当前位置: 仪器信息网 > 行业主题 > >

物理吸附测试仪

仪器信息网物理吸附测试仪专题为您提供2024年最新物理吸附测试仪价格报价、厂家品牌的相关信息, 包括物理吸附测试仪参数、型号等,不管是国产,还是进口品牌的物理吸附测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合物理吸附测试仪相关的耗材配件、试剂标物,还有物理吸附测试仪相关的最新资讯、资料,以及物理吸附测试仪相关的解决方案。

物理吸附测试仪相关的论坛

  • 物理吸附测试实例

    物理吸附测试实例

    [img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433173704_7895_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433182045_860_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433187522_4094_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433195792_6136_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433206002_3229_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433220399_1739_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433228560_6868_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433234592_7032_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435023422_4656_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435037251_8321_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435047702_4459_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435057153_6344_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435064532_3577_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435072882_3559_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435085602_3528_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435095062_2431_3904283_3.jpg!w690x517.jpg[/img]

  • 物理吸附怎么做?

    物理吸附怎么做?

    [img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241153511237_9662_3904283_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241154139229_1894_3904283_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241157318642_5257_3904283_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241157516246_7946_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241157528176_756_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241157538022_6220_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241213474512_9091_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241215236692_7963_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241216000692_2445_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241216283826_5254_3904283_3.jpg!w690x517.jpg[/img]

  • 材料表征之物理吸附

    材料表征之物理吸附

    [img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241504101892_1549_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241504109772_8663_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241504122321_2753_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241504130332_1714_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241504134572_2547_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241504141752_153_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241504149692_723_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241504163575_3967_3904283_3.jpg!w690x517.jpg[/img]

  • 国产物理/化学吸附仪被蔑视了

    物理吸附仪是用于研究颗粒类材料的比表面积和孔结构数值的重要测试仪器,在对煤的结构研究中,为了更好的对比不同的煤的结构参数,需要较高的测量精度和测量真实性。进口物理吸附仪相比于国产,精密度和智能化程度更高,通过对原始信息的数字处理,更好地排除了外部干扰对信息影响,提高了产品的耐环境性、测量的真实性和精确性。进口仪器加热炉和控制器能够控制温度至450℃,国产仪器相应温度只能达到350℃,不利于高温实验的进行。因此需要采购进口的物理吸附仪。  化学吸附仪可进行程序升温还原( TPR )、程序升温脱附( TPD )、程序升温氧化( TPO )、程序升温表面反应( TPSR )以及脉冲滴定等实验,用于材料对于物质的吸、脱附性能研究。还可对材料的酸性、表面金属分散度、金属与载体的相互作用等进行研究。除了常规(常压)的 COx 、 NOx 、 NH 3 、 H 2 、 O2 等的吸脱附实验外,还可进行吡啶、苯、甲醛等有机物的吸脱附实验,具有真空、加压、负温等多种可选配的实验条件。根据我们的调研,目前国产设备不能满足使用要求。因此需采购进口化学吸附仪用于科研工作。

  • 氮吸附法比表面积测试仪器

    氮吸附法比表面积测试仪器有哪些,各自的优缺点是什么?目前调研比表面积测试仪器,想知道进口与国产的仪器价格和优缺点,麻烦各位大佬帮帮忙,谢谢~~~~~~~~~

  • 材料表征之物理吸附

    材料表征之物理吸附

    [img=材料表征之物理吸附,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241040543064_4373_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241041301720_2977_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241043459714_5656_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241044185308_7597_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241044444424_9357_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附表征,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045065334_3428_3904283_3.jpg!w690x517.jpg[/img][img=材料表征之物理吸附,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045557845_1528_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045552293_6474_3904283_3.jpg!w690x517.jpg[/img]

  • 材料中物理吸附

    在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。

  • 物理化学蒸汽吸附

    能进行物理吸附、化学吸附和蒸汽吸附测试,如果需要联系电话:13235197591QQ:2405917320如此贴违反相关版规,望谅,请删除

  • 氮气物理吸附

    做氮气物理吸附,样品是含有积炭的分子筛,吸附值出现负值,什么原因?

