当前位置: 仪器信息网 > 行业主题 > >

绝缘功率因量仪

仪器信息网绝缘功率因量仪专题为您提供2024年最新绝缘功率因量仪价格报价、厂家品牌的相关信息, 包括绝缘功率因量仪参数、型号等,不管是国产,还是进口品牌的绝缘功率因量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合绝缘功率因量仪相关的耗材配件、试剂标物,还有绝缘功率因量仪相关的最新资讯、资料,以及绝缘功率因量仪相关的解决方案。

绝缘功率因量仪相关的资讯

  • 《高绝缘电阻测量仪(高阻计)》国家校准规范顺利通过审定
    近日,全国电磁计量技术委员会在广西壮族自治区南宁市召开了全国电磁计量技术委员会年会暨国家计量技术规范审定会,来自计量、仪器仪表、电力等行业86个单位的代表200人参加了会议。北京市计量检测科学研究院电磁所张磊、谷扬和王跃佟三位同志参加了此次会议。会上,由北京市计量院作为主起草单位编制的《高绝缘电阻测量仪(高阻计)》国家校准规范顺利通过审定。   由北京计量院作为主起草单位编制的《高绝缘电阻测量仪(高阻计)》国家校准规范,经过起草组成员一年多的认真筹备,多方听取专家意见,顺利通过了专家审定。专家一致认为,起草组广泛征集了全国各个地区高阻计校准工作中存在的问题,特别是针对不同温湿度条件下进行了大量的实验工作,进行归纳汇总后,制定出适用于全国范围内的高绝缘电阻测量仪(高阻计)校准规范。经过与会专家的充分讨论,对高阻计校准规范的编制工作给予了充分肯定,全票通过审定。   电磁所张磊同志作为电磁委员会委员,全程参与了七项计量技术规范审议工作,认真听取规范起草人的报告,对规范报审稿进行了逐条审查,并且提出了宝贵意见。   《高绝缘电阻测量仪(高阻计)》修订工作,结合了全国各个地区的实际使用和工作情况,规范了高阻计的校准项目和方法,澄清了原来检定过程中存在的一些模糊问题,使生产者、试验者有统一的规范可依。会议之余,北京市计量院同志和同行进行专业上交流,了解更多行业动态,为北京市计量院电磁计量工作的发展起到良好推动作用。
  • 绝缘油析气性测量仪的工作原理是什么?
    电气绝缘油在高强度电场的作用下,部分烃分子会发生裂解而产生气体,这部分气体以微小的气泡从油中释放出来。如果小气泡量增多,它们会互相连接而形成大气泡。由于气体与油的电导率有很大的差异,在高压电场的作用下,油中会产生气隙放电现象,而有可能导致绝缘的破坏,这种现象在超高压输变电设备中显得尤为突出。为克服这种倾向,用于超高压设备的变压器应满足析气性指标要求。 绝缘油的吸气性又称为气稳定性,是指油在高电场强的作用下,烃分子发生物理/化学变化时,吸收气体或放出气体的特性,如果绝缘油易放出气体,那么就会形成气体穴存在油中,会发生局部放电或过热,严重的会导致油击穿。因此,希望绝缘油是吸气的,芳香烃是吸收气体的,为改变绝缘油的吸气性,一般采用往油中添加浓缩芳烃或人工合成的芳香烃化合物。
  • 斯达沃发布斯达沃绝缘油析气性测定仪SDW-570新品
    SDW-570绝缘油析气性测定仪介绍 SDW-570绝缘油析气性测定仪按照国家标准GB/T 11142-89和国家行业标准NB/SH/T 0810-2010《绝缘油在电场和电离作用下析气性测定法》,绝缘油经经干燥和氢气饱和后,绝缘液体和液面上的氢气层在电压为10KV、频率为50Hz、油温为80℃、测试时间为120min的条件下,受到径向电场的作用,油、氢气交界面因放电反映导致油本身吸收或放出气体的倾向。广泛应用于石化、电力、铁路、科研等部门,是油品分析和质量检查不可缺少的设备。 功能特点 • 7寸大屏幕触摸液晶屏,图像清晰、操作方便。• 不同标准集于一身,客户选择性高。• 内置流程图,用户实验方便操作。• 进口温度传感器,测量精度高。• 进口温控模块,高精度控温。• 带排油阀,换油操作方便。• 热敏打印机打印结果,稳定可靠。• 具有安全防护开关,仪器使用安全可靠。• 储存1000条历史数据,方便查询。 技术参数 氢气进气压力:0.05~0.1Mpa恒温温度:80℃±0.05℃(可调范围:室温~ 100℃)分 辨 率:0.01℃试验电压:10kV±0.2 kV分 辨 率:0.01kV时间计量:5 min、10 min、50min、120min (根据标准自动转换)计时误差:<±0.1s使用温度:(10~40)℃相对湿度: <85%加热功率:≤1500W 搅拌速度:1200转/分电源电压:AC 220V±10% 50Hz±10整机功率:≤1700W外型尺寸: 控 制 器 :320mm×305mm×195mm 高压发生器:320mm×305mm×380mm 析气性测定仪:320mm×305mm×590mm 注意事项1. 仪器外壳应与大地接触良好以保证安全。2. 恒温浴内没有液体时,不得启动仪器,否则将损坏加热器。3. 在更换保险丝或其它零部件时,应拔下电源插头。4. 如果更换了新的量气管需要重新输入数据。5. 非专业人员不得随意拆修仪器。6. 仪器使用完毕后,应及时切断电源。创新点:SDW-570绝缘油析气性测定仪按照国家标准GB/T 11142-89和国家行业标准NB/SH/T 0810-2010《绝缘油在电场和电离作用下析气性测定法》,绝缘油经经干燥和氢气饱和后,绝缘液体和液面上的氢气层在电压为10KV、频率为50Hz、油温为80℃、测试时间为120min的条件下,受到径向电场的作用,油、氢气交界面因放电反映导致油本身吸收或放出气体的倾向。广泛应用于石化、电力、铁路、科研等部门,是油品分析和质量检查不可缺少的设备。 功能特点 • 7寸大屏幕触摸液晶屏,图像清晰、操作方便。• 不同标准集于一身,客户选择性高。• 内置流程图,用户实验方便操作。• 进口温度传感器,测量精度高。• 进口温控模块,高精度控温。• 带排油阀,换油操作方便。• 热敏打印机打印结果,稳定可靠。• 具有安全防护开关,仪器使用安全可靠。• 储存1000条历史数据,方便查询。
  • 时代新维发布北京时代新维TP575 绝缘油析气性测定仪价格新品
    应用TP575 析气性测定仪广泛应用于石化、电力、铁路、科研等部门,是油品分析和质量检查不可缺少的设备。原理该仪器符合国家标准GB/T 11142-89和国家行业标准NB/SH/T 0810-2010《绝缘油在电场和电离作用下析气性测定法》,绝缘油经经干燥和氢气饱和后,绝缘液体和液面上的氢气层在电压为10KV、频率为50Hz、油温为80℃、测试时间为120min的条件下,受到径向电场的作用,油、氢气交界面因放电反映导致油本身吸收或放出气体的倾向。功能特点* 7寸大屏幕触摸液晶屏,图像清晰、操作方便。* 不同标准集于一身,客户选择性高。* 内置流程图,用户实验方便操作。* 进口温度传感器,测量精度高。* 进口温控模块,高精度控温。* 带排油阀,换油操作方便。* 热敏打印机打印结果,稳定可靠。* 具有安全防护开关,仪器使用安全可靠。* 储存1000条历史数据,方便查询。技术指标氢气进气压力:0.05~0.1Mpa恒温温度:80℃±0.05℃(可调范围:室温~100℃)分 辨 率:0.01℃试验电压:10kV±0.2 kV分 辨 率:0.01kV时间计量:5 min、10 min、50min、120min(根据标准自动转换)计时误差:<±0.1s使用温度:(10~40)℃相对湿度: <85%加热功率:≤1500W搅拌速度:1200转/分电源电压:AC 220V±10% 50Hz±10%整机功率:≤1700W外型尺寸:控 制 器:320mm×305mm×195mm高压发生器:320mm×305mm×380mm析气性测定仪:320mm×305mm×590mm订购指南配件指南* 析气池* 量气管注意事项1.仪器外壳应与大地接触良好以保证安全。2.恒温浴内没有液体时,不得启动仪器,否则将损坏加热器。3.在更换保险丝或其它零部件时,应拔下电源插头。4.如果更换了新的量气管需要重新输入数据。5.非专业人员不得随意拆修仪器。6.仪器使用完毕后,应及时切断电源。创新点:* 7寸大屏幕触摸液晶屏,图像清晰、操作方便。* 不同标准集于一身,客户选择性高。* 内置流程图,用户实验方便操作。* 进口温度传感器,测量精度高。* 进口温控模块,高精度控温。北京时代新维TP575 绝缘油析气性测定仪价格
  • 绝缘电阻测试仪测量常见的有哪些问题?
