当前位置: 仪器信息网 > 行业主题 > >

外置温度传感器

仪器信息网外置温度传感器专题为您提供2024年最新外置温度传感器价格报价、厂家品牌的相关信息, 包括外置温度传感器参数、型号等,不管是国产,还是进口品牌的外置温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合外置温度传感器相关的耗材配件、试剂标物,还有外置温度传感器相关的最新资讯、资料,以及外置温度传感器相关的解决方案。

外置温度传感器相关的资讯

  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 如何实现超短支温度传感器校准?
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发、生产、包装、运输、存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测系统由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,应力变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关如何实现超短支温度传感器校准?解决方案:RTC-158B 干体-液槽两用温度校准仪配特殊专用套管✔ 干湿两用:干体炉-微型液槽均可使用,对于插入深度小于30mm的传感器可选择液槽。✔ 温场直径大:特殊设计的专用恒温块可匹配超短或异形传感器,即使是卡盘超短卫生型传感器也可使用 。✔ 性能: D LC 动态负载补偿 及外部参考控温,保证垂直温场均匀稳定,控温准确。✔ 快捷: 升降温速度远快于传统液槽,成倍提高工作效率。关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,AMETEK JOFRA生产和销售干体炉有三十多年历史,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 制药行业温度校准方案(一) | 安装于工艺设备卫生型温度传感器校准
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发-生产-包装-运输-存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测大都由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,盈利变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关制药行业温度校准方案(一)安装于工艺设备卫生型温度传感器校准解决方案:RTC-156B 超级标准体炉配短支校准套件✔ 专业套件:定制套管保证与卫生型卡盘传感器充分热平衡,补偿热损失,外接参考传感器与被检传感器位置保持一致,精准控温。✔ 洁净 无液体介质,不易污染探头,尤其适用于对探头洁净度有严格标准的企业 。✔ 性能: 双区加热配合 DLC 动态负载补偿 ,保证垂直温场均匀稳定,不受被检传感器 插入深度影响 。✔ 便携 干体炉 便于携带至 现场 ,可以 进行 全回路校准,减少分离回路校准的附加误差 。✔ 安全: 无液体挥发,不会对操作人员健康产生危害,也不会污染实验室工作空间✔ 快捷: 升降温速度远快于 液槽,成倍提高 工作效率关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,干体炉的发明者,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 国产量子计算超低温温度传感器研制成功
    量子芯片运行对温度环境要求极为苛刻,如何实时监测温度变化,了解制冷机运行状态?近日,记者从安徽省量子计算工程研究中心获悉,国产量子计算超低温温度传感器研制成功,并已投入国产量子计算机中使用。安徽省量子计算工程研究中心相关研发团队负责人张俊峰向记者介绍:“随着稀释制冷机技术的发展,国内外稀释制冷机技术越来越成熟,与之相配套的温度测量需求也不断加大。为了保证量子芯片在合适的温区运行,需要实时监测量子芯片运行的温度环境,这款传感器就像是‘量子芯片温度计’,可实时监测温度变化。”该超低温温度传感器由合肥本源量子完全自主研发,支持实时温度监测,具备较高测量精度等优势。该产品通用性很广,可以非常方便地安装到稀释制冷机上,目前已投入国产量子计算机中使用。张俊峰表示,量子芯片是量子计算机的核心器件,实时监测量子芯片运行的温度环境能够对整个量子计算机系统起到关键性作用。该国产超低温温度传感器的成功研制,使我国在极低温领域的温度测量精度达到国际先进水平,向着量子计算机完全自主可控迈出了重要一步。
  • 双应变-温度传感器性能研究取得进展
    近日,广东省科学院化工研究所研究员曾炜团队在国家自然科学基金项目等的资助下,在双应变-温度传感器性能研究方面取得新进展。相关研究发表于Composites Part A。张静斐为该论文第一作者,曾炜为通讯作者。   在目前的双应变-温度传感器研究中,一般是将应变/温度敏感的导电材料,如金纳米粒子、氧化石墨烯和碳纳米管等引入弹性体或水凝胶来实现的。由于弹性体的伸展性差和导电材料的不透明性限制了其在大应变和可视化设备中的应用。而离子导电水凝胶具有透明度高、柔韧性好的优点,可以实现基于三维网络离子传输的同时,利用其电导率随应变和温度的变化而实现应变-温度双重传感,为传感器的多功能化提供了广阔应用前景。   研究人员通过自由基聚合,在氯化锂和甘油的存在下,制备了具有良好应变和温度敏感性的可拉伸离子导电性水凝胶。氯化锂的强离子水化作用和水分子、甘油形成强氢键协同作用从而抑制了冰晶的生成,使水凝胶具有优异的抗冻能力,能在-30 ℃~ 80 ℃的较宽温度范围内检测温度的变化。该水凝胶在36.5~40 ℃范围内的温度灵敏度为5.51 %/℃,检测限为0.2 ℃,并具有良好的升温-降温循环稳定性。   此外,水凝胶传感器在2000%的宽应变范围内具有良好的线性,可以达到17.3的高灵敏度,并具有低至1%的检测下限。利用该方法制备的应变-温度双重刺激响应水凝胶,在人体运动监测、发热检测等可穿戴设备中具有很大的应用潜力。
  • 柔性温度传感器实现高温测量新突破
    近年来,各大品牌的折叠屏手机、柔性可穿戴电子等智能设备层出不穷,成为行业热点。作为柔性电子设备的重要组成部分,柔性传感器用以测量温度,反映人体的各项指标。现有的柔性薄膜温度传感器受柔性衬底、敏感材料等限制,难以实现高温物理场的温度测量。因此,如何继承柔性薄膜传感器优势,实现柔性薄膜传感器在高温环境下的应用是一个值得关注的问题。近日,来自微纳制造领域的一项最新研究成果,为柔性传感器突破高温应用瓶颈提供了新思路。西安交通大学机械工程学院精密工程研究所的刘兆钧博士、田边教授、蒋庄德院士及其合作团队首次制备出了具有良好温度敏感性的高温柔性温度传感器。相关成果发表于工程制造领域期刊《极端制造》。传统柔性温度传感器难以实现高温无损监测柔性传感器是指采用柔性材料制成的传感器,具有良好的柔韧性、延展性,甚至可自由弯曲、折叠,而且结构形式灵活多样,可根据测量条件的要求任意布置,能够非常方便地对复杂表面进行检测。在可穿戴方面,柔性的电子产品适合“人体不是平面”的生理特性,因此更易于测试皮肤的相关参数,其可将外界的受力或受热情况转换为电信号,传递给机器人的电脑进行信号处理,从而实时精准地监测出人体各项指标。“柔性薄膜温度传感器能变形、易附着、轻薄等优点受到了研究人员的广泛关注。”田边说,“热电偶式传感器以结构简单、动态响应快、便于集中控制等优点脱颖而出。”结合二者优势,热电偶式柔性薄膜温度传感器应运而生。“温度传感器主要由两部分组成,由两种不同材料制成的温度敏感层和柔性基板。温度敏感层常由金属以及金属化合物组成,柔性基材则选择已经商业化的聚二甲基硅氧烷、聚酰亚胺等高分子聚合物材料。”田边表示。实际上,柔性传感器的优势使其能运用到多个领域当中,除了可穿戴设备,柔性传感器还在医疗电子、环境监测等领域显示出很好的应用前景。然而,现有的柔性薄膜温度传感器受柔性衬底、温度敏感材料等限制,难以在高温环境场中工作,更无法实现功能化应用。“因为柔性基板的熔点通常低于400℃,在高温环境中发生碳化后会变脆、变硬,因此,很难在高温环境下使用现有的柔性温度传感器。这一点也限制了它们在航空航天、钢铁冶金和爆炸损伤检测等极端环境中的应用。”田边解释道。“现有的高温温度测量手段受限于设备尺寸大、需要破坏结构、破坏气流场、受环境干扰等,难以实现对温度场的无损实时温度监测。”博士生刘兆钧补充道。因此,如何继承柔性薄膜传感器的优势,实现柔性薄膜传感器在高温环境下的安装与应用是亟须解决的关键问题。突破多项柔性温度传感器测量瓶颈为了突破柔性温度传感器的温度测量瓶颈,田边教授团队创新性地选择了具有宽温域的铝硅氧气凝胶毡作为温度传感器的柔性基板。由于柔性基板表面不均匀、粗糙度较大,难以通过传统的微纳制造工艺实现薄膜沉积与功能化,因此团队选用了丝网印刷技术制备厚膜以克服上述困难。在制备传感器的实际操作中,田边、刘兆钧等人使用有机黏合剂混合功能粉末完成浆料配置,利用高温热处理的方法去除薄膜中的多余有机物,如环氧树脂、松油醇等。同时,团队还针对不同应用表面,基于柔性材料可变形、可共形的优势,实现了功能薄膜的特定曲面化制备。“就像球鞋设计者根据球星脚底的尺寸大小来制定码数一样,这种‘独家订制’能有效解决一些问题。”田边表示,这样制备好的柔性温度传感器能够贴附于不同曲率曲面,例如叶片等。同时,其也具有超薄、超轻等优点。这项研究首次实现柔性传感器在零下190℃至零上1200℃这一极广的温度范围内工作,测试灵敏度也达到了可观的226.7微伏每摄氏度(μV/℃)。这是现有所有柔性温度传感器难以实现的。扩大柔性传感器的工作温域,为柔性传感开拓了更广阔的应用领域,它在探险排难、航空航天、钢铁冶金等领域将呈现出巨大的应用潜力。在被问及新型柔性传感器何时能够实现实际应用时,蒋庄德表示:“我们团队的研究人员对制备的柔性温度传感器已经进行了多种实验室级测试与实际测试。其中,包括对航模发动机的尾喷温度进行实时监控,小型物理爆炸场爆炸瞬时温度测量以及对坩埚中金属熔化过程进行温度监测等。传感器在整个测试过程都表现出了优异的测温能力。”在蒋庄德看来,科技发展的目标始终围绕造福人类。他指出:“我们根据柔性温度传感器极轻、极薄的特点,创新性地将其应用于智能穿戴设备,如传感器与环保透明面罩相结合设计出的智能口罩,实现对人体呼吸状态的实时监测,有望惠及长期独居旅行者和慢性病患者。我们的科研成果可以给人们的生活带来便捷,这也让科研有了‘温度’。”目前,柔性传感器许多技术仍停留在研究阶段,柔性传感器产业链整体能力亟待增强。就技术本身而言,传感器本身的稳定性、耐磨损性等还需要进一步提高。而从整个产业链的配套来说,柔性电路、柔性存储,以及软硬连接等环节也需要跟进步伐。在未来,团队也期望将制备的柔性传感器进一步优化,实现飞机表面、涡轮叶片等国之重器上的温度测量,为我国科技进步添砖加瓦。
  • 国内学者成功研发石墨烯温度流量一体化传感器
    p style="line-height: 1.75em "  国内科研人员成功研发基于石墨稀材料的大量程、高精度的流量、温度传感器,有望在热力系统进行规模应用。/pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/3e7bf569-3c52-4b91-b4b2-dd53a82c552f.jpg" title="20160407151516449.jpg"/  /pp style="line-height: 1.75em text-align: center "清华大学 朱宏伟/pp style="line-height: 1.75em "  近日,清华大学朱宏伟教授团队和北京华大智宝电子系统有限公司合作开发出石墨烯温度流量一体化传感器件。他们针对热力系统检测用流量、温度传感器的应用需求,通过对石墨烯传感的作用与规律研究,突破石墨烯材料在热量表流量计应用的关键技术,开发热力系统检测用石墨烯流量、温度传感器件,解决了现有传感器表面结垢、功耗高等问题,形成了批量制备能力,有望在热力系统进行规模应用。/pp style="line-height: 1.75em "  该团队完成了石墨烯晶片形状、尺寸、表/界面状态对传感性能调制研究,通过基于石墨稀材料的传感工艺结构设计,开发了大量程、高精度的流量、温度传感器。流量传感器元件测量范围达到0.01~6m3/h,测量精度达到0.005m3/h 温度传感器元件测量范围达到0~100℃,测量精度达到0.02℃。/pp style="line-height: 1.75em "  在石墨烯流量、温度传感材料基础上,同时开展了两项拓展研究:1)提出了一种实现高灵敏柔性应变传感的新思路,通过石墨烯与超弹超薄高分子材料复合构建了一类基于柔性传感器原型器件,开发了面向可穿戴装备的传感器的制造方法和工艺,在应变、压阻、扭转、挥发性有机物、声波等几个典型传感应用上进行了探索,并可探测脉搏、语音等微弱生理信号,有望应用于移动医疗、可穿戴式设备等领域 2)研究了水在石墨烯层片孔中的扩散特性,开发了一种同位素标记法,揭示了水分子在石墨烯中的扩散系数比微孔滤膜中微米尺寸通道的扩散系数高4~5个数量级,证明了水分子可超快速传输,为基于石墨烯的传质特性研究奠定了基础,并在快速过滤与分离领域展现出广阔的应用前景。/pp style="line-height: 1.75em "  相关研发成果已发表SCI收录论文15篇,申请国家发明专利5项,获授权实用新型专利1项。所制备的六种传感器发表在ACSNano、Adv.Funct.Mater.、Small、NanoRes.、Appl.Phys.Lett.、Chem.Commun.等期刊上,并被学术媒体Nanowerk、Graphene-Info和MaterialsViewsWiley做为研究亮点报道,被评价为“…全新的传感机制、石墨烯的高性能应用…”,“石墨烯的机电效应结合其它特性…促进了在高灵敏传感中的应用,…这些传感器的潜在用途包括柔性显示、智能服装、电子皮肤、体外诊断等,在可穿戴健康检测类设备上有较大的应用空间”。/ppbr//p
  • 宁波材料所在柔性应变-温度双模态传感器研究方面取得进展