  • 【原创大赛】物理吸附实验中样品加入方式改进

    【原创大赛】物理吸附实验中样品加入方式改进

    [align=center][b]物理吸附实验中样品加入方式改进[/b][/align][align=left] [/align][align=left] 当前在用的商品化的物理吸附仪多采用容量法的原理。为了保证样品在测试过程中不被仪器的真空系统倒吸且使样品在测试过程中保持恒温,多采用长的管臂,管壁尽头为一较大的玻璃泡,如图1所示。[/align][align=left][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2017/09/201709031107_01_1879291_3.png[/img][/align][align=left] 测试时,实验所得到的有效的吸附量主要来源于玻璃泡中样品对于吸附质气体的吸附量。由于管壁较长,为了方便添加样品,仪器厂商一般会随主机附带一种可以固定在管口的金属材质或塑料材质的辅助加样装置,如图2所示。[/align][align=left][img=,690,474]http://ng1.17img.cn/bbsfiles/images/2017/09/201709031109_01_1879291_3.png[/img][/align][align=left] 在实际使用过程中,对于颗粒状样品可以用该装置顺利加入到样品管的底部,而对于较轻的粉末状样品,在加入时由于静电作用则容易吸附在管壁,如图3所示。[/align][align=left][/align][align=left][img=,594,708]http://ng1.17img.cn/bbsfiles/images/2017/09/201709031111_01_1879291_3.png[/img][/align][align=left] 对于吸附在管壁上的样品由于在实验过程中这些样品并没有浸泡在液面之下,对吸附质气体发生十分微弱甚至没有吸附,由此会带来测量数据偏小的不良后果。 为了避免这种现象,我们设计了一种可以直接将样品加入至样品管底部的玻璃材质的辅助加样装置,如图4所示。[/align][align=left][img=,417,716]http://ng1.17img.cn/bbsfiles/images/2017/09/201709031112_01_1879291_3.png[/img][/align][align=left] 为了便于加载样品,该装置顶部采用漏斗状结构,下部较长的管状结构可以直接将样品传送到样品管的底部,从而有效地避免了粉末状样品粘附在样品管壁的现象。管径和长度可依据样品管尺寸做适当的变化 这种结构的玻璃材质的辅助加样装置易于加工,并且成本很低,便于在大多数实验室推广使用。[/align]

  • 请问氮气物理吸附怎么取点?

    请问氮气物理吸附怎么取点?

    我要测分子筛的的氮气物理吸附-脱附曲线,样品既有微孔也有介孔,但微孔较多,请问怎么取点呢?取多少点?还有,我现在的数据分析,发现BET算出的C值在所有范围内都是负的,这跟我做氮气吸附的取点有没有关系?怎么避免这个问题?还有一点,t-plot怎么取点比较合理呢?多谢大神指点!http://ng1.17img.cn/bbsfiles/images/2016/09/201609281555_612465_2991446_3.jpg

  • 【求助】三台同样的物理吸附仪,结果差距大

    有三台麦克2420物理吸附仪器。实验条件设置完全相同。做麦克自带的标样都合格。但是做我们自己的样品,比表面能差30。这样的误差实在难以接受。再用2020C,标样仍然合格,做我们自己的样品,比2420中比表面最高的那台结果还要高15左右。更难以接受了。 请问您能帮我分析一下原因吗?多谢了!