    绝缘电阻测试仪测量常见的有哪些问题?1 为什么在测量同一物体时用不同的电阻量程有不同的读数? 这是因为测量电阻时为防止过电压损坏仪器,如果出现过量程时仪器内保护电路开始工作,将测试电压降下来以保护机内放大器。在不同的电压下测量同一物体会有不同的结果。而且当测量电阻时若读数小于199,既只为三位数且di一位数为1 时,其准确度要下降。所以在测量电阻时当di一次读数从1 变为某一读数时,不应再往更高的量程扭开关以防对仪器造成过大的电流冲击。在实际使用时,即读数位数多的比读数位数少的准确度高。2为什么测量完毕时一定要将量程开关再拨到104档后才能关电源? 这是因为在测量时被测物体及仪器输入端都有一定的电容,这个电容在测量时已被充电到测量电时的电压值,如果仪器不拨到104挡后关电源这个充电后的电容器会对仪器内的放大器放电而造成仪器损坏。当被测量物体电容越大,测试电压越高时,电容器所储藏的电能越大,更容易损坏仪器,特别是在电阻的高量程或电流的低量程时因仪器非常灵敏,仪器过载而损坏的可能性更大。所以一定要将量程开关再拨到104挡后才能关电源。3为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果屏蔽不好也会因外界的电磁信号对仪器测量结果造成读数不稳。4为什么测量一些物体的电流时用不同的量程也会出现测出结果相差较大? 这是因为一般物体输出的电流不是恒定流,而仪器有一定内阻,若在仪器上所选量程的内阻过大以至于在仪器上的电压降影响被测物体的输出电流时会造成测量误差。一般电流越小的量程内阻越高,所以在测量电流时应选用电流大的量程。在实际使用时即只要电流表有读数时,读数位数少的小的比读数位数多的准确度高。 5 为什么测量完毕要将电压量程开关再拨到10V档后关闭电源? 这是因为机内的电容器充有很高的电压(zui高电压达1200V以上),这些电容器的所带的电能保持较长的时间,如果将电压量程开关再拨到10V档后关闭电源,则会将机内的高压电容器很快放电,不会在测量的高压端留有很危险的电压造成电击。如果仅拨电源线而不是将电压调至10V档,虽然断了电源,但机内高压电容器还有会因长时间保持很高的电压,将会对人员或其它物体造成电击或损坏。在仪器有问题时也不要随便打开机箱因机内高压造成电击,要将仪器找专业技术人员或寄回厂家修理。6为什么在测量电阻过程中不要改变对被测物的测试电压? 在测量电阻过程中如果改变对被测物的测试电压,无论电压变高或变低时都将会产生大脉冲电流,这个大的电流很有可能使仪器过量程甚至更损坏仪器。另一方面如果电压突然变化也会通过被测量物体的(分布)电容放电或反向放电对测量仪器造成冲击而损坏仪器。有的物体的耐压较低,当您改变测量电压时有右能击穿而产生大电流损坏仪器。如果要改变测量电压,在确保被测量物体不会因电压过高击穿时,要先将量程开关拨到104档后关闭电源,再从仪器后面板调整到所要求的电压。有的材料是非线性的,即电压与电流是不符合欧姆定律,有改变电压时由于电流不是线性变化,所以测量的电阻也会变化。
  • 长春智能生产绝缘材料电气强度测试仪
    GJW-50kV计算机控制电压击穿试验仪一、适用范围 本机主要适用于固体绝缘材料如:绝缘漆、树脂和胶、浸渍纤维制品、云母及其制品、、陶瓷和玻璃等在工频电压下击穿电压,击穿强度和耐电压的测试,符合GB1408.1-2006标准常温状态下的测试。二、主要技术参数及精度1、输入电压: AC220V2、输出电压: 0~50KV(交直流)3、测量范围: 5kV~50kV4、高压分级及升压速率 1)0~5kV 升压速率 0.5kV/S 2)>5kV 升压速率 1kV/S 3)升压速率连续可调5、耐压试验电压: 0~50KV连续可调整6、耐压时间: 0~4H7、功率: 5KVA8、电源: AC220V ± 10% 50-60HZ三、精度等级:1级四、主要功能该仪器采用计算机控制,能过人机对话方式,完成对、绝缘介质的工频电压击穿,工频耐压试验,主要适用于固体绝缘材料。并对实验过程中的各种数据快速、准确地进行采集、处理、存取、显示、打印。本仪器属我公司首创,国家专利批为我公司专利五、基 本 配 置1、主机2、试验台一个3、油箱一个4、试验电极三个5、试验软件6、清华同方计算机一套7、A4彩色喷墨打印机一台 公司名称:长春市智能仪器设备有限公司 地址:长春市经济开发区昆山路2755号联系电话:0431-848644218 13944864580 传真:0431-84642036 联系人:芮小姐Http://www.znyq.com. E-mail:rsm-72@163.com
  • 翟婉明:高铁牵引变流器中的大功率半导体芯片IGBT完全依赖进口
    5月30日,在中国科学院第二十次院士大会期间,中科院学部第七届学术年会在北京举行全体院士学术报告会,紧密围绕国际科技热点,丁仲礼、李儒新、包信和、高福、焦念志、黄如、翟婉明等七位中科院院士分别作学术报告。翟婉明院士是我国轨道交通工程专家,2011年当选中国科学院院士。现任西南交通大学首席教授,中国力学学会第十届副理事长,中国振动工程学会副理事长,四川省科协副主席。2021年当选美国国家工程院外籍院士。翟婉明在会上做了题为《中国高铁发展面临的科技挑战与对策》的报告。报告中,翟院士介绍了我国高铁面临的挑战,指出目前我国高速列车个别关键部件依赖进口,其中牵引变流器中的大功率半导体芯片IGBT(绝缘栅双极型晶体管)完全依赖进口,长期被国外垄断。据了解,高压IGBT(绝缘栅双极晶体管)是牵引变流器的"心脏",是交流传动技术的"核芯",涉及先进功率半导体器件IGBT的设计、工艺、测试与应用等多种技术。轨道牵引变流器具有特殊的牵引系统负荷特性,车载器件的运行环境恶劣且复杂多变,对牵引级IGBT的静动态特性与可靠性提出了很高的要求,器件需能承受高压大电流、具有优化的动态特性、更大的安全工作区及更高的工作结温。牵引级IGBT代表了该类器件的最高技术水平,其技术与产品长期被国外少数几家公司垄断。
  • 绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?
    绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?绝缘电阻仪器体积电阻表面电阻测试仪使用前请仔细阅读以下内容,否则将造成仪器损坏或电击情况。1. ◇检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. ◇接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx”两端开路的情况下,调零使电流表的显示为0000。然后关机。3. ◇应在“Rx”两端开路时调零,一般一次调零后在测试过程中不需再调零。 4. ◇测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. ◇将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。6. ◇电流电阻量程按钮从低档位逐渐拨,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. ◇测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档, 后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。8. ◇接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)9. ◇禁止将“RX”两端短路,以免微电流放大器受大电流冲击。10. ◇不得在测试过程中不要随意改动测量电压。11. ◇测量时从低次档逐渐拨往高次档。12. ◇接通电源后,手指不能触及高压线的金属部分。13. ◇严禁在试测过程随意改变电压量程及在通电过程中打开主机。14. ◇在测量高阻时,应采用屏蔽盒将被测物体屏蔽。15. ◇不得测试过程中不能触摸微电流测试端。16. ◇严禁电流电阻量程未在104档及电压在10V档,更换试样。技术指标1、电阻测量范围 0.01×104Ω~1×1018Ω2、电流测量范围为 2×10-4A~1×10-16A3、仪器尺寸 285mm× 245mm× 120 mm4、内置测试电压 100V、250V、500V、1000V5、基本准确度 1% (*注)6、内置测试电压 100V、250、500、1000V7、质量 约2.5KG8、供电形式 AC 220V,50HZ,功耗约5W9、双表头显示 3.1/2位LED显示安全注意事项1. 使用前务必详阅此说明书,并遵照指示步骤,依次操作。2. 请勿使用非原厂提供之附件,以免发生危险。3. 进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以免触电。4. 为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬空,不与外界物体相碰。5. 当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
  • 新建医疗器械实验室,拟采购大量仪器设备
    北京某公司计划新建医疗器械实验室,拟采购大量仪器设备,主要依据标准为:GB 9706.1-2020医用电气设备第1部分,标准中涉及的检测项目所需仪器设备均需采购,请能做的供应商联系(联系方式见文章底部)。部分仪器设备如下:功率计电源线拉力扭转试验装置温湿度计存储示波器温湿度箱接地电阻测试30N推拉力计数显推拉力计照度计耐压试验仪示波器扭矩仪接地电阻测试仪(50HZ/60HZ,空载电压小于6V)钳形电流表耐压测试仪球压试验装置高温箱水压试验机漏电起痕试验仪等台式压力蒸汽灭菌器推拉力计(100Min)水平垂直燃烧试验机辐射测试仪红外黑体炉火花点燃试验装置脉冲发生器角度仪绝缘电阻测试仪耐压测试仪,泄漏电流测试仪测功机推拉力计(250Min)恒温恒湿箱(包括冷却系统)高频率耐压测试仪冲击碰撞试验台辐射剂量率仪低气压箱请能提供以上仪器设备及GB 9706.1-2020中涉及的其他仪器设备的供应商联系:徐先生-质量经理-18810813577 (联系时请说:在仪器信息网上看到的)
  • 气相色谱仪检测分析绝缘油/绝缘油检测分析仪器厂家直销
    南京科捷是检测分析绝缘油/绝缘油检测分析气相色谱仪的厂家,联系电话:尹先生13951792301,欢迎来电咨询、购买! 绝缘油一种润滑油。通常由深度精制的润滑油基础油加入抗氧剂调制而成。主要用作电器设备的电介质。电器绝缘油的主要性能是低温性能、氧化安定性和介质损失。绝缘油检测分析仪专用气相色谱仪性能: GC5890型气相色谱仪 :全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、裂解炉进样器、甲烷转化炉. 更多检测分析绝缘油/绝缘油检测分析气相色谱仪详情可登录www.kj17.com了解!