    人体活动所产生的包括应变和温度等生理信号是医疗健康、运动监测的重要数据来源,利用柔性可穿戴设备实现应变和温度的感知意义重大。柔性传感器是柔性可穿戴设备的核心部件,其发展趋势是集成化和多功能化。发展柔性应变-温度双模态传感器,实现应变和温度等信号的监测以及区分,同时兼具高的分辨率仍是一个难点。   Co基磁性非晶丝具有优异的软磁性能和巨磁阻抗效应(GMI),可以实现对磁场的高灵敏探测,是发展柔性多功能传感器的理想材料之一。前期,中国科学院宁波材料技术与工程研究所研究员李润伟、刘宜伟基于磁性非晶丝设计与发展了仿生触觉传感器与自供电弹性应变传感器,并在机器人假肢的触觉感知、运动捕捉的智能服装方面实现应用(Science Robotics. 2018, 3, eaat0429;Nano Energy, 2022, 92, 106754)。在此基础上,研究人员以磁性非晶丝为敏感材料,通过设计具有管状异质结构的双模态传感器实现了单一传感器对应变和温度的灵敏监测和实时区分。   该传感器具有独立的应变和温度感知机制。一方面,结合磁弹性体的磁弹效性和Co基非晶丝的巨磁阻抗效应可以实现应变灵敏探测;另一方面,用于阻抗输出的热电偶线圈具有显著的塞贝克效应,可以同时实现温度的检测。基于独立的感应机制,温度和应变信号之间不存在相互耦合,后续通过信号读取电路可实现温度和应变信号的实时区分和输出。   该研究中双模态传感器的应变-磁转换单元中具有磁弹效应的磁弹性体提供随应变而变化的磁场,通过内置的Co基磁性非晶丝,能够灵敏感知微小变化的磁场,从而输出变化的阻抗,实现应变的感知。此外,该工作设计了具有双功能的Cu-CuNi热电偶线圈,不仅可以实现阻抗的输出,而且本身具有的塞贝克效应可以实现对温度的感知。   进一步地,通过调控应变-磁转换单元的不同区域的相对模量,即磁弹性管和非磁性弹性管的相对模量,可以控制磁场变化快慢,从而能够实现应变灵敏度的可调。该传感器可实现0.05%的应变和0.1℃的低探测极限,5.29和54.9μV/℃的较高应变和温度感知灵敏度。   此外,该研究也从模拟和实验上对该双模传感器的应变-温度信号输出的耦合和相互干扰进行了验证。研究人员分别测试了双模传感器在不同应变下的温度输出信号和不同温度下的应变输出信号,发现该传感器具有的管状异质结构能够有效避免应变对温度的干扰,且磁性非晶丝和磁粉的磁性能在低于居里温度下具有良好的温度稳定性,可以确保温度对应变感知几乎没有影响。   该研究将所设计的管状线型双模传感器与织物集成,可以同时用于人体微小应变的探测,比如呼吸和吞咽等检测,也可用于膝盖弯曲等较大应变的探测,同时能实现体温或环境温度的实时监测,在健康监测、智慧医疗以及人机交互领域具有良好的应用前景。   相关成果近期以Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables为题在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金重大仪器研制项目、国家自然科学基金项目、国家自然科学基金委中德交流项目、中科院国际合作重点项目、浙江省自然科学基金等项目的支持。图1(a)双模传感器的感应机制,(b)具有管状异质结构的双模传感器传感器制备流程,(c)应变-磁转换单元中磁弹性管的微观形貌,(d-i)具有磁弹效应的磁弹性管不同磁化方向磁化具有不同的磁性能,(j-m)双模传感器外观和柔性展示图2 双模传感器的应变感知性能
  • 传感器行业未来关注的四大领域
    未来值得关注的四大领域  随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,四大领域可能成为传感器技术未来发展的重点。  一是可穿戴式应用。据美国ABI调查公司预测,2017年可穿戴式传感器的数量将会达到1.6亿。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。当前,可穿戴设备的应用领域正从外置的手表、眼镜、鞋子等向更广阔的领域扩展,如电子肌肤等。日前,东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。该传感器为薄膜状,单位面积重量只有3g/m2,是普通纸张的1/27左右,厚度也只有2微米。  二是无人驾驶。美国IHS公司指出,推进无人驾驶发展的传感器技术应用正在加快突破。在该领域,谷歌公司的无人驾驶车辆项目开发取得了重要成果,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。谷歌无人驾驶汽车已经在内华达、佛罗里达和加利福尼亚州获得上路行使权。奥迪、奔驰、宝马和福特等全球汽车巨头均已展开无人驾驶技术研发,有的车型已接近量产。  三是医护和健康监测。国内外众多医疗研究机构,包括国际著名的医疗行业巨头在传感器技术应用于医疗领域方面已取得重要进展。如罗姆公司目前正在开发一种使用近红外光(NIR)的图像传感器,其原理是照射近红外光LED后,使用专用摄像元件拍摄反射光,通过改变近红外光的波长获取图像,然后通过图像处理使血管等更加鲜明地呈现出来。一些研究机构在能够嵌入或吞入体内的材料制造传感器方面已取得进展。如美国佐治亚理工学院正在开发具备压力传感器和无线通信电路等的体内嵌入式传感器,该器件由导电金属和绝缘薄膜构成,能够根据构成的共振电路的频率变化检测出压力的变化,发挥完作用之后就会溶解于体液中。  四是工业控制。2012年,GE公司在《工业互联网:突破智慧与机器的界限》报告中提出,通过智能传感器将人机连接,并结合软件和大数据分析,可以突破物理和材料科学的限制,并将改变世界的运行方式。报告同时指出,美国通过部署工业互联网,各行业可实现1%的效率提升,15年内能源行业将节省1%的燃料(约660亿美元)。2013年1月,GE在纽约一家电池生产企业共安装了1万多个传感器,用于监测生产时的温度、能源消耗和气压等数据,而工厂的管理人员可以通过iPad获取这些数据,从而对生产进行监督。超声波气象站集合了7个传感器,为工业生产提供了一流的天气监测信息,为预防一些灾害事件提供可靠信息,从而提高效率,降低和总的成本。  此外,荷兰壳牌、富士电机等跨国公司也都在该领域采取了行动。
  • 恒美科技|全自动馏程测定仪采用高精度温度传感器
    全自动馏程测定仪是一种用于测定液体样品馏程的专用仪器。馏程是指液体样品在不同温度下蒸发后残留物含量的变化情况,是衡量液体样品挥发性和蒸馏性能的重要指标之一。 产品链接https://www.instrument.com.cn/netshow/SH104275/C547621.htm 首先,全自动馏程测定仪能够快速准确地测定液体样品的馏程。传统的馏程测定方法需要依靠人工操作,不仅耗时而且容易受到人为因素的影响。而全自动馏程测定仪采用先进的传感器和测量系统,能够自动测量液体样品的馏程,提高了测量效率和准确性。 其次,全自动馏程测定仪具有自动化和智能化的特点。它可以实现自动样品准备、测量和分析等功能,避免了人为操作的误差和干扰。同时,全自动馏程测定仪还具有数据处理和分析功能,可以将测量数据转化为可视化的图表和报告,方便用户进行数据分析和处理。 最后,全自动馏程测定仪还可以为石油化工、医药、食品等领域的企业提供技术支持。通过测量液体样品的馏程,可以帮助企业了解产品的性质和特点,为产品的生产和加工提供重要的参考依据。 总之,全自动馏程测定仪对于液体样品的馏程测量和质量保障具有重要意义。它能够提高测量效率和准确性,实现自动化和智能化测量,为相关领域的企业提供技术支持。
  • 应用案例 | 使用开路传感器系统研究温度和湿度对N2O吸收谱和浓度的影响
    近日,来自山东师范大学物理与电子科学学院的联合研究团队发表了一篇题为Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System的研究论文。IntroductionSince China’ s proposal of the “carbon peak” and “carbon neutrality” goals, the government and society have attached great importance to the problems of air pollution and global warming. Nitrous oxide (N2O) is among the six greenhouse gases under the Kyoto Protocol. N2O content is relatively low compared to carbon dioxide (CO2), but its global warming potential is about 310 times that of CO2. In addition, it is destructive to ozone (O3). There are many reasons for the changes in N2O concentrations in the atmosphere, which are partly due to anthropogenic activities, such as the widespread use of fertilizers in agricultural activities. The concentrations of other gases in the atmosphere, as well as the wind speed and direction, are all correlated with changes in N2O concentrations. At the macro level, temperature and humidity are also factors affecting the absorption coefficient of N2O gas. However, relatively few studies have been conducted on the specific effects of temperature and humidity on N2O gas, and analysis has also been lacking on the influence of temperature and humidity on the absorption spectrum and the concentration of N2O. Moreover, some uncertainty and variability remain in the observations of the relationship between N2O gas concentrations and temperature and humidity. The reasons for these discrepancies may be regional differences, differences in observation methods, and imperfections in data, which are all important bases for measuring the N2O concentration in atmospheric, medical, combustion, and agricultural processes. Thus, further research and exploration, combined with additional field observations and modeling experiments, can uncover the mechanism of temperature and humidity on the N2O concentration. Consequently, providing a scientific basis for this concentration is essential for reducing N2O emissions, controlling climate change, and promoting sustainable development and environmental protection. 简介自中国提出“碳峰值”和“碳中和”目标以来,政府和社会对空气污染和全球变暖问题给予了极大关注。N2O是《京都议定书》下的六种温室气体之一。与二氧化碳(CO2)相比,N2O含量相对较低,但其全球变暖潜力约为CO2的310倍。此外,它对臭氧(O3)具有破坏性。大气中N2O浓度的变化有许多原因,部分原因是人类活动造成的,例如在农业活动中广泛使用化肥。大气中其他气体的浓度以及风速和风向都与N2O浓度的变化相关。在宏观水平上,温度和湿度也是影响N2O气体吸收系数的因素。然而,对温度和湿度对N2O气体具体影响的研究相对较少,对温度和湿度对N2O吸收谱和浓度的影响分析也不足。此外,在N2O气体浓度与温度和湿度之间的关系观察中仍存在一些不确定性和变异性。导致这些差异的原因可能是地区差异、观测方法差异以及数据的不完善,这些都是测量大气、医疗、燃烧和农业过程中N2O浓度的重要基础。因此,进一步的研究和探索,结合更多的现场观测和建模实验,可以揭示温度和湿度对N2O浓度的机制。因此,为减少N2O排放、控制气候变化,促进可持续发展和环境保护提供科学依据至关重要。Experimental DetailsSensor SetupBased on WMS technology and an open optical path, an open optical-path detection system for detecting N2O gas in the atmosphere was built. The schematic diagram is shown in Figure 1. The sensor system is composed of a light-source module, photoelectric Remote Sens. 2023, 15, 5390 4 of 11 detection module, and data processing module. The light-source module mainly consists of signal generation, a laser drive, QCL, and an indication light source. To effectively realize the tunable characteristics of laser emission wavelength, we designed the signal generator plate to generate a high-frequency sine wave signal with a frequency of 10 kHz to realize the modulation function and to generate a low-frequency sawtooth wave signal with a frequency of 10 Hz to realize the scanning function. The two signals are superimposed on the laser driver, controls the temperature and central emission wavelength of QCL and converts it into an injection current acting on the detection light source QCL so that the emission wavelength of QCL is in the tunable range of 2203.7–2204.1 cm&minus 1.实验细节传感器设置基于波长调制光谱学(WMS)技术和开路光学路径,建立了一种用于检测大气中N2O气体的开路光学路径检测系统。示意图如图1所示。该传感器系统由光源模块、光电检测模块和数据处理模块组成。光源模块主要包括信号生成、激光驱动、量子级联激光器(QCL)和指示光源。