当前位置: 仪器信息网 > 行业主题 > >

外头型光量子计

仪器信息网外头型光量子计专题为您提供2024年最新外头型光量子计价格报价、厂家品牌的相关信息, 包括外头型光量子计参数、型号等,不管是国产,还是进口品牌的外头型光量子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合外头型光量子计相关的耗材配件、试剂标物,还有外头型光量子计相关的最新资讯、资料,以及外头型光量子计相关的解决方案。

外头型光量子计相关的资讯

  • 快1.8亿倍!九章光量子计算原型机成功求解图论问题
    8日,记者从中国科学技术大学获悉,该校由潘建伟、陆朝阳、刘乃乐等组成的研究团队,基于“九章”光量子计算原型机完成了对“稠密子图”和“Max-Haf”两类图论问题的求解,通过实验和理论研究了“九章”处理这两类图论问题为搜索算法带来的加速,以及该加速对于问题规模和实验噪声的依赖关系。该研究成果系首次在具有量子计算优越性的光量子计算原型机上开展的面向具有应用价值问题的实验研究。相关论文日前以“编辑推荐”的形式发表在国际学术期刊《物理评论快报》上,并被物理网站专题报道。国际学术界对量子计算的实验发展制定了三步走的路线图,其中第一步是实现“量子计算优越性”,即通过高精度地操纵近百个物理比特,高效求解超级计算机无法在合理时间内解决的特定的高复杂度数学问题。这一步的意义在于首次从实验上确凿地证明量子计算加速,并挑战“扩展的丘奇—图灵论题”。因此,国际学术界下一阶段的一个重要科研目标是探索利用量子计算原型机演示具有实用价值的问题的求解。近期,潘建伟团队在继续发展更高质量和更强拓展性的光量子计算原型机的同时,开展了将“九章”所执行的高斯玻色采样任务应用于图论问题的研究探索。图论起源于著名的“哥尼斯堡七桥问题”,被广泛用于描述事物之间的关系,例如社交网络、分子结构和计算机科学中的许多问题均可对应到图论问题。高斯玻色采样与图论问题具有紧密的数学联系,通过将高斯玻色采样设备的每个输出端口映射到图的顶点,将每个探测到的光子映射到子图的顶点,研究人员可以利用实验得到的样本加速搜索算法寻找具有更大密度或Hafnian的子图的过程,从而帮助这两类图论问题的求解。这两类图论问题在数据挖掘、生物信息、网络分析和某些化学模型研究等领域具有重要应用。此次研究中,研究人员首次利用“九章”执行的高斯玻色采样来加速随机搜索算法和模拟退火算法对图论问题的求解。研究人员在实验中使用了超过20万个80光子符合计数样本,相比全球最快超级计算机使用当前最优经典算法精确模拟该实验的速度快约1.8亿倍。
  • 京企发布国内首台相干光量子计算机
    量子计算机从实验室走向产业化应用的步伐正在加快。北京玻色量子科技有限公司日前发布了自研100量子比特相干光量子计算机——“天工量子大脑”,该成果目前已在通信、金融、生物医药、交通等产业领域进行了真机应用测试。量子计算,是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。随着电子计算机赖以提升算力的摩尔定律逐渐走到尽头,人们对新一代计算工具无比渴求,量子计算机正是备受关注的新一代计算工具的代表。量子比特是量子计算机的基本信息单元,当前,在实验室里制备单个或少量的量子比特对量子物理学家来说已经不再是难题,如何制备出成百上千的量子比特并使其在系统中稳定运行,成为量子计算技术从实验室走向产业应用的最大挑战。据悉,“天工量子大脑”具有100个计算量子比特,可以解决最高超过100个变量的数学问题,已达国际领先水平。