当前位置: 仪器信息网 > 行业主题 > >

移动湿度监测仪

仪器信息网移动湿度监测仪专题为您提供2024年最新移动湿度监测仪价格报价、厂家品牌的相关信息, 包括移动湿度监测仪参数、型号等,不管是国产,还是进口品牌的移动湿度监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合移动湿度监测仪相关的耗材配件、试剂标物,还有移动湿度监测仪相关的最新资讯、资料,以及移动湿度监测仪相关的解决方案。

移动湿度监测仪相关的资讯

  • 国瑞力恒发布烟气湿度检测仪新品
    GR-3021型烟气湿度检测仪产品概述GR-3021型烟湿度速检测仪(以下简称检测仪)是采用湿敏电容法测量烟气中水分含量的一款湿度检测仪器,仪器采用进口传感器,自带温度、压力补偿修正,具有测量精度高,耐腐蚀,使用温度范围宽等优点,广泛应用于锅炉、炉窑以及各种排风管道的烟气湿度测量。适用范围本仪器采锅炉、炉窑以及各种排风管道的烟气水分或含湿量的测量,适用于应用于环保、职业卫生、劳动、安监、军事、科研、教育等部门。。采用标准GB/T 11605 -2005《温湿度测量方法》主要特点1. 采用原装进口湿度传感器,测量精度高,耐腐蚀,使用寿命长;2. 内置高能锂离子电池,一次充电可连续工作3小时以上;3. 采用独创的温湿度修正补偿算法,消除烟道温度、压力对测量结果的影响,测量分辨率可达0.01%,测量精度更高;4. 传感器表面双层粉尘过滤,有效保护传感器不受粉尘的影响;5. 传感器表面具有加热功能,防止传感器表面结露,有效保护传感器;6. 采用一体化设计,减少外部干扰,使用方便7.操作界面简单,开机直接进入测量,无需任何操作8.大容量数据存储,可存储1000组数据文件;9.大尺寸、宽温高亮彩色显示屏显示;10.内置蓝牙模块,可选配蓝牙打印机进行数据打印技术指标 检测仪主要技术指标技术指标参数范围分辨率准确度湿度(0~60)%0.01%不超过±2.0%大气压(50~110) kPa0.01 kPa不超过±2.0%烟气温度180℃(注:180度以上工况不可使用本仪器)响应时间30S温控温度(0-160)℃取样管长度1.2米(可定制) 电池工作时间大于5小时整机功耗60W 整机重量约3.5kg工作温度(-20-60)℃工作电压内置电池或AC220/DC24电压适配器创新点:GR-3021型烟湿度速检测仪是采用湿敏电容法测量烟气中水分含量的一款湿度检测仪器,仪器采用进口传感器,自带温度、压力补偿修正,具有测量精度高,耐腐蚀,使用温度范围宽等优点,1.采用原装进口湿度传感器,测量精度高,耐腐蚀,使用寿命长;传感器表面双层粉尘过滤,有效保护传感器不受粉尘的影响;烟气湿度检测仪
  • 恒奥德仪器温湿度压力检测仪/温度湿度压力三合一检测仪/数字温湿度大气压力计H17888
    温湿度压力检测仪/温度湿度压力三合一检测仪/数字温湿度大气压力计H17888产品概述:数字温度大气压力计是新一代便携式测量大气压仪表,仪表采高精度隔膜式绝压传感芯片,液晶数字双排显示,方便直观地测量外界大气压力,温度数值。采用全数字化设计,可靠性强体积小,重量轻,手感好,操作简便。该仪表广泛用于气象、科研、环保、军事、体育,是各实验室的须备常用仪表。 技术参数:数字温湿度大气压计基本技术参数:1、大气压测量范围:300~1100hPa2、大气压精度:0.5%FS(300~1100hPa)3、分辨率:0.1hpa / 0.1℃/ 0.1RH%4、测量介质:大气5、温度测量范围:-30~60℃6、温度测量精度:0.5℃7、湿度测量范围:0~100RH%8、湿度测量误差:±3%9、使用环境:温度-40~100℃;湿度0~100RH%10、电源:AA碱性五号电池4节11、尺寸重量:150×75×30mm约180g 大气压力单位换算表:1标准大气压(atm)760mmHg(毫米汞柱)76cmHg (厘米汞柱)10.336mH2O(米水柱)1013.25mba(毫巴)1.013×105pa(帕)1013hpa(百帕)101.3Kpa(千帕)【备注】十届国际计量大会决议声明,规定标准大气压值为1标准大气压=101325牛顿/米2 数字温湿度大气压计特点:◎ 双排LCD液晶显示,大气压、温度和湿度数字直读。◎ 进口高精度绝压传感器、高分辨率、高稳定性。◎ 进口超低功耗单片微电脑,并具有数值稳定功能。◎ 仪表数字校准,不用任何硬件调整。◎ 具有使用范围广,适合各种工况状态下使用。◎ 体积小、质量轻、便于携带,适合室内和野外作业。◎ 四节干电池供电,屏幕电量显示,电池连续使用可达50小
  • 成都科技力量在“疫”线!家用核酸检测仪、可移动式核酸检测车......
    家用核酸检测仪、可移动式核酸检测车、AI智能空气健康机器人......近日,成都迎战“奥密克戎”全力战疫,在隔离酒店、封控小区、核酸检测现场等疫情防控的“一线“,随处可见成都科技的力量。  40分钟内出结果 在家就能做的核酸检测仪即将面市  日前,四川大学华西医院院长李为民表示,华西医院从国外引进的专家──胡文闯教授带领的团队,通过多学科交叉合作,现已研发出了一款便携式、快捷的核酸检测试剂仪,它能够让市民自己在家就可以进行核酸检测。  “它像一个打火机一样大小,检测后40分钟之内就能够出结果。”李为民说,今后我们就不用到社区排长队,可以自己在家里像测尿妊娠试纸一样先查一查,如果是阳性再到医院做进一步筛查、证实。这样不仅能使广大老百姓更方便、快捷地做核酸检测,同时更有利于被感染者早期隔离、早期治疗。  更值得一提的是,这种新型核酸检测试剂仪是一次性的,费用不高,广大群众都能承受,但具体费用标准还要经过国家审批。这款可居家测试的核酸检测试剂仪预计将于今年上半年正式面市。  可移动的核酸检测车 每日最高检测量达40000+人份  可移动、高通量、严标准… … 由成都格力新晖医疗装备有限公司和成都格力钛新能源共同研发制造的移动P2+核酸检测车成为防疫抗疫一线的科技“好助手”。已整装待命,助力疫情防控。  据相关负责人介绍,移动P2+核酸检测车是格力为抗击疫情而开发的重点产品,自主研制生产填补了国内空白。车辆内部由试剂准备区、样本处理区和扩增分析区三大主要功能区组成,此外还有配套的三个缓冲区和一个灭菌区,可谓“麻雀虽小,五脏俱全”。  更值得一提的是,车辆采用了高通量样本制备,可实现快速又安全的检测,能满足大批量样本处理需求,每日检测量(10/1混采)至少可达20000+人份,紧急情况下(10/1混采)最高可达40000+人份。目前,这款移动P2+核酸检测车已经过专家论证及第三方质检机构检测,符合PCR核酸检测实验室和二级生物安全实验室相关标准要求。自2020年以来,已在珠海、长沙、广州、成都、洛阳、香港等20余个城市投入使用,服务疫情防控一线。  目前,四川天府新区,成都新津区、双流区均通过该核酸检测车提升移动检测能力。  无人机“起飞”助力疫情防控决策“更科学”  2月21日天府软件园,2月22日中德英伦城邦、南新逸苑,2月23日融城理想、复地金融岛、新园紫郡… … 连日来,在成都高新多个核酸检测点位,无人机“上场”为疫情防控提供有效决策辅助。  无人机具有机动灵活、效率高、视角广的特点,在应急情况下,可以随时起飞,高效巡查、全方位无死角地观察目标区域的情况,结合通讯手段,巡查画面可以实时、多路回传至疫情防控指挥中心部署的无人航空社会治理平台。毫秒级的低延迟传输技术、全域厘米级精度的实景三维地图… … 在技术支撑下,防控指挥部可及时、动态了解情况,灵活作出防控部署,有效降低了人工巡查带来的接触风险,且提高了效率。此外,无人机还可以执行空中喷洒消毒、社区防疫宣传等任务。  据了解,成都高新无人机政务飞行队是成都高新区网络理政办和携恩科技共同打造的全国首支无人机政务飞行队。自2月20日起,该无人机政务飞行队,保持24小时值守状态,每日派出三组人员,持续在区内多个核酸点位开展无人机疫情防控巡查工作。截至28日,已累计巡查任务点位70余个。  “萌新”上岗 AI智能空气健康机器人实现无死角消杀  在成都高新区石羊街道,天府世家封控小区内近日迎来了科技抗疫“小战将”—AI智能空气健康机器人。  28日,工作人员将智能空气健康机器人放置于将消毒的单元门厅,暂时停运电梯,并将门厅大门、地下室楼道门关闭,形成封闭无人空间,同时另一名工作人员通过手机APP远程操作机器人开始消杀运行,30分钟即完成该区域消毒净化工作,并形成消杀数据合格报告。  据了解,此次将有两台智能空气健康机器人参与到天府世家小区封控区域抗疫一线工作中。成都震道科技有限公司相关负责人介绍,智能空气健康机器人首创物联网防疫机器人人工远程“零接触”操控模式,消毒过程及结果可实时提供手机版数字消毒报告,采用臭氧浸漫式充溢消杀方式,可最快30分钟完成99平米密闭空间消杀病毒、降解甲醛、祛除异味等多种空气安全问题,进行空气消毒的同时净化PM2.5,实现集360度无死角、无残留消毒净化二合一,符合《国家臭氧消毒标准》,中国科学院实验结果对新冠病毒抑制率可达98.2%、对流感病毒抑制率可达99.9%。  石羊街道天府世家小区管理服务工作专班负责人表示,下一步,街道将联合各社区,持续深化巧用智能空气健康机器人等数字科技手段,实现有效集中可视化管理,准确高效落实指定区域消杀情况和居民隔离人员远程管理服务。
  • 热电公司推出MOLA7200A型中子在线湿度检测仪
    美国德克萨斯州糖城 – 2006年4月25日 – 分析和过程仪器的行业领先制造商热电公司今日宣布推出MOLA 7200A型专用于钢铁行业的艺术级在线湿度检测仪。该款检测仪的设计改进了鼓风炉的安全性、操作性和效率性,成为该行业焦炭湿度测定最准确、可靠和耐用的分析仪之一,且安装方便、操作简单。MOLA 7200A型检测仪替代了业已获得成功的Texas Nuclear MND,使用中子反散射脉冲模式离子技术非干扰地测定工艺容器中氢化物的浓度。“热电公司致力于提供耐用可靠而经受时间考验的设备”,产品经理David Faulkner先生说。“热电MOLA 7200A型检测仪能在恶劣工矿下完成焦炭中湿度的测定。该仪器精度高,为钢铁生产商提供安装便捷、低维护量的产品,帮助实现最佳的鼓风炉性能。” 特色的脉冲模式技术,使MOLA 7200A型分析仪在宽温度范围内实现稳定性和重现性。产品中的离子室作为氢化物分子检测器,基于氢化物的量,测定焦炭中的湿度。MOLA 7200A型分析仪不仅精确、可靠,而且操作简便。仪器中各个组件的重量均小于45磅,整个部件小于100磅,简化了安装过程,并可实现部件的快速诊断和维护服务。MOLA 7200A型分析仪的关键特色:• 高温稳定性• 高准确度和重现性• 堪称艺术级的离子室设计• 低维护• 安装简便• 专门设计经受恶劣工矿的考验欲获取更多关于MOLA 7200A型分析仪的信息,请访问:www.thermo.com/metals。关于热电公司About Thermo Electron Corporation 热电公司是世界领先的分析仪器研发和制造公司。我们为客户提供仪器解决方案使整个世界更健康、更干净、更安全。热电生命和实验室科学部分为生命科学、新药开发、临床医学、环境和工业实验室提供分析仪器、科学设备、服务和软件方案。热电测量与控制部分致力于将分析仪器应用于各种生产制造过程及安全和国防领域。欲获取更多信息,请浏览我们的网站:http://www.thermo.com。 # # #
  • 我国首台可移动式中子成像检测仪问世 弥补无损检测不足
    p  记者7月17日从中国工程物理研究院核物理与化学研究所获悉,我国首台可移动式中子成像检测仪日前由该所研制成功。这种能够在集装箱货车中运输的中子检测设备,可实现待检对象的现场或在线检测,未来在我国航空航天领域重大装备制造中将发挥重要作用。/pp  可用于裂痕探测、材料性能分析等领域的中子成像检测,由于弥补了X射线等其他无损检测方式的不足,正广泛用于重大装备制造领域。但由于传统的中子成像检测设备自身体积较大,难以对大型、超大型装备进行现场检测。/pp  在国家重大科学仪器设备开发专项支持下,中物院核物理与化学研究所龚建研究员率领团队研发的可移动式中子成像检测仪,由小型加速器中子源、准直屏蔽系统、样品承载系统、成像系统、控制系统、数据采集处理系统及氚净化处理系统等组成。设备长6米,占地面积20平方米,仅一个房间大小 总重3.5吨,可以装在一到两辆集装箱货车中运输。对核心的小型加速器中子源,研究团队采用整体小型化和集成化设计思路,对离子源、高压电源及加速管等关键部件进行了特殊设计、验证和研制,满足了中子成像检测对加速器中子源小型化和高产额的应用需求。/pp  “该仪器的成功研制,带动了高产额小型加速器设计制造、中子探测技术,及航空发动机空心涡轮叶片、航天火工品的检测技术进步,打破了国外对这种广泛用于核能、航空航天等高端领域特种检测设备的封锁。”研究团队相关负责人表示,目前该设备已在航空发动机空心涡轮叶片残余型芯检测及航天火工品系列产品质量检测中得到了成功应用。/p
  • 智慧实验室 | 谱育科技南水北调东线工程水质移动监测实验室顺利交付
    近日,南水北调东线一期工程北延应急供水工程水质监测系统(水质移动监测实验室部分)项目验收会在杭州谱育科技举办。验收专家组经过实地考察、听取报告、审核材料后,一致同意“南水北调东线一期工程北延应急供水工程水质监测系统”项目顺利通过验收。项目组现场解答验收会专家质询南水北调东线一期向北延伸应急供水工程跨越多个省市,沿线工业企业众多,且与大量交通设施并行、交叉,潜在水质风险因素较多,一旦发生污染事故,次生突发环境事件将对调水水质产生重大影响。南水北调东线总公司积极周密地开展了大量保护和管理工作,建设水质移动监测实验室是完善北延应急工程水质监测系统的重要措施。由谱育科技承建的水质移动监测实验室,包括车辆、整车内部改装、仪器安装、系统联调等,主要搭载了车载化的ICP-MS分析仪、车载/便携GC-MS分析仪等科学仪器。科学仪器车载化 监测指标全水质移动监测实验室,实现了ICP-MS分析仪、GC-MS分析仪等科学仪器的车载模块化应用,实验室采用标准分析方法,检测结果准确可靠。仪器采用军标三维减震、抗温湿度交变、真空保持以及低功耗等专业车载化设计,使之能够满足车载使用环境,快速投入使用。1ICP-MS分析法——重金属检测水质移动监测实验室可实现砷、汞、镉 、铅等20项重金属指标的同时检测,样品分析时间小于2分钟,检出限可低至10-12次方级。2GC-MS分析法——有机物分析水质移动监测实验室可实现常见VOCs&SVOCs指标全覆盖,定性定量准确;同时具备常规理化指标、石油类和生物毒性的检测能力。仪器集成应用,实现平战结合水质移动监测实验室采用多种仪器集成应用模式,各模块可安装和拆卸,统一模块接口标准,可实现平战结合,提高仪器的应用性和使用效率。基于水质移动监测实验室的高机动性和高通过性特点,可以在突发水污染事件发生后第 -一时间赶往现场。通过配备实验室级别分析仪器,辅以内置标准化供水、供电、供气、通排风、温湿度控制、试剂保存等设施,为仪器正常工作提供实验室级别的环境条件,保证应急监测的响应速度和检测数据的准确性和可靠性。水质移动监测实验室的投入使用:提升了南水北调东线一期北延应急工程水污染应急监测能力以及应急决策管理的科学性。构建了可视化、实时化的水环境立体应急监测体系,弥补传统实验室和在线水站在水质应急监测领域的不足。保障了南水北调东线工程沿线山东、河北和天津等地区人民群众的应急用水安全。响应了习近平总书记提出的“切实维护南水北调工程安全、供水安全、水质安全”的讲话精神。
  • 为有一渠净水来 | 谱育科技南水北调东线工程水质移动监测实验室顺利交付
    近日,南水北调东线一期工程北延应急供水工程水质监测系统(水质移动监测实验室部分)项目验收会在杭州谱育科技举办。验收专家组经过实地考察、听取报告、审核材料后,一致同意“南水北调东线一期工程北延应急供水工程水质监测系统”项目顺利通过验收。项目组现场解答验收会专家质询南水北调东线一期向北延伸应急供水工程跨越多个省市,沿线工业企业众多,且与大量交通设施并行、交叉,潜在水质风险因素较多,一旦发生污染事故,次生突发环境事件将对调水水质产生重大影响。南水北调东线总公司积极周密地开展了大量保护和管理工作,建设水质移动监测实验室是完善北延应急工程水质监测系统的重要措施。由谱育科技承建的水质移动监测实验室,包括车辆、整车内部改装、仪器安装、系统联调等,主要搭载了车载化的ICP-MS分析仪、车载/便携GC-MS分析仪等科学仪器。科学仪器车载化 监测指标全水质移动监测实验室,实现了ICP-MS分析仪、GC-MS分析仪等科学仪器的车载模块化应用,实验室采用标准分析方法,检测结果准确可靠。仪器采用军标三维减震、抗温湿度交变、真空保持以及低功耗等专业车载化设计,使之能够满足车载使用环境,快速投入使用。1ICP-MS分析法——重金属检测水质移动监测实验室可实现砷、汞、镉 、铅等20项重金属指标的同时检测,样品分析时间小于2分钟,检出限可低至10-12次方级。2GC-MS分析法——有机物分析水质移动监测实验室可实现常见VOCs&SVOCs指标全覆盖,定性定量准确;同时具备常规理化指标、石油类和生物毒性的检测能力。仪器集成应用,实现平战结合水质移动监测实验室采用多种仪器集成应用模式,各模块可安装和拆卸,统一模块接口标准,可实现平战结合,提高仪器的应用性和使用效率。基于水质移动监测实验室的高机动性和高通过性特点,可以在突发水污染事件发生后第一时间赶往现场。通过配备实验室级别分析仪器,辅以内置标准化供水、供电、供气、通排风、温湿度控制、试剂保存等设施,为仪器正常工作提供实验室级别的环境条件,保证应急监测的响应速度和检测数据的准确性和可靠性。水质移动监测实验室的投入使用:提升了南水北调东线一期北延应急工程水污染应急监测能力以及应急决策管理的科学性。构建了可视化、实时化的水环境立体应急监测体系,弥补传统实验室和在线水站在水质应急监测领域的不足。保障了南水北调东线工程沿线山东、河北和天津等地区人民群众的应急用水安全。响应了习近平总书记提出的“切实维护南水北调工程安全、供水安全、水质安全”的讲话精神。