为了有效实现激光发射波长的可调特性,我们设计了信号生成器板,生成频率为10 kHz的高频正弦波信号以实现调制功能,并生成频率为10 Hz的低频锯齿波信号以实现扫描功能。这两个信号叠加在激光驱动器上,控制QCL的温度和中心发射波长,并将其转化为作用于检测光源QCL的注入电流,使QCL的发射波长处于2203.7–2204.1 cm-1的可调范围内。Figure 1. Schematic diagram of N2O open optical sensor system.项目使用的激光驱动器是宁波海尔欣光电科技有限公司的QC750-TouchTM量子级联激光屏显驱动器。&bull 集成电流及温控驱动,功能完备;&bull 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命;&bull 多种输出安全保护机制,保护QCL使用安全:可调电流钳制、输出缓启动、过压欠压保护、超温保护、继电器短路输出保护;&bull 大电流软钳制功能,避免误操作大电流损坏激光管;&bull UI界面显示便于用户操作使用及数据观测;&bull 全自主研发,集成度高,性价比高。QC750-TouchTM, Ningbo HealthyPhoton Technology, Co., Ltd.Selection of N2O TransitionsTo achieve effective detection of N2O gas molecules, we need to select the absorption line intensity and the emission central wavelength of the laser. First, combined with the HITRAN-2016 database, the wave number range of 2000–2250 cm&minus 1 was selected to analyze the region of the absorption spectral line intensity of N2O, and then carbon monoxide (CO), carbon dioxide (CO2), and water (H2O) molecules were simulated and analyzed, as shown in Figure 2. Within this wave number range, the absorption spectra of CO2 were mainly distributed within the 2000–2081 cm&minus 1 range, and the absorption spectra of CO gas were distributed within the 2025–2200 cm&minus 1 wave number range. The absorption spectra of N2O gas were distributed before the 2020 cm&minus 1 wave number range. The absorption spectra of N2O gas molecules were mainly distributed in the 2200–2250 cm&minus 1 wave number range, and they were far from the absorption spectra of water vapor and other gases, reducing interference. At around 2203.7 cm&minus 1 , the absorption spectra of N2O gas were the strongest. Therefore, we set the position of the N2O absorption line to 2203.7333 cm&minus 1, which was used as the wave number of the QCL emission center. The corresponding spectral line intensity was 7.903 × 10&minus 19 (cm&minus 1 .mol&minus 1 ). The central current and temperature of QCL were set at 330 mA and 36.0 ◦ C, respectively.N2O跃迁的选择为了有效检测N2O气体分子,我们需要选择吸收线强度和激光的发射中心波长。首先,结合HITRAN-2016数据库,选择了2000–2250 cm&minus 1的波数范围,以分析N2O吸收光谱线强度的区域,然后对一氧化碳(CO)、二氧化碳(CO2)和水(H2O)分子进行了模拟和分析,如图2所示。在这个波数范围内,CO2的吸收光谱主要分布在2000–2081 cm&minus 1范围内,CO气体的吸收光谱分布在2025–2200 cm&minus 1波数范围内。H2O气体的吸收光谱分布在2020 cm&minus 1波数范围之前。N2O气体分子的吸收光谱主要分布在2200–2250 cm&minus 1波数范围内,远离水蒸气和其他气体的吸收光谱,减少了干扰。在2203.7 cm&minus 1左右,N2O气体的吸收光谱最强。因此,我们将N2O吸收线的位置设置为2203.7333 cm&minus 1,用作QCL发射中心的波数。相应的光谱线强度为7.903 × 10&minus 19(cm&minus 1mol&minus 1)。QCL的中心电流和温度分别设置为330 mA和36.0 ℃。Figure 2. The intensity distribution of absorption lines of N2O, CO, CO2, and H2O in the range of 2000–2250 cm&minus 1.ConclusionsIn this study, we investigated the effects of temperature and humidity on the concentration of N2O and its absorption spectra using an open-path sensor system. By combining theoretical analysis and field monitoring, we first conducted monitoring of N2O in a campus environment, analyzing the effects of temperature on its concentration and absorption spectra. We discovered that the concentration of N2O would increase correspondingly with the increase in temperature. The influence of humidity on N2O concentration was monitored under the condition that the ambient temperature of the laboratory remained unchanged. The concentration of N2O was negatively correlated with humidity. The 2f and 1f signals under different temperature and humidity levels were extracted for analysis. We found that the higher the temperature, the smaller the peak value of the 2f and the 1f signals, which accords with the trend of the Gaussian function changing with temperature. Under different humidity conditions, the lower the humidity, the larger the 2f signal peak the higher the humidity, the smaller the 2f signal. This study is of great significance for analyzing the relationship between N2O and environmental parameters such as temperature and humidity. We hope that our research findings can assist environmental agencies in formulating more effective environmental policies for different environments. In the future, we can use QCL to analyze the relationship between N2O and other environmental and gas parameters.结论在本研究中,我们利用开路传感器系统研究了温度和湿度对N2O浓度及其吸收光谱的影响。通过理论分析和现场监测相结合,我们首先在校园环境中进行了N2O监测,分析了温度对其浓度和吸收光谱的影响。我们发现随着温度升高,N2O浓度相应增加。在实验室环境中,保持环境温度不变的条件下监测了湿度对N2O浓度的影响。N2O浓度与湿度呈负相关。在不同温度和湿度水平下提取并分析了2f和1f信号。我们发现温度越高,2f和1f信号的峰值越小,这与高斯函数随温度变化的趋势相符。在不同湿度条件下,湿度越低,2f信号峰值越大;湿度越高,2f信号越小。这项研究对分析N2O与温度、湿度等环境参数之间的关系具有重要意义。我们希望我们的研究结果能够协助环境机构为不同环境制定更有效的环境政策。未来,我们可以利用QCL来分析N2O与其他环境和气体参数之间的关系。参考:Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System, Remote Sens. 2023, 15, 5390.
  • “五化”趋势助全球传感器冲刺800亿美元市场
    传感器融合了材料科学、纳米技术、微电子等领域的前沿技术,是新一代信息技术、高端制造装备、新能源汽车等战略新兴产业的先导和基础,也是智能交通、智能楼宇、智慧医疗、智慧基础设施等物联网应用的关键技术,具有技术含量高、经济效益好、辐射和带动力强等特点。  &ldquo 五化&rdquo 成为传感器技术发展的重要趋势  近年来,传感器技术新原理、新材料和新技术的研究更加深入、广泛,新品种、新结构、新应用不断涌现。其中,&ldquo 五化&rdquo 成为其发展的重要趋势。  一是智能化,两种发展轨迹齐头并进。一个方向是多种传感功能与数据处理、存储、双向通信等的集成,可全部或部分实现信号探测、变换处理、逻辑判断、功能计算、双向通讯,以及内部自检、自校、自补偿、自诊断等功能,具有低成本、高精度的信息采集、可数据存储和通信、编程自动化和功能多样化等特点。如美国凌力尔特(Linear Technology)公司的智能传感器安装了ARM架构的32位处理器。另一个方向是软传感技术,即智能传感器与人工智能相结合,目前已出现各种基于模糊推理、人工神经网络、专家系统等人工智能技术的高度智能传感器,并已经在智能家居等方面得到利用。如NEC开发出了对大量的传感器监控实施简化的新方法&ldquo 不变量分析技术&rdquo ,并已于今年面向基础设施系统投入使用。  二是可移动化,无线传感网技术应用加快。无线传感网技术的关键是克服节点资源限制(能源供应、计算及通信能力、存储空间等),并满足传感器网络扩展性、容错性等要求。该技术被美国麻省理工学院(MIT)的《技术评论》杂志评为对人类未来生活产生深远影响的十大新兴技术之首。目前研发重点主要在路由协议的设计、定位技术、时间同步技术、数据融合技术、嵌入式操作系统技术、网络安全技术、能量采集技术等方面。迄今,一些发达国家及城市在智能家居、精准农业、林业监测、军事、智能建筑、智能交通等领域对技术进行了应用。如,从MIT独立出来的Voltree Power LLC公司受美国农业部的委托,在加利福尼亚州的山林等处设置温度传感器,构建了传感器网络,旨在检测森林火情,减少火灾损失。  三是微型化,MEMS传感器研发异军突起。随着集成微电子机械加工技术的日趋成熟,MEMS传感器将半导体加工工艺(如氧化、光刻、扩散、沉积和蚀刻等)引入传感器的生产制造,实现了规模化生产,并为传感器微型化发展提供了重要的技术支撑。近年来,日本、美国、欧盟等在半导体器件、微系统及微观结构、速度测量、微系统加工方法/设备、麦克风/扬声器、水平/测距/陀螺仪、光刻制版工艺和材料性质的测定/分析等技术领域取得了重要进展。目前,MEMS传感器技术研发主要在以下几个方向:(1)微型化的同时降低功耗 (2)提高精度 (3)实现MEMS传感器的集成化及智慧化 (4)开发与光学、生物学等技术领域交叉融合的新型传感器,如MOMES传感器(与微光学结合)、生物化学传感器(与生物技术、电化学结合)以及纳米传感器(与纳米技术结合)。  四是集成化,多功能一体化传感器受到广泛关注。传感器集成化包括两类:一种是同类型多个传感器的集成,即同一功能的多个传感元件用集成工艺在同一平面上排列,组成线性传感器(如CCD图像传感器)。另一种是多功能一体化,如几种不同的敏感元器件制作在同一硅片上,制成集成化多功能传感器,集成度高、体积小,容易实现补偿和校正,是当前传感器集成化发展的主要方向。如意法半导体提出把组合了多个传感器的模块作为传感器中枢来提高产品功能 东芝公司已开发出晶圆级别的组合传感器,并于今年3月发布能够同时检测脉搏、心电、体温及身体活动等4种生命体征信息,并将数据无线发送至智能手机或平板电脑等的传感器模块&ldquo Silmee&rdquo 。  五是多样化,新材料技术的突破加快了多种新型传感器的涌现。新型敏感材料是传感器的技术基础,材料技术研发是提升性能、降低成本和技术升级的重要手段。除了传统的半导体材料、光导纤维等,有机敏感材料、陶瓷材料、超导、纳米和生物材料等成为研发热点,生物传感器、光纤传感器、气敏传感器、数字传感器等新型传感器加快涌现。如光纤传感器是利用光纤本身的敏感功能或利用光纤传输光波的传感器,有灵敏度高、抗电磁干扰能力强、耐腐蚀、绝缘性好、体积小、耗电少等特点,目前已应用的光纤传感器可测量的物理量达70多种,发展前景广阔 气敏传感器能将被测气体浓度转换为与其成一定关系的电量输出,具有稳定性好、重复性好、动态特性好、响应迅速、使用维护方便等特点,应用领域非常广泛。另据BCC Research公司指出,生物传感器和化学传感器有望成为增长最快的传感器细分领域,预计2014至2019年的年均复合增长率可达9.7%。  