微流控芯片检测

仪器信息网微流控芯片检测专题为您提供2024年最新微流控芯片检测价格报价、厂家品牌的相关信息, 包括微流控芯片检测参数、型号等,不管是国产,还是进口品牌的微流控芯片检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微流控芯片检测相关的耗材配件、试剂标物,还有微流控芯片检测相关的最新资讯、资料,以及微流控芯片检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

微流控芯片检测相关的厂商

  • 苏州汶颢芯片科技有限公司是一家留学人员回国创业的高新科技企业,集研发、生产、销售为一体,技术力量雄厚,生产设备先进,检测手段齐全,产品质量过硬。公司建立了完备的微流控芯片研发与生产中心,配置了三条微流控芯片生产线,包括数控CNC微加工仪器,软刻蚀有机芯片加工系统,光刻-掩模无机芯片加工系统,可以加工生产所有材质的芯片,如玻璃、石英、硅、PDMS和PMMA等。产品涵盖集成式通用医疗诊断芯片、集成式通用环境保护分析监测芯片、集成式通用食品安全分析检测芯片和基于微流控芯片的新能源体系四大系列数十个品种,以及各类科研类芯片,并在生物芯片和化学芯片领域一直保持技术和研发的领先地位,拥有81项知识产权,其中:已申请发明**65件、实用新型**7件,注册商标2件,登记软件著作权7件。
    留言咨询
  • 浙江扬清芯片技术有限公司(YoungChip)是一家专注于微流控芯片实验室整体解决方案的企业,技术力量雄厚,生产设备先进,检测手段齐全,产品质量过硬。公司可提供整套微流控芯片生产线, 包括CNC 数控微加工仪器、精密激光加工系统、光刻加工系统、塑料芯片注塑系统和微流控芯片热压键合系统, 可以加工生产所有材质的芯片, 如玻璃、石英、硅、PDMS 和PMMA 等。主营产品包括: ① 微流控芯片的设计、开发与加工服务; ②微流控芯片实验室组建及芯片技术培训; ③ 微流控芯片的耗材、配件及相关设备; ④ 模块化的芯片温度控制系统、流体操控系统和检测系统; ⑤ 基于微流控技术平台的POCT 快速检测系统。产品涵盖医疗生化诊断、环境监测、食品安全分析检测、化学合成等几大应用领域。目前,扬清芯片(YoungChip)已和中科院大连化学物理研究所、中国科学院苏州纳米技术与纳米仿生研究所、生物芯片北京国家工程研究中心(博奥生物有限公司)、中国石油勘探开发研究院、浙江省检验检疫局、广东产品质量监督检验研究院、深圳出入境检验检疫局、广州迪澳生物科技有限公司等多家单位建立了长期紧密的项目合作。
    留言咨询
  • 苏州原位芯片科技有限责任公司成立于2015年,由清华大学和中科院微电子专业人士共同创立,并获得国内顶尖VC机构千万级投资。公司专注于新型MEMS芯片与模组的研发、生产和销售。掌握40多项领先MEMS技术,拥有芯片设计、工艺开发、流片生产和测试的全流程自主研发、自主生产能力。 MEMS芯片凭借高精度、低成本、体积小的特点,拥有千亿级的广阔市场空间,公司已推出多款打破国外垄断产品,其中自主研发的氮化硅薄膜窗口产品凭借优异的薄膜洁净度和高强度,获得广大TEM和同步辐射研究人员的高度好评。公司已申请十余项发明、实用新型专利。未来还将推出多款新型MEMS芯片。 公司已与多家研究所、大学、医疗、工业、智能装备等行业的企事业单位建立了良好的合作伙伴关系。凭借国内领先的核心技术,公司成员齐心协力,致力于成为世界领先的生物MEMS技术公司。为更好的世界,提供更好的芯片!
    留言咨询