  • 莱伯泰科携移动实验室产品参加2013现场检测仪器及技术研讨会
    2013年6月19-21日,由《现代科学仪器》主办的《2013年现场检测仪器及技术研讨会》在中国青年政治学院图书馆学术报告厅隆重举行。来自环境、药品、环境、农业已经国防领域的专家对现场检测仪器的现状,发展前景等进行了热烈的讨论。 莱伯泰科公司携其移动实验室产品及解决方案参加了此次会议,并做题为《现场气质联用及其进技术》的报告,与诸位专家共同分享了在仪器硬件抗震,软件简便化以及现场进样方法及技术等方面的理念和产品,得到了广大专家的普遍认可。《2013年现场检测仪器及技术研讨会》现场产品经理马忠强做题为《现场气质联用及其进样技术》的报告Griffin 460可移动气质联用系统
  • 华电智控发布移动式机动车尾气遥感监测系统Vgas7000-P新品
    产品介绍: Vgas 7000--P系列移动式机动车尾气遥感监测系统采用可调谐激光二极管吸收光谱技术,分别选用分布反馈半导体激光器(DFB)和量子级联半导体激光器(QCL)为光源,实时监测机动车尾气中的一氧化碳(CO)、二氧化碳(CO2)、碳氢化合物(C3H8)和一氧化氮(NO)的含量,同时采用绿光光源检测机动车尾气烟羽的不透光度、吸光系数以及烟度因子。除此之外,尾气遥感检测系统还配备了标准气体校准装置、速度/加速度检装置、视频/牌照识别装置、微型气象站等,可同时监测尾气中各气体的浓度、机动车速度/加速度、并记录机动车车牌号码、车辆颜色、环境温度、湿度、压力及风速等参量。 Vgas 7000-P移动式机动车尾气遥感检测系统将检测主机和副机分别放置于车道的两侧,主机发射的激光光束平行于路面,垂直于车辆行驶方向经反射装置多次反射后由主机内的接收装置接收。该系统的工作原理为:机动车车头穿过主机中光电测速开关发射的第一束光开关光路时系统触发开启,牌照识别系统记录下机动车的车牌号和车辆颜色,当机动车车尾离开主机光电测速开关发射的第二束光路时,速度/加速度检测仪即可根据车头依次遮挡第一束、第二束光路,车尾依次离开第一束、第二束光路计算出机动车的速度和加速度;车辆经过后多路激光束同时穿过尾气烟团,不同频率的激光能量被与之对应的气体吸收并可被光电探测器记录,经信号解调及数据采集结合软件算法,并根据标准气体的标定数据可还原气体的浓度值,最终尾气监测系统将以上数据通过网络传送到环保监控中心。 与上述TDLAS光路同路传输的还有绿光光束,绿光光束同样穿过与尾气烟团混合的烟羽,系统可以记录下扩散后烟羽的不透光度,结合燃烧方程算法及气体标定曲线可计算出发动机的烟度因子(即单位燃料燃烧排放的颗粒物的量)、不透光度和吸光系数。 该系统包含测量主机和副机,主机与副机间配有辅助调光设施,调光方便,适合临时设点测量。正常使用时将测量车与主机放在路面同一侧,路面另一侧放副机(其中副机无线缆连接便于操作),按说明调好辅助光路后即可开机测试。性能特点: 1. 检测灵敏度高:系统采用了可调谐激光二极管吸收光谱技术(TDLAS),选用近红外和中红外激光光源,具有检测灵敏度高、响应速度块、分辨率高等特点,是目前气体检测领域测量精度最高的技术; 2. 检测效率高:系统响应速度快,每辆车测量用时<1秒,每小时可测量上千辆车,省时省力; 3. 能反映车辆的实际排放状况:可在车辆正常行驶过程中完成检测,比传统的接触式测量方法能够更好的反映汽车尾气排放的实际情况; 4. 避免人为造假:可做驾驶员不知晓的情况下完成检测,避免采取人为手段影响检测结果,检测数据实时上传云平台; 5. 可实时监控:相较于定期检查,遥感检测可起到实时监控的目的; 6. 方便移动:该系统主要设备都集成在主机内,副机仅用于反射光路,供电布线简易,方便移动使用。创新点:检测精度高进口传感器带防腐设计,满足具有腐蚀性气体的环境重量轻,结构设计简单,便于检维修移动式机动车尾气遥感监测系统Vgas7000-P
  • 大气环境监测移动实验室仪器配置及性能指标详解
    p  随着我国经济的快速发展,大气环境污染事故频发,气象灾害日益增多,雾霾污染严重。大气环境监测移动实验室已在大气、噪声、光等污染防治的监督管理等领域得到越来越广泛的应用,移动监测监督稽查将得到生态环境部重视。日前,全国移动实验室标准化技术委员会发布关于通知,对《大气环境监测移动实验室通用技术规范》征求意见。/pp  “大气环境监测移动实验室通用技术规范件”是大气环境监测标准体系中的一个重要组成部分,对污染源进行移动特性识别,建立规范移动特性参数和配备设施及设备等一系列特性条件,有利于保证移动监测车在移动中队污染源的检测效性,为推动国家环境移动实验室健康发展起作重要作用。本标准为首次制定,技术归口单位为全国移动实验室标准化技术委员会,起草单位有江西江铃汽车集团改装车股份有限公司、武汉天虹环保产业股份有限公司、聚光科技(杭州)股份有限公司、北京雪迪龙科技股份有限公司、中国环境监测总站、沈阳质量监督检验研究院等。/pp  标准中给出了大气环境监测移动实验室宜配备大气环境监测仪器设备及性能指标。明确指出:移动实验室所有配置的仪器设备应完全自动化、智能化,并具有移动特性,符合GB/T 29476-2012中的规定;移动实验室应配备服务器数据处理系统,具备现场进行数据分析及数据输出和远程在线交互能力;移动实验室的采样及监测设备,满足设备监测性能,可独立或集中分离采样;移动实验室设备应具备自校准功能;移动实验室设备应具备时间同步功能,测试数据与时间同步,报告日期不可修改;移动实验室的实验舱内设备、器具与载具的安装连接应牢固、可靠,根据设备性能要求增加减振措施;移动实验室设备应具备电磁兼容性,应符合GB/T 18268.1的规定。/pp  详细要求如下:/pp style="text-align: center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"strong仪器设备监测内容/strong/a/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="115"p style="text-align:center "监测类别/p/tdtd width="138"p style="text-align:center "监测内容/p/tdtd width="85"p style="text-align:center "性能指标/p/tdtd width="267"p style="text-align:center "参考标准或依据/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"空气VOC/a/p/tdtd width="138"p style="text-align:center "VOC/p/tdtd width="85"p style="text-align:center "见附录A/p/tdtd width="267"p style="text-align:center "环保部《2018年重点地区环境空气挥发性有机物监测方案》的通知,VOC监测项目/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"常规气态污染物/a/p/tdtd width="138"p style="text-align:center "S02、NOx、CO、O3/p/tdtd width="85"p style="text-align:center "见附录B/p/tdtd width="267"p style="text-align:center "HJ/T 193-2013中附录A表A.1/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"颗粒物/a/p/tdtd width="138"p style="text-align:center "PM2.5/PM10/p/tdtd width="85"p style="text-align:center "见附录C/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.2/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气气象参数/a/p/tdtd width="138"p style="text-align:center "风速、风向、温度、湿度、气压/p/tdtd width="85"p style="text-align:center "见附录D/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.3/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"自动校准设备/a/p/tdtd width="138"p style="text-align:center "-/p/tdtd width="85"p style="text-align:center "见附录E/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.4/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录A a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境挥发性有机物监测项目/a/strong/ptable width="605" border="1" cellpadding="0" cellspacing="0"tbodytr class="firstRow"td width="121"p序号/p/tdtd width="123"p类型名称/p/tdtd width="395" valign="top"p style="text-align:center "监测项目/p/td/trtrtd width="121"p1/p/tdtd width="123"p监测项目/p/tdtd width="395" valign="top"p style="text-align:left "非甲烷碳氢化合物、含氧有机物、卤代烃/p/td/trtrtd width="121"p2/p/tdtd width="123"p目标物名称/p/tdtd width="395" valign="top"p1、监测因子:非甲烷碳氢化合物58种 br/ 序号 名称 化合物 化学式 br/ 1 Ethane 乙烷 C2H6 br/ 2 Ethylene 乙烯 C2H4 br/ 3 Propane 丙烷 C3H8 br/ 4 Propene 丙烯 C3H6 br/ 5 isobutane 异丁烷 C4H10 br/ 6 n-Butane 正丁烷 C4H10 br/ 7 Acetylene 乙炔 C2H2 br/ 8 trans-2-Butene 反—2—丁烯 C4H8 br/ 9 1-Butene 1-丁烯 C4H8 br/ 10 cis-2-Butene 顺—2—丁烯 C4H8 br/ 11 isopantane 异戊烷 C5H12 br/ 12 Isobutene 异丁烯 C4H8 br/ 13 1,3-Butadiene 1,3-丁二烯 C4H6 br/ 14 1-Pentene 1—戊烯 C5H10 br/ 15 Pentane 正戊烷 C5H12 br/ 16 trans-2-Pentene 反—2—戊烯 C5H10 br/ 17 Isoprene 异戊二烯 C5H8 br/ 18 cis-2-Pentene 顺—2—戊烯 C5H10 br/ 19 2,2-Dimethylbutane 2,2—二甲基丁烷 C6H14 br/ 20 2,3-Dimethylbutane 2,3—二甲基丁烷 C6H14 br/ 21 2-Methylpentane 2-甲基戊烷 C6H14 br/ 22 Cyclopentane 环戊烷 C5H10 br/ 23 3-Methylpentane 3-甲基戊烷 C6H14 br/ 24 1-Hexene 1-己烯 C6H12 br/ 25 n-Hexane 正己烷 C6H14 br/ 26 2,4-Dimethylpentane 2,4-二甲基戊烷 C7H16 br/ 27 Methylcyclopentane 甲基环戊烷 C6H12 br/ 28 2-Methylhexane 2-甲基己烷 C7H16 br/ 29 2,3-Dimethylpentane 2,3-二甲基戊烷 C7H16 br/ 30 Cyclohexane 环己烷 C6H12 br/ 31 3-Methylhexane 3-甲基己烷 C7H16 br/ 32 Benzene 苯 C6H6 br/ 33 2,2,4-Trimethylpentane 2,2,4-三甲基戊烷 C8H18 br/ 34 n-Heptane 正庚烷 C7H16 br/ 35 Methylcyclohexane 甲基环己烷 C7H14 br/ 36 2,3,4-Trimethylpentane 2,3,4-三甲基戊烷 C8H18 br/ 37 2-Methylheptane 2-甲基庚烷 C8H18 br/ 38 3-Methylheptane 3-甲基庚烷 C8H18 br/ 39 Toluene 甲苯 C7H8 br/ 40 Octane 正辛烷 C8H18 br/ 41 Tetrachloroethylene 四氯乙烯 C2Cl4 br/ 42 Ethylbenzene 乙苯 C8H10 br/ 43 n-Nonane 正壬烷 C9H20 br/ 44 m/p-Xylene 对/间二甲苯(p/m﹚ C8H10/C8H10 br/ 45 o-Xylene 邻﹙O﹚二甲苯 C8H10 br/ 46 Styrene 苯乙烯 C8H8 br/ 47 Isopropylbenzene 异丙苯 C9Hl2 br/ 48 n-Propylbenzene 正丙基苯 C9H12 br/ 49 m-Ethyltoluene 3-乙基甲苯 C9H12 br/ 50 p-Ethyltoluene 4-乙基甲苯 C9H12 br/ 51 1,3,5-Trimethylbenzene 1,3,5-三甲基苯 C9H12 br/ 52 O-Ethyltoluene 2-乙基甲苯 C9H12br/ 53 1,2,4-Trimethylbenzene 1,2,4-三甲基苯 C9H12 br/ 54 1,2,3-Trimethylbenzene 1,2,3-三甲基苯 C9H12 br/ 55 1,3-Diethylbenzene 1,3-二乙基苯 C10H14br/ 56 1,4-Diethylbenzene 1,4-二乙基苯 C10H14br/ 57 Udecane 正十一烷 C11H24br/ 58 Dodecane 正十二烷 C12H26br/ 含氧有机物13种 br/ 序号 化合物 化合物 化学式 br/ 1 acrolein 丙烯醛 C3H4O br/ 2 Propanal 丙醛 C3H6O br/ 3 Acetone 丙酮 C3H6O br/ 4 Acetonitrile 乙腈 C2H3N br/ 5 MTBE 甲基叔丁基醚 C5H12O br/ 6 Methacrolein 2-甲基丙烯醛 C4H6O br/ 7 n-Butanal 正丁醛 C4H8O br/ 8 Methylvinylketone 甲基乙烯基酮 C4H6O br/ 9 Methylethyl ketone 甲基乙基酮 C4H8O br/ 10 2-pentanone 2-戊酮 C5H10O br/ 11 3-Pentanone 3-戊酮 C5H10Obr/ 12 n-pentanal正戊醛 C5H10Obr/ 13 n-Hexanal 正己醛 C6H12O br/ 卤代烃31种 br/ 序号 化合物英文名称 化合物中文名称 化学式 br/ 1 Freon114(C2F4Cl2) 氟利昂114 C2F4Cl2 br/ 2 Chloromethane 氯甲烷 CH3Clbr/ 3 Vinylchloride 氯乙烯 C3H3Clbr/ 4 Bromomethane 溴甲烷 CH3Br br/ 5 Chloroethane 氯乙烷 C2H5Cl br/ 6 Freon11(CFCl3) 氟利昂11 CCl3F br/ 7 1,1-Dichloroethylene 1,1-二氯乙烯 C2H2Cl2 br/ 8 Freon113(C2F3Cl3) 氟利昂113 C2F3Cl3 br/ 9 Methyl iodide 碘甲烷 CH3I br/ 10 Dichloromethane 二氯甲烷 CH2Cl2 br/ 11 1,1-Dichloroethane 1,1-二氯乙烷 C2H4Cl2 br/ 12 cis-1,2-Dichloroethylene 顺-1,2-二氯乙烯 C2H2Cl2 br/ 13 Chloroform 氯仿 CHCl3 br/ 14 1,1,1-Trichloroethane 1,1,1-三氯乙烷 C2H3Cl3 br/ 15 Carbontetrachloroide 四氯化碳 CCl4 br/ 16 1,2-Dichloroethane 1,2-二氯乙烷 C2H4Cl2 br/ 17 Trichloroethylene 三氯乙烯 C2HCl3 br/ 17 1,2-Dichloropropane 1,2-二氯丙烷 C3H6Cl2 br/ 18 Bromodichloromethane 溴二氯甲烷 CHBrCl2br/ 20 trans-1,3-Dichloropropene 反-1,3-二氯丙烯 C3H4Cl2 br/ 21 cis-1,3-Dichloropropene 顺-1,3-二氯丙烯 C3H4Cl2 br/ 22 