此外,它还实现了上百规模光量子之间的“全连接”控制,具备完整的可编程能力,也就是对应不同的应用场景和不同算法时硬件无需修改,完全通过软件配置就能实现可扩展、可编程,充分利用光量子计算优势,极大降低了实际问题的建模复杂度。公司首席技术官魏海介绍,当光穿过非线性材料时,其光子的波长和相位都会发生变化,在精准控制其能量和相位的过程中,在相空间会出现量子叠加态效应,这也是“天工量子大脑”实现加速计算的根本原因,玻色量子技术团队利用该效应,完成了100光量子比特的并行加速计算。为了满足光量子存储运算的极高精度需求,实现超过100个量子比特的存储,技术团队自主研发了一款光量子计算专用光纤恒温控制设备——“量晷”,该设备能将光纤的温度变化稳定在千分之一摄氏度量级,即能够做到0.001摄氏度的温度稳定维持,有效避免环境温度波动带来的光纤内存长度误差。为了导入计算问题的参数矩阵,玻色量子自研了光量子测控一体机——“量枢”,集光量子测量反馈、系统状态检测、计算流程控制等功能于一体,同时控制、读取和执行快速反馈来操控100个计算量子比特。量子计算应用在产业的实际场景中,究竟有何优势?平安银行LAMBDA创新实验室负责人崔孝林介绍,其在“天工量子大脑”上实现了对德国信用数据集特征筛选计算的加速,在不到一毫秒的时间内完成了相关问题的求解。这一计算速度与传统的经典计算机最优算法相比,至少实现了100倍加速。北京航空航天大学教授、数据智能与智慧管理工信部重点实验室主任吴俊杰也举例说道,在复杂环境下的动态决策问题困扰了其很久,量子计算为其提供了新的解决思路和技术路径。北京量子信息科学研究院科研副院长、清华大学物理系教授龙桂鲁说,在量子计算机的多种技术路径里,“天工量子大脑”所属的相干伊辛机是最经济实用的,也是当前具产业化应用条件的方向之一。据悉,玻色量子2020年11月成立于北京朝阳区,其团队来自斯坦福、清华、中科院等顶尖院所,目前其成果已率先在金融、通讯、生物医药、交通等领域进行了应用探索,推动光量子计算领域实用化与产业化。3个月前,因“天工量子大脑”在通信、金融等领域的巨大潜力,玻色量子团队获得了中国移动的产业投资,这也是量子计算行业里首例来自产业领域的战略投资。
  • 新加坡国立大学合成新型近红外发光量子点,光致发光量子效率可达25%|国际用户简讯
    作者:Sophie编辑:Joanna对于太阳能转换器件和生物成像应用程序来说,使用发射近红外光、具有显著斯托克斯位移且再吸收损失小的材料非常重要。近期新加坡国立大学化学系便合成了这样一种新型材料——四元混合巨壳型量子点(InAs?In(Zn)P?ZnSe?ZnS)。这种新型量子点可以实现显著斯托克斯位移,且光致发光量子效率可达25%,非常适合应用于太阳能及生物领域。Tips: 斯托克斯位移是指荧光光谱较相应的吸收光谱红移(斯托克斯位移=发射波长-吸收波长)。斯托克斯位移越大,荧光太阳能光电转换效率越高。图片来源于网络 单锅连续注射&结构比例控制合成新型量子点的关键新加坡国立大学使用单锅连续注射的方法来合成该量子点。四元混合巨壳型量子点结构主要成分由内到外比例为1: 50: 37.5: 37.5合成过程分为4步,由内向外,依次为:1. 合成该量子点InAs内核2. 向InAs核反应容器中注射As前驱体溶液、醋酸锌和磷酸氢,完成第2层In(Zn)P壳层的合成3. 向反应体系注射Se前驱体溶液合成第3层ZnSe壳层4. 注射S前驱体溶液和醋酸锌完成ZnS壳层的合成四元混合巨壳型量子点合成过程图示合成过程中,研究人员会定时从反应容器中取出小部分溶液测量其紫外可见吸光度和光致发光特性来跟踪反应进程,并调整量子点间的结构比例。他们利用HORIBA高能量窄脉宽 Nanoled-440L皮秒脉冲激光光源对样品进行激发,在FluoroLog-3 荧光光谱仪上测试荧光寿命。