未来值得关注的四大领域  随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,四大领域可能成为传感器技术未来发展的重点。  一是可穿戴式应用。据美国ABI调查公司预测,2017年可穿戴式传感器的数量将会达到1.6亿。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。当前,可穿戴设备的应用领域正从外置的手表、眼镜、鞋子等向更广阔的领域扩展,如电子肌肤等。日前,东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。该传感器为薄膜状,单位面积重量只有3g/m2,是普通纸张的1/27左右,厚度也只有2微米。  二是无人驾驶。美国IHS公司指出,推进无人驾驶发展的传感器技术应用正在加快突破。在该领域,谷歌公司的无人驾驶车辆项目开发取得了重要成果,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。谷歌无人驾驶汽车已经在内华达、佛罗里达和加利福尼亚州获得上路行使权。奥迪、奔驰、宝马和福特等全球汽车巨头均已展开无人驾驶技术研发,有的车型已接近量产。  三是医护和健康监测。国内外众多医疗研究机构,包括国际著名的医疗行业巨头在传感器技术应用于医疗领域方面已取得重要进展。如罗姆公司目前正在开发一种使用近红外光(NIR)的图像传感器,其原理是照射近红外光LED后,使用专用摄像元件拍摄反射光,通过改变近红外光的波长获取图像,然后通过图像处理使血管等更加鲜明地呈现出来。一些研究机构在能够嵌入或吞入体内的材料制造传感器方面已取得进展。如美国佐治亚理工学院正在开发具备压力传感器和无线通信电路等的体内嵌入式传感器,该器件由导电金属和绝缘薄膜构成,能够根据构成的共振电路的频率变化检测出压力的变化,发挥完作用之后就会溶解于体液中。  四是工业控制。2012年,GE公司在《工业互联网:突破智慧与机器的界限》报告中提出,通过智能传感器将人机连接,并结合软件和大数据分析,可以突破物理和材料科学的限制,并将改变世界的运行方式。报告同时指出,美国通过部署工业互联网,各行业可实现1%的效率提升,15年内能源行业将节省1%的燃料(约660亿美元)。2013年1月,GE在纽约一家电池生产企业共安装了1万多个传感器,用于监测生产时的温度、能源消耗和气压等数据,而工厂的管理人员可以通过iPad获取这些数据,从而对生产进行监督。此外,荷兰壳牌、富士电机等跨国公司也都在该领域采取了行动。  传感器产业化发展的重要趋势  近年来,随着技术研发的持续深入,成本的下降,性能和可靠性的提升,在物联网、移动互联网和高端装备制造快速发展的推动下,传感器的典型应用市场发展迅速。据BCCResearch公司分析指出,2014年全球传感器市场规模预计达到795亿美元,2019年则有望达到1161亿美元,复合年增长率可达7.9%。  亚太地区将成为最有潜力的市场。目前,美国、日本、欧洲各国的传感器技术先进、上下游产业配套成熟,是中高端传感器产品的主要生产者和最大的应用市场。同时,亚太地区成为最有潜力的未来市场。英泰诺咨询公司指出,未来几年亚太地区市场份额将持续增长,预计2016年将提高至38.1%,北美和西欧市场份额将略有下降。  交通、信息通信成为市场增长最快的领域。据英泰诺咨询公司预测,2016年全球汽车传感器规模可达419.7亿欧元,占全球市场的22.8% 信息通信行业至2016年也可达421.6亿欧元,占全球市场的22.9%,且有可能成为最大的单一应用市场。而医疗、环境监测、油气管道、智能电网等领域的创新应用将成为新热点,有望在未来创造更多的市场需求。  企业并购日趋活跃。美国、德国和日本等国的传感器大型企业技术研发基础雄厚,各企业均形成了各自的技术优势,整体市场的竞争格局已初步确立(附表)。需要指出的是,大公司通过兼并重组,掌控技术标准和专利,在&ldquo 高、精、尖&rdquo 传感器和新型传感器市场上逐步形成垄断地位。在大企业的竞争压力下,中小企业则向&ldquo 小(中)而精、小而专&rdquo 的方向发展,开发专有技术,产品定位特定细分市场。据统计,2010年7月至2011年9月,传感器行业中大规模并购交易多达20多次。如美国私募股权公司VeritasCapitalIII以5亿美元现金收购珀金埃尔默公司的照明和检测解决方案(IDS)业务 英国思百吉公司以4.75亿美元收购美国欧米茄工程公司的温度、测量设备制造业务。目前,越来越多的并购交易在新兴市场国家出现。
  • 科技引领!植入光纤传感器为电池做“体检”
    手机爆炸、电动汽车行驶或充电过程中的火灾事故在生活中经常可见,让人们在享受锂电池带来的便利的同时,也担心其在安全方面的重大问题。如何降低这一风险?近日,中国科学技术大学教授孙金华、研究员王青松团队与暨南大学教授郭团团队研制出一款可植入电池内部的高精度光纤传感器。相关研究成果日前在线发表于《自然-通讯》。“这款高精度光纤传感器可以在1000摄氏度的高温、高压环境下正常工作,同步测量出电池热失控全过程内部温度和压力,为快速切断电池热失控链式反应提供预警手段。”王青松向《中国科学报》介绍。破解国际性科学难题手机、笔记本电脑、电动自行车、电动汽车中都有一个关键部件——锂离子电池。随着全球范围内能源危机的出现、“双碳”目标的驱动,锂离子电池产业迅速发展。然而,锂离子电池常常会发生爆炸,也就是热失控,这是威胁电池安全的“癌症”,是制约电动汽车与新型储能规模化发展的瓶颈。研究表明,电池热失控源于电池内部一系列复杂且相互关联的“链式反应”。“这可以从电池内部和外部两方面讨论。从内部来看,电池由正负极、电解液、隔膜等组成,其中电解液和隔膜都是易燃物,正负极和电解液在一定温度下又会产生化学反应,进而产生热量和可燃气体。也就是说,电池内部本身就是一个热不稳定的体系。”王青松说。从外部来看,电池在使用过程中容易出现各种外部滥用:电滥用,如过充、过放等;热滥用,如高温、局部发热等;机械滥用,如撞击、挤压等。这些外部滥用会造成电池内部材料发生一系列连锁化学反应,电池内部温度快速提升,最高可达800摄氏度,导致电池起火或爆炸。如何科学、及时、准确地预判电池安全隐患,是当前电池安全领域的国际性科学难题。为攻克这一难题,研究团队提出一种可植入电池内部的高精度光纤传感器,在国际上率先实现对商业化锂电池热失控全过程的精准分析与提早预警。《自然-通讯》的一位审稿专家评价道,“该研究有助于电池健康状态监测,并在不可逆损害前发出预警信号。”小巧光纤实时监测电池健康状态将光纤植入电池,并非王青松等人首创。因光纤传感器具备体积小、重量轻、耐受高温高压、耐受电解液腐蚀等优势,前人将其植入电池。但他们主要测量的是电池循环过程中的内部参数,从未涉足电池热失控监测领域。于是,王青松等人想将光纤植入电池内部,以监测电池热失控过程,并探索电池内部参数能否为电池热失控预警提供新思路。研究思路有了,做起来却非常难,因为现有的大多数光纤传感器无法在热失控过程中“幸存”。王青松解释说,电池热失控过程中,内部压力高达2MPa、温度高达500至800摄氏度,在这种高温高压的冲击下,光纤信号会中断,无法测得电池内部温度和压力数据。研究的关键是开发一款“健壮”的光纤传感器。他们与郭团团队联合攻关,多次改进光纤结构,开展热失控实验,反复修改和验证,最终通过对光纤进行套管保护,在保证内部信号传输的同时解决了光纤容易断的难题。“这款高精度光纤传感器总长度12毫米、直径125毫米,能够植入商业18650电池,实时监测电池热失控期间的内部温度和压力影响。”王青松向《中国科学报》介绍了光纤传感器的结构。相比现有的外部监测技术,内部光纤传感技术更具有及时性、灵活性。“就好比人们患病,当感知到疼痛时,往往为时已晚。这就像电池外部特征的变化一般都是滞后的。”王青松解释道,“而去医院体检,可以通过CT等看到内部器官变化,从而预知疾病的发生,并通过治疗手段阻止疾病进一步发展。但这种大型设备体积庞大,无法随时随地监测内部状态变化。如果在人体内植入芯片,就可以做到实时跟踪预警。就像在电池内部植入光纤传感器,可以做到实时监测预警。”值得一提的是,该研究通过解析压力和温度变化速率,首次发现温度和压力变化速率的转变点可作为电池热失控早期预警区间。该发现适用于不同电量的电池,能够在电池内部发生“不可逆反应”之前发出预警信号,保证了电池后续的安全使用。用于同时监测电池内温度和压力的FBG/FPI传感器工作原理适合大规模推行量产在王青松看来,光纤传感器尺寸小、形状灵活,具有抗电干扰性和远程操作的能力和适合大规模生产的标准制造技术,并且可以实现一根光纤在电池的多个位置同时监测温度、压力、气体组分、离子浓度等多种关键参数。光纤传感技术与电池的结合将在新能源汽车、储能电站安全监测等领域发挥重要作用。为此,研究团队将探索光纤传感器在大容量储能电池中的应用。“大容量储能电池热失控相比此次研究中的18650电池更加剧烈,并且其热失控特性和机理与小电池有所差异,这将是对我们研究的进一步考验。”王青松说。另一方面,团队将与电池制造商合作,希望在电池制作过程中植入光纤传感器,避免对电池二次破坏,加快光纤传感在储能和新能源汽车电池管理系统中的应用进程。相关论文信息:https://www.nature.com/articles/s41467-023-40995-3
  • 赛智科技推出140997系列Micron传感器
    赛智科技(杭州)有限公司依托浙江大学先进学科、专注于分析测试领域的科技型企业,是国内领先的液相色谱仪及部件、耗材制造商,专业的HPLC应用方案服务提供商,也是我国最大的色谱软件供应商和服务商。 2012年,赛智科技取得美国micron instruments公司Micron传感器系列的代理权,成为该公司在中国的独家总代理商。  赛智科技的代理产品:Micron Model MP40是一个由防腐蚀钛(6AL4V)制成可安装的微型,低成本,可冲洗的一般型压力/温度传感器。钛密封头保证了MPT40系列绝对密封性质,并且正好位于传感器应变计隔膜后方,惰性环境使得传感器的稳定性和可靠性大大提高,也适用于高震动的情况。该产品广泛应用于测试和测量设备,能源控制,生产设备和控制,液位,实验室仪器及设备,校准设备应用领域。 2014年新年伊始,赛智科技根据特定用户需求,再次推出订制版140997系列传感器。Micron传感器细节图:中国官方代理申明: 以下为订制版140997系列数据:性能参数:平衡(零点) 0±3.00 mV全方位灵敏度 20.0 ±2.0 mV/V静误差带 ±0.50 %FS热平衡浮动 ± 0.02 %FS/°F热敏感性 ± 0.02 %FS/°F温度范围 0° TO 180°F补偿温度范围 30° TO 130°F加速度 100 g' s, any axis输入电压 5.0 V DC or AC最大电压 30 V for short periods输入电阻 1400 ± 400?输出电阻 850 ± 200?最小绝缘电阻 50 M? @ 50 VDC设计图: 赛智科技(杭州)有限公司 全国服务热线:400 001 2010 公司总机:0571-28021919技术服务热线:0571-28021930官方网站:www.surwit.com
  • 明场在线叶绿素传感器研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="142"p style="line-height: 1.75em "成果名称/p/tdtd width="506" colspan="3"p style="line-height: 1.75em "strong明场在线叶绿素传感器/strong/p/td/trtrtd width="142"p style="line-height: 1.75em "单位名称/p/tdtd width="506" colspan="3"p style="line-height: 1.75em "中国科学院大连化学物理研究所/p/td/trtrtd width="142"p style="line-height: 1.75em "联系人/p/tdtd width="158"p style="line-height: 1.75em "关亚风/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "guanyafeng@dicp.ac.cn/p/td/trtrtd width="142"p style="line-height: 1.75em "成果成熟度/p/tdtd width="506" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="142"p style="line-height: 1.75em "合作方式/p/tdtd width="506" colspan="3"p style="line-height: 1.75em "√技术转让 □技术入股 □合作开发 □其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strong /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201604/insimg/be6ab2fa-adbb-408d-93e0-ed1b0eba8ddf.jpg" title="叶绿素传感器.png" width="400" height="240" border="0" hspace="0" vspace="0" style="width: 400px height: 240px "/span style="line-height: 1.75em " /span/pp style="line-height: 1.75em " 该传感器以蓝色发光二极管激发水中叶绿素发出荧光,双光纤收集荧光,用光电倍增管检测荧光,同时测量本底荧光值,扣除本底值后得到水体中叶绿素浓度。传感器能够有效抑制明场光和扣除阳光激发的叶绿素荧光。因此适合野外环境在线昼夜监测叶绿素a的浓度。探头配有温度传感,实时检测水温并通过校正曲线对叶绿素a浓度进行校正。同时,采用机械刷定期自动清除光纤表面附近的藻类干扰物,适用于连续监测。该传感器稳定可靠,测定精密度和国标法相近,明显高于美国YSI同类产品,完全能够满足水体样品分析的要求。该传感器已交付国家海洋环境监测中心出海实测,并应用于太湖栈桥监测点连续实时监测叶绿素浓度。 br/ strong主要技术指标: /strongbr/ 检测模式:双窗口 br/ 检测参数:叶绿素a,水体温度 br/ 温度精度:± 0.15℃ 叶绿素a检测精度:0.05μg/Lbr/ 叶绿素a检测范围:0.05~100μg/L;1~500μg/Lbr/ 精密度:RSD 5%br/ 采样间隔:10 minbr/ 操作模式:SD卡存储,RS232传输/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 适用于环境领域河流、湖泊、海洋等水体中叶绿素a的连续、实时检测。该传感器的性能优于进口产品;技术路线清晰明确,易于产业化推广。市场容量大,具有广阔的推广应用前景。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 以技术秘密形式保护知识产权。/p/td/tr/tbody/tablepbr//p
  • 打造智能传感产业大平台、大中心、大生态,2021世界传感器大会展会盛况直击!