1,1,2-Trichloroethane 1,1,2-三氯乙烷 C2H3Cl3 br/ 23 Tetrachloroethylene 四氯乙烯 C2Cl4 br/ 24 1,2-Dibromoethane 二溴乙烷 C2H4Br2 br/ 25 Chlorobenzene 氯苯 C6H5Cl br/ 26 1,3-Dichlorobenzene 1,3-二氯苯 C6H4Cl2 br/ 27 1,4-Dichlorobenzene 1,4-二氯苯 C6H4Cl2 br/ 28 Benzylchloride 苄基氯﹙氯甲苯)C7H7Cl br/ 29 1,2-Dichlorobenzene 1,2-二氯苯 C6H4Cl2 br/ 30 Bromoform 溴仿CHBr3br/ 31 1,1,2,2-Tetrachloroethane 1,1,2,2-四氯乙烷 C2H2Cl4/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录B a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境监测移动实验室系统/a/strongstrong(NO2、SO2、O3、CO)监测仪器性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="128" rowspan="2"p style="text-align:center "检测项目/p/tdtd width="510" colspan="4"p style="text-align:center "性能指标/p/td/trtrtd width="128"p style="text-align:center "NO2分析仪器/p/tdtd width="128"p style="text-align:center "SO2分析仪器/p/tdtd width="128"p style="text-align:center "O3分析仪器/p/tdtd width="128"p style="text-align:center "CO分析仪器/p/td/trtrtd width="128"p style="text-align:center "零点噪声/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤0.25 ppb/p/td/trtrtd width="128"p style="text-align:center "最低检出限/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppb/p/td/trtrtd width="128"p style="text-align:center "量程噪音/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/td/trtrtd width="128"p style="text-align:center "示值误差/p/tdtd width="128"p style="text-align:center "± 2%F.S./p/tdtd width="128"p style="text-align:center "± 2%F.S./p/tdtd width="128"p style="text-align:center "± 4%F.S./p/tdtd width="128"p style="text-align:center "± 2%F.S./p/td/trtrtd width="128"p style="text-align:center "20% 量程精密度/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppm/p/td/trtrtd width="128"p style="text-align:center "80% 量程精密度/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppm/p/td/trtrtd width="128"p style="text-align:center "24h零点漂移/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/trtrtd width="128"p style="text-align:center "24h20%量程漂移/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/trtrtd width="128"p style="text-align:center "24h80%量程漂移/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录C a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"空气质量可吸入颗粒物自动监测仪/a/strongstrong技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="425" colspan="2"p style="text-align:center "测量范围/p/tdtd width="213"p style="text-align:center "0~1mg/m3或0~10 mg/m3(可选)/p/td/trtrtd width="425" colspan="2"p style="text-align:center "50%切割粒径/p/tdtd width="213"p style="text-align:center "10 μm± 1μm空气动力学直径/p/td/trtrtd width="425" colspan="2"p style="text-align:center "最小显示单位/p/tdtd width="213"p style="text-align:center "0.001mg/m3/p/td/trtrtd width="425" colspan="2"p style="text-align:center "采样流量偏差/p/tdtd width="213"p style="text-align:center "≤± 5%设定流量/24h/p/td/trtrtd width="425" colspan="2"p style="text-align:center "仪器平行性/p/tdtd width="213"p style="text-align:center "≤± 7% 或5μg/m3/p/td/trtrtd width="425" colspan="2"p style="text-align:center "校准膜重现性/p/tdtd width="213"p style="text-align:center "≤± 2%标准值/p/td/trtrtd width="213" rowspan="3"p style="text-align:center "与参比方法比较/p/tdtd width="213"p style="text-align:center "斜率/p/tdtd width="213"p style="text-align:center "1± 0.1/p/td/trtrtd width="213"p style="text-align:center "截距/p/tdtd width="213"p style="text-align:center "0± 5 μg/m3/p/td/trtrtd width="213"p style="text-align:center "相关系数/p/tdtd width="213"p style="text-align:center "≥0.95/p/td/trtrtd width="425" colspan="2"p style="text-align:center "输出信号/p/tdtd width="213"p style="text-align:center "模拟信号或数字信号/p/td/trtrtd width="425" colspan="2"p style="text-align:center "工作电压/p/tdtd width="213"p style="text-align:center "AC 220V± 10%,50 Hz/p/td/trtrtd width="425" colspan="2"p style="text-align:center "工作环境温度/p/tdtd width="213"p style="text-align:center "0~50 ℃/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录D a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境监测/a/strongstrong移动实验室气象设备技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="159"p style="text-align:center "测量项目/p/tdtd width="160"p style="text-align:center "测量范围/p/tdtd width="160"p style="text-align:center "测量精度/p/tdtd width="160"p style="text-align:center "输出信号/p/td/trtrtd width="159"p style="text-align:center "风速/p/tdtd width="160"p style="text-align:center "1~60 m/s/p/tdtd width="160"p style="text-align:center "± 0.3m/s/p/tdtd width="160" rowspan="5"p style="text-align:center "模拟信号或数字信号/p/td/trtrtd width="159"p style="text-align:center "风向/p/tdtd width="160"p style="text-align:center "0~360/p/tdtd width="160"p style="text-align:center "± 3° /p/td/trtrtd width="159"p style="text-align:center "温度/p/tdtd width="160"p style="text-align:center "-40~60 ℃/p/tdtd width="160"p style="text-align:center "± 0.2℃/p/td/trtrtd width="159"p style="text-align:center "湿度/p/tdtd width="160"p style="text-align:center "0~100%RH/p/tdtd width="160"p style="text-align:center "± 2%/p/td/trtrtd width="159"p style="text-align:center "气压/p/tdtd width="160"p style="text-align:center "300~1200 hPa/p/tdtd width="160"p style="text-align:center "± 1 hPa/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录E 大气环境监测移动实验室自动校准设备技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="159"p style="text-align:center "设备名称/p/tdtd width="160"p style="text-align:center "性能指标/p/tdtd width="160"p style="text-align:center "技术要求/p/tdtd width="160"p style="text-align:center "备注/p/td/trtrtd width="159" rowspan="5"p style="text-align:center "多气体校准装置/p/tdtd width="160"p style="text-align:center "稀释比例/p/tdtd width="160"p style="text-align:center "1/200~1/2000/p/tdtd width="160" rowspan="12"p style="text-align:center "1.要求所有的稀释源使用含氧量为20.9± 0.2%的无干扰干燥气体; br/ 2.渗透室温度为渗透室中渗透管周围的温度;/p/td/trtrtd width="160"p style="text-align:center "流量计准确度/p/tdtd width="160"p style="text-align:center "± 1%/p/td/trtrtd width="160"p style="text-align:center "渗透室温度准确度/p/tdtd width="160"p style="text-align:center "± 0.1 ℃/p/td/trtrtd width="160"p style="text-align:center "臭氧发生准确度/p/tdtd width="160"p style="text-align:center "± 2%/p/td/trtrtd width="160"p style="text-align:center "工作环境/p/tdtd width="160"p style="text-align:center "0~40 ℃/p/td/trtrtd width="159" rowspan="7"p style="text-align:center "零气发生器/p/tdtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"SO2监测分析仪/a/p/tdtd width="160"p style="text-align:center "SO2体积分数<0.5× 10?9/p/td/trtrtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"NO2监测分析仪/a/p/tdtd width="160"p style="text-align:center "NOx体积分数<0.5× 10?9/p/td/trtrtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"O3监测分析仪/a/p/tdtd width="160"p style="text-align:center "O3体积分数<0.5× 10?9/p/td/trtrtd width="160" rowspan="4"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"CO监测分析仪/a/p/tdtd width="160"p style="text-align:center "NOx<5× 10?9/p/td/trtrtd width="160"p style="text-align:center "O3体积分数<1× 10?9/p/td/trtrtd width="160"p style="text-align:center "不含HC/p/td/trtrtd width="160"p style="text-align:center "CO体积分数<10× 10?9/p/td/tr/tbody/tablepbr//p
  • 互联互通,实时监测——澳柯玛温湿度冷链监控系统
    多台医用冰箱、冷藏箱、冷库、冷藏车等固定或移动测温环境,如何能实时监控各个制冷单元的温湿度情况,以防意外发生呢?茂默科学此介绍一款数字化冷链监控系统澳柯玛温湿度冷链监控系统(温度记录仪)。澳柯玛智能温湿度监控系统是新一代监控产品,系统安装使用简单便捷,数据准确安全数据由数据传输模块直接通过移动网络上传集中服务器,用户只需登录即可查询或下载相关数据系统可应用于固定存储环境,也可应用于移动运输车、运输箱等环境。数据采集模块AKMS-03是一款集自身存储和云端存储功能为一体的智能温湿度记录仪,基于澳柯玛自主研发二代的物联网通讯技术interBow与云端服务器实时通信,传感数据在传输和存储过程中安全可靠。AKMS-03外观小巧轻薄,比S1略大,设计有悬挂、粘贴、吸附等多种置放方式,适用于医用冰箱、冷藏箱、冷库、冷藏车等固定或移动测温环境。深低温采集模块AKMB-03DAKMS-03D是一款工业级智能深低温采集器, 基于澳柯玛自主研发二代的物联网通讯技术interBow与网关实时通信, 传感数据在传输和存储过程中安全可靠。AKMB是一款用于无线传感网络的智能移动网关,基于interBow无线通讯技术可同时与多个采集器进行通讯,实时接收采集器的传感据,并通过2G网络将数据上传至云端服务器。体积小,防护级别较高(IP54)可应对移动车辆、仓库、冷库等大多数工作环境。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多澳柯玛相关的产品,Welcome to consult~咨询有惊喜哦!