  • 【技术指导】绝缘油析气性测定仪的注意事项及保管
    绝缘油析气性测定仪注意事项、保管A1210技术指导产品介绍产品名称:绝缘油析气性测定仪产品型号:A1210概 述:绝缘油析气性测定仪用于测定绝缘液在受到强度足以引起在液、气交界处放电的电场作用下,放出、吸收气体的能力。适用于测定电缆油、电容器油和变压器油。广泛应用于石化、电力、铁路、科研等部门。适应标准:GB/T11142、 NB/SH/T0810、ASTM D2300保管1.仪器应存放在温度-5℃~40℃、相对湿度在85%以下,且空气中不含有腐蚀性气体的环境中。2.在用户遵守产品的保管、使用、安装、运输规则的条件接好电源线及跨接线缆; 3.将高压接地连线分别接在仪器控制箱后盖板高压接地端子上和浴盖上的接地端子上。从本厂发货日期起一年内,因产品制造质量不良而发生故障不能正常工作时,本厂免费为用户维修或更换零件,超过保修期时收取维修费。故障分析1.仪器外壳应与大地接触良好以保证安全;2.恒温浴内没有液体或液面距离顶部大于30毫米时,不得启动仪器加热控温,拔下电源插头;否则将损坏加热器。3. 在更换保险丝或其它零部件时,应拔下电源插头;4.非本厂维修人员不得随意拆启仪器;5.仪器使用完毕后,应及时切断电源;6.交流电源AC220V接地端必须可靠接地
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 绝缘油析气性测定仪产品知识培训
    为了让生产及销售员工更多的了解产品知识,提高生产及业务水平,更好生产产品和服务客户。7月15日,北京得利特技术部经理组织开展了 绝缘油析气性测定仪产品知识培训,参加此次培训的有20多位生产及销售员工,技术经理先普及了一下绝缘油析气性测定仪的生产标准.然后又根据实际产品讲解了绝缘油析气性测定仪的系统构造,技术经理现场对仪器进行参数设定,员工更加直观的了解了产品的重要参数。员工认真听讲,做笔记。不懂的地方积极提问,技术经理耐心帮大家解答。 通过这次培训,生产员工了解了析气性测定仪系统结构,以后在生产过程中可以简单解决遇到的小问题,提高生产效率,销售员工可以向客户详细的介绍我们的仪器产品,让客户更加深入了解我们的产品,提高了销售业务能力。A1210绝缘油析气性测定仪适应标准:GB/T11142-89、NB/SH/T0810-2010、ASTM D2300。用于测定绝缘液在受到强度足以引起在液、气交界处放电的电场作用下,放出吸收气体的能力。适用于测定电缆油、电容器油和变压器油。A1210操作简便、精度高,广泛应用于石化、电力、铁路、科研等部门。仪器特点大屏幕液晶显示,中文提示菜单,触摸屏控制,方便试验操作。透明的恒温油浴槽,采用先进的PID控温整定,使系统温度更精确。高压系统采用干式高压变压器,环氧真空浇注工艺,可确保输出电压稳定可靠。自动计时,具有定时报警功能,方便提示试验人员。透明安全保护罩,保证试验人员安全。可根据试验要求选定标准。可提供仪器鉴定报告,使试验结果更具有可溯性。
  • 绝缘油介电强度测定仪如何排除常见故障?
    绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。绝缘油介电强度测定仪常见故障排除方法 这样做就可以了⑴ 电源指示灯不亮,屏幕无显示① 检查电源插头是否插紧;② 检查电源插座内的保险管是否完好;③ 检查插座是否有电。⑵ 油杯无击穿现象① 检查线路板接插件插接是否到位;② 检查箱盖高压开关是否接触好;③ 检查是否高压接点无吸合;④ 检查是否存在高压断线。⑶ 显示器对比度不够① 调节线路板上的调节电位器。⑷ 打印机不打印① 检查打印机电源线是否插接到位;② 检查打印机数据线是否插接到位。
  • 应用 | 检测方法对电气绝缘油界面张力的影响
    研究背景变压器油是变压器内部重要的绝缘材料,油品质量直接影响到变压器的电气性能和运行寿命。在运行中,变压器油在电气设备中因受湿度、光线、金属催化、水分及电场等因素的影响,会生成羧酸、醇等亲水极性物质在油-水界面的定向排列会改变界面上分子排列状况,从而降低界面张力。因此,界面张力是变压器油标准中的一项重要指标,能够反映新油在精炼时的纯净程度和在运行中油的氧化程度。实验仪器仪器:本文采用德国KRÜ SS力学法表界面张力仪K11测定界面张力。最新款表界面张力仪型号Tensíío。KRÜ SS 力学法表面张力仪Tensíío方法:不同产品标准所采用的界面张力检测方法不同,具体如表1和2所示。可以看出,各方法的测量原理相同,测定绝缘油的界面张力的方法大都采用的是圆环法,主要区别就是界面形成后即非平衡条件、接近平衡条件及平衡条件下测试的保持时间不同。表1 变压器油界面张力检测方法表2 不同界面张力检测方法试验条件对比结论与讨论由表3和图1可得,界面张力均随界面保持时间延长而降低。其中,新变压器油的酯类油比矿物油的界面张力低很多,这是由于酯类油的分子结构具有亲水性,使其界面张力相应减小。 表3 新油不同试验条件界面张力检测结果对比 图1 新油的界面张力随时间变化曲线表4和图2试验结果表明,老化后的矿物油和酯类油的界面张力也随界面保持时间延长而降低。与新油比,老化后变压器油的界面张力均比新油的界面张力低,尤其是矿物油D油的界面张力从新油46mN/m左右降至16mN/m左右。表3数据显示该样品抗老化、氧化性较差,因此容易生成醛、酮、羧酸等老化产品,而这些老化产物均为极性物质,在油水界面上做定向排列,从而使油品老化后油水间界面张力降低。E和F油为合成酯变压器油,虽然本身界面张力不高,但其氧化稳定性较好,老化前后界面张力变化不明显。表4 老化油不同试验条件界面张力检测结果对比 图2 老化油的界面张力随时间变化曲线对比图3和图4发现,老化油界面张力随着两相界面的保持时间呈较明显下降趋势,说明这一过程在老化变压器油中比在新变压器油中更为明显。图3 新矿油和老化矿油的界面张力随时间的变化曲线 图4 新酯类变压器油和老化酯类变压器油界面张力随时间变化的曲线IEC62961:2018方法介于ASTMD971方法和EN14210方法之间,在界面形成180s时测量界面张力更加符合实际,同时测量时间对测量结果影响较小。从图3和图4也可以看出,老化油的界面张力随时间变化较为明显,主要表现在界面张力曲线从30s到180s的变化斜率较大,而在界面形成的180s时测量界面张力数值与300s的测量数据很接近,可以提供一个较为真实的界面张力值,并且检测时间相对较短。新颁布的变压器油国际标准IEC60296:2020《电工流体电气设备用矿物绝缘油》,其界面张力检测规定采用ASTMD971-2020方法和IEC62961:2018两种方法,为了得到更有效的数据和满足实验室快速高效的日常检测工作,推荐采用IEC62961:2018方法为宜。结论界面张力是反映变压器油精制过程中洁净程度的指标,并与油品的老化程度密切相关。国内外检测变压器油界面张力方法的主要区别在于界面形成后的保持时间不同。实验室通过采用圆环法考察测量时间对界面张力值的影响,结果表明老化油的界面张力受时间影响较为明显,同时也说明变压器油的界面张力与油的劣化程度密切相关。通过考察不同方法测量时间对测量结果的影响,推荐采用IEC62961:2018方法对变压器油进行界面张力的检测,该方法既能减小因测试时间不同而引起的误差,又能快速进行检测。参考文献[1]张绮,张昱,周东等.不同检测方法对电气绝缘油界面张力的影响[J].润滑油,2024,39(01):43-47.DOI:10.19532/j.cnki.cn21-1265/tq.2024.01.009.
  • 【技术知识】绝缘油介电强度测定仪的作用有哪几点?