微流控芯片检测相关的仪器

  • CellASIC 微流控细胞芯片实验室还原体内自然的细胞生长环境 将动态细胞培养与分析完美结合在体外环境中对活细胞或微生物进行功能研究与检测对于基础生物学、海洋生物学、微生物学等各类生物学科以及药理学、基础医学研究来说是不可或缺的研究手段,对深入了解细胞的生理代谢机制、生长状态有着极为重要的作用,也为进一步的体内实验提供了大量的数据基础。在整体实验过程中,细胞所处的微环境有着与遗传因子同等重要的作用,可以直接影响到最终的实验数据结果。如何为细胞提供一个与体内环境相似的体外生长环境,是科研工作者急待解决的问题。同时,由于无法对体外环境进行精确的动态监控,因此绝大多数实验采取的仍是终点检测法。其优势是利于实验操作,可得到大量的数据结果,但是对于一些瞬时反应结果或动态过程,例如加药处理后细胞的变化过程,神经细胞的凋亡及潜在机制等,却无法得到一个良好的动态监测结果。CellASIC 微流控细胞芯片实验室是专门针对这一空白领域设计的体外细胞培养与功能分析平台,这一体系建立在微流控技术基础上,涵盖了工程学,物理学,化学,微加工和生物工程的等多门学科,可对微尺度下的流体进行精确控制,具备小体积,微样本量和低能耗的特点。更为重要的是,在此基础上通过模拟体内生长条件,为细胞体外培养提供了良好的动态生存环境,使外界环境对样本和实验结果的影响降到最低。同时还可与显微镜结合,通过设定操作软件,自动完成对细胞生长状态的长期监控和功能检测如:细胞活性,蛋白转运与定位,趋化性分析,药物代谢机理等。
    留言咨询
  • 仪器简介:全分析系统(Miniaturized Total Analysis System, &mu -TAS)是一个多学科交叉的新领域,它借助微机电加工技术与生物技术,将采样、稀释、加试剂、反应、分离、检测等化学分析的全过程都集成在一块邮票大小的微芯片上,因此被通俗地称为&ldquo 芯片实验室&rdquo (Lab-on-a-chip)。可广泛应用于生物医学领域中的应用氨基酸分析、核酸分析、蛋白质分析、细胞分析、药物手性分析;同时在新药物的合成与筛选、食品和商品检验、兴奋剂检测、环境污染的监测、刑事科学、军事科学及航天科学等方面也有着广泛的应用。技术参数:灵敏度 10-9(FITC) 迁移时间重复 RSD&le 1.54%(FITC)(n=10) 高压电源 0~6000V 不带电流显示 0~3000V 带电流显示 三维光路调整精度 0.25/360mm 温度范围 常温 激光类型 固体激光器 滤光片类型 窄带、高通、低通一套 光电倍增管 单光子可测 电极 4/6/8(个) 铂金电极 倒置显微镜 40倍 供电电源要求 220V,50Hz 软件环境 Win98,Win2000,WinXP 外观尺寸 28cm× 33cm× 45cm 重量 20kg主要特点:产品描述:微全分析系统(Miniaturized Total Analysis System, &mu -TAS)是一个多学科交叉的新领域,它借助微机电加工技术与生物技术,将采样、稀释、加试剂、反应、分离、检测等化学分析的全过程都集成在一块邮票大小的微芯片上,因此被通俗地称为&ldquo 芯片实验室&rdquo (Lab-on-a-chip)。与传统的电泳分离手段相比较而言,具有微型化、可集成化、速度快、进样量小等特点。可广泛应用于生物医学领域中的应用氨基酸分析、核酸分析、蛋白质分析、细胞分析、药物手性分析;同时在新药物的合成与筛选、食品和商品检验、兴奋剂检测、环境污染的监测、刑事科学、军事科学及航天科学等方面也有着广泛的应用。 产品特点: 1.采用激光诱导荧光检测,采用共聚焦光路,检测灵敏度高,为紫外/可见光检测器的100,000倍,可与玻璃、高聚物、石英芯片等芯片配套使用。 2.分离效率高。将样品的分析时间减小到数分钟甚至数秒中之内,分析速度大大提高,并且重复性高。 3.样品消耗量少。样品和试剂消耗降低到纳升甚至皮升级。 4.采用六路电压夹流进样,六路高压单独控制,各路高压都在0-3KV可调,高压浮地形式,安全性好。。 5.三维调节台,检测点可根据不同芯片规格或检测要求,可以调节。 6电极三维可调,适用于不同通道构形和规格的芯片。 7.一体化的芯片电泳平台。集成度高,操作简便。 8应用范围广。可适用于氨基酸、PCR产物、蛋白等多种样品的分离分析。 9检测范围广,发射光波长500nm以上都可以被检测到。 10配套软件(附后)
    留言咨询
  • 仪器简介:微流控洗片发光检测是近几年发展迅速的一种新型检测方法,它将微流控芯片进样与化学发光检测相结合,可用于微流控芯片化学发光等科学试验。 MPI-M型微流控芯片化学发光检测仪系结合微流控芯片进样与化学发光检测于一体的多测试界面、多分析参数、多控制部件系统集成仪器。它可同时对被测样品实现微流控芯片进样控制与化学发光实时检测,并同步显示化学发光信号、微流控芯片进样状态并对其进行详细分析。技术参数:1.MPI-M型电致化学发光检测仪—多功能化学发光检测仪:* 测量动态范围:大于5个数量级 * 测量精度优于0.05%2.MPI-A/B型多功能化学发光检测器:* 波长范围:300—650nm * 灵敏度:SP1000A/Lm3.MPI-M型微流控芯片化学发光检测仪—数控多路高压电源:* 输出路数:4路(BF型) * 输出电压:0—2000V/路* 输出电流:0—2mA/路 * 高压接出方式:输出、断开、接地* 输出电流保护控制:0—2mA * 设置程序步:10步主要特点:应用领域: * 微流控芯片化学发光分析。
    留言咨询