  • 地表水检测移动实验室仪器配置及监测项目一览
    p  随着我国对地表水现场检测的需求不断扩大,地表水快速检测移动实验室在检测过程中的重要性逐渐显现,因此对地表水快速检测移动实验室的采样、检测仪器等相关设备也引起了高度重视。作为地表水采样与检测一体化的移动实验室平台,制定统一、规范的地表水快速检测移动实验室用于地表水现场采样与检测等显得尤为必要。/pp  日前,全国移动实验室标准化技术委员会发布关于通知,对《地表水快速检测移动实验室通用技术规范》征求意见。本标准由全国移动实验室标准化技术委员会提出并归口,起草单位为青岛佳明测控科技股份有限公司,合作单位为中国环境监测总站、青岛市环境监测中心、上海安杰环保科技股份有限公司、山东正泰希尔专用汽车有限公司。/pp  我们国家目前已经建立了《地表水环境质量标准》、《移动实验室通用要求》、《地表水自动监测技术规范》等标准,但是没有移动实验室地表水监测的专业性标准,本标准参考了以上标准,根据地表水的相关规定,做了相关规范,填补了地表水检测移动实验室没有技术规范的空白。/pp  标准中明确了地表水快速检测移动实验室仪器设备配置参考及地表水快速检测移动实验室监测项目。其中,地表水快速检测移动实验室可参考地表水快速检测移动实验室监测项目来选配仪器设备。详细内容如下:/pp style="text-align: center "strong地表水检测移动实验室配置仪器设备/strong/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytr class="firstRow"td width="39"p style="text-align:center "序号/p/tdtd width="157"p style="text-align:center "检测类别/p/tdtd width="480"p style="text-align:center "仪器设备/p/td/trtrtd width="39" rowspan="2"p style="text-align:center "1/p/tdtd width="157" rowspan="2"p style="text-align:center "采样器、样品采集、存储类/p/tdtd width="480"p style="text-align:center "a href="https://www.instrument.com.cn/Consumables/s_82.htm" target="_blank"聚乙烯塑料桶/a、a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"单层采水瓶/a、a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"直立式采水器/a、a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"在线自动监测设备/a/p/td/trtrtd width="480"p style="text-align:center "a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"硬质玻璃瓶/a、a href="https://www.instrument.com.cn/Consumables/s_82.htm" target="_blank"聚乙烯瓶/a等容器、a href="https://www.instrument.com.cn/Consumables/s_82.htm" target="_blank"无菌瓶/a等容器、a href="https://www.instrument.com.cn/list/main/03.shtml" target="_blank"车载冰箱/a/p/td/trtrtd width="39"p style="text-align:center "2/p/tdtd width="157"p style="text-align:center "试验类/p/tdtd width="480"p style="text-align:center "a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"烧杯/a、a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"试管/a、a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"试剂盒/a、a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"容量瓶/a、a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"量筒/a、a href="http://移液枪" target="_blank"移液枪/a、a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"移液管/a等/p/td/trtrtd width="39"p style="text-align:center "3/p/tdtd width="157" rowspan="3"p style="text-align:center "检测仪器类/p/tdtd width="480" rowspan="3"p style="text-align:center "a href="http://五参数分析仪" target="_blank"五参数分析仪/a、a href="https://www.instrument.com.cn/zc/1687.html" target="_blank"高锰酸盐指数分析仪/a、a href="http://氨氮分析仪" target="_blank"氨氮分析仪/a、a href="https://www.instrument.com.cn/zc/319.html" target="_blank"总磷分析仪/a、a href="https://www.instrument.com.cn/zc/319.html" target="_blank"总氮分析仪/a、a href="https://www.instrument.com.cn/zc/35.html" target="_blank"可见/紫外分光光度计/a、a href="https://www.instrument.com.cn/zc/24.html" target="_blank"离子色谱仪/a、a href="https://www.instrument.com.cn/zc/1158.html" target="_blank"气相分子吸收光谱仪/a、a href="https://www.instrument.com.cn/zc/39.html" target="_blank"原子发射光谱仪/a。a href="https://www.instrument.com.cn/zc/1650.html" target="_blank"重金属分析仪等在线自动监测仪/a、a href="https://www.instrument.com.cn/zc/646.html" target="_blank"重金属分析系统/a、a href="https://www.instrument.com.cn/zc/293.html" target="_blank"电感耦合等离子体质谱仪ICP-MS/a、a href="https://www.instrument.com.cn/zc/24.html" target="_blank"离子色谱仪/a、a href="https://www.instrument.com.cn/zc/1.html" target="_blank"气相色谱仪/a、a href="https://www.instrument.com.cn/zc/290.html" target="_blank"气相色谱-质谱联用仪/a、a href="https://www.instrument.com.cn/zc/290.html" target="_blank"气相色谱-飞行质谱联用仪/a、a href="https://www.instrument.com.cn/zc/143.html" target="_blank"培养箱/a等。/p/td/trtrtd width="39"p style="text-align:center "3/p/td/trtrtd width="39"p style="text-align:center "3/p/td/tr/tbody/tablep  地表水快速检测移动实验室仪器设备选择原则:a) 根据使用的实际需求选择合适的仪器设备。 b) 有限选用主流分析方法的仪器设备  c) 仪器设备宜便捷、小型化。/pp style="text-align: center "strong地表水快速检测移动实验室监测项目/strong/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytr class="firstRow"td width="44" valign="top"p style="text-align:center " /p/tdtd width="280" valign="top"p style="text-align:center "strong必测项目/strongstrong /strong/p/tdtd width="314" valign="top"p style="text-align:center "strong选测项目/strongstrong /strong/p/td/trtrtd width="44" valign="top"p style="text-align:center "河 流/p/tdtd width="280" valign="top"p style="text-align:center "水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、 br/ 石油类、阴离子表面活性剂、硫化物和粪大肠菌群/p/tdtd width="314" valign="top"p style="text-align:center "总有机碳、甲基汞,根据纳污情况由各级相关环境保护主管部门确定/p/td/trtrtd width="44" valign="top"p style="text-align:center "集中式饮用水源地/p/tdtd width="280" valign="top"p水温、pH、溶解氧、悬浮物②、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、铁、锰、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、硫酸盐、氯化物、硝酸盐和粪大肠菌群/p/tdtd width="314" valign="top"p三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、甲醛、乙醛、丙烯醛、三氯乙醛、苯、甲苯、乙苯、二甲苯③、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯④、四氯苯⑤、六氯苯、硝基苯、二硝基苯⑥、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯⑦、2,4-二硝基氯苯、2,4-二氯苯酚、2,4,6-三氯苯酚、五氯酚、苯胺、联苯胺、丙烯酰胺、丙烯腈、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯、水合肼、四乙基铅、吡啶、松节油、苦味酸、丁基黄原酸、活性氯、滴滴涕、林丹、环氧七氯、对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷、百菌清、甲萘威、溴氰菊酯、阿特拉津、苯并(a)芘、甲基汞、多氯联苯⑧、微囊藻毒素-LR、黄磷、钼、钴、铍、硼、锑、镍、钡、钒、钛、铊/p/td/trtrtd width="44" valign="top"p style="text-align:center "湖泊水库/p/tdtd width="280" valign="top"p水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物和粪大肠菌群/p/tdtd width="314" valign="top"p style="text-align:center "总有机碳、甲基汞、硝酸盐、亚硝酸盐,其它 br/ 根据纳污情况由各级相关环境保护主管部门确定/p/td/trtrtd width="44" valign="top"p style="text-align:center "排污河(渠)/p/tdtd width="280" valign="top"p style="text-align:center "根据纳污情况,参照表中工业废水监测项目/p/tdtd width="314" valign="top"p style="text-align:center " /p/td/tr/tbody/tablepbr//p
  • 力合科技“移动式水质自动监测系统”成功通过建设行业科技成果评估
    2016年4月5日,力合科技自主研发的LFSZ-2008移动式水质自动监测系统成功通过建设部科技发展促进中心组织的建设行业项目科技成果评估。评估委员会专家由中国科学院生态环境研究中心曲久辉院士、清华大学张晓健教授、国家环境分析测试中心黄业茹研究员、中国环境监测总站刘廷良研究员、中国水利水电科学研究院蒋云钟教授级高工、水利部农村饮水安全中心刘文朝教授级高工、环保部华南环境科学研究所许振成研究员、山东省城市排水水质监测中心贾瑞宝研究员、北京市市政工程市政设计研究院有限公司郄燕秋教授级高工、湖南省环境监测中心罗岳平高工等国内知名专家组成。评估委员会专家对力合科技自主研发的移动式水质自动监测系统进行了详细的实地考察并听取了汇报,对力合科技在该产品所做的工作给予了充分肯定,认为该系统采用模块化、小型化、通用化设计,监测参数扩展性好,可实现近百项水质参数的自动监测,可满足不同现场水质监测需求。同时创建了完善的自动监测数据在线质量控制体系,具有运行过程记录、标准样品自动核查、加标回收率自动测定等质控措施,保证了自动监测数据的准确性和可靠性;建立了综合信息化管理平台,可在现场与区域内其他监测系统组建动态监测网,对监测网络数据进行综合分析,为快速排查污染肇事源的位置、有效处理应急事故以及分析巡检结果提供定性、定量的数据支撑。评估委员会专家一致认为该系统在现场自动快速检测方面已达到国际先进水平,具有重要推广应用价值,同意通过评估。 评估会现场移动式水质自动监测系统 力合科技2008年开始对移动式水质自动监测系统进行研发,该产品主要有由改装车辆、取水单元、水样预处理单元、检测单元、控制系统、数据采集传输模块和管理平台等构成,采用模块化设计与系统集成,将自动监测仪器与便携式监测仪器相结合,具有水质的自动采样、预处理、检测分析、数据处理等综合功能,可满足不同现场水质监测需求。该产品经过不断改进和创新,自2012年开始在全国各地得到广泛应用,在广东高州洪灾、广西龙江镉污染、天津港危险品爆炸、甘肃陇南锑污染等重大灾害及污染事件应急监测中发挥了突出作用,多次获得国家部委和地方政府的表扬。
  • 德图温湿度、风速变送器监测建筑“呼吸”
    11月21日下午16点,历时6天的第十一届中国国际高新技术成果交易会(简称高交会)在深圳圆满闭幕。在这场科学发展、全面推进创新的盛会上,建筑科研单位首度亮相,其中一座节能建筑的模型在高交会馆八号馆展出,吸引了众多参观者的目光。 这栋名叫建科大厦的建筑不仅是深圳市可再生能源利用城市级示范工程,而且是国家第一批可再生能源示范工程。这座建筑外形普通,甚至毫不起眼,但却使用了诸多节能科技成果。 比如,建科大厦采用了自然通风节能设计,经过精确计算,建筑采用了&ldquo 吕&rdquo 字形体形和平面,为室内通风创造了良好条件 设计中根据房间使用功能和时间上的差异,对不同的楼层区域采用了不同的空调方式。据测算,通过这些能源利用措施,建科大厦比普通大厦可节能65%。&ldquo 它是&lsquo 能够呼吸&rsquo 的建筑。&rdquo 深圳市建筑科学院院长叶青介绍。 在这栋&ldquo 有生命的建筑&rdquo 里,监控建筑的&ldquo 呼吸&rdquo 也是很重要的一环。只有充分掌握建筑环境里的温度、湿度、风速等诸多环境参数,这栋建筑才能根据办公区域人员的多和少,自动调节水平带窗,在窗墙比、自然采光、隔热防晒间找到最佳平衡点。在这里,德图的在线温湿度变送器大展身手,全面监测建筑环境中温度、湿度、风速等诸多环境参数,提供优异精度的数据,让管理人员全方位实时掌握建筑 &ldquo 呼吸&rdquo 状态成为可能。 多年来,德图的温湿度变送器一直是干燥处理及其他关键环境的策略首选。高品质温湿度变送器的核心在于高品质的传感器。从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接受不同的方式的检测,精度都优于1%RH。如此强有力的保证,也是深圳建科大厦选择德图温湿度变送器的原因。&ldquo 深圳建科大厦一共用了150多台testo变送器,涵盖风速、温湿度、温度的测量,德图能以如此大的力度参与中国绿色节能第一楼的建设和维护,我作为产品经理,是非常骄傲的!&rdquo 德图产品经理吴保东高兴的表示。