    绝缘油介电强度测定仪介绍绝缘油介电强度测定仪测试系统,在电力系统厂矿及企业都有大量的电器设备。其内部绝缘油大都是充电绝缘型的。绝缘油的介电强度测试是常规测试项目。为了适应电力行业发展的需要。产品都是依据的国家标准GB/T507-2002、行标DL429.9-91以及的电力行业标准DL/T846,7-2004设计制造,采用微机控制,机电一体全部自动化,测试精度高,提高了工作效率,同时也大大减轻了工作人员的劳动强度。绝缘油介电强度测定仪的作用01绝缘油介电强度测定仪使变压器心子与外壳及铁芯有良好的绝缘作用,变压器的绝缘油,是充填在变压器心子和外壳之间的液体绝缘。充填于变压器内各部分空隙间,使变压器外壳内没有空气,加强了变压器绕组的层间和匝间的绝缘强度。同时,对变压器绕组绝缘起到了防潮作用。02绝缘油介电强度测定仪使变压器运行中加速冷却,变压器的绝缘油在变压器外壳内,通过上、下层间的温差作用,构成油的对流循环。变压器油可以将变压心子的温度,通过对流循环作用经变压器的散热器与外界低温介质(空气)间接接触,再把冷却后的低温绝缘油,经循环作用回到变压器心子内部,如此循环,起到了加速冷却变压器的作用。03灭弧作用,变压器油除能起到上述两种作用外,还可以在某种特殊运行状态时,起到了加速变压器外壳内的灭弧作用。绝缘油介电强度测定仪由于变压器油是经常运动的,当变压器内有某种故障而引起电弧时,能够加速电弧的熄灭。相关仪器A1160绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9
  • 中科院高能所研发X射线三维检测设备 可为功率半导体做“CT”
    记者27日从中国科学院高能物理研究所(中科院高能所)获悉,由该所济南研究部(济南中科核技术研究院)自主研发、可为功率半导体做“CT”(计算机断层扫描)的功率半导体封测新添“利器”——“全自动绝缘栅双极晶体管(IGBT)缺陷X射线三维检测设备”,近日在湖南株洲举行的功率半导体行业联盟第八届国际学术论坛上亮相推出,备受业界关注。中科院高能所副研究员、锐影检测科技(济南)有限公司(锐影检测)总经理刘宝东博士接受媒体采访介绍说,IGBT是一种功率半导体器件,被誉为电力电子装置的“心脏”,在高铁、新能源汽车、轨道交通、智能电网、航空航天等领域应用广泛。IGBT模块在运行过程中会产生大量的热,需要及时散掉,它通常存在两个焊料层,焊料层气孔会严重影响散热效率,可能导致重大安全事故,因此需要对气孔率严格控制。目前,常用的检测手段是超声检测,但非常容易受散热柱的干扰,导致检测偏差。同时,超声检测要将模块浸入到水中,需要隔离水的工装,还需要人工操作,检测过程复杂,难以实现在线检测,效率较低。此外,普通的二维X光成像会将IGBT模块两个焊料层混在一起,无法区分,并且有些大功率模块带有散热柱,会严重影响气孔检测的准确率。针对这些问题,中科院高能所研发团队基于10余年在大尺寸板状物三维层析成像领域的技术积累,在成功研发专用于板状古生物化石的X射线三维层析成像仪器(1.0版)基础上,面向国家重大需求的工业CT,针对集成电路先进封装的检测需求,突破一系列关键技术,研发出分辨率更高、更成熟的2.0版“全自动IGBT缺陷X射线三维检测设备”。刘宝东称,该2.0版设备依托X射线计算机层析成像技术和先进的缺陷智能检测软件算法,并将人工智能算法引入检测系统,可对不合格产品进行自动识别及分拣,为IGBT模块封测提供全自动在线无损检测解决方案,从而大大提高检测效率,保障IGBT模块的产品品质。他表示,在功率半导体封测设备研发过程中,研发团队也积累了丰富的工程化经验。而作为中科院高能所与地方合作孵化的科技成果转化企业,锐影检测为团队经验技术转化为成熟产品提供了良好平台,从而打通从技术研发到产品应用的“最后一公里”。(完)
  • 绝缘油击穿电压测定仪:采用干式变压器组合
    A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性强。6、数据自动存储,并可随时调出和打印。7、采用干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • 多轮测试更新推出---绝缘油析气性测定仪
    石化工业作为国民经济的重要支柱产业和原材料配套工业,在后疫情时代有着新的机遇和未来。疫情过后,世界石化产业将重构,进入新的变革与调整期。我国石油化工产业将朝着原料多元化、产品需求差异化、营销电商化、产业绿色低碳化、产业智能化等方向发展。我国石油储量有限,石油对外依存度高,石化产业必须拓宽原材料渠道。为满足人们生活水平日益提高的需要,石化下游产品向功能化、精细化、差异化方向发展成为必然。绿色发展、低碳发展已经成为发展潮流我国政府高度重视生态文明建设,修订出台了严格的环境保护法,对排污、碳排放的标准和要求都在提高。A1210绝缘油析气性测定仪适应标准:GB/T11142-89、NB/SH/T0810-2010、ASTM D2300。用于测定绝缘液在受到强度足以引起在液、气交界处放电的电场作用下,放出吸收气体的能力。适用于测定电缆油、电容器油和变压器油。A1210操作简便、精度高,广泛应用于石化、电力、铁路、科研等部门。仪器特点:1、大屏幕液晶显示,中文提示菜单,触摸屏控制,方便试验操作。2、透明的恒温油浴槽,采用先进的PID控温整定,使系统温度更精确。3、高压系统采用干式高压变压器,环氧真空浇注工艺,可确保输出电压稳定可靠。4、自动计时,具有定时报警功能,方便提示试验人员。5、透明安全保护罩,保证试验人员安全。6、可根据试验要求选定标准。7、可提供仪器鉴定报告,使试验结果更具有可溯性。技术参数:控温范围:0℃~100℃控温精度:±0.5℃试验电压:10KV 电压精度:±2%计时范围:1~120分钟计时精度:±1s气体流量:3L/h环境温度:5℃~40℃环境湿度:≤85%工作电源:AC220V±10%,50Hz功 率:≤1500W外形尺寸:400mm×450mm×950mm重  量:38Kg
  • 超高压交流电缆系统通过验证 绝缘材料国产化迈向新台阶
    在我国推进碳达峰、碳中和的大背景下,高压交联聚乙烯电缆因结构简单、制造安装方便,是远距离海洋新能源接入、城市输电和大电网柔性互联的关键装备。我国高压电缆绝缘材料研制起步较晚,目前110千伏及以上高压绝缘材料主要依赖进口,年进口量近10万吨,是我国急需攻克的“卡脖子”技术之一。 近日,记者从全球能源互联网研究院获悉,在国家“十三五”智能电网专项等的支持下,国内首台(套)国产绝缘材料超高压500千伏交流电缆系统通过试验验证,标志着我国高压交流电缆绝缘材料的国产化研制迈向新台阶。 2021年3月,国产首台(套)国产绝缘材料220千伏交流电缆系统在辽宁阜新220千伏新煤线挂网,目前已稳定运行6个月;2021年4月,国内首台(套)国产绝缘材料500千伏直流电缆系统在张北柔直工程顺利通过竣工试验。 “项目团队建立了完善的高压电缆材料配方开发、电缆系统设计、制造、试验及运维的协同创新体系,极大提升了我国高压电缆材料自主研发能力。国产绝缘材料超高压500千伏交流电缆系统的成功研制,将带动我国国产高压电缆用材料的技术进步与产业发展。”全球能源互联网研究院副院长常建平说。 常建平介绍,自2011年起,全球能源互联网研究院组织国内科研院所、制造企业、试验检测等单位开展技术攻关,成立了国家电网公司高压电缆科技攻关团队和党员先锋队,最终掌握了500千伏及以下高压交流电缆绝缘材料核心技术,研制开发的国产高压电缆交联聚乙烯绝缘材料,填补了我国该领域的技术空白,在绝缘材料复配及超净化批量制备、屏蔽填料分散及超光滑工艺控制等技术达到先进水平,已与浙江万马等企业成立合资公司并实现了成果转化。
  • 技术升级|得利特升级版绝缘油介电强度测定仪(耐压仪)
    借助美国页岩气的大规模开采,北美新建或扩建乙烷裂解装置产能从2016年起开始逐步释放,预计2020年北美乙烯及下游衍生物净出口将从2015年550万吨增加到1400万吨,2025年将进一步增加至1800万吨以上。美国低成本页岩气开发将影响世界石化产品区域格局。(二)2020年新冠疫情对行业冲击明显,由于投资惯性难以迅速停止,预计全球石化产品产能整体供过于求的态势将会加剧。(三)世界经济环境“逆全球化”苗头显现,国际形势激烈变动,贸易环境复杂多变。根据中投产业研究院发布的《2021-2025年中国石油化工行业投资分析及前景预测报告》,我国目前仍是全球最主要的石化产品净**国之一,贸易逆差巨大,但同时又是下游纺织、轻功等制品全球最主要出口国,国际贸易环境变化及不确定性将带来石化行业发展格局的深刻变化。A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,安全可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性更强。6、数据自动存储,并可随时调出和打印。7、采用先进的干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • 宇腾科技:GaN功率器件突破1200V!