    2021年11月1-3日,由中国科学技术协会、河南省人民政府主办,中国仪器仪表学会、郑州市人民政府、河南省科学技术协会、河南省工业和信息化厅、河南省发展和改革委员会、河南省科学技术厅、中共河南省委外事工作委员会办公室承办的2021世界传感器大会-展览会在河南省郑州国际会展中心隆重举办!本次展览会近10000平展出面积,近200家国内外企业积极参展,展览会将以传感器研发创新为核心,以传感器系统集成与应用为切入点,涉及传感器应用、标准发展和相关元器件,产业链上下游的关联企业同台展示传感器产业生态圈。松下作为中国工业自动化生产的行业领军者,通过精研传感器科技、精化传感器生产进一步占领传感器产业发展高地,现场展示CMOS型微型激光位移传感器HG-C、接触式数字位移传感器HG-S、超高速・高精度激光位移传感器 HL-C2等最新成品和技术。西门子作为世界500强,这次参展的产品主要有压力、温度、流量,分析表等。在行业中应用广泛,比如石化、冶金、电力、水行业等。易福门展示的产品有位置类的:电感式接近开关,光电开关,激光测距传感器;过程类的:液位、压力、流量、温度传感器;以及R360移动控制器,安全光幕,安全继电器、振动传感器等新产品。万可现场展示了丰富的自动化控制技术产品、工业接口模块及采用笼式弹簧连接技术的轨装式接线端子等创新产品,可满足物流行业智能化发展对设备的自动化及电气连接提出的更高要求。作为电子测试测量行业的佼佼者,福禄克公司的6个事业部联合参展,将携众多重量级产品亮相此次展会。届时用户将有机会近距离的了解到福禄克高端产品,同时现场将会有专家为用户答疑解惑。作为大会东道主的汉威科技集团,本部坐落于河南郑州。本届大会上,汉威携各类优质高效的传感器及其检测方案、物联网解决方案及其行业垂直应用等在2021世界传感器大会 1003 展位上精彩亮相,吸引了众多嘉宾驻足。产品介绍,应用交流,使得这抹蓝色成为现场最具人气的展台。目前高通除了展示汉字库信息处理芯片以外,有6000多家应用案例,在这个应用案例的过程当中,接触到各行各业,高通并做了很多终端的产品和部件,如今物联网已经遍布全世界,而且物联网的应用会越来越广。现场直播逛展环节世界传感器大会已经连续成功举办三届,依托“一会、一赛、一展”等系列活动,吸引了一大批权威的院士专家和知名的企业关注郑州,聚集了智能传感器产业发展的郑州共识,促进了人才成果、项目研发机构、技术标准等创新资源的聚集共享,大会已经成为国内外传感器产业创新发展的知名盛会。
  • 国内首台油井光纤高温高压传感器研制成功
    日前,山东省科学院激光研究所在国内首次自主研发的固定式高精度光纤压力传感器获得成功。这台光纤高温高压传感器可在油井下温度220℃和压力100MPa下长期作业,解决了常规电子传感器和光纤压力传感器受油井下高温高压干扰而无法正常工作的难题。光纤高温高压传感器的研发成功,不仅打破了国外对此技术的长期垄断,更将对我国油气井的科学开采发挥出重要作用。  据山东省科学院激光研究所副所长王昌博士介绍,这台光纤高温高压传感器通过对油井状态在线实时监测,可以及时探测到井内诸如漏水等状态变化的详细信息。根据这些信息,对油井采油工艺进行优化和调整,可提高油气采收率5%—10%。  山东省科学院激光研究所从2005年开始从事光纤油气井温度压力在线监测的研究。2006年,该所研究的《光纤高温高压井筒测试技术》被列为国家863项目和山东省技术攻关项目。通过对胜利油田、中海油、辽河油田的示范应用表明,光纤高温高压传感器不仅探测准确,其敏感元件的耐高温高压和耐腐蚀的保护技术等均优于国外技术,价格仅是国外进口设备的1/3。油田专家认为,这项新技术的推广应用,将为我国油井实现智能化监控打下良好基础。  王昌介绍说,据不完全统计,全国现有生产油井约15万口,按照每口井提高采油率5%,推广普及1%计算,年可提高油气产量超过9万吨。这项先进技术除高温高压油井监测应用外,在电力、化工、矿山等许多领域都有着非常广阔的应用前景,可产生巨大的经济效益和社会效益。
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 纯干货!全球智能传感器产业链一览
    “我们看到这几年来新技术、新概念层出不穷,感受到无论是产业的发展还是社会的进步的速度都比以前快很多,所以变革的大潮确实是汹涌澎湃!虽然现在有很多概念、很多技术,如云计算、物联网、大数据、人工智能、虚拟现实、增强现实等,但是我们要能透过现象看本质,知晓推动变革的最基础的东西是什么、发生变革的核心部分是什么。所有的这些变革的起点是感知,进而产生核心的一条数据链。”这是工信部原副部长杨学山先生受邀参加2017全球传感器与物联网产业峰会时发表主题演讲的一个开头。确实,传感器是万物互联的基础,智能时代的需要,也造就了传感器产业的大发展。最为直观的是手机,iPhone4只配备4颗传感器,而到了iPhone8已增加至12颗。对这个高速发展的行业,中国信通院与中国高端芯片联盟还在峰会上联合发布了智能传感器产业地图。就智能传感器产业链、重点产品、国内产业地域分布特征等进行了梳理,较为全面、清晰、完整地构建了智能传感器技术产业全景图。下面小编对该地图(图片)进行二次整理,以文字配合图片的形式,轻松的阅读体验,方便大家更加深入了解智能传感器产业。1产业链条智能传感器是具有信息处理功能的传感器,其最大的价值就是将传感器的信号检测功能与微处理器的信号处理功能有机地融合在一起。国内智能传感器市场中,本土企业竞争力较弱,跨国公司占据了87%的市场份额。不过,中国智能传感器产业生态也趋于完备,设计制造,封测等重点环节均有骨干企业布局。智能传感器产业链研究与开发本土智能传感器技术研发明初步展开,国内例如北大、东南大学、214所等高校,科研院所已开展深入技术研发。同时,以上海微系统与信息技术研究所,苏州微纳中心等为代表的科研机构已建立起智能传感器中试服务平台,助推国内产业创新发展。国外:AT&TBellLaboratories、IBM、IMEC微电子研究中心、微电子研究所、弗吉尼亚大学、马里兰大学、密歇根大学、加州大学伯克利分校、MIT、新加坡国立大学、南洋理工大学国内:上海微系统与信息技术研究所、中国电子科技集团公司、工业技术研究院(台)、北京大学、东南大学、中国兵器工业集团214研究所、天津大学、中科院微电子所、中科院电子所、清华大学、华中科技大学、哈尔滨工业大学设计国外:应美盛、楼氏电子、Maradin、MicroVision、Qualtre、Maxim、CirrusLogic、村田制作所、ST、索尼、博世、博通、高通、欧姆龙、旭化成微电子、ADI、NXP、英飞凌、爱普科斯、霍尼韦尔。国内:美新半导体、深迪半导体、歌尔声学、明皜传感、瑞声科技、芯奥微、敏芯微电子、康森斯克、多维科技、豪威科技、格科微电子、思比科、汇顶科技、美泰科技、士兰微、高德红外制造国外:格罗方德、TeledyneDALSA、爱普生、Semefab、Silex、索尼、FraunhoferISIT、Tronics、博世、ST、旭化成微电子、ADI、NXP、英飞凌、爱普科斯、霍尼韦尔。国内:台积电(台)、中芯国际、联华电子(台)、华润上华、上海先进半导体、华虹集团、美纳科技、士兰微、罕王微电子、中航微电子、国高微系统、离德红外封装国外:Amkor、卡西欧、HanaMicroelectronics、星电高科技、Unisen、UTAC、Boschman、楼氏电子、UBOTIC国内:日月光(台)、瑞声科技、长电科技、萎生公司(台)、同欣电子(台)、矽品科技、华天科技、晶方科技、南通富士通、力成科技(台)、南茂科技(台)、欣邦科技(台)、歌尔声学、固锝电子、红光股份2015年全球封装测试厂商市场份额测试国外:Acutronic、ADI、爱普科斯、NXP、应美盛、MaXim、村田制作所、ST、索尼、楼氏电子、博世、欧姆龙国内:京元电子(台)、上海华岭、歌尔声学、美新半导体、瑞声科技、深迪半导体、美泰科技、芯奥微、共达电声、矽睿科技传感器配套软件、芯片方面,本土均有布局,但相比博世、英美盛等自带软件算法的IDM传感器企业。以及高通、Marvell等传统嵌入式芯片企业,还有较大差距。软件国外:旭化成微电子、应美盛、博世、NXP、Kionix、HillcrestLabs、楼氏电子、PNISensor、ST国内:诺亦腾、鼎亿数码科技、飞智、速位科技、爱盛科技、敏芯微电子、明皜传感、深迪半导体、矽睿科技芯片国外:高通、博通、英伟达、英特尔、Marvell、苹果、三星国内:展讯、联发科技(台)、联芯科技、锐迪科微电子、海思、紫光国芯、珠海炬力、小米系统/应用在产业链下游,中国市场,特别是消费电子市场,极其广阔。同时,包括华为、中兴、小米等企业创新能力较强,具有很强的系统整合与创新能力。国外:苹果、三星、谷歌、LG、诺基亚、索尼、Facebook、戴尔、微软、GoPro、飞利浦。国内:华为、中兴、OPPO、vivo、、小米、HTC(台)、联想、酷派、360、一加、TCL、金立、乐视2应用及产品2016年全球智能传感器市场规模达至258亿美元,预计2019年将达到378.5亿美元,年复合增长率超10%。从应用场景来看,消费电子是智能传感器应用最广泛的领域,2016年市场占比接近70%。从产品类型来看,CMOS图像传感器仍是价值最高的产品,市场占比达到了45%,其次是指纹传感器、压力传感器、加速度计等。消费电子高增长,国际巨头领先,本土企业快速跟进全球消费电子市场主要由国际巨头企业把控,其中包括:惯性传感器龙头:博世、意法半导体、恩智浦等;音频传感器巨头:楼氏电子等;CMOS图像传感器巨头:索尼等。本土企业近年发展较快,但由于起步晚、技术积累弱等因素整体仍存在企业规模较小、产品线单一解决方案供给能力弱等问题。国外:博世、ST、罗姆、NXP、ADI、英飞凌、mCube、楼氏电子、索尼国内:美新半导体、明皜传感、歌尔声学、瑞声科技、敏芯微电子、矽睿科技、水木智芯、矽创电子、士兰微、深迪半导体、豪威科技、格科微电子、汇顶科技、思比科、敦泰、迈瑞微汽车电子稳步增长,产品市场相对集中全球汽车传感器90%以上的市场份额被博世、德尔福、森萨塔、霍尼韦尔等国际零部件巨头瓜分。中国的汽车传感器产品与国外同类产品相比,技术水平相差较大,高端汽车传感器严重依赖进口。国内美泰科技、美芯半导体、昆山双桥等企业均在积极布局汽车电子领域,并取得一进展。但国内汽车传感器整体技术水平还相对较弱,普遍存在准确度低、分解能力差、信号精度不高、抗干扰性弱等问题。国外:博世、霍尼韦尔、英飞凌、盛思锐、ST、NXP、ADI、TE国内:美泰科技、美新半导体、比亚迪微电子、康森斯克、思比科、高德红外、纳微电子、水木智芯、矽创电子、芯敏微系统、深迪半导体、明皜传感工业电子规模较小,国内具备一定基础2016年,传感器在工业领域的应用规模达350亿美元,其中智能传感器规模仅为15亿美元,整体占比较低。不过,工业物联网将促进工业传感器市场规模的迅速增长。对于压力、温度等基础工业传感器我国具备一定基础,在石油化工等流程工业可基本实现国产化。但在高端工业传感领域,90%产品依赖进口。国外:霍尼韦尔、欧姆龙、英飞凌、盛思锐、ST、NXP、ADI、TE、SICK国内:美泰科技、四方光电、炜盛科技、昆山双桥、高德红外、必创科技、戴维莱传感、多维科技、汉威电子、矽创电子、明皜传感医疗电子高增长,市场被国际巨头垄断2015年,医疗传感器市场规模为98亿美元,预计到2024年将增长近一倍,达到185亿美元。医疗电子属于高价值传感器领域,该领域使用的高价值设备包含了很昂贵的特殊传感器。中国医疗电子传感器布局基本空白,仍高度依赖进口。国外:霍尼韦尔、罗姆、思比科、盛思锐、ST、NXP、ADI、TE国内:高德红外、明皜传感、三诺生物上述内容介绍了规模最大的消费、汽车电子以及高附加值的医疗电子和发展工业物联网需要的工业电子,4个应用领域。下面则介绍6个主要产品。