  • 北京瑞多公司推出最新一代毒品炸药检测仪——zNose4500移动式快速分析仪
    北京瑞多公司推出新一代毒品炸药检测仪&mdash &mdash zNose4500移动式快速分析仪,该分析仪不仅能够检测毒品炸药,还能在现场检测出易制毒品、生化毒气等,欢迎新老顾客来电咨询。
  • 滴滴快的上线基因检测项目 或涉足移动医疗领域
    p style="TEXT-ALIGN: center"img style="WIDTH: 500px HEIGHT: 331px" title="201582861330442.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201508/noimg/6a277d90-df7a-4060-ba50-050e8c743882.jpg" width="500" height="331"//pp  8月28日消息,滴滴快的旗下的滴滴专车、一号专车近日上线“基因专车”项目,幸运用户可以体验免费基因检测。这一项贴心的功能,是滴滴快的给用户的最新福利,也标志着其未来或许将涉足移动医疗这一领域。/pp  一名专业人士坐在专车里,带着检测工具上门为用户检测基因 只需5分钟,用户就能知道自身包括遗传性肿瘤、健康风险、罕见遗传病、体质特征等在内的多达148项结果& #823& #823这是关于互联网专车的最近应用场景,近期将在中国广州、成都、北京、上海、杭州等地上演。/pp  在中国移动出行市场占据超八成份额的滴滴专车、一号专车与合作伙伴23魔方一道,为专车用户带来这一免费福利。上述5个城市的用户可在滴滴打车、一号专车的APP里报名,填写相关信息,幸运儿就将在这里面产生。该项目市场价为999元。/pp style="TEXT-ALIGN: center"img style="WIDTH: 336px HEIGHT: 600px" title="201582861330441.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201508/noimg/f07a66fd-5571-48d9-8743-0f04a017408c.jpg" width="336" height="600"//pp  这也是滴滴快的首次涉及到移动医疗这一领域。目前国内移动医疗行业进入爆发期,相关数据显示,2015年移动医疗市场规模可增至45亿元,而到2017年更将达到200亿元。这么大一块蛋糕,拥有海量流量入口和无数优质用户的滴滴快的,想分一杯羹并不奇怪。而专车更可以结合多种场景。/pp  滴滴快的方面表示,该项目目前在试运营阶段,将持续到9月8日。5个城市有数百名用户可以免费体验这项服务。未来,这个项目将视具体情况尤其用户接受程度,再决定是否拓展到更多城市。/pp  同时,这也是滴滴快的为专车用户提供的又一个性化、极具舒适度的服务。此前,滴滴快的推出过一键叫专机、一键叫直升机等服务,上线了女士专车、音乐专车、水果专车等,受到用户的欢迎和喜爱。滴滴快的长期专注专车增量市场,不断对用户进行增值,挖掘并满足不同用户的尊贵化、个性化需求。/pp  业内人士认为,这些服务加强了滴滴快的专车在线上、线下的融合,有助其拓展用户入口、增加用户黏性。据第三方研究机构易观国际最新发布的《中国专车服务市场季度监测报告2015年第2季度》数据显示,今年二季度,滴滴快的、Uber和神州专车分别以82.3%、14.9%和10.7%的比例占据中国专车服务活跃用户覆盖率的前三名。也就是说,滴滴的专车用户覆盖率比第二、第三名之和的三倍还要多,占据压倒性优势。/p
  • 自行式质谱/光谱综合移动实验室填补我国技术空白
    8月28日,移动实验室正式进驻全运村,开始为十二运提供食品安全检测服务。  9月2日17:00,移动实验室开赴沈阳市亿承源公司进行抽样工作,抽取该公司为运动员和会务人员提供的各类蔬菜17个品种,并随即将样品带回全运村,现场进行蔬菜中菌落总数和大肠杆菌总数的检测工作,于23:00前完成所有样品从预处理、培养到检测的全部过程,及时有效地配合了监管工作,切实保证运动员和会务组工作人员食品质量安全。  移动实验室由沈阳产品质量监督检验院研制。8月16日,沈阳产品质量监督检验院在沈北检测基地隆重召开研制项目&ldquo 自行式质谱综合移动实验室研究与应用&rdquo 、&ldquo 自行式光谱综合移动实验室研究与应用&rdquo 科技成果鉴定会。来自省内高校、食品药品监督管理、分析测试中心等七个部门的专家听取了项目研发的汇报,观看了移动实验室的现场演示。据介绍,此项目历时两年时间,克服重重技术难关,对各种移动实验室仪器设备及载具进行多次适应现场快速检测的调试,通过不断改进,最终达到项目验收指标。  专家组经过讨论,认为该项目意义重大,作为项目成果的自行式光谱综合移动实验室和自行式质谱综合移动实验室设计合理,参照现有国家标准研发制造,仪器设备配备齐全,融合了先进的快速检测技术,可实现对非法添加物、农药残留、兽药残留、有机污染物等多项指标的快速检测,现场出具检测数据,填补了我国移动实验室领域的技术空白,达到了国内先进水平,满足了我国食品安全移动检测技术方面的社会需求。  项目最终顺利通过验收。专家组在评价移动实验室时认为,移动实验室在检测方面不但具备灵活、快速、实用、有效的优点,而且具有较强的环境适应性(高温、低温、颠簸等)。其内部配备了温湿度控制系统、排风系统、供电系统、供排水系统及消毒、低温储存设施,为检测实验提供科学合理的环境,保证其正常运行。实验仪器方面,自行式光谱综合移动实验室以表面增强拉曼光谱仪为主,同时配备了食品安全快速检测仪等仪器设备,检测过程简单、快捷,可实现多种检测指标的快速检测,尤其在食品非法添加物和危险物的定性检测方面表现突出。自行式质谱综合移动实验室以气相-质谱联用仪为主,同时也配备了食品安全快速检测仪等仪器设备,使检测过程简单、快速,检测时间也大大减少,由于气相-质谱联用仪分析检测时具备高灵敏度的特点,可实现对微量农药残留、兽药残留、有机污染物残留等指标的定性、定量检测。  由于两台移动实验室具备上述优点,经批准,移动实验室在&ldquo 十二运&rdquo 期间开赴现场,对食品等进行实时检测,保障全运期间食品质量安全。全运会结束后,移动实验室将应用于质监、工商、卫生防疫等领域,应对突发事件,实现实时监管,提供公共服务。
  • 中国研制首个“文物出土现场保护移动实验室”
    2012年6月 一辆加长的白色厢式货车静静地停在陕西省高陵县院张村外的荒野上,车身上的黑色大字格外醒目——文物出土现场保护移动实验室。车旁十几米外蓝色挡板围起来的,是刚发现不久正在发掘中的明代家族墓葬。不时有研究人员从车上下来,带着各种仪器设备进入发掘现场。而车内,几位年轻的研究人员正在进行监测、分析工作。  这便是被称为“文物保护航母”的我国首个用于文物保护的“移动实验室”。  从2009年起,这辆在“十一五”科技支撑计划支持下研发、我国自主知识产权的“移动实验室”多次出现在山西、陕西、山东、湖北等地的考古发掘现场,在“实验室前移至考古现场”的理念下,为考古工作提供系统的技术支持,并在第一时间对出土文物进行应急处理和保护。  考古现场亟待“技术支持”  近年来,随着我国经济建设步伐加快,配合南水北调、西气东输、铁路公路等国家重大基础建设的考古发掘任务急剧增加,每年达1000多项。这对考古发掘速度和科学性提出了巨大挑战。现场考古发掘各环节技术支撑不足、出土文物保护方法单一、信息提取量低等问题,致使许多出土文物、特别是脆弱质文物在第一时间得不到科学有效的保护。  上世纪50年代,定陵墓室打开的一刹那,五彩斑斓的丝织品瞬间失色。这个惨重的教训,成为我国从此不再允许发掘帝王陵寝的重要原因。而上世纪70年代发掘闻名于世的长沙马王堆汉墓时,数量巨大、种类众多的纺织品和竹简帛书,也由于缺乏有效的现场保护技术,出土时光亮新鲜,出土后迅速氧化变色、变质、变形,造成了无法挽回的巨大损失。  “实验室前移至考古现场”的想法便在这种状况下应运而生。文物出土现场保护移动实验室课题负责人苏伯民介绍,“移动实验室”将有综合效能的快速、专业化技术装备和专业人员派向现场,不仅为制定考古发掘预案、考古现场信息的全方位记录提供技术设备保障,更重要的是使出土文物在第一时间能得到及时有效的保护。  一场跨学科、跨领域、跨行业、跨部门的联合技术攻关由此展开。该“移动实验室”研发课题于2006年10月立项,由敦煌研究院、国家博物馆、中国社科院、清华大学、浙江大学和陕西考古研究院等单位的专家、学者、科研人员共46人组成课题组共同研发。  创造数个考古领域第一  2008年7月,陕西西安庞留唐代墓葬发掘现场,炎炎烈日下,研究人员们紧盯着一块屏幕,上面显示温度、湿度、各种气体浓度的数据不断变化,而传回这些数据的正是研制中的“移动实验室”搭载的考古机器人,它正在未打开的古墓内部进行预先探测。  考古机器人直径10厘米,高39厘米,可根据需要像“变形金刚”一样组装成直筒式和履带式。“内部温度为17.5摄氏度、相对湿度82.3%。”当最终的数据传回,研究人员难掩激动心情,这是我国有史以来,首次探明封闭墓葬文物埋藏环境的温湿度参数。机器人携带的摄像头还发现了墓葬内存在壁画等珍贵文物。这样的智能化预先探测在我国之前的考古工作中从未有过。国家文物局科技保护专家组组长王丹华说:“这不仅有利于考古人员的人身安全,而且对于重要文物出土后保存条件的研究,也将提供重要参考依据。”  机器人预先探测是“移动实验室”的一大“亮点”。但“移动实验室”创造的考古领域的第一,还远不止于此。  “移动实验室”集成了一大批可用于考古和出土文物保护的新技术。针对文物出土现场的重大技术需求,项目组联合考古、文物保护与修复、智能技术、图形图像、设计、设备制造集成等数十家科研单位,引入多学科相关高端技术并进行二次开发和联合攻关,研发了针对文物考古工地的三维信息采集与重建系统、考古辅助快速制图系统、飞行控制航拍、智能化预探测系统、考古现场无线环境监测系统以及出土文物应急处置系统技术及装备,建立了考古现场埋藏环境和出土文物现场分析方法。  最终出现在我们眼前的“移动实验室”是一辆11米长、2米多宽、1.83米高的白色长方形舱体。采用了先进的移动舱体制作技术,具有隔热、保温、防水、室外照明等功能,与承载运输的卡车底板结合紧密,形成一体,能够满足野外环境下实验室工作的要求。苏伯民说:“‘移动实验室’有4项基本功能:发掘前的预探测 通过测绘等手段对遗址空间信息的记录 第一时间对各种材质的出土文物进行分析保护 监测文物埋藏环境,为后续保护提供依据。”  实验室内则另有乾坤。这是一个现代化的文物保护实验室,厢体内分为两个区域,前半部分是图像观测与数据采集、处理设备,后半部分是出土文物现场保护技术设备。车内几位研究人员正在不同区域对刚刚从墓葬中采集的样品进行分析。便携式X荧光、拉曼光谱、近红外光谱仪、X探伤、便携式显微镜、真空充氮保存柜等设备一应俱全。人性化的精巧设计为各项实验工作预留了适合的操作空间,让功能繁多的不同区域看上去井井有条。“在车上工作还是挺舒服的,并没有空间局促的感觉。”一位研究人员说。  参与项目验收的北京大学教授严文明说:“这项研究为最大限度地获取信息和及时保护出土文物提供了技术可能,将大大提高我国考古探测和出土文物现场保护能力。”  技术集成应用优于国外  近年来,“移动实验室”装备和技术发展十分迅速,已在环境监测、疾病控制、刑事侦破等许多领域得到成功应用。国际上,美国、欧盟、加拿大、澳大利亚、印度、墨西哥等国已将这一技术应用于考古现场调查、不可移动文物保护和博物馆馆藏文物的保护工作。  1972年,美国缅因州博物馆建立了“移动保护实验室”,对一些中小型博物馆以及发掘现场的文物进行测绘、保护、修复和运输。1979年,加拿大保护研究所面向全国1500多座博物馆、文物遗址和发掘现场,推出了“文物保护移动实验室”计划,对544座博物馆的文物实施了保护修复,激发了众多博物馆对文物科技保护的兴趣和需求,对加拿大的文物科技保护事业产生了极大的推动作用。近年来,欧盟“移动实验室”计划发展迅速,极大地推动了欧洲文物保护技术的发展和不可移动文物保护技术的进步。  我国此次研制的用于考古现场的“移动实验室”,密切结合我国考古现场发掘和保护工作的实际需要,通过引进相关行业高端技术开展研发,成为国内外首台装备了空间数字测绘技术、预探测技术、环境动态监测技术、现场文物监测分析技术、埋藏环境调查技术和出土文物应急保护及保存技术的综合现场考古的保护技术平台,并在现场的考古发掘和文物保护工作中,发挥了重要的技术支撑作用,在技术集成和应用方面已超过国外同类技术。  国家文物局副局长童明康认为,文物出土现场保护“移动实验室”,为文物工作者提供了一个很好的工作平台,将推动现代科学技术在考古发掘和出土文物应急保护等方面的应用体系建设,提高考古发掘现场的多学科合作和综合研究能力。  项目情况  主要完成单位:敦煌研究院 国家博物馆 中国社会科学院考古研究所 清华大学  主要完成人:苏伯民 铁付德 范宇权 王学荣 刘建国 武 颢 王旭东 张文元 胥 谞  “文物出土现场保护移动实验室”, 结合考古现场的实际需求,提出了科学试验室前移现场并服务于考古发掘、信息提取和应急保护的理念,通过设备集成、装备研制、软件开发和标准研制,研制完成了我国首个文物出土现场具有综合功能的技术支撑平台 集成现代智能控制、传感器和数据传输技术,研制出我国首台考古发掘现场智能预探测系统 解决了不扰动情况下探测系统进入墓葬的难点,首次实现了发掘前对墓葬内部结构、温湿度、气体等数据的采集和传输,使科学考古发掘预案制定、通过对古代墓葬环境规律的探测研究馆藏文物保存最佳环境成为可能 首次提出了文物出土现场的技术标准,研发、集成现场应急、保护系列工具包。该项目不断拓展,取得了多项创新成果,标志我国考古现场保护科技水平发生了质的飞跃,促进了社会科学和自然科学的结合。  新的保护理念 科学实验室前移至考古现场  文物出土现场记录、信息提取以及脆弱文物的保护长期以来一直是影响考古发掘工作质量的重要技术内容,也直接关系到考古工作研究和文物后续保护工作的科学性和质量。在我国,由于文物出土现场保护装备缺乏、技术介入程度不足,造成考古发掘和现场保护的脱节,考古现场记录方式不规范、导致珍贵考古信息丢失和有价值的文物信息提取不全。尤为严重的是,由于一些珍贵脆弱的文物在现场得不到及时的保护,常常导致现场文物一经发掘出土即遭毁损的现象发生,或者是现场虽然可进行一定的处理,然而由于方法简单、程序不全,反而对发掘出土文物的后续保护造成更大的困难。  考古发掘具有发现文物和保护文物同时并行的特点,加大科学技术和装备的运用,是保证考古发掘工作水平和文物保护的重要前提。“十一五”文化遗产保护国家科技支撑计划“文物出土现场移动实验室研发”项目组基于此提出了将实验室建到文物出土现场的想法,以便将有综合效能的快速的专业化技术装备和专业人员派向现场,不仅为制定考古发掘预案、考古现场信息的全方位记录提供技术设备保障,更重要的是使出土文物在第一时间能得到及时有效的保护。美好的想法需要科学的研究作支撑。由考古、保护、高校等单位组成的项目组经过多次思想的交流和碰撞,针对文物出土现场保护信息采集、现场脆弱文物保护、现场文物分析与环境监测等亟须解决的问题,制定了切实可行的目标和技术路线:通过对调查技术和信息提取、分析检测、保护等专用设备的适用性研究,研发考古智能化预探测设备,开展出土文物的应急处理技术研究,完成具备现场勘查、测绘、记录、环境快速分析、现场信息实时传输以及对出土脆弱文物的现场保护等功能的技术集成,制定文物出土现场保护规范与技术标准,完成移动实验室的设计,形成完整的文物出土现场技术保护体系。为制定考古发掘预案、应急突发事件、环境恶劣地区的文物保护提供一个便捷快速的集成系统,全面提升大遗址现场保护的整体水平。  新的技术与装备 构成实验室完整的系统工程  文物出土现场保护移动实验室的研发是一个系统工程,通过3年的时间,项目组完成了文物出土现场空间信息采集,智能预探测系统,应急处置与保护,环境设备集成与分析设备集成,运载平台选型、空间设计以及装配制造等专题的研究,对文物出土现场所需技术和技术包的准确定位和试制、适宜现场分析的仪器的选型和配套、仪器装备性能发挥与长距离作业的关系、仪器的技术指标和改进、交通、通讯、分析、保护和数据传输等设备的集成和整合等。  空间信息采集 是以3S集成技术为前提而实现的。GPS全球卫星移动定位技术导航,对移动实验室进行全天候、不间断、高精度定位,对手持设备进行定位跟踪和半双工语音通讯。GIS地理信息系统作为对被跟踪对象位置轨迹的显示和监测手段。采用航空摄影(模型飞机搭载小型摄影设备)和常规测量方式(如全站仪)等测量设备对考古工作区域空间信息进行采集,通过地理信息系统(GIS)对信息进行处理,将信息存储到空间数据库中。通过考古现场地理信息系统将GPS、RS和GIS技术集成,实现考古工作的信息化。建立考古现场三维模拟环境,实现考古现场的三维模拟。在计算机上实现全方位的考古现场情况察看,再现考古现场环境。