    近日,陕西宇腾电子科技有限公司(以下简称“宇腾科技”)氮化镓功率芯片技术实现新突破,公司自主研发生产的蓝宝石基氮化镓功率器件(GaN -on-Sapphire HEMT),工作电压(Vds)可达1200V,已进入量产阶段并通过可靠性测试。宇腾科技蓝宝石基氮化镓功率器件工作电压可达到1200V,目前已量产四种型号,规格分别为:150mΩ/12A、100mΩ/15A、75mΩ/22A、50mΩ/30A。这一突破证明蓝宝石基氮化镓在功率器件市场具有巨大潜力,能够为新能源汽车领域带来更高的性能、更低的成本和更长的续航。相较于硅基氮化镓,蓝宝石基氮化镓提供了更高的电绝缘性能,这使得蓝宝石基氮化镓功率器件能够实现超过1200V的关态击穿电压,同时保持了器件的高电子迁移率和低电阻特性。针对宇腾科技1200V蓝宝石基氮化镓系列产品,25mΩ/60A规格产品正在开发测试中,预计2024年Q4实现量产。在氮化镓功率器件产业,外延片的质量影响着下游芯片端、器件端的品质和性能。宇腾科技在氮化镓外延技术上保持创新与挑战的态度,不断优化产品品质并与上下游产业链保持良好的合作。以氮化镓为原料的第三代半导体技术,将以突破性的性能和广阔的应用场景,成为科技创新和产业发展的重要驱动力。
  • 采购热潮已至!华北电力大学公布6.15亿元仪器大单
    近日,“1.7万亿”、“2000亿”成为我国仪器市场两大新晋高频词,引得业内人士心潮澎湃。什么是“1.7万亿”?2022年9月13日,国务院常务会议决定对部分领域设备更新改造贷款阶段性财政贴息和加大社会服务业信贷支持,政策面向高校、职业院校、医院、中小微企业等九大领域的设备购置和更新改造。贷款总体规模预估为1.7万亿元。什么是“2000亿”?2022年9月28日,财政部、发改委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年,额度2000亿元以上。因此今年第四季度内更新改造设备的贷款主体实际贷款成本不高于0.7% (加上此前中央财政贴息2.5个百分点)。这“一揽子”决策部署推动我国仪器市场迎来新一波仪器采购大潮。仪器信息网注意到,华北电力大学/华北电力大学(保定)于近一周公布多则2022年10-12月仪器类政府采购意向,采购品目涉及显微镜、质谱、色谱、试验机、实验室常用设备、无损检测设备等,预算金额相加达6.15亿元。华北电力大学/华北电力大学(保定)2022年10-12月仪器采购意向汇总表序号采购项目名称采购仪器种类预算/万元详情链接华北电力大学1土力学及建筑材料实验室仪器采购项目全自动三轴仪、应变式控制式直剪切仪、单杠杆固结仪、三轴剪切渗透试验机、万能试验机等249.67项目详情2工程地质岩石标本采购项目岩石标本盒10项目详情3水力学实验室设备采购项目水击试验仪、水面曲线试验仪、 宽顶堰堰流试验仪、实用堰堰流试验仪107.8项目详情4水文仪器采购项目定量汲水水面蒸发测量系统、智能多参数水质测量仪、便携式流速测量仪、全自动流动分析仪、同位素质谱仪等492.1项目详情5储能科学与工程专业教学实验室规划、改造与建设水溶液中氢气析出的测量及分析相关设备、电极材料的赝电容储锂行为测试及半定量计算方法相关设备、电子天平、磁力搅拌和粉碎机、pH计和ICP等796.56项目详情6材料科学与工程教学实验室规划、改造与建设金相试样切割/镶嵌/磨抛设备、显微镜、电子天平、干燥箱、搅拌清洗设备等630项目详情7能源与动力工程专业实验室规划、改造与建设热学式分析仪器、电阻测量仪器、教学专用仪器、专业摄像机和信号源设备等259项目详情8氢能科学与工程专业教学实验室规划、改造与建设气象水电解制氢设备、教学专用仪器、容器清洗机械、容器干燥机械等685项目详情9机械工程专业新增课程与创新实践教学实验建设液压振动台、氢燃料电池进气模拟系统、平面机构运动组合拼装实验台、组合式轴系结构设计实验箱、传感器实验台等644.6项目详情10电气与电子工程学院实验教学中心双一流建设电子示波器、功率分析仪器、投影仪、直流电机等75种设备1175.18项目详情11建筑环境与能源应用工程本科教学实验室建设提升项目制冷技术教学设备、热泵技术教学设备、蓄冷技术演示设备、建筑智能控制设备、建筑冷热电智慧运行设备等236项目详情12新能源电力系统国家重点实验室仪器设备升级更新项目显微镜、电子可靠性试验设备、激光仪器、质谱仪、动力测试仪器、色谱仪等7241.55项目详情13国家储能技术产教融合创新平台光学式分析仪器、显微镜、质谱仪、热学式分析仪器、其他分析仪器等5000项目详情14新能源发电国家工程研究中心平台建设与设备更新显微镜、电子可靠性试验设备、质谱仪、动力测试仪器、色谱仪、光学式分析仪器等4000项目详情15氢能科学与工程学科及高水平科研平台建设质谱仪、动力测试仪器、色谱仪、电化学分析仪器、光学式分析仪器等5036.5项目详情16低碳能源系统功能新材料开发与微纳制造平台激光打印机、质谱仪、动力测试仪器、色谱仪、电化学分析仪器等4992项目详情17清洁高效燃煤发电关键技术与装备集成攻关大平台流量计量标准器具、质谱仪、动力测试仪器、色谱仪、电化学分析仪器等4272.25项目详情18新能源高效转换与特性研究显微镜、数字电网监测表、电子可靠性试验设备、激光仪器、动力测试仪器等4400项目详情19水利工程学科科学研究激光仪器、扫描仪、数据采集器、显微镜、光学式分析仪器、大坝观测仪器、固态降水观测设备706.6项目详情20电能转换与智慧用电教育部工程研究中心实验平台建设显微镜、数字电网监测表、电子可靠性试验设备、激光仪器、电容器参数测量仪等1889.4项目详情21环境科学与工程学院现有实验教学平台升级改造大气成分/酸雨等检定校准设备、催化剂检验分析评价装置、分析仪器辅助装置、色谱仪、电冰箱、干燥机械等190.4478项目详情华北电力大学(保定)1服务中国制造2025和双碳目标的机械学科科研教学平台建设金属材料试验机、工业机器人、射线式分析仪器、光学式分析仪器、热学式分析仪器等2221项目详情2物理演示实验网络化教学平台建设导热系数测定仪、密立根油滴仪、光电效应仪、太阳能电池特性测试仪、双光栅微弱振动测量仪等173.88项目详情3新型功率器件与大功率变流器装备综合性能及高度电力电子化系统宽频响应测试平台元件器件参数测量仪、电子元件参数测量仪、半导体器件参数测量仪、集成电路参数测量仪、其他制冷空调设备等1000.2项目详情4光伏制储氢发电一体化技术研究平台标方质子交换膜电解水制氢机、复合温湿度盐水喷雾老化试验箱、多功能台式扫描电镜、氢气压缩机25L/min、16瓶组储氢集装格等340项目详情5常规及特殊工质离心压缩机综合测试及研发平台建设常规及特殊工质离心压缩机综合测试及研发平台767项目详情6区域建筑环境营造及节能控制综合实验平台建设空气环境污染物散发与去除特性平台、热湿环境舱测试平台、空气污染物扩散特性实验平台、综合能源管控和用能测试系统平台900项目详情7漂浮式风电机组波浪水池实验平台建设摇板式造波机、波高仪、波浪吸收式控制组件、数据采集系统、多源数据处理服务器、水池建造及配套设施195项目详情8固态锂电池平台建设无水无氧手套箱、红外光谱仪、X-射线粉末衍射仪、气体吸脱附测试仪、热分析仪、紫外光谱仪电池测试系统电化学工作站373项目详情9工程训练与创新创业实践平台更新与完善高精度3D打印机、高精度光纤金属激光切割机床、手持式光纤激光焊接机、白光三维扫描仪、四轴数控雕刻机等504.8项目详情10碳循环的全生命周期监测平台整个系统包括其他发生系统、检测系统和仿真系统170项目详情11环工系研究生学科建设平台电感耦合等离子体质谱155项目详情12环工系能化专业本科实验平台液流电池测试台32项目详情13环工系应化专业本科平台电厂水汽采样与化学测量系统69项目详情14数理学科科研教学平台建设超宽带太赫兹时域光谱及成像系统、电致光致发光量子效率检测系统、多通道阵列数采系统、紫外光谱仪、半导体参数分析仪等1998项目详情15高性能绿色电工绝缘材料结构设计、界面调控及结构表征平台3D打印机、高性能电容器薄膜材料制备平台、均匀低温等离子体材料表面修饰系统、微纳观结构体素高分辨成像分析系统、树脂流变特性分析仪等700项目详情16新型高效储能材料与储能电池研发测试平台超声波分散仪、X射线光电子能谱仪、比表面积测试仪、傅里叶红外光谱仪、热重分析仪等863项目详情17抽水蓄能机组定、转子故障试验模拟及测试系统抽水蓄能机组、驱动电机及配套装置、高精度红外测温仪、多通道数据采集及分析设备等360项目详情18微处理器类课程创新实验平台建设DSP实验箱、信号/频谱分析仪、嵌入式开发板、SMT工艺平台、手持式射频组合分析仪等284.03项目详情19光电子技术创新型实践教学平台多参量光传感云实验设备、光纤参数测量与应用综合实验设备、组合开放式光纤光谱仪综合实验设备、高分辨率光谱分析仪、分布式瑞利散射创新实验系统等189项目详情20电子通信学科平台建设大规模集成电路设计工程实践与科研平台,、智慧线上线下实验平台、创新型开放实验平台、人工智能(AI)计算系统、智能反射面(IRS) 