  • 比表面积测试仪常见的测试方法有哪些

    比表面积测试仪有许多的方式供我们选用,通常我们选用的就是动态法、直接对比法、  多点BET法、静态容量法等多种方式,而今天我们所要学习的就是关于动态法的一些常见方式解决方案。  我们选用的动态法其实过程也不是那么复杂,只是需要我们更多的细心和解决方式。  比表面积测试仪首先就是将待测粉体样品装在U型的样品管内,使富含必定份额吸附质的混合气体流过样品,这样形成一种特地的测试效果,我们可以依据吸附前后气体浓度改变来断定被测样品对吸附质分子的吸附量来达到我们所要测试的成果。  比表面积测试仪静态法主要依据断定吸附吸附量办法的不一样分为分量法和容量法; 分量法是依据吸附前后样品分量改变来断定被测样品对吸附质分子的吸附量,来判断其测试的成分内容,更多的是因为分辨率低、准确度差、对设备需求很高级缺点已很少运用。所以很好的办法就是我们解决其弊端,然后达到我们所要用的要求,才能达到我们比表面的测试效果。  比表面积测试仪容量法是将待测粉体样品装在必定体积的一段关闭的试管状样品管内,然后通过向样品管内写入必定压力的吸附质气体,能给我们依据吸附前后的压力或分量改变来断定被测样品对吸附质分子的吸附量来达到我们所要进行的有效措施。  介绍了这么多关于比表面积测试仪的一些常见测试方法,更多的是要我们有效的改善我们的测试方式,达到我们更加仔细的能力,还有就是方面我们正常的工作和测试内容。www.chinazhongqi.net/93.html