在新的荧光光谱技术中,FluoroLog-3 系列荧光光谱仪配置CCD检测器新技术,实现快速动态荧光光谱检测,实现实时反应发光测试,分子相互作用的动态检测。新型量子点材料助力太阳能及生物应用用领域终合成的巨壳量子点,In(Zn)P壳层能够吸收400-780 nm的可见光,并将吸收后的能量传递到InAs内核,使其在873nm处发射,进而实现显著的斯托克斯位移和很小的吸收-发射光谱重叠;经统计计算,该量子点光致发光量子效率可达25%,这对于近红外发射器来说相当可观,且它在873nm的发射光与硅太阳能电池的光敏响应区匹配良好。并且这一新型量子点为可调色发光,不含有害金属。种种优点使得该量子点不仅非常适合应用于荧光太阳能领域用以提高光电转换效率;且在生物领域,该量子点也可作为荧光材料用于生物成像,给疾病的诊断和治疗带来巨大进步。该工作以“Large-Stokes-Shifted Infrared-Emitting InAs?In(Zn)P?ZnSe?ZnS Giant-Shell Quantum Dots by One-Pot Continuous-InjectionSynthesis”为题,发表于《Chemistry of Materials》。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 光损失波色采样实验成功,光量子计算保持国际领先
    p  最新发现与创新/pp  中国科学技术大学潘建伟教授及其合作团队实验研究了一种量子计算模型玻色采样对光子损失的鲁棒性,证明容忍一定数目光子损失的玻色采样可以带来采样率的有效提升。该研究成果为通过玻色采样实现量子霸权开辟了一条高效的途径。/pp  在量子计算领域,能演示量子机器在特定问题上优于经典计算机的实验,被国际学术界称为量子霸权。2010年,麻省理工学院Aaronson等在理论上提出玻色采样,并严格证明此模型是实现量子霸权的有效途径之一。但是玻色采样的一个实验挑战是光子的损耗。/pp  对此,潘建伟及其同事陆朝阳等首次在实验上探索了可容忍光子损耗的玻色采样。研究人员发展了国际上最高效率和品质的量子点单光子源,并自主研发了集成127个分束器的具有最高透过率的光量子线路。结合上海微系统与信息技术研究所尤立星团队研制的高性能超导纳米线单光子探测器(SNSPD),实验证明,在损耗一定光子数的情况下,玻色采样仍然保持其原来的计算复杂度。与此同时,这种新型的玻色采样可以指数级地提升采样速率。该研究成果表明我国继续在光学量子计算方面保持国际领先水平,并向超越经典计算能力的量子霸权研究目标又近了一步。/pp  据了解,该成果近日以“编辑推荐文章”的形式在线发表于国际著名的《物理评论快报》上。美国物理学会网站邀请澳大利亚量子计算和量子通信技术国家研究中心Austin Lund博士以“光子损耗不会使得量子采样脱轨”为题,对这一研究成果作了评述。/p
  • 澳大利亚研发出迄今最高效激光量子存储技术
    澳大利亚国立大学领导的研究小组研发出了世界上迄今效率最高的激光量子存储技术,使我们朝着研制出超快速的量子计算机和提升通信安全指数的方向又迈进了一步。相关论文发表在6月24日出版的《自然》杂志上。  该校物理与工程研究院激光物理中心的科学家首次通过阻断和控制激光来操控晶体中的电子。这一系统史无前例的高效率和高精准度可使激光精妙的量子特性被存储、操控和忆起。  研究主导者摩根贺吉斯说,新技术大大减少了激光穿越过程中光子的损失,使其从单光子水平的微弱相干态调整至500个光子水平的亮态,并能将存储效率提升至69%,而传统的量子存储效率一般为17%,最高不超过45%。  