原型机子平台等2000项目详情21氢液化实验系统平台建设氦气压缩机系统、氢液化冷箱系统、液氢输液管、控制及测量系统、氢安全检测系统等599.6项目详情22多元多相燃料高效清洁混燃研究平台建设一维煤粉燃烧试验台、便携式红外多组烟气分析仪、光热催化反应器、气相色谱分析仪、离子色谱仪等665项目详情23动力工程系储能专业本科教学实验平台建设储能电池运行特性实验子平台、电池混合脉冲功率性能测试实验子平台、太阳能电池特性测试实验子平台、锂离子电池组装与测试实验子平台、全温域储热系统实验平台等148.5项目详情24动力工程系氢能专业本科教学实验平台建设高压气态储氢实验台、固态储氢实验台、电解水制氢实验平台、生物制氢实验平台、燃料电池实验台等492.1662项目详情25动力工程系本科教学实验平台更新建设热重分析仪、乙烷p-v-t物性测量实验台、伯努利方程实验仪、雷诺实验仪、离心泵串并联实验台等201.5项目详情26体育教学部智慧教学设备更新、改造及购置项目田径运动会计时计分系统设备、国家体质健康标准测试仪器设备及配套产品、球类发球机、人脸识别系统、超声波治疗仪等570.27项目详情27电工绝缘材料性能检测平台电工绝缘材料性能检测平台298.7项目详情28新型芳纶绝缘造纸平台打浆度测试仪、激光粒度仪、保尔筛分仪、静电纺丝机、超声波细胞破碎仪等171项目详情29放电观测研究平台放电观测研究平台719.7项目详情30先进传感研究平台高精度窄线宽激光源、高精度脉冲信号发生器、高精度任意信号发生器、光谱分析仪、频谱分析仪等401.3项目详情31SEM扫描电镜SEM扫描电镜408项目详情32燃煤烟气多污染物协同控制河北省重点实验室检测平台X射线光电子能谱分析550项目详情
  • 【技术指导】绝缘油介电强度测定仪的油杯清洗方法及注意事项
    绝缘油介电强度测定仪油杯清洗方法、注意事项A1160技术指导产品介绍产品名称:绝缘油介电强度测定仪产品型号:A1160概 述:绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9油杯清洗方法⑴ 用洁净的绸布反复擦拭电极表面和电极杆。⑵ 用标准规调整好电极间距。⑶ 用石油醚(忌用其它有机溶剂)清洗3次,每次须按以下方法进行:② 将石油醚倒入油杯,占油杯容量的1/4~1/3。 ② 把一块用石油醚冲洗过的玻璃片盖住油杯口,均匀摇晃一分钟,注意要有一定力度。 ③ 将石油醚倒掉,用吹风机吹2~3分钟。⑷ 用待测油样清洗1~3次。 ② 将待测油样倒入油杯,约1/4~1/3。 ② 用吹干的玻璃片盖住油杯,均匀摇晃1~2分钟,注意要有一定力度。 ③ 倒掉剩余油样之后即可做打压实验。搅拌桨清洗方法⑴ 用干净的绸布反复擦拭搅拌桨,直至表面无细小颗粒,忌用手接触搅拌桨表面。⑵ 用镊子夹住搅拌桨,浸入石油醚中反复洗涮。⑶ 用镊子夹住搅拌桨,用吹风机吹干。⑷ 用镊子夹住搅拌桨浸入待测油样内反复洗涮。油杯储放方法1:实验完毕后,用质量较好的绝缘油倒满油杯,并将油杯平稳放置。方法2:按上述清洗方法用石油醚清洗吹干后放入真空干燥器中储存。注:第一次测试前和测试劣质油后必须按上述方法清洗油杯和搅拌浆。注意事项1、试验前油样的选择,安放及电极间的距离应符合国标及行标。2、电源接通后,严禁操作人员或其它人员触及外壳,以免发生危险。3、本仪器在使用过程中如发现异常,应立即切断电源。4、新油杯或新清洗的油杯应先击穿24次才可进行试验,油杯在不进行试验时应用干净的油侵泡。
  • 超高压高强度瓷绝缘子研发成功
    在科技部的组织下,国家科技支撑计划项目“500kV以上超高压高强度盘形悬式瓷绝缘子产业化关键装备技术研发”,日前在贵阳顺利通过了项目验收。  据介绍,该项目是新中国成立以来贵州省承担的第一个重大装备类国家科技支撑计划。由贵州九天高原电瓷有限公司、贵州大学、郑州一邦电工机械有限公司、西安高压电器研究院与中国科学院地球化学研究所等国内多家优势企业和学术单位进行联合攻关,经过3年努力完成。  专家组认为,该项目在盘形悬式绝缘子材料及关键工艺方面完成了原材料物理化学性能分析研究、材料及关键配方研究、原材料粒度及除杂控制研究、烧成等关键工艺控制研究 研制了高性能练泥机、盘形悬式瓷绝缘子坯件成型自动化生产线、全自动燃气抽屉窑与自动胶装机,并通过第三方检测,满足相关标准要求,形成了超高压高强度盘形悬式瓷绝缘子年产40万片的生产能力。  据悉,这一项目的实施提升了电瓷绝缘子相关产业的技术水平,形成了一批具有自主知识产权的核心技术及主机产品,将满足“西电东送”和“黔电送粤”等重大项目的需求,带动电力企业及配套装备制造企业的规模扩张,形成产业联盟和集成创新。项目成果在行业推广后,可带动贵州省矿产资源的综合利用、装备制造业发展及瓷绝缘子产业升级。  据了解,超高压高强度盘形悬式瓷绝缘子是高压输变电线路的重要组成部分,对于满足我国超高压、大电流、大跨距电力线路的需求具有重要意义。
  • 下一代功率半导体争夺战开打
    经过多年的研发,几家供应商正在接近出货基于下一代宽带隙技术的功率半导体和其他产品。这些器件利用了新材料的特性,例如氮化铝、金刚石和氧化镓,它们还用于不同的结构,例如垂直氮化镓功率器件。但是,尽管其中许多技术拥有超过当今功率半导体器件的特性,但它们在从实验室转移到晶圆厂的过程中也将面临挑战。功率半导体通常是专用晶体管,在汽车、电源、太阳能和火车等高压应用中用作开关。这些设备允许电流在“开”状态下流动,并在“关”状态下停止。它们提高了效率并最大限度地减少了系统中的能量损失。多年来,功率半导体市场一直由使用传统硅材料的器件主导。硅基功率器件成熟且价格低廉,但它们也达到了理论极限。这就是为什么人们对使用宽带隙材料的设备产生浓厚兴趣的原因,这种材料可以超越当今硅基设备的性能。多年来,供应商一直在出货基于两种宽带隙技术——氮化镓 (GaN) 和碳化硅(SiC) 的功率半导体器件。使用 GaN 和 SiC 材料的功率器件比硅基器件更快、更高效。几家供应商一直在使用下一代宽带隙技术开发设备。这些材料,例如氮化铝、金刚石和氧化镓,都具有比 GaN 和 SiC 更大的带隙能量,这意味着它们可以在系统中承受更高的电压。今天,一些供应商正在运送使用氮化铝的专用 LED。其他人计划在 2022 年推出第一波围绕新材料制造的功率器件,但也存在一些挑战。所有这些技术都有各种缺点和制造问题。即使它们投入生产,这些设备也不会取代今天的功率半导体,无论是硅、GaN 还是 SiC。“它们提供了令人难以置信的高性能,但在晶圆尺寸方面非常有限,” Lam Research战略营销董事总经理 David Haynes 说。“它们在很大程度上更具学术性而不是商业利益,但随着技术的进步,这种情况正在发生变化。但基板尺寸小且与主流半导体制造技术缺乏兼容性意味着它们可能只会用于极高性能设备的小批量生产,尤其是智能电网基础设施、可再生能源和铁路等要求严苛的应用。”尽管如此,这里还是有一波活动,包括:NexGen、Odyssey Semiconductor 和其他公司正在准备第一个垂直 GaN 器件。Novel Crystal Technology (NCT) 将推出使用氧化镓的功率器件。Kyma 和 NCT 正在这里开发子状态。基于金刚石和氮化铝的产品正在发货。什么是功率半导体?功率半导体在电力电子设备中用于控制和转换系统中的电力。它们几乎可以在每个系统中找到,例如汽车、手机、电源、太阳能逆变器、火车、风力涡轮机等。功率半导体有多种类型,每一种都用带有“V”或电压的数字表示。“V”是器件中允许的最大工作电压。当今的功率半导体市场由基于硅的器件主导,其中包括功率 MOSFET、超结功率 MOSFET 和绝缘栅双极晶体管(IGBT)。功率 MOSFET 用于低压、10 至 500 伏的应用,例如适配器和电源。超结功率 MOSFET 用于 500 至 900 伏应用。同时,领先的中端功率半导体器件 IGBT 用于 1.2 千伏至 6.6 千伏应用,尤其是汽车应用。英飞凌销售、营销和分销高级副总裁 Shawn Slusser 表示:“IGBT 功率模型基本上正在取代汽车中的燃油喷射器。“它们从电池向电机供电。”IGBT 和 MOSFET 被广泛使用,但它们也达到了极限。这就是宽带隙技术的用武之地。“带隙是指半导体中价带顶部和导带底部之间的能量差异,”英飞凌表示。“更大的距离允许宽带隙半导体功率器件在更高的电压、温度和频率下运行。”硅基器件的带隙为 1.1 eV。