微流控芯片检测相关的资讯

  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • 基于3D打印的浓度梯度微流控芯片用于微生物的快速药敏检测
    内容简介本研究论文聚焦微生物的快速药敏检测研究。抗生素耐药是目前全球公共卫生安全面临的一项严峻挑战。病原菌的耐药性加速进化增加了临床治疗多重耐药感染的用药难度与病人死亡率。及时得到微生物的抗生素药物敏感性结果对于临床多重耐药感染的精准诊断与用药治疗具有重要意义。这项研究中设计了基于流阻的微液滴芯片,结合应用刃天青生物指示剂可在5 h内指示微生物在不同浓度抗生素下的生长。该芯片有若干独立的截留腔室,可自动产生抗生素浓度梯度并形成独立的微液滴用于检测细菌药敏性。该芯片简化了控制操作和设备集成,相较于传统方法缩短了药敏检测时间,具有良好的应用前景。引用本文Zhang H, Yao Y, Hui Y, et al., 2022. A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing. Bio-des Manuf 5(1):210–219. 文章导读图1 用于细菌抗生素药物敏感性检测的浓度梯度微流控芯片的设计与应用示意图:(a)芯片的制造流程;(b)芯片内产生梯度浓度的过程。其中芯片模具是用摩方精密nanoArch S140制备。图2 不同浓度刃天青的显色荧光显色效果:(a)除去阴性对照后的相对荧光强度;(b)阳性对照和阴性对照的荧光显色图图3 三种不同浓度抗生素对大肠杆菌生长的影响查看更多:PuSL高精密3D打印 官网:https://www.bmftec.cn/links/7
  • “一滴”液体 获取结果——微流控芯片助力医疗检测设备小型化
    近年来,部分医疗检测设备的小型化、便携化,已经成为发展趋势。杭州电子科技大学副教授王骏超团队在微流控研究领域的研究,有望打开医疗检测设备小型化芯片设计制造的“快捷之门”。相关研究成果近日发表于《芯片实验室》(Lab on a Chip),并被英国皇家化学学会中文官微头条推介。据悉,微流控芯片不同于一般集成电路芯片,后者通过硅、铜材质的电路图电压运行工作,而前者则通过树脂、玻璃等聚合物里的液体(聚合物有惰性,不会和流经液体发生反应)压力差运行工作。“微流控芯片做液体检测,优势是液体样本量变小了,反应体芯片也很小,流体在微米级别大小会变得更可控。”王骏超告诉《中国科学报》,“流体到达微流控里的反应区,经过小型阀门的控制,发生生化反应,传感器件通过解码液体里隐藏的信息,得到医疗检测所要的结论,比如新冠核酸检测、病毒感染检测等等。”事实上,微流控作为专业术语有些“生僻”,但其应用对大众来说并不陌生。王骏超以验孕棒为例介绍道:“验孕棒就是用了微流控原理。女性将极少量尿液放到验孕棒试纸上,试纸就是一款基于纸张的微流控芯片,尿液进入微流控,通过生化反应,通过判断试纸出现单线或双线解码出女性是否已孕。”此项研究最大的创新点在于,大幅提升了微流控芯片仿真速度。众所周知,集成电路芯片生产出来,前面要经历软件设计、代工、封测等环节。芯片设计需要的EDA(电子设计自动化)软件设计工具,被认为是中国集成电路产业“卡脖子中的卡脖子”。微流控芯片设计也需要EDA软件设计工具,一般被称为MEDA,而王骏超团队通过芯片结构矩阵化,换句话说是“对芯片结构拍照”,将流体力学问题转化为“图像识别问题”,相比传统微流控芯片仿真设计速度,MEDA可以将速度提升51600倍,从而缩短微流控芯片设计时间,减少设计研发成本。此外,论文还提出了基于卷积神经网络(CNN)的技术来预测随机微流控混合器的流体行为。王骏超表示,随着微流控应用扩大,用户可以在家通过微型检测设备DIY检测唾液、汗液、尿液,而不用去医院自己获取身体健康信息,未来微流控芯片将得到广泛应用。相关论文信息:https://doi.org/10.1039/D0LC01158D