运动传感器国外:博世、霍尼韦尔、村田制作所、盛思锐、应美盛、爱普生、索尼、旭化成微电子、松下、ST、NXP、ADI、TE、Coilbrys、SignalQuest、SiliconDesigns、mCube、Maxim、Allegro、TDK、Amotech国内:美泰科技、美新半导体、明皜传感、矽睿科技、敏芯微、高德红外、深迪半导体、矽创电子、水木智芯、多维科技压力传感器国外:博世、英飞凌、ST、NXP、ADI、TE、Melexis国内:美泰科技、纳微电子、康森斯克、芯敏微系统、敏芯微电子CMOS图像传感器国外:三星、英飞凌、索尼、安森美、佳能、东芝、ST、LG、AMS国内:豪威科技、格科微电子、思比科、瑞芯微电子、长光辰芯指纹传感器国外:AuthenTec、FPC、IDEX、Synopsys国内:汇顶科技、神盾、迈瑞微、思立微、敦泰、芯启航、费恩格尔、信炜科技、贝特莱、集创北方环境传感器国外:博世、城市技术、盛思锐、欧姆龙、SI、TI、AMS、Nenvitech、MEMSVision、IDT、TDK国内:烤盛科技、戴维莱传感、汉威电子、能斯达、四方光电麦克风国外:楼氏电子、欧姆龙、星电高科技、Akustica、ADI、ST、Sonion国内:歌尔声学、瑞声科技、芯奥微、共达电声、敏芯微电子详见往期文章:幸福来得太突然!MEMS麦克风厂商笑醒3产业空间格局从产业空间布局上,中国智能传感器形成了长三角、环渤海、珠三角、中西部四大聚集区域。长三角传感器产品、软件开发及系统集成企业的主要聚集地和应用推广地。上海序号公司1深迪半导体(上海)有限公司2上海矽睿科技有限公司3上海敏芯微系统技术有限公司4上海文襄汽车传感器有限公司5中芯国际集成电路制造有限公司6上海华虹宏力半导体制造有限公司7上海先进半导体制造股份有限公司8上海飞恩微电子有限公司9慧石(上海)测控科技有限公司10上海微联传感科技有限公司11上海天英微系统科技有限公司12上海铭动电子科技有限公司13上海巨哥电子科技有限公司14格科微电子(上海)有限公司15上海芯摄达科技有限公司16上海思立微电子科技有限公司17上海图正信息科技股份有限公司18大唐微电子技术有限公司19豪威科技(上海)有限公司20中芯国际集成电路制造有限公司江苏序号公司1美新半导体(无锡)有限公司2苏州明皜传感科技有限公司3苏州敏芯微电子技术有限公司4昆山双桥传感器测控技术有限公司5江苏多维科技有限公司6无锡微奥科技有限公司7无锡市杰锝感知科技有限公司8华润上华科技有限公司9苏州纳米科技发展有限公司10江苏英特神斯科技有限公司11无锡华景传感科技有限公司12无锡元创华芯微机电有限公司13苏州文智芯微系统技术有限公司14无锡纳微电子有限公司15无锡康森斯克电子科技有限公司16南京沃天科技有限公司17苏州美仑凯力电子有限公司18无锡芯感智半导体有限公司19南京中霍传感科技有限公司20南京艾驰电子科技有限公司21无锡乐尔科技有限公司22江苏森尼克电子科技有限公司23无锡沃浦光电传感科技有限公司24无锡微奇科技有限公司25昆山光微电子有限公司26苏州宏见智能传感科技有限公司27昆山锐芯微电子有限公司28淮安德科码半导体有限公司29苏州迈瑞微电子有限公司30苏州能斯达电子科技有限公司31无锡芯奥微传感技术有限公司32矽品科技(苏州)有限公司33江苏长电科技股份有限公司34华润上华半导体有限公司35苏州晶方半导体科技股份有限公司36南通富士通微电子股份有限公司37无锡红光微电子股份有限公司浙江序号公司1杭州士兰微电子股份有限公司2浙江大立科技有限公司3微动科技(杭州)有限公司有限公司4宁波麦思电子科技有限公司5新磁(上海)电子有限公司6上海麦恩微电子股份有限公司7宁波希磁电子科技有限公司8温州致同传感科技有限公司9杭州晟元芯片技术有限公司安徽:安徽北方芯动联科微系统技术有限公司环渤海以研发设计为主导,高校、重点实验室。地区序号公司北京1水木智芯科技〈北京)有限公司2北京时代民芯科技有限公司3北京航天时代光电科技有限公司4北京青鸟元心微系统科技有限责任公司5北方广微科技有限公司6博奥生物有限公司7北京沃尔康科技有限责任公司8北京华力创通科技股份有限公司9北京鑫诺金传感技术有限公司10北京飞特驰科技有限公司11北京胜广达科技有限公司12北京思比科微电子技术股份有限公司13北京必创科技有限公司14北京集创北方科技有限公司河北1河北美泰电子科技有限公司2保定市霍尔电子有限公司天津1诺思(天津)微系统有限公司2天津微纳芯科技有限公司地区序号公司辽宁1罕王微电子(辽宁)有限公司2沈阳仪表科学研究院有限公司山东1歌尔声学股份有限公司2山东共达电声股份有限公司3烟台睿创微纳技术有限公司4国高(淄博)制造微系统科技有限公司5威海双峰电子集团有限公司6山东昊润自动化技术有限公司珠三角重在制造,以产品带动应用。广东序号公司1瑞声声学科技(深圳)有限公司2深圳市惠贻华普电子有限公司3深圳市华夏磁电子技术开发有限公司4广州飒特红外股份有限公司5深圳市力准传感技术有限公司6敦泰科技(深圳)有限公司7深圳比亚微电子有限公司8深圳市汇顶科技股份有限公司9深圳信炜科技有限公司10深圳市戴维莱传感技术开发有限公司11深圳芯启航科技有限公司12深圳贝特莱电子科技股份有限公司中西部新型技术攻关与应用创新地区序号公司四川1成都国腾电子技术股份有限公司2成都芯进电子有限公司3成都费恩格尔微电子技术有限公司重庆1重庆金山科技(集团)有限公司2重庆光电有限公司3中航(重庆)微电子有限公司陕西1西安中星测控有限公司2西安励德微系统科技有限公司3陕西航天长城测控有限公司4麦克传感器有限公司5西安维纳信息测控有限公司6宝鸡秦明传感器有限公司7西安定华电子有限公司8飞秒光电科技〈西安)有限公司其他区域地区公司云南中国兵器工业集团公司北方夜视科技集团有限公司贵州贵州雅光电子科技股份有限公司甘肃天水华天科技股份有限公司地区序号公司山西1山西科泰微技术有限公司(更正)2山西国惠光电科技有限公司湖北1武汉高德红外股份有限公司2湖北泓盈传感术有限公司3宜昌东方微磁科技有限责任公司4武汉四方光电科技有限公司福建1智恒(厦门)微电子有限公司2厦门乃尔电子有限公司3福建上润精密仪器有限公司4瑞芯微电子股份有限公司湖南1三诺生物传感股份有限公司吉林1长春长光辰芯光电技术有限公司结语以上即为智能传感器产业全景,有一大批本土企业正奋发图强。在当天演讲的最后,杨学山先生着重强调道:对于中国传感器产业来说,当前是一个极其好的发展机会和时机,我们千万不要把这个千载难逢的机遇错过了!全球物联网观察独家整理
  • 光学气体传感器你选对了吗
    根据应用场景选择合适传感器光学气体传感器是多种分析设备的核心部件,直接决定了仪器的性能指标和功能,仪器设计之初,传感器选型非常重要。市面上各种原理、各个厂家的光学气体传感器琳琅满目,指标参数参差不齐,要如何选择最合适、性价比最高的传感器呢?实际上每款传感器都有其优缺点和适用范围,要么性能指标有优势,要么可靠性更值得信赖,要么价格便宜等等。要根据具体需求和应用场景选择合适传感器,比如经常要测量组分繁杂、湿度高的气体,最好选择UVDOAS、FTIR这类色散分光原理的气体传感器。关于传感器的性能、体积、功耗、扩展性、价格等要综合权衡。 传感器性能指标权衡选择光学气体传感器,首先传感器的关键指标参数要优于预研仪器的设计参数,除体积重量外,一般要考虑以下几点要素,(每个要素都很复杂,本期先简单描述,后面几期再根据反馈详细分析):1. 测量气体种类和干扰。前者好理解,要和仪器的目标气体一致,比如开发环境空气CO2分析仪器选择低量程LY-NDIR双通道CO2模块就完全能满足要求,但在背景气中有干扰组分的就要同时考虑干扰组分的同时测量,这是很多仪器开发者经常忽略的问题。比如开发污染源SO2分析仪选择NDIR原理就要考虑烟气常见组分CH4的干扰,因为红外波段CH4在SO2吸收峰处同样有吸收,会带来正干扰,当然选择紫外差分原理的如LY-UVDOAS系列的传感器就不用考虑CH4干扰。2. 量程、检出限和线性误差。分别代表了传感器的实际测量范围、最低响应浓度和结果正确度,其中量程和检出限指标是一对有点矛盾的参数,一般长光程设计的传感器,会有低的检出限和量程指标,反之亦然,当然,也有少数高端的传感器可以两者都兼顾,比如崂应的UVDOAS系列传感器,通过自适应调整光谱波段算法,测超低浓度时选择强吸收谱段反演计算测,超高浓度时选择弱吸收谱段反演计算,这样两个参数都能获得很优秀的指标。3. 响应时间、重复性和稳定性响应时间一般是T90、T10,表征了传感器的响应速度,跟气室体积、气体流速和平滑算法都有关系,因此也与精度、检出限指标有点负相关。关于重复性和稳定性,一般是在环境条件稳定的情况下,反复多次测量结果的一致性程度。4. 漂移(零漂、量漂)和适用温度范围漂移指标分为不同时间的漂移,常见的有1h/4h/8h/24h/月/年漂移,便携式仪器,小时漂移更重要,在线运行仪器月漂移也很重要,这关系到仪器设计或运行时的调零周期,有些仪器还需要设计自动调零气路。适用温度范围,在本文中不仅指传感器可工作的温度范围,还代表确保传感器精度/线性误差满足指标的温度范围,温度对光学气体传感器的影响非常大,所以需要确定精度是在什么温度范围内能满足。有些传感器比如崂应UVDOAS/NDIR/NDUV系列,采取了大量的措施确保了温度适用性,指标表里的误差均是指在工作温度范围内都能满足的误差;也有很多传感器指标误差中仅仅在室温条件满足(有些在指标表中看不出,有些会用温度漂移1℃示值漂移不超过满量程的多少来描述),这样就意味着仪器设计中要考虑增加对气体传感器应用环境的恒温设计或温度补偿算法,以满足仪器的高低温性能指标要求,据了解在多个领域的标准中都有仪器高低温适用性指标要求,毕竟仪器的客户群体大多分布在全国各地,四季温差、昼夜温差跨度非常大。5. 考虑升级和可扩展性,在仪器整个生命周期中,满足当前设计指标就可以?还是会根据市场需求而扩展升级(这种情况在快速发展的行业中是经常出现的,污染源监测行业指标就一直随着环保需求而不断收紧)?如果是后者,在核心传感器选型时就要考虑传感器的指标可扩展性,市面有少数高端传感器具备扩展空间,比如崂应的大部分UVDOAS传感器和NDIR传感器可以在硬件不变的情况下升级扩展量程,LY-UVDOAS更是可以在原基础上扩展测量气体的种类,然而这些扩展功能是基于深厚的技术水平的,能做到、做好的不多,有仪器扩展升级考量的要仔细甄别,选择对的传感器,有利于仪器的快速升级、缩减研发时间和成本。关于光学气体传感器的价格和价值这是个有意思的话题,本文简单一说。市面上不同传感器价格差异很大,这跟很多因素有关,最关键的还是指标。有些传感器是半定量的,有个不离谱的示值就可以,仅作为一个参考,这种很便宜;有些较准确,可以作为阈值判断用,价格一般;有些给出精确示值,比如误差在±5%以内,属于工业级的,价格较高;有些更高端的传感器给出更精确示值、表现非常好的环境使用性,比如误差在±2%甚至±1%以内,价格很高。不同等级的传感器,价格差异是数量级的,毕竟气体传感器做到一定精度指标之后,每一点小的提升,都会需要付出很高的成本代价去实现。所以,要根据预研仪器的要求和定位选择最合适的传感器。另外,传感器的附加值差异也很大,比如价格对比时,不要单独看一个传感器的价格,要看测一种气体的价格,比如多通道LYNDIR传感器一种气体的价格就明显低于多个单一气体传感器,同时去除了相互间的干扰,节省了体积,对仪器设计而言,增加功能同时省时、实力、省空间,性价比自然高很多。关于传感器之外的隐形附加价值也要权衡。比如购买崂应的传感器,就附加了定制化的解决方案,协助根据应用场景选择最佳好传感器、设计时用好,高质量的售后服务和可能的升级空间。最后,传感器基本选好了后,还要实测,尤其上文中提到的几个关键指标,毕竟光学气体传感器良莠不齐,自己测过才知道。欢迎致电崂应咨询交流。
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 盘点手机搭载的传感器