相比之下,SiC 的带隙为 3.2 eV,而 GaN 的带隙为 3.4 eV。与硅相比,这两种材料使设备具有更高的效率和更小的外形尺寸,但它们也更昂贵。每种设备类型都不同。例如,有两种 SiC 器件类型——SiC MOSFET 和二极管。SiC MOSFET 是功率开关晶体管。碳化硅二极管在一个方向传递电流并在相反方向阻止电流。针对 600 伏至 10 千伏应用,碳化硅功率器件采用垂直结构。源极和栅极在器件的顶部,而漏极在底部。当施加正栅极电压时,电流在源极和漏极之间流动。碳化硅在 150 毫米晶圆厂制造。过去几年,碳化硅功率半导体已投入批量生产。Onto Innovation营销总监 Paul Knutrud 表示:“碳化硅具有高击穿场强、热导率和效率,是电动汽车功率转换芯片的理想选择。开发垂直 GaN几家供应商一直在开发基于下一代材料和结构的产品,例如氮化铝、金刚石、氧化镓和垂直 GaN。在多年的研发中,垂直 GaN 器件大有可为。GaN 是一种二元 III-V 族材料,用于生产 LED、功率开关晶体管和射频器件。GaN 的击穿场是硅的 10 倍。“高功率和高开关速度是 GaN 的主要优势,”Onto 的 Knutrud 说。今天的 GaN 功率开关器件在 150 毫米晶圆厂制造,基于高电子迁移率晶体管 (HEMT)。GaN 器件是横向结构。源极、栅极和漏极位于结构的顶部。横向 GaN 器件已投入量产。一些公司正在将 GaN 器件在 200 毫米晶圆厂投入生产。“对于 GaN,它是 GaN-on-silicon 技术在 200mm 和未来甚至 300mm 上改进的性能,这是技术发展的基础,”Lam 的 Haynes 说。今天的 GaN 器件使用硅或 SiC 衬底。衬底顶部是一层薄薄的氮化铝 (AlN),然后是 AIGaN 缓冲层,然后是 GaN 层。然后,在 GaN 顶部沉积薄的 AlGaN 势垒层,形成应变层。如今,有几家公司参与了 GaN 功率半导体市场。今天的横向 GaN 功率半导体器件在 15 到 900 伏的电压范围内运行,但在这些电压之外运行这些器件存在若干技术挑战。一方面,不同层之间存在不匹配。“这真的只是因为当你在不同的衬底上生长 GaN 时,你最终会因两种晶格之间的不匹配而产生大量缺陷。每平方厘米的许多缺陷会导致过早击穿和可靠性问题,”Odyssey Semiconductor 的 CTO Rick Brown 说。解决这些问题的工作正在进行中,但横向 GaN 目前停留在 1,000 伏以下。这就是垂直 GaN 适合的地方。它承诺在 1,200 伏及以上电压下运行。与其他功率半导体器件一样,垂直 GaN 器件在器件顶部有一个源极和栅极,底部有一个漏极。此外,垂直 GaN 器件使用块状 GaN 衬底或 GaN-on-GaN。据 Odyssey 称,GaN 衬底允许垂直传导的 GaN 晶体管具有更少的缺陷。“如果你看硅基高压器件和碳化硅高压器件,它们都是垂直拓扑。出于多种原因,它是高压设备的首选拓扑。它占用的面积更小,从而降低了电容,并且将高压端子置于晶圆的另一侧而不是栅极端子具有固有的安全因素,”Brown说。目前,Kyma、NexGen、Odyssey、Sandia 和其他公司正在研究垂直 GaN 器件。Kyma 和 Odyssey 正在增加 100 毫米(4 英寸)体 GaN 衬底。“垂直 GaN 正在出现,我们正在向研究人员和实验室出售产品,”Kyma 的首席技术官 Jacob Leach 说。“该行业在制作外延片方面遇到了一些挑战。我们有不同的技术。我们能够以低廉的成本制造垂直 GaN 所需的薄膜。”GaN衬底已准备就绪,但垂直GaN器件本身很难开发。例如,制造这些器件需要一个离子注入步骤,在器件中注入掺杂剂。“人们没有对 GaN 使用垂直导电拓扑的唯一原因是没有一种很好的方法来进行杂质掺杂。Odyssey已经找到了解决办法,”该公司的Brown说。Odyssey 正在其自己的 4 英寸晶圆厂中开发垂直 GaN 功率开关器件。计划是在 2022 年初发货。其他人的目标是在同一时期。“我们有垂直导电的 GaN 器件。我们已经证明了 pn 结,”Odyssey 首席执行官 Alex Behfar 说。“我们的第一个产品是 1,200 伏,可能是 1,200 到 1,500 伏。但是我们的路线图将我们一直带到 10,000 伏。由于电容和其他一些问题,我们希望在碳化硅无法访问的频率和电压范围内做出贡献。近期,我们希望能够为工业电机和太阳能提供设备。我们希望给电动汽车制造商机会,进一步提高车辆的续航里程。那是通过减轻系统的重量并拥有性能更好的设备。从长远来看,我们希望实现移动充电等功能。”如果或当垂直 GaN 器件兴起时,这些产品不会取代今天的横向 GaN 或 SiC 功率半导体,也不会取代硅基功率器件。但如果该技术能够克服一些挑战,垂直 GaN 器件将占有一席之地。联电技术开发高级总监 Seanchy Chiu 表示:“Bulk GaN 衬底上的 GaN 垂直器件为可能的下一代电力电子设备带来了一些兴奋,但还有一些关键问题需要解决。” “基于物理学,垂直功率器件总能比横向器件驱动更高的功率输出。但是 GaN 体衬底仍然很昂贵,而且晶圆尺寸仅限于 4 英寸。纯代工厂正在使用 6 英寸和 8 英寸工艺制造具有竞争力的功率器件。由于其垂直载流子传输,需要控制衬底晶体的质量并尽量减少缺陷。”还有其他问题。“GaN衬底比SiC衬底更昂贵,GaN中垂直方向的电子传导仅与SiC大致相同,”横向GaN功率半导体供应商EPC的首席执行官Alex Lidow说。“与 SiC 相比,GaN 中的电子横向迁移率高 3 倍,但垂直方向的迁移率相同。此外,碳化硅的热传导效率高出三倍。这对垂直 GaN 器件几乎没有动力。”氧化镓半导体同时,几家公司、政府机构、研发组织和大学正在研究β-氧化镓 (β-Ga2O3),这是一种有前途的超宽带隙技术,已经研发了好几年。Kyma 表示,氧化镓是一种无机化合物,带隙为 4.8 至 4.9 eV,比硅大 3,000 倍,比碳化硅大 8 倍,比氮化镓大 4 倍。Kyma 表示,氧化镓还具有 8MV/cm 的高击穿场和良好的电子迁移率。氧化镓也有一些缺点。这就是为什么基于氧化镓的设备仍处于研发阶段且尚未商业化的原因。尽管如此,一段时间以来,一些供应商一直在销售基于该技术的晶圆用于研发目的。此外,业界正在研究基于氧化镓的半导体功率器件,例如肖特基势垒二极管和晶体管。其他应用包括深紫外光电探测器。Flosfia、Kyma、Northrop Grumman Synoptics、NCT 和其他公司正在研究氧化镓。美国空军和能源部以及几所大学都在追求它。Kyma 已开发出直径为 1 英寸的氧化镓硅片,而 NCT 则在运送 2 英寸硅片。NCT 最近开发了使用熔体生长方法的 4 英寸氧化镓外延硅片。“氧化镓在过去几年取得了进展,这主要是因为您可以生成高质量的基板。因此,您可以通过标准的直拉法或其他类型的液相生长法来生长氧化镓晶锭,”Kyma 的 Leach 说。这是半导体工业中广泛使用的晶体生长方法。最大的挑战是制造基于该技术的功率器件。“氧化镓的挑战是双重的。首先,我没有看到真正的 p 型掺杂的方法。您可能能够制作 p 型薄膜,但您不会获得任何空穴导电性。因此,制造双极器件是不可能的。您仍然可以制造单极器件。人们正在研究二极管以及氧化镓中的 HEMT 型结构。有反对者说,' 如果你没有 p 型,那就忘记它。这只是意味着它在该领域没有那么多应用,”Leach 说。“第二大是导热性。氧化镓相当低。对于高功率类型的应用程序来说,这可能是一个问题。在转换中,我不知道这是否会成为杀手。人们正在做工程工作,将氧化镓与碳化硅或金刚石结合,以提高热性能。”尽管如此,该行业仍在研究设备。“第一个采用氧化镓的功率器件将是肖特基势垒二极管 (SBD)。我们正在开发 SBD,目标是在 2022 年开始销售,”NCT 公司官员兼销售高级经理 Takekazu Masui 说。NCT 还在开发基于该技术的高压垂直晶体管。在 NCT 的工艺中,该公司开发了氧化镓衬底。然后,它在硅片上形成薄外延层。该层的厚度范围可以从 5μm 到 10μm。通过采用低施主浓度和40μm厚膜的外延层作为漂移层,NCT实现了4.2 kV的击穿电压。该公司计划到 2025 年生产 600 至 1,200 伏的氧化镓晶体管。NCT 已经克服了氧化镓的一些挑战。“关于导热性,我们已经确认可以通过使元件像其他半导体一样更薄来获得可以投入实际使用的热阻。所以我们认为这不会是一个主要问题,”增井说。“NCT 正在开发两种 p 型方法。一种是制作氧化镓p型,另一种是使用氧化镍和氧化铜等其他氧化物半导体作为p型材料。”展望未来,该公司希望开发使用更大基板的设备以降低成本。减少缺陷是另一个目标。