微流控芯片检测相关的方案

微流控芯片检测相关的资料

微流控芯片检测相关的试剂

微流控芯片检测相关的论坛

  • 【实战宝典】哪些检测技术可用于微流控芯片?

    问题描述:哪些检测技术可用于微流控芯片?解答:[font=宋体]常用于微流控芯片检测的技术主要是电分析、光谱分析和光学分析。电分析包括对电化学阻抗、电流、电位等电信号的检测。光谱分析包括荧光检测、拉曼光谱检测、化学发光和生物发光检测。荧光检测需要先对待分析物进行荧光标记。拉曼光谱适用于对细胞及其生物分子的实时监测。化学发光和生物发光仅适用于特定化学发光试剂和细胞的研究。光学分析包括各类显微镜观测、折射率检测、热透镜显微检测等。其它检测方法还有胶体金法、表面等离子激光元共振检测等。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 【资料】集成毛细管电泳芯片微流控芯片系统的检测器研究和应用

    一篇讨论集成毛细管电泳芯片微流控芯片系统的检测器的综述文章,很不错,是清华大学罗国安教授小组写的,大家可以看看![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=25688]集成毛细管电泳芯片微流控芯片系统的检测器研究和应用[/url]

  • MPI-M型微流控芯片化学发光检测仪

    技术参数 1.MPI-M型电致化学发光检测仪—多功能化学发光检测仪: * 测量动态范围:大于5个数量级 * 测量精度优于0.05% 2.MPI-A/B型多功能化学发光检测器: * 波长范围:300—650nm * 灵敏度:SP1000A/Lm 3.MPI-M型微流控芯片化学发光检测仪—数控多路高压电源: * 输出路数:4路(BF型) * 输出电压:0—2000V/路 * 输出电流:0—2mA/路 * 高压接出方式:输出、断开、接地 * 输出电流保护控制:0—2mA * 设置程序步:10步 技术文章 此仪器没有任何技术文章 主要特点 应用领域: * 微流控芯片化学发光分析。 仪器介绍 微流控洗片发光检测是近几年发展迅速的一种新型检测方法,它将微流控芯片进样与化学发光检测相结合,可用于微流控芯片化学发光等科学试验。 MPI-M型微流控芯片化学发光检测仪系结合微流控芯片进样与化学发光检测于一体的多测试界面、多分析参数、多控制部件系统集成仪器。它可同时对被测样品实现微流控芯片进样控制与化学发光实时检测,并同步显示化学发光信号、微流控芯片进样状态并对其进行详细分析。