    现在只要有智能手机在手,除基本地理位置外,还可以根据机种的不同取得周边环境的紫外线、温度、湿度等资讯。智能手机内建的传感器,可以正确测量出人体也难以察觉到的多元讯息,扮演&ldquo 第六感&rdquo 的角色。  据ETNews报导,过去智能手机制造厂多将规格重点放在相机画素、显示器、手机厚度、传感器等核心性能上,做为产品差别化的焦点。每每有高阶新机种公开,大多会以规格比较为主,并强调设计的创新和技术力的提升。  然近来手机硬件规格竞争已达上限,可以赋予智能手机各种新功能的传感器成为新焦点。三星电子(SamsungElectronics)的Galaxy系列机种和苹果(Apple)iPhone搭载指纹辨识传感器等,触发智能手机传感器的竞争。  报导引用市调机构IHSTechnology资料指出,智能手机和平板电脑等移动设备传感器全球市场规模,在2018年将较2012年的23亿美元成长约3倍,达65亿美元。  其中有20亿美元以上将来自生物辨识、紫外线、气体等新兴传感器产业。从动作辨识、光照度、距离传感器等智能手机登场初期开始,手机搭载的既有传感器和新传感器将带动传感器市场成长。  新兴传感器的代表性产品为指纹辨识传感器。苹果2013年推出的iPhone5S首度搭载指纹辨识系统,2014年更应用该系统推出移动付费服务Pay,引领传感器热潮。华为和Oppo等大陆手机业者,也陆续在最新产品上搭载指纹辨识传感器,让指纹辨识成为高阶智能手机的必备条件。  韩指纹辨识模组专门企业CrucialTec内部人员表示,近来以大陆智能手机製造厂为中心,展现出对指纹辨识模组的关心。除华为和Oppo外,许多业者也前来询问相关产品。     三星的Galaxy机种也搭载指纹辨识传感器,但三星的重心较偏向于健康管理的特殊传感器。日前推出的GalaxyNote4和NoteEdge因搭载紫外线传感器和心脉传感器受到瞩目。  原本三星计划还要搭载氧气饱和度测量传感器,但因受限韩国医疗设备登记规范等问题,只有部分海外地区的机种有搭载。内建应用程式SHealth原可利用温度及湿度传感器显示舒适度,但经过消费者调查,使用度相当低。新增传感器会导致製造成本升高,三星将先考虑活用度等再决定调整搭载的传感器。     继指纹辨识和UV等传感器后,各种健康管理、环境相关传感器可望接棒带动传感器市场成长。Partron传感器事业组长金泰元(音译)表示,正持续进行心电图传感器和体脂肪传感器等健康相关传感器模组的研发。此外,也将研发相关演算法,努力提升附加价值。  可辨识使用者情绪的传感器,也陆续有厂商进行研发。2013年微软(Microsoft)北京研究所发表MoodScope相关报告,成为热门话题。虽然与收集消费者的智能手机使用型态和生活形态等资讯,并以此为基础做运用的一般传感器有所差异,仍是一种情感辨识传感器概念。  韩国Shinyang证券研究员表示,智能手机开始搭载多元传感器,但受限于製造成本和手机外观设计等问题,未来可能只会再增加2~3颗传感器。能够配合零组件成本、使用者的接受度、生产力等三个条件的传感器,才会被应用到智能手机中。
  • 关注内资厂商进军传感器事件
    我国企业在传感器高端领域(如红外传感器、速度传感器、加速传感器、GIS传感器等)已经突破了技术门槛,伴随消费电子和物联网行业的高速发展,有望迎来高成长。国内相关公司包括汉威电子、华工科技、苏州固锝、歌尔声学等。   汉威电子从事气体传感器研究生产已有二十年的历史,是国内从事气体传感器研究、生产的最早厂家。公司拥有从气体传感器-气体检测仪器仪表-气体检测控制系统的完整产业链,拥有年产65万套气体检测仪器仪表和280万支气体传感器的生产能力,而且产业链各环节已经形成了良性循环,为公司建立行业领先地位提供根本保证。2012年公司在传感器、智能仪器仪表、监控系统三大产业领域已完成及正在开发的新产品及产品升级改进共计30余项,包括由工信部批复的国家电子信息产业发展基金项目&ldquo 基于双光路气体探测技术的煤矿安全监控系统&rdquo 和国家物联网发展专项&ldquo 微型智能半导体气体传感器&rdquo ,以及由国家发改委批复的国家物联网技术研发及产业化专项&ldquo 电化学式气体探测智能终端关键技术研发及产业化项目&rdquo 。高性能热释电红外探测器、用于疾病诊断的电化学气体传感器、激光原理燃气检漏设备、激光原理工业气体检测仪、湿度传感器在2012年下半年分别投产。   华工科技是华中地区批由高校产业重组上市的高科技公司。子公司新高理自1988年始即专业从事PTC、NTC系列热敏电阻的设计、生产、安装和服务,建有教育部敏感陶瓷工程研究中心等科研机构,具有年产1亿只热敏电阻的生产能力,是目前国内的热敏电阻专业生产厂家。产品高精密温度传感器可应用于家电、厨房设备、汽车、军工及中低温干燥箱、恒温箱等场合的温度测量与控制。2012年公司提高了NTC传感器的耐候性,实现PTC传感器批量销售,积极推进汽车电子领域应用,通过东风汽车(3.04,-0.03,-0.98%)等客户审核。未来公司拟拓展办公自动化及通讯设备元器件领域,实现NRC、GRC项目批量销售。此信息由和呈小编摘录,和呈产品有培养箱系列:、霉菌培养箱、生化培养箱、恒温培养箱、细菌培养箱、低温培养箱、培养箱、隔水式恒温培养箱、电热恒温培养箱
  • 2016年我国传感器市场分析
    p style="line-height: 1.75em "strong产业现状/strong/pp style="line-height: 1.75em "  中国传感器的市场近几年一直持续增长,增长速度超过20%,传感器应用四大领域为工业及汽车电子产品、通信电子产品、消费电子产品专用设备。/pp style="line-height: 1.75em "  2012年中国传感器行业发展总体规模逐渐扩大,显著应用于汽车工业中包括汽车轮胎中的传感器应用、安全气囊中的传感器应用、底盘系统中的传感器应用、发动机运行管理系统中的传感器应用、废气与空气质量控制系统中的传感器应用和需求、ABS中的传感器应用和需求、车辆行驶安全系统中的传感器应用和需求、汽车防盗系统中的传感器应用和需求、发动机燃烧控制系统中的传感器应用和需求、汽车定位系统中的传感器应用和需求、汽车其他系统中的传感器应用和需求。/pp style="line-height: 1.75em "  除此以外,中国传感器在其他领域也有新的应用,如工业控制领域、在环境保护领域、在设施农业中、在多媒体图像领域、其它有关传感器的应用。回顾中国传感器行业,虽然发展迅速,但是也存在一些不利的因素。如在产品技术上产业基础薄弱、科技与生产脱节、产品技术水平偏低、产品种类欠缺、企业产品研发能力弱。/pp style="line-height: 1.75em "  但另一方面国家不断制定有利传感器产业发展的战略与政策,全年整机系统市场的快速发展,新兴技术的不断推动也都成为传感网发展的利好因素。/pp style="line-height: 1.75em "strong市场容量/strong/pp style="line-height: 1.75em "  据中国产业调研网发布的中国传感器市场现状调研与发展趋势分析报告(2016-2020年)显示,在政府的支持下,我国的传感器技术及其产业取得了长足进步。国内传感器产业在“双加工程”即:加快力度加快发展的方针指导下,建立了中国敏感元器件与传感器生产基地。/pp style="line-height: 1.75em "  目前,国内有三大传感器生产基地,分别为:安徽基地主要是建立力、光敏规模经济 陕西基地1990年2月成立了陕西省敏感技术产业集团公司,主要是建立电压敏、热敏、汽车电子规模经济为主要目标 黑龙江基地主要建立气、湿敏规模经济为主要目标。/pp style="line-height: 1.75em "strong2016年中国传感器市场趋势分析/strong/pp style="line-height: 1.75em "  而目前我国已有1700多家从事传感器的生产和研发的企业,其中从事微系统研制、生产的有50多家。同时,传感器越来越多地被应用到社会发展及人类生活的各个领域,如工业自动化、农业现代化、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境监测、安全保卫、医疗诊断、交通运输、家用电器等。/pp style="line-height: 1.75em "  据统计,至2015年,我国物联网整体市场规模将或达到7500亿元,传感器产业将从中直接受益。据预测,未来5年中国传感器市场将稳步快速发展,在物联网市场规模大幅增长的动力之下,2015年中国传感器市场规模有望达到1213亿元左右。/pp style="line-height: 1.75em "strong市场格局/strong/pp style="line-height: 1.75em "  我国传感器的生产企业主要集中在长三角地区,并逐渐形成以北京、上海、南京、深圳、沈阳和西安等中心城市为主的区域空间布局。长三角区域:以上海、无锡、南京为中心,逐渐形成包括热敏、磁敏、图像、称重、光电、温度、气敏等较为完备的传感器生产体系及产业配套。/pp style="line-height: 1.75em "  珠三角区域:以深圳中心城市为主,由附近中小城市的外资企业组成以热敏、磁敏、超声波、称重为主的传感器产业体系。东北地区:以沈阳、长春、哈尔滨为主,主要生产MEMS力敏传感器、气敏传感器、湿敏传感器。/pp style="line-height: 1.75em "  京津区域:主要以高校为主,从事新型传感器的研发,在某些领域填补国内空白。北京已建立微米/纳米国家重点实验室。中部地区:以郑州、武汉、太原为主,产学研紧密结合的模式,在PTC/NTC热敏电阻、感应式数字液位传感器和气体传感器等产业方面发展态势良好。/pp style="line-height: 1.75em "  此外,传感器产业伴随着物联网的兴起,在其他区域如陕西、四川和山东等地发展很快。/pp style="line-height: 1.75em "strong面临问题/strong/pp style="line-height: 1.75em "  一是核心技术和基础能力缺乏,创新能力弱。传感器在高精度、高敏感度分析、成分分析和特殊应用的高端方面差距巨大,中高档传感器产品几乎100%从国外进口,90%芯片依赖国外,国内缺乏对新原理、新器件和新材料传感器的研发和产业化能力。/pp style="line-height: 1.75em "  二是共性关键技术尚未真正突破。设计技术、封装技术、装备技术等方面都存在较大差距。国内尚无一套有自主知识产权的传感器设计软件,国产传感器可靠性比国外同类产品低1-2个数量级,传感器封装尚未形成系列、标准和统一接口。传感器工艺装备研发与生产被国外垄断。/pp style="line-height: 1.75em "  三是产业结构不合理,品种、规格、系列不全,技术指标不高。国内传感器产品往往形不成系列,产品在测量精度、温度特性、响应时间、稳定性、可靠性等指标与国外也有相当大的差距。四是企业能力弱,从目前市场份额和市场竞争力指数来看,外资企业仍占据较大的优势。/pp style="line-height: 1.75em "  我国传感器企业95%以上属小型企业,规模小、研发能力弱、规模效益差。针对这些问题,我国应该如何分步去解决?如何提高综合竞争力,并逐步参与到国际竞争中去?/pp style="line-height: 1.75em "strong前景预测/strong/pp style="line-height: 1.75em "  我国2015年传感器需求量可高达32亿只,市场规模可达1213亿元左右,足以形成传感器产业和信息产业新的经济增长点。除了工业自动化系统、大型重点工程配套以及汽车电子化、家电类产品的应用之外,在现代农业、环保检测与治理、医疗卫生以及食品检测类市场领域里的应用是突如其来、无法估量的。/pp style="line-height: 1.75em "  此外,国内水资源控制系统和家电类商品正处于由传统技术向节能减排和技术升级的发展阶段,变频式空调和家用吸尘器、洗衣机、太阳能热水器,特别是大型中央空调器已开始大量使用压力控制、温度调节等系统,这就为各种传感器在家用空调、洗衣机、吸尘器、家庭供水系统等方面的应用开辟了广阔的空间,构成了我国新的市场需求和应用增长点。/ppbr//p
  • 透明电极指纹传感器问世