  • 【原创大赛】官人代发:“诡异”的物理吸附等温线

    【原创大赛】官人代发:“诡异”的物理吸附等温线

    [b]作者:[/b]丁延伟,[color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color]通过物理吸附技术可以得到固体材料的比表面积、孔径分布、孔隙度、表面性质等结构信息,其在物理、化学、材料、生物、环境等学科中得到日益广泛的应用。实验上,利用专业的商品化的物理吸附仪或化学吸附仪,先将吸附剂在一定温度下以真空或吹扫气的形式对其进行彻底脱气,再在恒定温度下,控制吸附质与载气的分压,使吸附体系逐步达到平衡。这种通过控制吸附质分压与相应的平衡吸附量的关系所得到的实验曲线即为吸附等温线。[b]习惯上,将由实验得到的吸附和脱附过程得到的等温线统称为吸附等温线。[/b]多年来,许多研究者对各类吸附等温线提出了许多吸附相互作用理论,并推导出了等温吸附公式,如Henry吸附式、Freundlich吸附式、Langmuir理论、BET吸附理论等,并依托于这些理论表征吸附剂的结构与成分,如比表面积、孔容积、孔径分布等信息。实验上,用于测量材料的物理吸附性质的仪器主要有容量法和重量法两种,其中以容量法更为常用。容量法测量物理吸附的仪器又分为流动法和静态法两种。静态容量法由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动。该方法测量是在等温(通常用液氮)条件下,向样品管内通入一定量的吸附质气体(通常为N[sub]2[/sub]),通过控制样品管中的平衡压力直接测得吸附分压,由气体状态方程(通常为理想气体状态方程)得到该分压点的吸附量。测量过程中逐渐增加吸附质气体使吸附平衡压力逐渐变大,最终得到吸附等温线。通过逐渐吸附质气体被抽走来降低吸附平衡压力,得到脱附等温线(如图2)。由于气体在固体表面的吸附状态多种多样,由此所得到的吸附等温线也不是一成不变的。2015年8月,国际化学领域最权威的国际纯粹与应用化学联合会(IUPAC)公布了最新的比表面积和孔参数分析的气体吸附分析规范。图1为物理吸附等温线的最新分类方法,实际由实验得到的各种吸附等温线大多是这六类等温线的不同组合。[align=center][img=,348,510]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935179761_1197_3224499_3.jpg!w348x510.jpg[/img] [/align][align=center]图1物理吸附等温线的最新分类[/align][align=center][img=,340,280]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935287586_8445_3224499_3.jpg!w340x280.jpg[/img][/align][align=center]图2 典型氮气吸脱附等温线[/align]理论上,通过实验得到的等温线为累积吸附量。也就是说,在吸附过程中,随着压力的持续增加,吸附量应保持不变(即在该压力下没有发生吸附)或持续增加(即在该压力下发生了吸附)。而在脱附过程中,随着压力的持续减小,在相应的压力下吸附的气体分子逐渐脱离样品的表面。理论上,如果不考虑表面张力的作用,吸附曲线与脱附曲线应保持重合(图3)。由于表面张力作用的存在,导致在某一压力下吸附的分子不能在该压力下发生脱附。随着压力的进一步下降,这部分吸附的分子会进一步发生脱附,由此得到的吸附线与脱附线之间并不重合,形成了如图2所示的滞后环。在0.4~0.95之间的滞后环通常被看作介孔材料的典型特征。[align=center][img=,452,367]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935450026_3092_3224499_3.jpg!w452x367.jpg[/img][/align][align=center]图3[/align]然而,在实际上通过物理吸附实验得到的等温线与图1中IUPAC提出的分类方法并不一致,本文结合实验中得到的一些“诡异”的等温线谈一下这些引起这些诡异的等温线的原因,并给出相应的解决方案。概括来说,常见的异常等温线主要分为以下几类:[b]1 吸附支正常,脱附支逐渐与吸附支交叉并处于吸附等温线的下方[/b]这种类型的等温线如图4所示,图中红色曲线对应于吸附过程,紫色曲线则对应于脱附过程。由图可见,在脱附过程中,随着相对压力的减小,脱附支逐渐下降,在相对压力P/P[sub]0[/sub]=0.65处与吸附支相交,并保持持续降低。在相对压力低于0.65的压力范围内的吸附量始终低于吸附支所对应的数值。[align=center][img=,480,405]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935588561_2093_3224499_3.jpg!w480x405.jpg[/img][/align][align=center]图4[/align]图4中的这种现象主要是由于在实验过程中液氮液面的逐渐下降,导致样品所处的等温环境发生的变化,温度逐渐升高引起的。