由于量子力学固有的不确定性,激光在穿越晶体过程中会遗失部分的信息,并能将存储的信息以三维全息图的方式即刻呈现出来。处于量子相干态时,仅能输入30个或更少的光子。而新技术将打破量子不可克隆定理,即单量子或未知量子态不能被克隆的限制,使更多的输入信息可被寻回,而非遗失或损坏,在实际应用中可显著提升通信的安全指数。  此外,研究人员表示,激光存储还可用于测试和诠释基础物理现象,例如奇异的量子纠缠现象与爱因斯坦相对论存在着怎样的关联。主要研究人员马修塞拉斯介绍说:“我们能够在两种晶体存储器间实现量子纠缠。根据量子力学,无论双方相距多远,它们都保有特别的关联性,读取一个存储器内的信息必将即刻改变另一个存储器中所储存的信息 而根据相对论,存储器的移动方式将影响经过它的时间的长短。使用性能良好的量子存储器将大大降低测量和解释这些基础物理效应的难度,使其变得‘平易近人’。”  研究小组此前曾成功地将晶体中的光束阻断了1秒多的时间,为当时最好成绩的1000倍。将光束“冻住”的时间大大延长,意味着可能据此找到实用方法,以制造出光子计算机或量子计算机所需的存储设备。下一步研究团队还将再接再厉,在兼顾提升存储效率的同时,使储存时间延长至若干小时。
  • 海洋光学发布电致发光量子效率测量系统 SpectrumTEQ-EL新品
    SpectrumTEQ-EL系列电致发光量子效率测量系统,可以针对发光器件的光电特性进行有效测量,系统搭配的QEpro光谱仪具有信噪比、低杂散光等特性,可确保测量结果得准确性;同时,系统配有强大的测试软件,对话框式的软件操作界面让测量过程变得更为简单。测量参数量子效率亮度量子效率随电流密度的曲线色坐标辐射通量,光通量峰值波长 应用领域无机电致发光有机电致发光分子薄膜EL器件 产品优势体积小巧:便于灵活使用及运输。原位测量:可放至手套箱内,实现原位测量流程化操作:设备无需频繁校准。产品参数 系统配置配置方案 方案1 方案2光谱仪型号QEPro / QE65Pro(可选)光谱范围(nm)350-1100信噪比1000:01:00分辨率2.5 nm (FWHM)动态范围85000:1(QEPro单次采集);25000:1(QE65Pro单次采集)AD位数18-bit(QEPro);16-bit(QE65Pro)积分球尺寸3.3”1.5”材质Spectralon源表Keithley2400光纤芯径1000um(可更换其他芯径)校准灯角度2 Pi 型号HL-3-INT-CAL亮度50 流明功率5W(电功率)无线遥控 通道数4无遥控软件SpectrumTEQ-EL专用软件注:对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况 创新点:原位测量:与整机系统相比,模块化设计可放至手套箱内,实现原位测量,降低测量误差 流程化操作:设备无需频繁校准 软件算法强大,可直接进行绝对辐射校准 电致发光量子效率测量系统 SpectrumTEQ-EL
  • 无锡市长杜小刚调研无锡量子感知研究所建设情况
    近日,无锡市委副书记、市长杜小刚实地调研了无锡量子感知研究所项目建设情况,无锡市政府秘书长张明康,区领导李秋峰、吴建元、何国清等参加调研。国仪量子总经理贺羽向杜市长介绍研究所相关情况国仪量子总经理、无锡量子感知研究所所长助理贺羽向杜市长详细介绍了研究所的建设历史、组织架构等情况,重点说明了2020年江苏省重点项目--无锡量子感知产业园的建设规划,以及研究所现有产品和项目。杜市长在了解情况后谈研究所后续发展路径杜市长在全面了解研究所的情况后指出,要遵循科技创新规律,牢固树立市场化思维,设计好有利于产学研合作长远可持续发展的闭环链条,充分调动高校、科研院所以及科研人才的积极性。