    p  让手机屏任何位置都能识别身份/pp  科技日报北京7月8日电 (记者张梦然)英国《自然· 通讯》杂志近日发表了一项材料科学新突破:韩国科学家团队用超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极,进而产生一种透明的指纹传感器。在智能手机屏幕上的演示表明,这种传感器可以让用户将手指放在屏幕的任何位置进行身份识别,而不需要使用指纹激活按钮。/pp  指纹传感器是电子设备实现指纹自动采集的关键器件。其需要在一颗不足0.5平方厘米的晶片表面集成10000个以上的半导体传感单元,因此尽管指纹采集现在已很常见,但指纹传感器的制造仍属于一项综合性强、技术复杂度高、制造工艺难的高新技术。/pp  消费电子市场一直大力追求透明的指纹传感器。不过,现阶段的技术受限于关键性的设计限制,比如需要开发出具有光传输和电子导电功能高的透明电极。而此次,科学家终于推出了制造智能手机的指纹传感器阵列,这些阵列可以同步检测触觉压力和手指皮肤温度。/pp  韩国蔚山国立科技研究所科学家团队设计了一种新方法,来制造柔性透明的多功能传感器阵列。该设计的秘诀在于根据由超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极。/pp  这种混合网络表现出较高的光传输力和低电阻,极耐机械弯折。将其融入指纹传感器阵列后,就得到一个高分辨率装置,能够准确可靠地检测触摸条件下指纹的脊谷区域。/pp  研究团队将指纹传感器阵列、压敏晶体管和温度传感器集成至智能手机显示屏,借此展示了这项新技术在移动设备上的可应用性。这也意味着,这种传感器有望在未来取代指纹激活按钮。/pp  总编辑圈点/pp  手机迭代升级的速度太快,快到让人难以记起几年前的它,更难以想象几年后的它。如今我们对手机指纹解锁、指纹支付习以为常,简直都忘了曾经每天输入密码千百遍。这种“进化”还在继续:新上市的全面屏手机,正在用屏下指纹识别替代指纹识别键,只是指纹采集的位置依然固定。也许再过几年,随意触摸手机任何位置都能解锁。但愿那时,你还记得它曾经有个指纹识别键。/ppbr//p
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  基本工作原理及应用领域  光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。  光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:  1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。  2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。  在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。  光纤传感器助力物联网发展市场容量将近万亿  自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。  我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。  传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。  光纤传感技术在物联网中的应用  通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。  目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • 高端传感器处于高增长“临界点”
    国内企业目前在成熟的国内企业目前在成熟的传感器传感器产品上已经占据了成本和技术优势,在高端的产品领域(光电传感器、红外传感器、速度传感器、加速传感器、GIS传感器等)国内企业已经突破了技术门槛,处于推广前期,一旦成功突破市场,将迎来又一次高速增长。产品上已经占据了成本和技术优势,在高端的产品领域(光电传感器、红外传感器、速度传感器、加速传感器、GIS传感器等)国内企业已经突破了技术门槛,处于推广前期,一旦成功突破市场,将迎来又一次高速增长。传感器由于具有较高的专业性,除国际一线厂商霍尼韦尔,博世,意法半导体,MEAS等公司具有较为全面的传感器品类,其余公司基本集中于某一细分领域,例如ABB的主要传感器产品适用于电力行业,飞思卡尔产品则是在汽车电子和消费电子领域,Vishay集中于工业称重领域。国内公司中情况也是如此,汉威电子的产品主要为气体传感器,孝感华工高理的产品主要为温度传感器。   气体传感器方面,2011年中国市场容量在1100万只左右,汉威电子作为国内气体传感器的龙头,销售了650万只,国内市场占有率60%左右,公司坚持“聚焦专业细分市场”的发展战略,通过多年努力,已经掌握半导体类传感器、催化燃烧类气体传感器、电化学类传感器、红外光学类气体传感器的生产技术并批量化生产,是目前国内唯一能生产以上四大类气体传感器的企业,气体传感器技术方面保持国内领先。其产品和解决方案已获得市场的广泛认可,主要用于检测、监控可燃性气体、有毒有害气体和特种气体。公司表示将深耕气体传感器市场,并大力培养和拓展燃气监控领域的市场,预计未来三年传感器在燃气领域的市场将有每年15%以上的复合增长率。由于气体传感器占整个传感器市场的比重不足3%,发展空间相对有限,公司不满足于仅在气体传感器领域拓展,转而开拓温度等传感器市场。公司近年研发生产热释电传感器,2011年销量就已经达到300 多万支,贡献收入约500 万元,如业务拓展较为顺利,预计未来几年均能实现100%以上的增长。  温度传感器方面,华工新高理则是国内最大的厂商,目前其温度传感器的产能在7亿只以上,在家用空调传感器领域国内市场占有率预计 70%,公司建有教育部敏感陶瓷工程研究中心等国家级科研机构,公司产品具有国际竞争力,LG、三星、美的、格力等国内外知名企业均为公司的核心客户,由于变频空调等产品对传感器的需求是传统产品的2-3倍,预计未来传感器在家电市场仍将保持10%-20%稳定的增长。公司通过近年来的技术研发向高端市场拓展,积极进入车用传感器市场,由于汽车温度传感器价格在6元左右,远高于家电传感器产品,如果公司产品能通过中高端品牌汽车厂商认证,并形成批量出货,其盈利前景将非常可观。  高端传感器领域里,我国正处于技术门槛已经突破,市场门槛即将突破的阶段,部分公司在光电传感器、红外传感器、速度传感器、加速传感器、GIS传感器等领域取得一定的突破,例如苏州固锝的加速传感器、中航电测的热敏传感器,但尚未形成规模,在国家政策的支持和推动下,我国的传感器行业将获得高速成长。
  • 千亿传感器市场引角逐
    今年以来,全球几大消费电子巨头纷纷发力抢占以智能眼镜及智能手表为代表的可穿戴设备市场。而在本轮可穿戴设备的追逐热潮中,传感器已然成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。据美国《华尔街日报》的报道显示,苹果即将发布的iWatch智能手表就将整合至少10种传感器,这无疑将对传感器市场的大热进一步起到推波助澜的作用。此外,前瞻产业研究院在此前发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》中,曾预测2013-2017年中国传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。分析人士表示,苹果等巨头的示范效应叠加传感器市场规模超千亿,都将推动国内传感器市场加速发展,相关概念大概率将获得资金青睐。  iWatch将成传感器大热催化剂  据外媒报道,最近Sensoplex公司的首席执行官Hamid Farzaneh在采访中对iWatch中可能出现的传感器进行了推测。作为一家新型可穿戴产品设计和供应传感器模块公司,Sensoplex在此领域非常具有发言权。  据悉,Farzaneh专门对这10种传感器进行了分类,有五种可能性比较大,而另外五种则是较有可能。其认为,几乎肯定会被整合进iWatch的传感器,包括加速度传感器、陀螺仪、磁力计、晴雨表/气压传感器及环境温度传感器。  Farzaneh指出,加速度传感器似乎已经成为智能手机的标配,而iWatch将使用加速度传感器测量身体运动,并且可以记录用户步数以及睡眠习惯。而陀螺仪是一款不可缺少的组件,可以侦测转动。陀螺仪获得的数据可以与锻炼逻辑算法相互协作 而且陀螺仪还能让iWatch&ldquo 感知&rdquo 用户,比如举起手腕准备看表时,屏幕自动亮起。气压传感器则不仅仅可以向用户提供更准确的天气数据,还可感知海拔高度的变化,对于跑步爱好者和登山爱好者来说,海拔高度数据非常重要。  针对比较有可能被整合进iWatch的传感器,Farzaneh认为,包括心率监控仪、血氧传感器、皮肤电导传感器、皮肤温度传感器以及GPS。  除此之外,据《华尔街日报》报道称,台湾厂商广大电脑将成为iWatch的主要生产商。而LG将为苹果智能手表独家提供显示屏,这种屏幕拥有2.5英寸,为长方形设计,且呈拱形,支持触摸以及无线充电功能等特点。  iPhone 6或搭载气压计及  传感器装置  据科技博客9to5mac报道,当前业界关于苹果下一代iPhone的传闻正沸沸扬扬,似乎iPhone 6将采用更大的屏幕设计、重新启用金属面板等,已是板上钉钉的事情。近期又有知情人士爆料,iPhone 6可能将搭载运动气压计和大气传感器装置。  据介绍,在通常情况下,气压计是用来测量位置高度的一个装置,这一传感器已经普遍存在于常见的Android设备上,比如三星的Galaxy Nexus手机。对于徒步旅行者、登山者、骑行和一些希望能够获取自己当前位置精确高度的发烧友来说,气压计传感器装置很实用。当然,通过一些气压数据,气压计同时可以预测气温和天气状况。  业内人士表示,&ldquo iPhone 6可能将搭载运动气压计&rdquo 的传闻并非空穴来风,在苹果最新的软件开发工具包Xcode 6和iOS 8操作系统的代码上,可以找到相关信息。其中的CoreMotion APIs上,赫然显示有高度测量功能。  此外,在当前的苹果应用商店内,已有几款可以跟踪高度的应用存在,这些应用基于现有的GPS芯片和运动跟踪芯片。不过,据相关开发人员称,Xcode 6 和iOS 8中的高度测量基于新的技术框架,需要有新的苹果硬件支持。  上述开发人员称,iOS 8操作系统对新的测量高度的硬件支持,意味着苹果将在未来发布的iOS设备中嵌入这一新功能,这些设备不仅包括今年秋季推出的iPhone 6,还有可能覆盖新的ipad,甚至iWatch。  此外,开发人员在iOS 8上还找到了环境压力跟踪参数,根据这些参数,除了根据气压可以确定高度外,还可以分析周边降水或天气阴晴状况。开发人员称,未来iOS设备的这种天气预测功能。  5000亿市场引角逐  应该说,传感器已经成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。以谷歌眼镜为例,其内置了多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速等传感器的应用,这让谷歌眼镜实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可以完成拍照。虽然谷歌没有透露具体的技术细节,但是业界专家都认为,这主要是因为谷歌眼镜内置了红外传感器和距离传感器,在两者的有机结合下,用户眼睛活动被识别,从而最终实现对应用的操作。  而在可穿戴设备智能化升级的过程中,MEMS传感器是传感器发展的必然趋势。MEMS被称为微机电系统,主要包括传感器和执行器两类,广泛应用于包括智能手机、平板电脑和可穿戴设备等在内的消费电子领域。分析人士表示,各类传感器功能性的全融合将成为传感器的研发方向,未来可穿戴产品终端前景的发展将取决于传感器等产业链上游技术的提升,其中,MEMS创新应用将是可穿戴设备发展的源泉。  另外,早在去年,前瞻产业研究院发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》就曾预测,2013-2017年传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。  具体而言,传感器制造行业研究小组认为,传感器制造行业的下游主要应用领域包括工业检测、汽车、医疗、环境保护、航空航天等。鉴于传感器制造行业下游市场给力,我国传感器制造行业的前景值得期待。其一,传感器在机械行业将会有广阔的应用前景。未来机械行业将会广泛全面地应用信息技术,加快产品更新换代,提高产品技术含量,缩短与国际先进水平的差距,在机械产品中融入传感器、单片机、微处理器、PLC、NC、数字通信接口以及激光等现代信息技术和高新技术,提高产品的机电一体化、数字化、智能化和网络化的程度,使产品的技术含量、知识含量、附加值得以提高。其二,随着传感器技术作为物联网的核心技术,家电物联网的发展必定会带动相关传感器技术的大规模应用,传感器在家电领域的发展前景也十分广阔。其三,在疾病的早期诊断、早期治疗、远距离诊断及人工器官的研制等广泛范围内发挥作用的大趋势之下,传感器在这些方面将会得到越来越多的应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制