图4中的等温线多见于吸附量较大的多孔材料。对于这类材料除了应选择合适的样品量之外(不宜加入过多的样品量,由此会导致实验时间延长),还应注意根据实验所使用的杜瓦瓶的容积来及时添加液氮,使样品始终处于等温的环境下。[b]2. 吸附支基本正常,脱附支在实验过程中始终处于吸附支的下方[/b]如图5所示,所得到的等温线的吸附支基本正常,但等温线的脱附支始终处于吸附支的下方。与第一种情形类似,如果实验在较短的时间内完成(排除液氮液面的下降因素),此时应考虑样品量和脱气条件等因素。较少的样品量会引起测量的吸附量的绝对值降低,造成测量数据的准确性下降。另外如果脱气温度设置不当,也会产生类似的现象。过低的脱气温度会引起在表面或者孔道中存在的溶剂或水分子无法有效地去除而造成堵塞现象,过高的脱气温度则会造成孔道或者表面的塌缩,从而引起吸附量的下降。避免这种现象的有效方法是选择更多的样品量或者设定合适的脱气条件。[align=center][img=,560,467]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936126460_5937_3224499_3.jpg!w560x467.jpg[/img][/align][align=center]图5[/align][b]3. 等温线的吸附支和脱附支在较高的相对压力下的吸附量随压力的升高而下降[/b]这种异常的等温线的吸附支和脱附支在较高的相对压力下的吸附量随压力的升高而下降,如图6和图7所示。如前所述,通过实验得到的等温线为累积吸附量。也就是说,在吸附过程中,随着压力的持续增加,吸附量应保持不变(即在该压力下没有发生吸附)或持续增加(即在该压力下发生了吸附)。由于脱附支曲线所对应的吸附量应大于等于吸附支所对应的吸附量,因此这类等温线得到的数据为异常数据,由等温线计算得到的孔径分布曲线、比表面积、孔容积等数据均是异常的数据。这种现象是由于在实验过程中使用了较少的样品量和不合适的脱气条件造成的,应选择更多的样品量或者设定合适的脱气条件。[align=center][img=,412,344]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936274501_1625_3224499_3.jpg!w412x344.jpg[/img][/align][align=center]图6[/align][align=center][img=,436,374]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936394117_5512_3224499_3.jpg!w436x374.jpg[/img][/align][align=center]图7[/align][b]4. 等温线的吸附支和脱附支之间出现了两个交点,呈8字形[/b]这种类型的等温线的吸附量随着相对压力的升高整体保持增加的趋势,但在脱附过程中的脱附支曲线与吸附支有出现了两个交点,呈8字形,如图8所示。由于这种类型的等温线有一段(图8中P/P0在0.5-0.8之间)出现了脱附支所对应的吸附量位于吸附支曲线所对应的吸附量的现象,因此为异常曲线。这种类型的等温线通常是由于在实验过程中使用了较少的样品量和不合适的脱气条件造成的,应选择更多的样品量或者设定合适的脱气条件。[align=center][img=,560,467]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936549772_8663_3224499_3.jpg!w560x467.jpg[/img][/align][align=center]图8[/align][b]5 等温线的吸附支和脱附支不闭合[/b]如图9和图10所示,等温线的吸附支和脱附支之间并没有发生了闭合现象,这种现象与图1 中的IUPAC所描述的几种类型的等温线出现了偏离。文献中对于这种类型的等温线也给出了不同的解释。理论上,出现这种不闭合的现象是由于发生了不可逆吸附造成的。在实际的数据分析过程中,应首先排除样品量和脱气条件的影响,如果这些条件都没有问题的话应结合样品的性质对于这种现象给出合理的解释。通常可以通过调整样品量和脱气条件来改善这种现象。对于不可逆吸附过程而言,可以通过不更换样品管原位多次重复吸附来证实。[align=center][b][/b][/align][align=center][img=,400,345]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170937072894_6250_3224499_3.jpg!w400x345.jpg[/img][/align][align=center]图9[/align][align=center][img=,420,378]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170937199101_3189_3224499_3.jpg!w420x378.jpg[/img][/align][align=center]图10[/align]