金刚石、氮化铝技术多年来,业界一直在寻找可能是终极功率器件 — 金刚石。金刚石具有宽带隙 (5.5 eV)、高击穿场 (20MV/cm) 和高热导率 (24W/cm.K)。金刚石是碳的亚稳态同素异形体。对于电子应用,该行业使用通过沉积工艺生长的合成钻石。金刚石用于工业应用。在研发领域,公司和大学多年来一直致力于研究金刚石场效应晶体管,但目前尚不清楚它们是否会搬出实验室。AKHAN Semiconductor 已开发出金刚石基板和镀膜玻璃。设备级开发处于研发阶段。“AKHAN 已经实现了 300 毫米金刚石晶圆,以支持更先进的芯片需求,”AKHAN 半导体创始人 Adam Khan 说。“在高功率应用中,金刚石 FET 的性能优于其他宽带隙材料。虽然 AKHAN 的兴奋剂成就是巨大的,但围绕客户期望制造设备需要大量的研发、技术技能和时间。”该技术有多种变化。例如,大阪市立大学已经展示了在金刚石衬底上结合 GaN 的能力,创造了金刚石上的 GaN 半导体技术。氮化铝 (AlN) 也是令人感兴趣的。AlN 是一种化合物半导体,带隙为 6.1 eV。据 AlN 衬底供应商 HexaTech 称,AlN 的场强接近 15MV/cm,是任何已知半导体材料中最高的。Stanley Electric 子公司 HexaTech 业务发展副总裁 Gregory Mills 表示:“AlN 适用于波段边缘低至约 205nm 的极短波长、深紫外光电子设备。“除了金刚石之外,AlN 具有这些材料中最高的热导率,可实现卓越的高功率和高频设备性能。AlN 还具有独特的压电能力,可用于许多传感器和射频应用。”几家供应商可提供直径为 1 英寸和 2 英寸的 AlN 晶片。AlN 已经开始受到关注。Stanley Electric 和其他公司正在使用 AlN 晶片生产紫外线 LED (UV LED)。这些专用 LED 用于消毒和净化应用。据 HexaTech 称,当微生物暴露在 200 纳米到 280 纳米之间的波长下时,UV-C 能量会破坏病原体。“正如我们所说,基于单晶 AlN 衬底的设备正在从研发过渡到商业产品,这取决于应用领域,”米尔斯说。“其中第一个是深紫外光电子学,特别是 UV-C LED,由于它们具有杀菌和灭活病原体(包括 SARS-CoV-2 病毒)的能力,因此需求激增。”多年前,HexaTech 因开发氮化铝功率半导体而获得美国能源部颁发的奖项。这里有几个挑战。首先,基板昂贵。“我不知道氮化铝在这里有多大意义,因为它在 n 型和 p 型掺杂方面都有问题,”Kyma 的 Leach 说。结论尽管如此,基于各种下一代材料和结构的设备正在取得进展。他们有一些令人印象深刻的属性。但他们必须克服许多问题。EPC 的 Lidow 说:“这意味着将需要大量资本投资才能将它们投入批量生产。” “额外的好处和可用市场的规模需要证明大量资本投资的合理性。
  • 节能环保自动化仪器----绝缘油氧化安定性测定仪
    近年来世界石油市场的主要特点:一是美国西德克萨斯轻质原油(WTI)与布伦特原油价格倒挂日渐频繁 二是轻质原油和重质原油价差缩小 三是石油的金融属性更加明显,投机商继续青睐石油期货市场 四是石油需求大幅下降,但降幅逐季收窄 五是欧佩克减产履约率呈现前高后低走势,剩余产能大幅增加 六是石油库存居高不下。通过对市场、贸易、油价、运输和劳动成本等方面的分析,鉴于欧美严格的环保要求,以及市场的成熟度,欧美等地区对基础化学品和大宗石化产品的需求已趋于饱和,这就迫使西方发达国家紧缩本国石化生产,全球化工行业发展的重心逐步向原料产地(中东)和产品市场(亚洲)转移。中东和包括中国在内的亚太地区将是全球炼油和石化产能增长最快的地区,亚洲将成为世界较大的石化市场。同时,世界石化工业发展趋向大型化、基地化和炼化一体化,产业集中度越来越高。A1250绝缘油氧化安定性测定仪适用标准:SH/T0811-2010和SH/T0206-1992。适用于测定绝缘油的氧化安定。绝缘油氧化安定性测定仪是变压器油的生产、使用单位,各相关院校、科研部门等测试变压器油的氧化安定性能稳定的一种自动化仪器。仪器特点1、采用金属浴加热,无需加油,节能环保,使用简便。2、PID 控制能够在达到目标温度后快速的保持稳定 ,节省等待时间。3、内置超温保护装置,使用可靠。4、配置皂泡流量计可准确检测气体流量。5、配置计时器可自动计时。6、可提供计量检定证书。技术参数工作电源:AC220V±10%,50Hz功 率:≤1100W控温范围:室温~160℃控温精度:±0.5℃试样数量:6路
  • 助力环保行业|江西环保能源公司成功验收得利特绝缘油析气性测定仪等
    北京得利特作为仪器专注油品分析仪器的公司,依然很关注环保项目。这不,前不久就与环保行业的公司进行了深度合作 。据了解,此次发往江西环保能源公司的油品分析仪器数量较多,设备清单如下:绝缘油析气性测定仪 、绝缘油氧化安定性测定仪,石油产品热值测定仪、自动水溶性酸测定仪、自动多功能振荡仪、油液颗粒污染度检测仪,都是常用的油品检测仪器。北京得利特从材料采购、工艺、制造、装配等全过程进行严格监督,深入一线严把质量关。经常召开进度协调会,对各类问题事无巨细进行讨论决策。对重要的技术问题,开展技术攻关予以解决,始终确保了该批油品分析设备交货进度风险可识别和可管控。北京得利特售后专员来到客户公司,协助客户验收设备,并培训设备操作方法,方便客户日后可独立完成各项检测试验。经过三天的调试培训,客户基本上掌握了设备的使用,对测试数据的分析技巧学习的也非常透彻。临走前,我司技术人员对仪器使用的注意事项也做了细致的说明讲解。具体产品详细参数 绝缘油析气性测定仪适应标准:GB/T11142-89、NB/SH/T0810-2010、ASTM D2300。用于测定绝缘液在受到强度足以引起在液、气交界处放电的电场作用下,放出吸收气体的能力。适用于测定电缆油、电容器油和变压器油。A1210操作简便、精度高,广泛应用于石化、电力、铁路、科研等部门。仪器特点1、大屏幕液晶显示,中文提示菜单,触摸屏控制,方便试验操作。2、透明的恒温油浴槽,采用先进的PID控温整定,使系统温度更精确。3、高压系统采用干式高压变压器,环氧真空浇注工艺,可确保输出电压稳定可靠。4、自动计时,具有定时报警功能,方便提示试验人员。5、透明安全保护罩,保证试验人员安全。6、可根据试验要求选定标准。7、可提供仪器鉴定报告,使试验结果更具有可溯性。技术参数控温范围:0℃~100℃控温精度:±0.5℃试验电压:10KV 电压精度:±2%计时范围:1~120分钟计时精度:±1s气体流量:3L/h环境温度:5℃~40℃环境湿度:≤85%工作电源:AC220V±10%,50Hz功 率:≤1500W外形尺寸:400mm×450mm×950mm重  量:38Kg
  • 我国半导体/绝缘高分子材料取得重大突破
    我国半导体/绝缘高分子复合材料研究取得重大突破  日前,中科院长春应用化学研究所杨小牛研究员课题组在半导体/绝缘体高分子复合材料研究取得重大突破,其研究结果被国际著名期刊《先进功能材料》(Advanced Functional Materials)以“封面论文”的形式给予重点报道。  在传统观念中,绝缘体会阻碍电荷传输,因此一般来讲,在半导体/绝缘体复合材料中,绝缘相往往扮演着降低材料电学性能的角色。然而近年来研究人员发现,在特定外场条件下,复合材料二维表面处的载流子迁移率并不差。杨小牛课题组首次在体相半导体/绝缘高分子复合材料中发现并确认了绝缘基质增强的半导体电荷传输现象,随后将这一规律推广到无特定外场条件下的三维体系,并用更具普适性的物理量—电导率来论证了这一点。  通过控制聚噻吩/绝缘聚合物共混物制备过程中结晶和相分离的竞争关系,可抑制大尺度的两相分离,由此得到均匀的半导体/绝缘体复合材料。这种材料表现出绝缘基质增强的半导体电荷传输现象。研究人员认为,载流子以极化子形式在复合材料中进行传导。由于绝缘基质极化率较低,极化子在半导体/绝缘体界面处传输时受到周围极化环境的影响较小,有助于降低界面处的电荷传输活化能,由此提高了两相界面处的载流子迁移率。从此意义上讲,对于两相共混体系,增强的体相电荷传输性质需要满足下列3个条件:首先,鉴于电荷主要在共混两相界面传输,绝缘聚合物的介电常数必须足够低才可能降低电荷传输活化能,从而有效提高半导体相的载流子迁移率 其次,半导体/绝缘体两相相分离尺度需要足够小,才能大幅提高两相接触界面 第三,要求半导体相要有较好的连续性,有利于减小电荷传输的阻力。  在半导体聚合物中通过共混引入通用绝缘聚合物,不仅可以提高其电学性能,而且可降低基于塑料的柔性电子器件的成本,提高其柔韧性和环境稳定性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制