微流控芯片检测相关的耗材

  • 微流控芯片lab-on-chip
    微纳立方为您提供了各种应用场合的微流控芯片,及相关附件,如下:微流控 PDMS芯片微流控 玻璃芯片塑料芯片细胞培养芯片微纳立方为客户提供用途各异的细胞培养芯片,示例如下:MicronitCellixVena8 Fluoro+TM Biochips 微流体芯片;Vena8 Endothelial+TM Biochips 微流体芯片 ;VenaT4TM Biochips 微流体芯片 ; Vena8 Glass Coverslip Biochips 微流体芯片; VenaDeltaY1TM Biochips 微流体芯片 ; VenaDeltaY2TM Biochips 微流体芯片 ;电阻抗测试芯片 Electrical Impedance Spectroscopy 微流控芯片夹具类微流控芯片及附件毛细管,接头,插头等配件————————————————微流控产品:MFCS-EZ 微流体进样系统FRP流速监测系统恒流控制功能M-Swich通道切换解决方案微流控系统专用显微镜微流控分析系统… … 如上为微纳立方为微流控芯片系统提供的各种用途应用产品及附件,如有相关问题,欢迎关注微纳立方
  • 流路芯片,Intuvo,FPD 尾部
    Intuvo 流路芯片是模块化的微流控组件,无需密封垫圈即可实现进样口、色谱柱和检测器间的连接,可在几分钟之内轻松完成更换。Intuvo 流路芯片包括经过第三代 Intuvo 超高惰性脱活处理的高纯硅流路通道,可确保形成惰性流路。所有流路芯片均配有智能钥匙,可通过数字通讯自动实现系统配置,从而使 Intuvo 根据其即时配置设置方法参数。Intuvo 已掌握了整个流路的尺寸、流速和温度,因此无需复杂的流量计算器。 进样口流路芯片可实现从芯片式保护柱到色谱柱的直接连接。D1、D2 和 D2-MS 流路芯片分别实现从色谱柱到检测器 1、检测器 2 或质谱仪的连接。其余流路芯片将反吹和/或双色谱柱/检测器的分流等所有采用微板流路控制技术的复杂连接结合在一台设备中。检测器尾部流路芯片将色谱柱直接连接到特定检测器上。 产品仅适用于 Agilent Intuvo 9000 系统 高惰性熔融石英流路芯片能够快速实现您所需的连接 几分钟内即可轻松安装 消除臆测 — 通过智能钥匙实现自动系统配置 简化微板流路控制技术,如反吹或双检测器分流
  • 流路芯片,Intuvo,NPD 尾部
    Intuvo 流路芯片是模块化的微流控组件,无需密封垫圈即可实现进样口、色谱柱和检测器间的连接,可在几分钟之内轻松完成更换。Intuvo 流路芯片包括经过第三代 Intuvo 超高惰性脱活处理的高纯硅流路通道,可确保形成惰性流路。所有流路芯片均配有智能钥匙,可通过数字通讯自动实现系统配置,从而使 Intuvo 根据其即时配置设置方法参数。Intuvo 已掌握了整个流路的尺寸、流速和温度,因此无需复杂的流量计算器。 进样口流路芯片可实现从芯片式保护柱到色谱柱的直接连接。D1、D2 和 D2-MS 流路芯片分别实现从色谱柱到检测器 1、检测器 2 或质谱仪的连接。其余流路芯片将反吹和/或双色谱柱/检测器的分流等所有采用微板流路控制技术的复杂连接结合在一台设备中。检测器尾部流路芯片将色谱柱直接连接到特定检测器上。 产品仅适用于 Agilent Intuvo 9000 系统 高惰性熔融石英流路芯片能够快速实现您所需的连接 几分钟内即可轻松安装 消除臆测 — 通过智能钥匙实现自动系统配置 简化微板流路控制技术,如反吹或双检测器分流
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制