  • 有关莫瑞提克物理吸附

    物理吸附产品应用:分子筛、药品、陶瓷、活性炭、炭黑、催化剂、油漆与涂料、推进染料、储氢材料、燃料电池等领域内当代材料科学的尖端研究。它可测表面积与进行微孔分析,来用于探测孔隙结构和表面能量特性的精微细节。

  • 【原创】比表面 比表面测试仪

    比表面是比表面积的简称。根据实际需要,比表面积分为内比表面积、外比表面积、和总比表面积;通常未注明情况下粉体的比表面积是指单位质量粉体颗粒外部表面积和内部孔结构的表面积之和,单位m2/g。粉体材料越细,表面不光滑程度越高,其比表面积越大。由于纳米材料细度很高,一般具有比较大的比表面积;吸附剂催化剂炭黑等材料的效能与比表面积关系密切,一定效能需要一定范围的比表面要求;但并不是比表面积越大,就粉体质量越好。例如在要求粉体球形度的情况下,粒度相当的粉体材料,比表面越大,球形程度就越差。比表面积和粒径(粒径一般用中位径或目数来表示)是两个概念,没有必然联系,同样目数的两个产品不等于他们拥有相同的比表面积,也依赖与其表面光滑程度和孔结构。比表面积研究和相关数据报告中,只有采用BET方法检测出来的结果才是真实可靠的,因为国内外制定出来的比表面积标准都是以BET测试方法为基础的。(GB.T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法,而通过粒度仪估算出的比表面积通常差距都很大,无法反映实际情况。比表面积测试有专用的比表面积测试仪。 比表面分析仪是用来检测颗粒物质比表面积的专用设备,目前在高校、科研单位及生产企业中被广泛实用,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。比表面积大小性能检测在许多的行业应用中是必须的,如电池材料,催化剂,橡胶中碳黑补强剂,纳米材料等。 目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器行业的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。 精微高博(JWGB)是当代中国著名的粉体表面特性测试技术的开创者。十年来,精微高博(JWGB)的科学家革新了测试技术并设计发明了相应的物性测试仪器,使粉体及多孔材料的测试更精确、更精密、更可靠。这包括: • 比表面测试• 吸附/脱附等温线• 孔隙度、介孔与微孔孔径分布•粉体真密度•精微高博(JWGB)具有代表性的仪器: -连续流动色谱法智能型比表面分析仪 ---- JW-DA -多站静态容量法比表面及孔隙度分析仪 ---- JW-BK -静态容量法超微孔孔径分布测试仪—— JW-BK-F