在3S系统中,GIS技术是本专题研究的核心,是实现空间信息技术集成的关键组成部分,由于现有的GIS软件并不适合田野考古发掘现场GIS建设的需要,所以本专题又专门开发了一套田野考古GIS数据采集的软件。项目组选择山东寿光盐业遗址、辽宁小珠山遗址、洛阳盆地聚落考古资料等对象,完成了考古现场空间信息采集系统的全部研究内容,并以辽宁小珠山遗址为例对所开发的软件予以说明。  智能化预探测系统 由远程监控端、机器人、视频探测、环境传感器和传输线缆组成。机器人以ATmega128微控制器为核心,包括多传感器数据采集电路、串口扩展电路、步进电机控制电路、LED亮度控制电路电源等硬件功能模块,并辅以传感器数据采集、控制信号采集等软件,实现了考古发掘现场智能预探测系统的机器人设计研究。依据对考古发掘现场的实地调查,充分采纳考古发掘和文物保护专业人员的建议,提出并实现了分体模块化小尺寸机器人结构设计,使其可简便拆装成直筒式或组装成整体式两种结构模式,可以利用小直径探洞或大直径盗洞进入下空墓葬。通过远程监控端人机交互界面对系统各单元的遥控操作,实现对古代墓葬内部结构状况和温度、湿度、氧气、二氧化碳、硫化氢、甲烷等环境指标(依据现场情况可通过更换传感器扩展探测气体的种类)预探测。  为评价该系统在现场的应用性能,先后对安阳、郑州、洛阳和西安等地的考古发掘现场工地调研基础上,选定陕西省西安地区三个古代墓葬遗址,在陕西省考古研究院配合下进行了现场应用试验。现场应用试验研究结果显示,该系统环境数据采集迅速、准确,视频采集图像清晰、可靠,整体系统运行稳定,可操作性强,满足考古发掘现场对下空墓葬预探测的实际需要。  应急处置与保护 针对目前考古现场出土遗迹遗物保护处理方面急需解决的诸问题,项目组整理制订了一整套应急处置的操作办法,包括:田野考古发掘中普通遗迹遗物的应急清理、处置方法 濒危遗迹遗物的现场加固、封护方法 重要遗迹遗物的起取、迁移方法。通过起草《考古发掘现场出土文物应急保护处理手册》,就田野考古中常见的遗迹遗物之处置方式——包括检测项目、加固封护(包括常用设备、工具、材料和方法等)、起取保存(包括常用设备、工具、材料和方法等)和记录方式等一系列工作过程,制定简便易行的规范化的操作指南。同时,完成考古现场遗迹遗物保护处理所需设备工具集成。  现场环境与分析设备集成 文物分析设备和文物现场环境的监测分析设备,构成对现场文物提取和保护的两大技术基础支撑。为实时快速地获得考古现场特别是在遗物出土时的环境状况,为遗物保护提供必要的环境数据参考,项目组充分考虑了移动考古的需要,研制了能够在考古现场使用的移动环境监测系统。该系统包括10个数据传感器和2个无线汇集器、1个数据路由器和1台数据服务器。该套系统在在山东寿光考古工地试验后,性能稳定,数据传输快捷,与同时在现场测试的美国迪克森公司的产品相比较,具有更加优良的耐低温性能,且探头布置灵活机动,探头与车载的服务器传输顺畅,实现了预期的功能。  考古现场出土的文物种类和材质繁多,有壁画、陶瓷器、纺织品、玉石器、金属、玻璃、植物纤维、生物体等,为了满足考古现场开展文物保护工作的实际需要,又要兼顾测定仪器的便携性、可移动性及其稳定性,在有限的空间内形成考古现场出土文物埋藏土壤和分析检测的系统,达到查明文物出土现状的材质和病害基本信息的目标,项目组对考古现场的检测需求进行了进一步的细化和分类,在划分两个部分的基础上,选出了为研究和监测这些指标所必须的仪器和设备。建立了分析体系框架,完成了X射线荧光光谱仪、拉曼光谱仪和离子色谱以及近红外光谱在文物保护和现场检测应用的分析报告,并结合莫高窟遗址对各种仪器可获得的信息进行了试验,试验初步证明,以文物出土现场移动实验室所具备的基本条件,如实验室空间,实验室必要的水、电、气供给以及通风设备等,能够对各种文物进行相应的检测,在第一时间,了解文物出土时的物质结构、元素成分、光谱特征等,建立珍贵文物的出土时的科学档案,为文物的妥善处理和下一步的保护提供重要的试验数据。此外,车载各种对文物赋存环境的快速监测仪器,能够准确获知文物出土时埋藏土壤的含水量、含盐量以及酸碱度等重要参数,为实现考古现场保护的科学化奠定了基础。同时,通过研究比较国内外各种同类仪器的性能测试指标,并对各类仪器的使用方法和各种指标测试分析手段进行了试验,制定了各种仪器的操作手册和各项指标的操作方法,建立了基于无损和快速两个特点的文物出土现场检测体系,在山东寿光考古现场的应用证明,在遗迹辨识、文物出土情况分析等方面对大多数考古现场提供有效帮助。山东考古现场对古代制盐工艺各种遗迹现象的检测数据表明,所取得的分析数据为考古学家解释和说明古代的制盐工具提供了重要的科学依据,充分体现了文物出土现场移动实验室的作用,预示着文物出土现场移动实验室必将为未来的考古工作提供重要帮助。  运载平台选型、空间设计以及装配制造 本研究完成主要研究工作为结合我国各种道路状况和移动实验室的空间需要选择了适合的搭载底盘,并根据野外工作条件和移动实验室个单元功能进行室内空间功能划分,各功能区细节设计,加工材质选择,固定设备设计加工和安装,实验室水路、气路、电路的设计和安装,车内工作站的安装,实验室内照明系统、空调系统、暖风系统、网络系统的设计和安装,实验室特殊通风柜和文物充氮保存柜的设计、制作和安装,实验室储物空间的合理设计和制作安装,实验室整体VI设计、车模和动画演示制作等。本单元由清华大学、敦煌研究院、上海博物馆、浙江大学、上海格澜实验室设备有限公司等单位的研究人员通力合作完成,最后由镇江捷城车载无线电厂制作出我国第一台文物出土现场移动实验室。  新的成果 服务于考古现场  本项目针对我国文物出土现场调查、探测技术缺乏、装备落后、现场应急保护基础薄弱的现状,紧密结合我国目前考古现场的突出技术和装备需求,遵循将文物保护科学实验室前移现场并服务于考古发掘和现场保护的理念,开展文物出土现场信息采集、智能探测、环境监控、快速分析、应急保护等项目技术研究和装备研发,制定了系列的文物出土现场保护规范与技术标准,系统集成我国首台功能全面、技术先进、设备齐全、机动灵活的文物出土现场保护移动实验室,形成了考古发掘现场调查、探测、保护等系列技术和装备支撑平台。  (1)结合考古现场的实际需求,提出了科学试验室前移现场并服务于考古发掘、信息提取和应急保护的理念,通过设备集成、装备研制、软件开发和标准研制,打造出我国首个考古发掘现场具有综合功能的技术支撑平台。  (2)以GIS为核心,整合现代测绘和数字化记录技术,首次实现了遗迹、遗址、发掘现场的图像采集、数据测量、数据处理、三维建模与数据传输的多手段并用、相互补充的系统集成和软件开发。  (3)集成现代智能控制、传感器和数据传输技术,研制出我国首台考古发掘现场智能预探测系统。考古发掘现场智能预探测系统,采用视频探头、传感器和控制单元小型化、模块化分体组装式设计,满足了探测系统沿发掘探孔进入的实际需求。解决了不产生扰动情况下,探测系统进入墓葬探测空间的进入方式之难点。  (4)陕西三座古代墓葬的实地探测,考古发掘现场智能预探测系统首次实现了发掘前对墓葬内部结构视频、温度、湿度、氧气、二氧化碳、硫化氢、甲烷气体数据的采集和传输。使科学考古发掘预案制定、通过对古代墓葬环境规律的探测研究馆藏文物保存最佳环境成为可能。  (5)依据考古发掘现场遗迹遗物的种类和特点,总结提炼现有技术,研制缺环技术,首次研发、集成现场应急保护系列工具包和使用手册。现场应急保护系列工具包,具有配套齐全、应用灵活、针对性强、专业性高、便于携带等特点,充分满足现场应急保护需求,不仅能够提高现场保护工作效率,同时能够保证现场文物的完整提取和科学保护。  (6)研发出文物出土现场温湿度监测和无线数据传输系统。该系统依据考古发掘现场的特点,具有组合灵活、便于布点、数据准确、传输稳定、工作范围环境临界区间较宽的特点。  (7)通过文物出土现场应用需求和国内外小型便携仪器设备的调研,筛选出一套适合考古发掘现场环境检测、材质分析、功能配套、便于携带的组合式分析监测系统。实现了对现场出土文物在第一时间的检测分析和文物出土环境数据采集记录。  (8)整合现场保护、智能控制、传感器、现代分析、计算机、通讯、传输、数据处理和空间技术等多学科技术和装备,完成了文物出土现场保护移动试验室的外观设计、功能划分、空间布局、设备搭载和车辆选型,首次实现了国际上第一个具有综合功能的文物出土现场保护移动试验室的系统集成和研发。文物出土现场移动实验室已被列入国家特种新型车辆。
  • 文物出土现场移动实验室研发
    文物出土现场记录、信息提取以及脆弱文物的保护长期以来一直是影响考古发掘工作质量的重要技术内容,也直接关系到考古工作研究和文物后续保护工作的科学性和质量。在我国,由于文物出土现场保护装备缺乏、技术介入程度不足,造成考古发掘和现场保护的脱节,考古现场记录方式不规范、导致珍贵考古信息丢失和有价值的文物信息提取不全。尤为严重的是,由于一些珍贵脆弱的文物在现场得不到及时的保护,常常导致现场文物一经发掘出土即遭毁损的现象发生,或者是现场虽然可进行一定的处理,然而由于方法简单、程序不全,反而对发掘出土文物的后续保护造成更大的困难。凡此种种,不仅没能实现对文物的有效保护,也极大地浪费了本已有限的文物保护人力和财力资源。  考古发掘具有发现文物和保护文物同时并行的特点,加大科学技术和装备的运用,是保证考古发掘工作水平和文物保护的重要前提。文物出土现场调查发掘、信息提取记录和现场保护对技术、工具、装备和方法的依赖程度较高,这些技术、工具和装备水平的高低直接影响对文物的保护成效和保护质量。建立文物出土现场移动实验室,将有综合效能的快速的专业化技术装备和专业人员派向现场,不仅可以为制定考古发掘预案、考古现场信息的全方位记录提供技术设备保障,更重要的是,使出土文物在现场第一时间便能得到及时有效的保护。移动实验室的研制开发可有效地促进考古与文物科技保护在理论观念和具体实践上的结合,充分利用现代多种技术建立考古发掘现场信息留存和文物保护的创新工作模式,也可提高我国文物保护与考古事业的整体水平,提高对文物出土现场突发事件的技术处理能力,为出土文物的安全提供必要的技术保障,同时使我国在文物出土现场保护的技术装备和技术能力上,达到国际一流的先进水平。  本课题旨在针对文物出土现场保护信息采集、现场脆弱文物保护、现场文物分析与环境监测等急需解决的问题,通过对调查技术和信息提取、分析检测、保护等专用设备的适用性研究,研发考古智能化预探测设备,开展出土文物的应急处理技术研究,完成具备现场勘察、测绘、记录、环境快速分析、现场信息实时传输以及对出土脆弱文物的现场保护等功能的技术集成,制定文物出土现场保护规范与技术标准,完成移动实验室的设计,形成完整的文物出土现场技术保护体系。为制定考古发掘预案、应急突发事件、环境恶劣地区的文物保护提供一个便捷快速的集成系统,全面提升大遗址现场保护的整体水平。  课题主要研究内容  1.3S系统集成 文物出土现场移动实验室采用GPS全球卫星移动定位技术导航,对移动实验室进行全天候、不间断、高精度定位,对手持设课题主要  研究内容备进行定位跟踪和半双工语音通讯。采用GIS地理信息系统作为对被跟踪对象位置轨迹的显示和监测手段。采用航空摄影(模型飞机搭载小型摄影设备)和常规测量方式(如全站仪)等测量设备对考古工作区域空间信息进行采集。建立空间数据库,实现对采集数据的处理、存储、管理。通过考古现场地理信息系统将GPS、RS和GIS技术集成,实现考古工作的信息化。建立考古现场三维模拟环境,实现考古现场的三维模拟,在计算机上实现全方位的考古现场情况察看,再现考古现场环境。  2.智能化预探测系统 设计独立的无需外部能源的智能机器人携带视频、温湿度、气体等多类型传感器,对考古遗址内部空间和环境进行预探测,有效地实现对考古遗址发掘的科学性和安全性保障。  3.现场文物保护专用工具包 调查现场状况,分析现场需求,研究现场文物提取、保护所需的技术,筛选现场保护必需的工具和材料。  4.分析设备集成 依据文物发掘现场的需求,研究现场所需分析检测的功能和仪器指标,筛选现场分析仪器的类型,采用系统研究仪器与现场实际需求、仪器与仪器和仪器与搭载平台的技术联系和逻辑关系,研究解决多需求、多仪器与移动实验室的空间布局和功能发挥。  5.环境设备集成 文物分析设备和文物现场环境的监测分析设备,构成对现场文物提取和保护的两大技术基础支撑。研究现场对考古发掘和文物提取保护有重要影响的环境因素,筛选适于现场应用的快速、准确的环境监测、分析设备。  6.集成系统的软件设计及控制 实现3S系统、智能探测系统、文物分析系统、环境监测系统和数据传输等系统的集中控制和软件的开发设计,实现数据的共享和远距离传输,强化系统的集成功能。  7.标准和手册 研究文物出土现场保护的相关基础标准、技术标准、管理标准和应用标准等标准体系,编制移动实验室各子系统的应用管理手册和使用说明书,以利有效发挥文物出土移动实验室的强大功能。  8.移动实验室系统工程 文物出土现场保护移动实验室的研发是一个系统工程,研究文物出土现场所需技术和技术包的准确定位和试制、适宜现场分析的仪器的选型和配套、仪器装备性能发挥与长距离作业的关系、仪器的技术指标和改进、交通、通讯、分析、保护和数据传输等设备的集成和整合等。  五大研究成果  一、文物出土现场空间信息采集研究  该专题研究选择山东寿光盐业遗址、辽宁小珠山遗址、洛阳盆地聚落考古资料等对象,完成了考古现场空间信息采集系统的全部研究内容,包括GPS、电子全站仪、数字摄影测量、遥感考古研究等方面。其中,GIS技术是本专题研究的核心,是实现空间信息技术集成的关键组成部分,重点介绍了GIS中各种数据的特点、地形图的矢量化、遥感影像的配准、考古发掘现场GIS的建设、聚落考古中GIS数据库的建设与空间分析等等内容。由于现有的GIS软件并不适合田野考古发掘现场GIS建设的需要,所以本专题又专门开发了一套田野考古GIS数据采集的软件,并且以辽宁小珠山遗址为例进行说明。  二、文物出土现场智能预探测系统研究  已经完成的文物出土现场智能预探测系统由远程监控端、机器人、视频探测、环境传感器和传输线缆组成。机器人以ATmega128微控制器为核心,包括多传感器数据采集电路、串口扩展电路、步进电机控制电路、LED亮度控制电路电源等硬件功能模块,并辅以传感器数据采集、控制信号采集等软件。实现了考古发掘现场智能预探测系统的机器人设计研究。依据对考古发掘现场的实地调查,充分采纳考古发掘和文物保护专业人员的建议,提出并实现了分体模块化小尺寸机器人结构设计,使其可简便拆装成直筒式或组装成整体式两种结构模式,以便利用小直径探洞或大直径盗洞进入下空墓葬。通过远程监控端人机交互界面对系统各单元的遥控操作,实现对古代墓葬内部结构状况和温度、湿度、氧气、二氧化碳、硫化氢、甲烷等环境指标(依据现场情况可通过更换传感器扩展探测气体的种类)预探测。  为评价该系统在现场的应用性能,先后对安阳、郑州、洛阳和西安等地的考古发掘现场工地调研基础上,选定陕西省西安地区三个古代墓葬遗址,在陕西省考古研究院配合下进行了现场应用试验。现场应用试验研究结果显示,该系统环境数据采集迅速、准确,视频采集图像清晰、可靠,整体系统运行稳定,可操作性强,满足考古发掘现场对下空墓葬预探测的实际需要。  三、文物出土现场应急处置与保护研究  该子课题主要针对目前考古现场出土遗迹遗物保护处理方面急需解决的诸问题,整理制订应急处置的操作办法。已完成田野考古发掘中普通遗迹遗物的应急清理、处置方法 田野考古发掘中濒危遗迹遗物的现场加固、封护方法 田野考古发掘中重要遗迹遗物的起取、迁移方法。起草《考古发掘现场出土文物应急保护处理手册》。就田野考古中常见的遗迹遗物之处置方式——包括检测项目、加固封护(包括常用设备、工具、材料和方法等)、起取保存(包括常用设备、工具、材料和方法等)和记录方式等一系列工作过程,制定简便易行的规范化的操作指南。同时,完成考古现场遗迹遗物保护处理所需设备工具集成。  四、 环境设备集成与分析设备集成研究  1.环境设备集成—考古现场移动环境监测系统 为实时快速地获得考古现场特别是在遗物出土时的环境状况,为遗物保护提供必要的环境数据参考,课题组研制了能够在考古现场使用的移动环境监测系统。该系统包括10个数据传感器和2个无线汇集器、1个数据路由器和1台数据服务器。该系统充分考虑了移动考古的需要,将系统结构简化,簇成员数据传感器可直接连接到数据汇集器,更适合于小范围的快速部署。  2.分析设备集成研究 本课题既要满足考古现场开展文物保护工作的实际需要,又要兼顾测定仪器的便携性、可移动性及其稳定性,在有限的空间内形成考古现场出土文物埋藏土壤和分析检测的系统,达到查明文物出土现状的材质和病害基本信息的目标。为此,课题组对考古现场的检测需求进行了进一步的细化和分类。  考古现场出土的文物种类和材质繁多,有壁画、陶瓷器、纺织品、玉石器、金属、玻璃、植物纤维、生物体等,在划分两个部分的基础上,确认了不同的分析监测指标,从而也选出了为研究和监测这些指标所必需的仪器和设备。  按照以上根据考古现场分析需求建立的分析体系框架,完成了X射线荧光光谱仪、拉曼光谱仪和离子色谱以及近红外光谱在文物保护和现场检测应用的分析报告,并结合莫高窟遗址对各种仪器可获得的信息进行了试验,试验初步证明,以文物出土现场移动实验室所具备的基本条件,如实验室空间,实验室必要的水、电、气供给以及通风设备等,能够对各种文物进行相应的检测,在第一时间,了解文物出土时的物质结构、元素成分、光谱特征等,建立珍贵文物的出土时的科学档案,为文物的妥善处理和下一步的保护提供重要的试验数据。