,仪器设备要绿色设计。具有绿色特征的仪器设备是可拆卸、模块化、小型化、便携化、方便回收再制造的;低能耗、低水耗;非必要不用一次性资源;废液分类资源化收集;优先使用再生循环资源;自动化、智能化;可升级、可集成;结构集约、美观、合理;防辐射、低噪音;使用安全,少用样品量、多通道、多样份、多参数、快速度;少人力、免维护、无值守;外观体现科技美;等等。另外,绿色包装技术也是一个值得重视的问题。我们很高兴看到,一些国产科学仪器企业,如:丹东百特、济南海能技术、北京海光仪器、大连依利特、北京晶品赛斯等科学仪器公司,已经开始重视产品的绿色包装,不用不可降解的合成材料,改用可生物降解或可回收再用的包装材料,在我国仪器设备生产企业中起到了很好的绿色发展引领作用。后记采访中,刘成雁也介绍了“分析化学绿色技术范式”接下来的工作规划:首先建立起分析化学的绿色技术范式并加以推广运行;在此基础之上,进行深入的研究总结,用“扬弃”的理论和方法指导我们的工作,通过实践认识再实践再认识;最后形成科学合理有效的分析化学绿色技术范式的原则。
  • 180万!清华大学超精细结构脂质分析仪采购项目
    项目编号:CMEETC-227XO133KK599(清设招第20221585号)项目名称:清华大学超精细结构脂质分析仪采购方式:竞争性谈判预算金额:180.0000000 万元(人民币)最高限价(如有):180.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01超精细结构脂质分析仪4套否设备用途介绍: 该设备能够完成脂质碳碳双键异构体疾病标志物的筛选和鉴定,支持复杂样品体系中脂质的全范围高通量筛选和鉴定,并能完成不饱和脂质中碳碳双键精准定位和异构体鉴定。使用该设备一方面能够用于各类肿瘤组织的脂质标志物的发现与研究,为疾病的诊断以及药物研发等提供依据;另一方面,能够通过对中药材、中药饮片质量控制和地道药材研究,用于中药体内药物代谢分析及中医药治疗机理研究中生物标志物的筛选、鉴定和定性定量分析 。简要技术指标: 流速精密度:0.070%RSD,自动进样器可进行编程进样,用于进行柱前衍生,柱前样品自动稀释,自动混合等复杂进样方式 ,详见公告附件。合同履行期限:合同签订后30日内到货,到货后15日内完成安装调试,合同货物整体质量保证期为验收合格之日起12个月。本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制