  • 【原创大赛】官人代发:物理吸附实验中样品脱气条件的选择

    【原创大赛】官人代发:物理吸附实验中样品脱气条件的选择

    [b]作者:[/b]丁延伟,[color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color]在上一篇文章中介绍了《物理吸附实验中样品用量的选择》,按照物理吸附实验程序,在确定了样品用量之后,接下来要对样品进行脱气处理。脱气条件的选择与样品量均十分重要,是取得理想的实验结果的前提。在本文中,将对吸附实验中的脱气条件的选择进行阐述。脱气的目的是最大程度地去除表面吸附的溶剂和从环境中吸附的水蒸气等其他分子。如果表面吸附的这些物种不能有效去除,在进行吸附实验时势必会影响最终的吸附等温线的吸附量数值,由此导致所得到的比表面积、孔容积等参数的数值变小。因此,只有选择合理的脱气条件,有效地脱除样品表面吸附的溶剂、水蒸气等分子,才可以得到理想的实验结果。常用的脱气方式分动态脱气和真空脱气两种。其中,动态脱气是在一定的温度下,使加入到样品管中的样品上方流通一定流速的气体(通常为氦气或者氮气),流动的气氛将加热时表面吸附的溶剂、水分子等带离样品管,从而达到脱气的目的。而真空脱气则是在一定的温度下,将装有样品的样品管连接在仪器的脱气装置的真空,通过负压将表面吸附的溶剂、水分子等带离样品管。显然,真空脱气方式的脱气效果要优于动态脱气方式。实际上,大多数的物理吸附实验采用在一定的温度(通常高于室温)下抽真空的方法。在选择脱气条件时,通常需要设定合适的脱气温度和等温时间。一般来说,脱气温度越高,表面吸附的溶剂、水分子等的脱除效果越好。设定合适的脱气时间可以使这些分子有足够的时间被脱除。通常,在较高的脱气温度下所需的脱气时间可以适当缩短。在实际设定脱气条件时,与脱气时间相比,合适的脱气温度显得更加重要。如果脱气温度设定过高,通常会引起样品发生熔融、分解、表面结构变化、孔塌缩,由此得到的结果并非测试样品的实验结果。图1为在较高的脱气温度下得到的异常等温线。由图可见,即使样品中含有大量的孔结构,过高的脱气温度引起了孔的塌缩,从而导致吸附能力减弱,无法得到正常的等温线。 [align=center] [img=,436,374]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241425496214_771_3224499_3.jpg!w436x374.jpg[/img] [/align][align=center]图1[/align]另一方面,在过低的脱气温度下,即使采用过长的等温时间(如12小时或24小时)也无法有效地脱除表面吸附的溶剂、水等分子。这些分子的存在会挤占表面的吸附位或者堵塞孔道,导致比表面积和孔容积下降。通常用热分析技术中的热重法(TG)和差示扫描量热法(DSC)来选择合适的脱气温度。理想的脱气温度应在熔点和分解温度之前。如果材料中含有结晶水,实验时如果不考虑结晶水存在时的结构状态,则脱气温度应在结晶水的分解温度之上。以下举例说明。例1 图1中的绿色曲线为含有结晶水的草酸钙样品的热重曲线,121℃开始的第一个失重台阶对应于结晶水的失去过程,389℃开始的第二个失重台阶对应于草酸钙分子结构中的CO的失去过程。(1)如果需要测量不含结晶水的草酸钙的物理吸附实验并由此得到比表面积孔容积等信息,则脱气温度应设置在300-350℃范围内。(2)如果需要测量含有结晶水的草酸钙样品的物理吸附实验并由此得到比表面积孔容积等信息,则脱气温度不得高于120℃。[b]需要特别指出,由于热重实验是在常压下的动态气氛下以恒定的加热速率条件下得到的,而吸附实验的真空脱气是在很定温度下的真空环境下进行的,设定的脱气温度应低于热重曲线的开始温度20-50℃,以免样品在脱气过程中发生分解。如果采用动态气体吹扫法进行脱气,则温度可以适当提高。由于脱气在等温下进行,所设定的脱气温度也应低于热重的开始分解温度5-10℃。[/b]例如,对于以上第(1)种情形的脱气温度可以设在80-100℃范围中的一个温度,对于以上第(1)种情形的脱气温度可以设在320-350℃中的一个温度。设置的温度越低,则脱气时间可以适当延长。常用的脱气时间为60-600分钟不等。另外,样品中孔的含量越多,脱气时间也应越长。[align=center][img=,560,270]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241425579422_175_3224499_3.jpg!w560x270.jpg[/img][/align][align=center]图2 含有结晶水的草酸钙的TG曲线[/align]例2 为一种有机物的DSC曲线,由图可见样品自130℃开始逐渐发生熔融,如果需要对这种样品进行物理吸附实验,则脱气温度可以设置在80-110℃。如果温度设置过高,则易引起样品中孔结构的塌缩。[align=center][img=,560,271]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241426055932_7531_3224499_3.jpg!w560x271.jpg[/img][/align][align=center]图3 一种有机物的DSC曲线[/align]综合以上两个实例,在设置脱气温度时应综合TG和DSC曲线来确定合理的脱气温度,对于熔点较高(高于400℃)或者不存在熔点的样品而言,只通过TG实验就足够了。另外,如果样品在加热过程存在不可逆相变,由于不同的结构形式的吸附能力也有差异,则脱气温度也应低于该温度。需要特别指出,[b]如果样品已经经过高温(高于400℃)热处理过程,由于脱气装置的最高工作温度在400-450℃范围,则可以直接将脱气温度设定在300-400℃[/b]。[b][color=black]如果样品中含有大量的微孔,在样品可以承受的最高温度下脱气时还应大幅度延长脱气时间,以使微孔中的吸附水、溶剂等分子彻底脱除。[/color][/b][color=black]如果样品中含有在合成或处理过程中引入的一些稳定性很好的无机盐如钠盐、钾盐等,这些化合物会堵塞表面的缺陷或孔,影响测量结果。如果不希望样品受这些无机化合物的影响,则应对样品进行再次处理。对于一些再合成或处理过程中有意在样品中负载的一些活性组分如铂、金等,则无需在处理时将这些活性组分进行置换。[/color]