此外,车载各种对文物赋存环境的快速监测仪器,能够准确获知文物出土时埋藏土壤的含水量、含盐量以及酸碱度等重要参数,为实现考古现场保护的科学化奠定了基础。  在仪器选型方面,课题组通过研究比较国内外各种同类仪器的性能测试指标,并对各类仪器的使用方法和各种指标测试分析手段进行了试验,制定了各种仪器的操作手册和各项指标的操作方法,建立了基于无损和快速两个特点的文物出土现场检测体系,在山东寿光考古现场的应用证明,在遗迹辨识、文物出土情况分析等方面对大多数考古现场提供有效帮助。山东考古现场对古代制盐工艺各种遗迹现象的检测数据表明,所取得的分析数据为考古学家解释和说明古代的制盐工具提供了重要的科学依据,充分体现了文物出土现场移动实验室的作用,预示着文物出土现场移动实验室必将为未来的考古工作提供重要帮助。  五、移动实验室运载平台选型、空间设计以及装配制造研究  本研究主要为结合我国各种道路状况和移动实验室的空间需要选择了适合的搭载底盘 根据野外工作条件和移动实验室个单元功能进行室内空间功能划分,各功能区细节设计,加工材质选择,固定设备设计加工和安装,实验室水路、气路、电路的设计和安装,车内工作站的安装,实验室内照明系统、空调系统、暖风系统、网络系统的设计和安装,实验室特殊通风柜和文物充氮保存柜的设计、制作和安装,实验室储物空间的合理设计和制作安装,实验室整体VI设计、车模和动画演示制作等。本单元工作由清华大学、敦煌研究院、上海博物馆、浙江大学、上海格澜实验室设备有限公司等单位的研究人员通力合作完成,最后由镇江捷城车载无线电厂制作完成,制作出我国第一台文物出土现场移动实验室。  八项创新  本课题已申请5项专利,其中4项为发明专利。还有5项专利和1项软件著作权正在申请中,并已初步获得专利代理机构的认可。文物出土现场移动实验室已被列入国家特种新型车辆,已经获得国家发改委的批复。其创新性主要有8个方面:  1.结合考古现场的实际需求,提出了科学试验室前移现场并服务于考古发掘、信息提取和应急保护的理念,通过设备集成、装备研制、软件开发和标准研制,打造出我国首个考古发掘现场具有综合功能的技术支撑平台。  2.以GIS为核心,整合现代测绘和数字化记录技术,首次实现了遗迹、遗址、发掘现场的图像采集、数据测量、数据处理、三维建模与数据传输的多手段并用、相互补充的系统集成和软件开发。  3.集成现代智能控制、传感器和数据传输技术,研制出我国首台考古发掘现场智能预探测系统。考古发掘现场智能预探测系统,采用视频探头、传感器和控制单元小型化、模块化分体组装式设计,满足了探测系统沿发掘探孔进入的实际需求。解决了不产生扰动情况下,探测系统进入墓葬探测空间的进入方式之难点。  4.陕西三座古代墓葬的实地探测,考古发掘现场智能预探测系统首次实现了发掘前对墓葬内部结构视频、温度、湿度、氧气、二氧化碳、硫化氢、甲烷气体数据的采集和传输。使科学考古发掘预案制定、通过对古代墓葬环境规律的探测研究馆藏文物保存最佳环境成为可能。  5.依据考古发掘现场遗迹遗物的种类和特点,总结提炼现有技术,研制缺环技术,首次研发、集成现场应急保护系列工具包和使用手册。现场应急保护系列工具包,具有配套齐全、应用灵活、针对性强、专业性高、便于携带等特点,充分满足现场应急保护需求,不仅能够提高现场保护工作效率,同时能够保证现场文物的完整提取和科学保护。  6.研发出文物出土现场温湿度监测和无线数据传输系统。该系统依据考古发掘现场的特点,具有组合灵活、便于布点、数据准确、传输稳定、工作范围环境临界区间较宽的特点。  7.通过文物出土现场应用需求和国内外小型便携仪器设备的调研,筛选出一套适合考古发掘现场环境检测、材质分析、功能配套、便于携带的组合式分析监测系统。实现了对现场出土文物在第一时间的检测分析和文物出土环境数据采集记录。  8.整合现场保护、智能控制、传感器、现代分析、计算机、通讯、传输、数据处理和空间技术等多学科技术和装备,完成了文物出土现场保护移动试验室的外观设计、功能划分、空间布局、设备搭载和车辆选型,首次实现了国际上第一个具有综合功能的文物出土现场保护移动试验室的系统集成和研发。
  • 关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告
    近日,上海市环境科学学会和浙江省生态环境监测协会发布关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告,根据《上海市环境科学学会团体标准管理办法》《浙江省生态环境监测协会团体标准管理办法(试行)》的要求,《生态环境监测现场移动端数据采集规范》(T/SSESB 8-2023 T/ZJEEMA 0005-2023)团体标准按照规定程序编制,经专家组审查通过,现批准发布,发布日期为2023年9月25日,自2023年10月1日起实施。规范中对现场移动端和现场监测仪器发展现状进行阐述,并列出常用仪器名称和主要功能,如下所示:此外,规范还在功能要求中强调,现场移动端的功能应能覆盖场监测业务全流程,具体包括:任务下载。现场移动端应具备下载和查看现场监测方案或采样计划的功能,信息内容包括被测对象基本信息、任务名称和编号、监测类别、监测点位、监测项目、监测周期和频次、样品类别和数量、采样和分析方法、质量保证与控制要求、样品运输保存要求、监测人员。适用时还应包括生产工艺和污染治理设施信息、执行标准及限值、监测仪器设备、监测点位示意图、分包项目等内容。仪器出入库管理。现场移动端应具备通过射频识别(RFID)、扫码等方式采集现场监测仪器信息的功能,包括但不限于任务名称和编号、出入库日期和时间、使用时长、使用人等。适用时还应采集仪器检定校准和期间核查、日常维修维护等内容。点位布设。现场移动端应具备通过电子监测点位示意图、地理信息定位、扫码等方式记录监测点位信息的功能。适用时还应通过照相、文字补充描述等方式采集点位信息。样品采集和测试。(1)现场移动端应具备通过无线模块、串口等方式采集现场监测仪器数据的功能,包括但不限于现场监测过程参数、测试结果、仪器使用前后关键性能指标核查信息、仪器状态和质控信息。对于无法通过仪器采集的数据和信息,可采用手工录入方式。(2)现场监测仪器通讯协议要求应符合附录A要求,监测因子和信息编码应符合附录B要求,现场监测仪器软件宜具备监测流程管理和控制功能。(3)通过现场移动端或LIMS中预设的原始记录表单,将现场监测过程中采集的数据自动生成相关记录,原始记录表单的格式和内容应符合实验室管理体系要求。(4)可通过现场移动端添加现场质控样品。样品流转。现场移动端应具备样品流转记录功能,样品流转信息包括但不限于监测任务基本信息、样品类别、样品名称、数量、性状、采样人或送样人、保存剂、保存温度和避光情况等。适用时还应采集样品运输轨迹和时间等信息。任务上传。现场监测任务完成后,现场移动端中该任务下的所有采集的数据均应上传至LIMS,包括监测数据、质控数据、仪器信息、地理位置信息、监测点位示意图等。详细内容见附件:关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告.pdf上海市环境科学学会关于《生态环境监测现场移动端数据采集规范(征求意见稿)》团体标准公开征求意见的函.pdf
  • 【媒体】省台小记者眼中的“空气警察”,“高空+移动+定点”天地一体 精准监测
    8月22日,河北广播电视台少儿频道《校园新鲜爆》栏目,播出了先河联合省台共同开展的儿童暑期环保知识实践活动。重点报道了先河空气质量监测系统、大气vocs解析监测车以及无人机监测设备等。一场世界前沿环保科技之旅,给孩子们的暑期留下了难忘的回忆。节目于本周六晚间8:25、周日晚间9:00再次重播,大家可以精彩回顾。 “读万卷书,不如行万里路”,为了提升孩子们实践学习的能力,深入了解环保科技的奥妙,先河环保为小记者们精心准备了三款明星产品,重点围绕高空飞翔、移动走行、定点监测等,成功点燃了孩子们学习的热情。赶紧来领略一下环保科技的洪荒之力吧!守卫蓝天的“飞行战士” 先河环境无人机监控系统在本次活动中被小记者们评为最具人气明星产品,它具有低空贴近、灵活飞行、快速到达等特点,在不同高度、不同位置,实时获取大气污染程度的具体参数指标,还能结合地面常规空气监测、网格化精准监测等,形成三维立体监测。 搭载xhaqsn-508移动空气质量传感网络监测仪、摄像系统等,实现对空气质量、特征污染物等气体成分以及海拔高度、气象参数等数据的快速监测,通过环境拍照功能实现数据的可视化展示,对经度纬度实现轻松定位,形成基于“无人机+互联网”大气污染智能化监测系统。可以绘制大气污染物浓度曲线,实现环境定点、垂直采样诊断。它涵盖大气环境中pm10、pm2.5、so2、no2、o?、co等常规参数,也可根据用户需求灵活配置vocs、h2s、nh?、hcl、cl2、hf、cocl2等特征污染物参数。可有效支撑政府的环境监测、应急监测、巡查执法、拍照取证等工作。图为甘肃省兰州市安宁区培黎街道利用无人机对大气污染情况进行监测。严谨高效的“陆地巡警” 这个被小记者称为面包车、房车的明星产品。通过学习了解到,原来它的名字叫做——大气vocs解析监测车。它为大家带来了科技与视觉的双重体验。 夏季臭氧问题最为严重,挥发性有机物(vocs)作为臭氧的重要前体物,在大气复合污染过程中对臭氧污染起到了重要作用。监测车可非常方便、快速地对城市空气中的vocs以及工业园区vocs污染进行定性、定量分析,各地用户可以很直观地了解vocs物种的浓度分布、行业来源,确定污染排放类型或企业,为有针对性的治理臭氧污染提供有效的数据支撑,达到高效管理的目的。一心为民的“站岗卫士” 视频中小记者们提到的空气警察,原来是——xhams2000系列空气质量监测系统。它采用国际先进物理光学为基础的光谱测量分析技术,主要监测大气中的pm10、pm2.5、so2、no2、o3、co等参数。测量精度高、可靠稳定,是国内首套拥有自主知识产权的空气质量检测系统。 根据国家标准,结合空气质量新标准监测能力建设要求,对污染监控点、空气质量评价点、空气质量对照点和空气质量背景点等不同功能的环境大气质量监测点,进行数据采集、传输、形成报表,实时发布监测数据及空气质量指数。目前,“河北省控空气自动站”,已安装运营214套(1700余台)监测仪器,并受到政府领导的认可与肯定。 伴着夕阳的余辉,环保之旅完美落幕,相信一颗科技的种子已在孩子们心中种下,会慢慢生根发芽,最终长成苍天大树,成为国家栋梁之才!
  • 揭秘川源中国蓝绿藻监测“移动实验室”
    蓝藻又称蓝绿藻、蓝细菌,是最原始、最古老的藻类植物之一。由于蓝藻对高温、低光强和紫外线均有适应性,同时可以过量摄取无机碳和营养物质,受氮、磷等元素污染后易大面积爆发引起水体富营养化。 蓝藻能产生各种天然毒素,主要是环肽、生物碱和脂多糖内毒素,致毒类型包括肝毒性,神经毒性,细胞毒性,遗传毒性,皮炎毒性等。 实验室采用酶联免疫吸附测定(ELISA)和荧光定量聚合酶链式反应(qPCR)分别对样品中所含目标毒素及物种丰富度进行检测。 为了获取更直接的数据,公司改装了一台可直接进入现场实时检测的“移动式监测车”,“移动式监测车”还原了实验室的基本布局,装有qpcr洁净操作台、存储冰箱、耐酸碱实验桌面、防火地板、水槽及回收水水槽等。实验桌上装有可调节大小的固定条用于固定ELISA酶标仪和qCPR仪等设备。“移动式监测车”可实现:▸更及时地在采样完成后对样品进行预处理以及检测,使检测数据更具时效性。▸避免了长途采样时,样品储存长时间对检测结果的影响。▸减少运送时间、减少外部微生物影响及水样中微生物降解的状况。▸提供更直接、更准确的环境检测报告。蓝绿藻实时快速监测的重要意义1. 对水体中蓝绿藻生长及毒性情况进行实时快速高效的监测并实现对蓝绿藻水华爆发的快速预警。2. 预测各水体潜在的蓝绿藻水华爆发程度及毒性程度,为有关部门实施蓝绿藻水华爆发的监测和预防提供具体的信息和方向。3. 对饮用水、娱乐用水等进行准确快速的监测,杜绝微生物及毒素带来的危害,确保用水安全。4. 推动ELISA和qPCR技术在环境监测方面的运用,一定程度上弥补传统监测手段的不足。延伸阅读:蓝绿藻实时快速监测方法➤酶联免疫吸附测定(ELISA) ELISA方法的基本原理是酶分子与抗体或抗体分子共价结合,此种结合不会改变抗体的免疫学特性,也不影响酶的生物学活性。此种酶标记抗体可与吸附在固相载体上的抗原或抗体发生特异性结合。滴加底物溶液后,底物可在酶作用下使其所含的供氢体由无色的还原型变成有色的氧化型,出现颜色反应。因此,可通过底物的颜色反应来判定有无相应的免疫反应,颜色反应的深浅与标本中相应抗体或抗原的量呈正比。此种显色反应可通过ELISA检测仪进行定量测定,这样就将酶化学反应的敏感性和抗原抗体反应的特异性结合起来,使ELISA方法成为一种既特异又敏感的检测方法。 川源-同济微生物技术研发中心运用上述ELISA方法,针对蓝藻爆发水体中常见的三种藻毒素:微囊藻毒素、拟柱孢藻毒素和蛤蚌毒素开发了合理高效快速的检测方法及流程,能够在1至2小时内完成对待测样品中毒素浓度的检测。➤荧光定量聚合酶链式反应(qPCR)-Taq-Man探针法 实时荧光定量PCR (Quantitative Real-time PCR)是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。qPCR是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。 实时荧光定量PCR分为:SYBRGreen法和TaqMan探针法两类。本实验室运用TaqMan探针法,目前所有的探针法qPCR的理论基础都是利用了荧光共振能量转移现象,探针上存在一对能产生荧光共振能量转移的基团,利用PCR反应中的一些过程(酶切,杂交等),使两个基团的距离产生变化,使系统中的荧光强度或者荧光种类发生变化,这种变化又与PCR产物的种类和量有直接关系,通过检测这种变化,我们就可以检测出PCR反应体系中产物的种类和量。 本实验室所用的Taq-Man探针法是最经典的探针方法,设计一条与扩增产物能互补杂交的探针,在探针的5’端标记荧光基团(供体),在探针3’端标记淬灭基团(受体),当探针完整时,荧光基团和淬灭基团距离很近(探针长度)因荧光共振能量转移,荧光基团在入射光激发下不发出荧光。PCR反应进行时,探针杂交在扩增产物上,当引物介导的延伸反应到达探针位置时,因taq酶拥有5’-3’的外切酶活性,会从5‘端切割(水解)探针,从而使5’端的荧光基团和3’端的淬灭基团分离,使它们的间距超过10nm,超出荧光共振能量转移的范围,荧光基团此时在合适入射光的作用下,就能发出自身波长的荧光。探针杂交是特异性的,所以荧光的种类和量能特异性的代表目标产物的种类和量。 川源-同济微生物技术研发中心采用针对产毒微囊藻特有的毒素合成酶基因中的mcyB基因设计的引物,并运用Taq-Man探针法对样品中mcyB基因进行定量分析。此方法能够在1小时内完成对待测样品中产毒微囊藻含量的检测。
  • 野外便携小型气象站-一款室外移动的自动气象监测站#2022已更新
    野外便携小型气象站-一款室外移动的自动气象监测站#2022已更新فيالهواءالطلقالمحمولةالصغيرةمحطةالطقس-فيالهواءالطلق【品牌型号:天合环境TH-BQX9】下雨,会影响农作物的收成,雨水及时,农作物会丰收,雨水缺少或者太大,农作物会减产。下雨会降温,在夏天,会变得凉快,在冬天,会更加寒冷。雨水太大会造成洪涝灾害,每年都能看到各地有雨水太大影响交通甚至造成各种人员伤亡的新闻。一、产品简介TH-BQX9便携式气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。该设备支持有线、蓝牙、GPRS等传输方式,免调试,可快速布置,适用于各类应急气象短期观测、移动气象监测等气象数据的获取。广泛运用于气象、农林、环保、海洋、机场、港口、科学考察、校园教育等领域。该设备采用九要素一体式传感器,可对风速、风向、温度、湿度、气压、光学雨量、辐射、pm2.5、pm10等气象要素进行实时观测,传感器外壳采用进口ABS材质,更有效对抗盐雾等环境,防护等级达到IP65以上。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、气压、光学雨量、辐射、pm2.5、pm10九要素一体式传感器4、标配GPRS、蓝牙、485转USB三种传输方式5、铝合金支架,可伸缩6、减震防护拉杆箱,方便携带三、技术参数1)风速:0~70m/s(±0.1m/s);2)风向:0~360°(±1°);3)空气温度:-40℃~85℃(±0.3℃);4)空气湿度:0~100%RH(±2%RH);5)大气压力:300hPa~1100hPa(±0.02hPa);6)PM2.5:0-1000ug/m3(±15%)7)PM10:0-1000ug/m3(±15%)8)总辐射:0-2000W/m2(0.1W/m2)9)光学雨量:0~4mm/min(±4%);10)数据存储:不少于50万条;11)功耗:1.75W12)锂电池:可拆卸锂电池包,容量12000maH,但电池续航时间≥50h,带电量显示功能13)总重量:≤5kg;14)布设时间:1人,不大于2分钟完成布设;15)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证16)生产企业具有知识产权管理体系认证证书和计算机软件注册证书
  • 车载移动设备与碳卫星携手监测京津冀CO2