  • 【原创大赛】官人代发:物理吸附实验中样品用量的选择

    【原创大赛】官人代发:物理吸附实验中样品用量的选择

    [b]作者:[/b]丁延伟,[color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color]在《“诡异”的物理吸附等温线》一文发出后,受到了许多同行的高度关注,一些读者希望了解关于物理吸附实验中样品用量和脱气条件选择方面的内容。在实验中,选择合适的样品用量和脱气温度是得到高质量的物理吸附数据的关键。为了叙述方便,在本文中结合实例谈下物理吸附实验中样品用量选择问题。在下一篇文章中将讨论脱气条件的选择问题,敬请持续关注。在实验过程中,选择合适的样品用量对于最终得到的实验数据影响较大。样品用量过多,会导致实验的时间延长。而过长的实验时间会导致实验过程中液氮的液面下降。除了耗费时间之外,液氮液面下降过多还会导致样品所处的温度升高,引起等温线异常(图1)。另外,过少的样品量会导致样品表面对吸附质分子的吸附量下降,也会引起等温线异常(图2、图3)。因此,选择合适的样品用量是得到理想的物理吸附数据的关键。[align=center] [img=,480,405]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241420276086_2066_3224499_3.jpg!w480x405.jpg[/img] [/align][align=center]图1[/align][align=center][img=,412,344]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241420366366_4857_3224499_3.jpg!w412x344.jpg[/img][/align][align=center]图2[/align][align=center][img=,436,374]https://ng1.17img.cn/bbsfiles/images/2019/10/201910241420447746_4326_3224499_3.jpg!w436x374.jpg[/img][/align][align=center]图3[/align]通常,根据待测样品的比表面积来估计实验时所使用的样品用量。如果对于待测的样品的比表面积不是十分了解,可以对于比表面积进行大体的估算。通常比表面积和样品量之间存在如下关系:[align=center]比表面积*样品量=5 (1)[/align]由等式(1)可见,样品量与比表面积成反比关系。比表面积越大,实验时所需的样品量就越少,反之亦然。当样品的比表面积为1m[sup]2[/sup]/g时,需要的样品质量为5g。而当样品的比表面积为10 m[sup]2[/sup]/g时,则需要的样品质量为0.5g。但以上关系式对于比表面积大于100m[sup]2[/sup]/g的样品并不适用。按照等式(1)计算,当比表面积大于100m[sup]2[/sup]/g时,由该关系式计算可以得到实验所需的样品量至少为0.05g(即50mg)。在物理吸附实验过程中,样品通常需要加入至一支重量约为20~40g,如果实验过程中加入的样品量少于0.05g,而在对经过脱气后的加入样品的样品管进行称量时,其质量也会在20~40g范围,甚至更高。因此物理吸附实验所使用的分析天平通常为万分之一克的天平。当样品质量低于50mg时,[b]由于确定样品的质量需要通过加入样品的样品管的质量和空白样品管的质量相减得到[/b],因此由称量带来的误差不容忽视。样品量越少,对于所得到的等温线的吸附量影响越大。因此,较少的样品质量也会对由等温线根据不同的模型计算得到的孔容积、比表面积、孔径分布曲线等结果产生影响。因此,当比表面积大于100m[sup]2[/sup]/g、小于300 m[sup]2[/sup]/g时,通常要求比表面积和样品量之间满足如下关系:[align=center]比表面积*样品量=30 (2)[/align]由等式(2)可见,对于比表面积为100m[sup]2[/sup]/g的样品而言,样品用量为0.3g。而当样品的比表面积为300m[sup]2[/sup]/g时,样品用量则为0.1g。当样品的比表面积大于为300m[sup]2[/sup]/g时,为了保证样品质量的准确性,实验的样品用量通常不低于50mg。需要特别指出,以上关系式为估算值,供制样时参考。

  • 请问怎样分析这两个吸附-脱附曲线

    大家好,请问吸附-脱附曲线应该怎么分析?从图中可以分析出什么东西呢?在下新手,能否请各位老师专家尽量讲的详细点?这两个样品都是用酸处理方法制备的多孔玻璃,只是工艺参数不同。测试仪器是ASAP2020。谢谢大家。

  • 免费直播讲座——氮吸附法介孔与大孔的测试与分析

    [b][color=#ff0000][b][color=#ff0000]直播时间:[/color][/b]2018/11/15 10:00[/color][color=#ff0000]讲师介绍:[/color][/b]钟家湘 : 北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”[color=#ff0000][b]内容简介:[/b][/color]本讲主要内容:1. 测试方法、过程,从吸附量到孔体积的详细推算;2. BJH法孔径分布的表征方法,各个表征参数的物理含义、推导过程、应用价值;3. 孔径分析的重点、难点,吸脱附如何选择,滞后曲线与孔型的关系;4. 影响测试精度因素的分析比表面与孔径分析原理及应用专家系列讲座目录第一讲 [color=#ffffff]1.[/color]氮吸附法比表面及孔径分析原理[color=#ffffff][/color]第二讲 连续流动色谱法比表面仪原理及应用第三讲 静态容量法比表面及孔径分析仪原理及应用第四讲 氮吸附法介孔与大孔的测试与分析第五讲 氮吸附法微孔的测试与分析第六讲 密度函数理论在孔径分析中的应用[color=#ff0000][b]免费报名链接:[/b][/color][url]https://www.instrument.com.cn/ykt/Course/Live/Index?sId=127[/url][b][color=#ff0000]温馨提示:[/color][/b]本讲座直播免费哦,点播需购买整个系列讲座,详情见[url]https://www.instrument.com.cn/ykt/course/course/detail?sid=106[/url],免费名额有限哦,先到先得!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制