    p  由中科院大气所开展的“追踪CO2——京津冀地区冬季CO2浓度强化观测”工作6日结束。这次监测,不但实现了在汽车上移动监测CO2,而且还在国内首次用车载移动监测与碳卫星“携手”完成了天空地立体监测。/pp  此次监测工作是在国家重点研发计划“京津冀城市群高时空分辨率碳排放监测及应用示范”支持下开展的。项目组成员将高精度、微型化的CO2监测仪器安装在汽车上,分别在晴好天气和高碳排放天气条件下,沿京津冀主要线路移动监测。/pp  去年12月29日上午,CO2移动监测正式开始。记者乘监测车随科研人员前往河北雄安。微型的CO2监测仪器就安装在汽车前挡风玻璃的底端,它可以即时把监测数据通过网络传到北京中科院大气所的数据监测后台中。监测车既走国道、乡村级公路,也走高速公路 既去城市,也去农村,通过GPS定位系统准确记录车辆经过地区的CO2浓度情况。/pp  项目组此次共在8条线路开展了移动监测工作,包括北京市内、北京门头沟区灵山、天津、承德、张家口、唐山、保定、雄安8个方向。/pp  据项目负责人、中科院大气所曾宁研究员介绍,此次移动监测还与我国发射的碳卫星监测相结合。比如上个月29日在对北京市内移动监测时,在中午13时30分左右,碳卫星正从北京上空经过。碳卫星采用了目标模式,临时改变倾角,对地面汽车移动监测的地区做重点监测。“这样把两方面的数据结合,会让我们的监测更加准确。”/pp  据了解,利用这次监测,科学家获得了京津冀地区更加全面的CO2浓度数据,这为准确识别碳排放源进而规划科学减排提供了技术支撑,同时也为提供独立可靠的CO2第三方碳监测数据做了有益探索。/p
  • 崂应发布崂应2092型 环境空气质量监测仪新品
    崂应2092型 环境空气质量监测仪 一、产品概述 本仪器是全天候户外自动监控终端,它是由数据采集平台和数据传输平台组成,数据采集平台可扩展多种传感器,实现不同的空气污染物监测功能。用户可根据监测大气颗粒物浓度选配切割器(PM2.5、PM10)。其采用钢质材料,能够适应全天候复杂环境,具备电子兼容A级设计,以及IP55防尘、防溅水设计,功能完善、体积小巧、系统集成度高、坚固耐用,可在各种复杂环境下可靠工作。设备带有机箱内部温度控制系统,可工作在外部环境温度为(-30~50)℃,适用范围广。二、执行标准GB3095-2012 环境空气质量标准HJ653-2013 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法三、产品特点模块化设计,故障率低,便于维护,扩展性强智能化设计,具备故障报警以及故障自诊断功能可选配不同的切割器头对PM10和PM2.5浓度进行实时测量采用β射线吸收法直接测量颗粒物质量浓度,不受季节变化的影响,无需修正,全天候实时提供精确数据仪器采用采样和检测同位置检测方式,从根本上解决了移动纸带所带来的测量误差采用DHS(动态加热系统)加热采样入口气体并具有动态温湿度补偿功能,符合国家标准,可以保证对半挥发性硝酸盐和有机物的精确测量采用优质的检测器,测量稳定,安全可靠,数据准确采样数据自动记忆,停电后自动保存当前数据,来电后仪器能够继续采样支持多种方式的数据远程运输,包括:WIFI、ZIGBEE、3G、4G、ADSL、光纤等不锈钢材质机壳,能够适应全天候复杂环境,具备电子兼容设计,以及IP65防尘、防水设计海量的数据存储能力,可存储长达365天的数据量采用外国原装进口抽气泵,流量稳定,寿命长先进的温湿度补偿算法,修正温湿度对测量的影响,保证测量结果的准确 说 明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符, 请以实机为准,本内容仅供参考。创新点:1)采用β 射线吸收法直接测量颗粒物质量浓度,不受季节变化的影响,无需修正,全天候实时提供精确数据。2)采用DHS(动态加热系统),加热采样入口气体并具有动态温湿度补偿功能,符合国家标准,可以保证对半挥发性硝酸盐和有机物的精确测量。3)野外作业级防护,不锈钢材质机壳,具备电子兼容设计,以及IP65防尘、防水设计,能够适用全天候复杂环境。4)模块化设计,故障率低,便于维护,扩展性强。5)智能化设计,具备故障报警以及故障自诊断功能。6)可选配多规格切割器,对PM10和 PM2.5浓度进行实时测量。7)颗粒物监测采样和检测同位置,从根本上解决了移动纸带所带来的测量误差。8)采用国外原装进口抽气泵,流量稳定,使用寿命长。9)内置4G数据传输模块(DTU),可进行数据上传,数据传输符合《污染源在线监控(监测)系统数据传输标准》(HJ 212-2017)。10)可实现气象五要素的实时监测,标配温度、湿度、压力传感器,可选配风向、风速传感器等。崂应2092型 环境空气质量监测仪
  • 中国首次在非洲用移动实验室检测疟疾
    新华网弗里敦2月8日电(孙鼎盛)中国驻塞拉利昂移动实验室检测队当地时间7日晚,从塞方送检的4份全血样本中,检测出其中3份为疟疾样本。这是我国首次在非洲利用移动实验室开展疟疾检测。  塞卫生部通知要求,从2月7日起,中国驻塞移动实验室同步开展疟疾免疫学检测与埃博拉病毒检测,并纳入正式上报范围。  据检测队队长房彤宇介绍,进入2月以来,塞拉利昂每日采样量保持在200份左右,埃博拉阳性样本已连续1周单日不超过20份,反映出该国埃博拉疫情趋于平稳,进入&ldquo 终止流行&rdquo 阶段。  房彤宇表示,由于疟疾检测需采取全血胶体金检测法,和检测埃博拉病毒的先灭活再采取聚合酶链式反应的方法大相径庭,同步检测不但增加了工作强度、环节和时间,还可能带来一定的生物安全风险。中国驻塞移动实验室检测队充分论证了可能出现的各种问题,制定了详细的实验室操作规程,加强队员自身防护和终末消毒,组织多次培训和试操作,确保将各种风险降到最低水平。  中国驻塞移动实验室检测队自去年9月抵达塞拉利昂以来,已检测埃博拉病毒样本4272例,其中阳性1416例,准确率始终保持在100%。
  • 德图无线温湿度监测系统初登国际货运业
    日前,全球跨国服务集团DKSH香港公司选择了德图Saveris无线温湿度监测系统作为其仓库温湿度的监督者。几乎在同一时刻,另一著名的国际货运公司——K. C. DAT香港公司也在仓库及冷藏室里布下了德图Saveris系统。 在国际货运行业中,仓库及冷藏库中的数据测量,数据收集以及限值报警正变得越来越重要,其背后的原因有很多,如相关法律法规的要求日益增多,更高的产品和存储中的质量要求,以及更高的自动化水平所带来的人力财力上的节约等。为了进行有效的监测,通常需要使用多种仪器监测温湿度。DKSH香港公司在西药、保健品、消费品、机械、畜牧保健品等温湿度敏感领域提供采购、营销、物流、分销等一体化服务,作为其后方的仓库中的温湿度自然控制严格。 货运业的仓库一般非常大,甚至多层。同时,存储物的大量堆放也会影响仪器对温湿度的检测。例如,K. C. DAT香港公司的仓库总共有三层,如何用一台仪器周密完备的监测三层仓库的温湿度,对他们来说是个大问题。在测量点较少的情况下,单独的数据记录仪是理想的测量工具,但是它们无法进行测量数据的集中存储,需要人工读取,且每次开机后需重新调整程序,报警方式也仅有一种。对于这些国际货运业的大型仓库及冷藏库来说,显然不合适。虽然可以使用变送器进行监测,但其控制工作需通过连接至可编程控制器(PLC)来实现,且对于单纯的监测工作来说,变送器是太过昂贵且复杂的。在这样的情况下,德图Saveris应时而出,填补了数据记录仪和变送器之间的空白。Saveris的无线探头和以太网探头可对环境中的温湿度进行精确的测量,凭借“无线”的特点,不管多大的仓库,温湿度尽在掌握。 自四月份推出以来,很多厂家都来电咨询该系统。除了货运业,德图在线产品经理吴保东介绍说,testo Saveris还适用其它各种目标群体,如常规工业领域中的品控、生产以及内部物流 物业环境管理 制药行业中的品控、生产以及内部物流 研发及科技教育 食品行业的品控、生产以及内部物流 工程服务 医药行业等。“任何需要进行温湿度测量、数据归档以及报警提示的地方,都会是testo Saveris的用武之地。”
  • 先河环保上半年净利增17% 便携式监测仪器受市场欢迎
    p  先河环保8月25日晚发布上半年业绩报告。报告显示,公司上半年实现营业收入405,879,595.40元,较上年同期增长11.00% 实现归属于上市公司股东的净利润49,348,504.64元,较上年同期增长17.27% 。/pp  截至报告期末,公司资产总额达到1,758,661,063.63 元,归属于上市公司股东的净资产1,464,401,384.84 元,分别较上年期末增长-1.50%、1.02 %。/pp strong span style="color: rgb(255, 0, 0) "(一)公司经营稳健发展/span/strong/pp strong 1、产品线更加丰富齐全,产品质量得到提升/strong/pp  生态环境监测小型化、微型化设备、软件以及系统集成等全面发力。其中,便携式国标法小型监测仪受到市场欢迎,有毒有害气体传感器监测仪、便携式特征污染物监测仪陆续推出,成为公司技术创新亮点 源解析、道路交通尾气产品线通过研发新技术、引入新产品,市场规模有较大提升 软件产品销售增长幅度明显,公司对多项软件系统进行升级和完善 在水质监测技术上,研发并推出备受用户关注的小型化水质在线监测系统,并引进 Bran+Luebbe 水质产品,进一步完善生态环境(水)网格化精准监控及决策支持系统的功能及应用展开。公司以高品质管理和服务,顺利获得河北省政府质量奖。/pp  strong2、“网格化”系统全面创新,进一步开疆拓土/strong/pp  报告期内,网格化系统完成了从销售产品和服务到提供大数据咨询服务的转变。系统通过进一步全面创新,目前形成了完备的产品体系、科学的质控体系、全面的应用体系、专家人才支撑体系、服务和硬件设施保障体系、规范的标准体系等六大支撑体系。通过持续的产品创新和技术创新,不断提升产品和服务价值,为各地开展科技治霾、精准治污、科学规划提供技术支撑。截止报告期末,该系统已在11 个省,40 个城市以及近20 个县级行政区域广泛应用,布设点位数量已超过8500个。/pp  strong3、管理咨询协同发展,业务推进顺利/strong/pp  随着网格化项目的深入推广,管理咨询类业务成为项目中的有机组成部分。在网格化应用城市,对数据平台实时数据进行监控、指挥调度、现场核查,分析研判、提出管控措施建议,对管控效果进行评估和反馈。报告期内,公司编制了管理咨询服务项目资源配置方案。截止报告期末,公司与新乡、鹤壁、安阳等7 个城市签订管理咨询服务合同,并在濮阳、洛阳、林州等10 个城市跟进运作。/pp  strong4、VOCs 治理积极开拓,打造新增长点/strong/pp  随着大气污染治理压力的加大,VOCs 治理市场迎来了快速发展。报告期内公司积极开拓VOCs 治理业务,雄县包装印刷企业、珠海广通汽车公司邯郸分公司大型整车喷涂企业、石家庄50 条 PVC 手套生产基地、华北制药和石药集团等涉及不同行业领域的VOCs 治理项目陆续落地实施,通过这些项目的突破性进展,公司积累了宝贵经验,为打造 VOCs 治理行业品牌及进一步拓展市场奠定了坚实的基础。/pp  span style="color: rgb(255, 0, 0) "strong(二)创新研发成效显著/strong/span/pp  strong1、网格化精准自动监控系统,/strong在原有基础上进行了传感网络监测仪工艺和算法升级。仪器升级方面,进一步减小电化学传感器受温湿度的影响,提升颗粒物的监测精度。在数据校准方面,通过多地方数据的精细化校准,提升数据准确性与稳定性。在数据处理方面,形成一套环境大数据收集、挖掘和应用一体的综合体系。/pp  strong2、在大气监测仪器开发方面,/strong侧重于现有监测产品的升级改进,对现有产品进行集成化、模块化、智能化、便携化改进,核心模块可以通用,核心部分可以进行标准化传递,并易于进行参数扩展,同时操作更加简单智能,结构更加合理易于与维护 对于移动执法、应急监测实用性更强,提高监测、执法、校准及应急处置效率。同时,边走边测的移动监测车实现了量产,为移动监测、移动执法和传感器的移动校准提供了科技保障。/pp  strong3、在大气系统集成开发方面,/strong研制了工业园区监测系统,通过挖掘工业园区的环境监测需求,整合公司的空气监测和软件产品,开发适用于工业园区的大气环境监管平台和方案,实现园区环境管理的数字化、智能化以及决策的科学化。/pp strong 4、在大气监测软件开发方面,/strong进行了大气超级站综合管理与决策支持平台升级,在原版本基础上重点实现各仪器的专题分析和在线源解析功能,为用户提供了专业的数据分析结论,提升了用户决策的准确性。/pp  strong5、在水质监测方面,/strong开发了水生态环境网格化精准监控与决策支持平台。针对当前水污染防治过程中,存在的无法精准锁定污染源、治理压力不能有效传递、县域农村和散乱污企业管理粗放等问题,采用物联网环境监测、大数据分析技术,组合布设微型化、小型化监测设备,形成大范围、高密度的环境监控网络,结合政府管理手段,形成“监测、执法、管理”为一体的决策支持平台,打通监测到监管的通道,实现监测与治理的联动新模式。/pp  截止报告期末,公司(含子公司)拥有专利60 项,软件著作权78 项。/p
  • 众瑞仪器发布ZR-7022型 环境粉尘连续监测仪新品
    详细介绍产品简介ZR-7022型环境粉尘连续监测仪应用β射线吸收称重原理,对捕集到滤膜上的TSP、PM2.5或PM10颗粒进行自动准确测量,自动连续监测环境TSP、PM2.5和PM10的浓度。该仪器体积小,便于携带安装,具有防尘防雨特性,可在户外长时间连续自动工作。广泛适用于常规环境空气质量监测、环境评价、科学研究、应急监测以及环境空气监测站数据比对等场合。 执行标准GB3095-2012 环境空气质量标准HJ653-2013环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法JJG846-2015 粉尘浓度测量仪检定规程Q/0214 ZRB018-2018 环境粉尘连续检测仪 功能特点采用β射线吸收称重+DHS(动态加热系统)原理直接测量颗粒物质量浓度,不受颗粒物化特性的影响,无需修正,全天候实时提供准确数据。采样工位与检测工位分离,有效避免污染源对计量系统的污染和干扰。运纸机构整体移动单方向走纸,有效避免了双工位纸带容易断裂的缺陷。DHS(动态加热系统)内置,减小环境变化对测量结果的干扰。机芯防护透明门设计,降低由于开机箱门导数据等操作时环境突变对数据准确性的影响。具有动态温湿度补偿功能,可以保障对半挥发性硝酸盐和有机物的准确测量。采用宽温型工业触摸屏,操作方便快捷。自动测量温湿度和气压等参数,并自动换算标准状态采样体积。仪器可自动存储历史测试数据、可现场打印或用U盘导出。具备数字和模拟输出接口,可方便连接数采仪进行联网传输。具备4G无线通讯模块,可以远程查询仪器工作状态和实时测量数据。仪器具备数据断电自动保存功能,来电后保持断电前状态运行;仪器有独立的断带、滤纸用尽以及机械故障等测试程序;出现问题仪器自动报警。内置锂电池,能够连续运行8小时以上,满足各种监测需要。创新点:1、采用先进的β 射线吸收称重+DHS(动态加热系统)原理直接测量颗粒物质量浓度,不受颗粒物化特性的影响,无需修正,全天候实时提供准确数据;2、采样工位与检测工位分离,有效避免污染源对计量系统的污染和干扰,数据可靠性更高;3、运纸机构整体移动单方向走纸,有效避免了双工位纸带容易断裂的缺陷;4、DHS(动态加热系统)内置,减小环境变化对测量结果的干扰;5、机芯防护透明门设计,降低由于开机箱门导数据等操作时环境突变对数据准确性的影响;6、具有动态温湿度补偿功能,符合国家标准,可以保证对半挥发性硝酸盐和有机物的准确测量;7、内置锂电池,能够连续运行8小时以上,防水等级达到IP67,能够在恶劣的环境下稳定工作,满足各种监测需要。ZR-7022型 环境粉尘连续监测仪
  • 中国环境监测总站顺利完成数字式温湿度计计量建标与试校准工作
    近日,中国环境监测总站(以下简称总站)建立了生态环境部最高的二等铂电阻温度计量标准装置(2022国量标环境证字第006号)和精密露点仪湿度计量标准装置(2022国量标环境证字第007号),并正式启动环境空气数字式温湿度计的校准工作。温湿度计量标准考核证书 环境空气温湿度的精准测量与精准控制通过影响PM10和PM2.5的动态加热系统影响其监测结果,保障环境温湿度的测量准确是保障PM10和PM2.5的监测准确与量值统一的重要前提。总站建立的二等铂电阻温度计量标准装置其测量范围为(-40-150)℃,不确定度为±0.1℃;精密露点仪计量标准装置的测量范围为(5-95)%RH ,不确定度为±1.0%RH,满足《数字式温湿度计校准规范》(JJF 1076-2020)和《计量标准考核规范》(JJF 1033-2016)要求。目前计量中心已完成数字温湿度计的试校准工作,通过了与中国计量院的计量比对,保证数字温湿度计校准结果的准确可比。在此基础上,已经完成了部分国控网运维、检查单位数字温湿度计的校准工作,并出具了试校准证书,能够从量值源头有效保障PM10和PM2.5动态加热系统的测量准确。温湿度计试校准证书
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制