要优化完善科技创新和人才一站式服务,为各类人才提供保姆式服务。市级部门要进一步加大研发力度,对各板块实战证明具有强大生命力的体制机制,要加快归纳总结、优化提升并在全市推广。总经理贺羽向参加调研的领导介绍产品情况无锡量子感知研究所无锡量子感知研究所成立于2018年10月,由国仪量子、城际铁路惠山站区管理委员会与无锡市惠山区人民政府共同组建。无锡量子感知产业园由无锡量子感知产业发展有限公司投资建设,项目占地约173亩,规划总建筑面积33万平方米,总投资约21亿元。产业园依托无锡量子感知研究所雄厚的科研实力、创新能力和人才团队,立足于量子感知研究所成熟技术的产业化发展,以量子精密测量技术为核心,围绕自主创新应用,结合无锡的产业特色和发展需求,重点培育量子感知领域龙头型企业,并致力于“园中设计、园内制造”的科学仪器装备产业新模式,构建“中国高端科学仪器装备全产业链园区”。在产业园开工建设的同时,规划总面积约7.2万平方米的研究所大楼及配套孵化器等也将于近期动工建设。
  • 刚刚!经济日报头版头条@国仪量子
    因科技而兴、因创新而进,科创已成为合肥最大标识,激发了当地企业自主创新的强大动力。越来越多合肥企业站在时代风口,超前谋划一批未来项目,勇闯无人区。中国科学院聚变堆主机园区。王岩摄合肥的云飞路,被人们称为“量子大道”,全球首颗量子通信卫星“墨子号”、全球首颗微纳量子卫星、全球首台光量子计算机、全球首条量子保密通信网络“京沪干线”等,均诞生在这条街上。国仪量子、国盾量子、本源量子等40余家企业扎根于此,共同放飞“量子梦想”。“量子精密测量仪器是打开微观世界的一把钥匙。”10多年前,还在中科大少年班就读的贺羽,参加一场报告会时,被导师讲述的购买电子顺磁共振波谱仪却被“卡脖子”的经历震动。自此,贺羽心中种下了自主创新的种子。有核心技术才有未来。2016年,24岁的贺羽创立国仪量子(合肥)技术有限公司,致力于量子精密测量、量子计算等技术和高端科学仪器的研发和产业化。多年深耕,如今公司多项技术突破国际封锁,自主研发的国产商用脉冲式电子顺磁共振波谱仪,将市场价格拉低。“我们立志成为量子技术应用及科学仪器行业的全球领导者。”贺羽信心满满。科技竞争,比拼的不仅是爆发力,更是远见和耐力。合肥企业进军量子信息、城市安全、人工智能、空天信息等领域,并不是追求现阶段的经济回报,更希望能取得技术进步,抢占未来发展制高点。《经济日报》2022年9月13日 要闻
  • 量子产率测量技巧
    1. 什么是量子产率? 荧光量子产率是发射的光子数与吸收光子数之比,如下图所示。 图1 量子产率示意图 量子产率的大小可以表示物质的发光能力,量子产率越大,说明荧光材料的质量越好。依据量子产率可以对生物领域中的荧光探针进行开发和评估,同时助力于照明领域中有机EL材料和荧光物质的开发。量子产率的类型,按照测定的样品来分,有两种,固体量子产率和液体量子产率。按照量子产率测定方式,可以分为绝 对量子产率和相对量子产率。2. 固体量子产率测定2.1 测定装置固体量子产率的测定需要使用积分球附件,通过积分球的光收集效应,样品向各个方向发射的荧光都可以被检测到,保证荧光的准确测量。图2 量子产率附件日立荧光量子产率附件具有以下特点: i. 6阶动态范围的高精确度、高灵敏度测量,即使是量子产率较低的样品,也可以得到高精度测量。 ii. 有效的光谱校正功能,由于样品需要放置在积分球上进行测量,因此需要对积分球的波长特性进行校正才可以测定到准确的荧光量。积分球的校正比较困难,日立开发了一种简易有效的方法,利用扩散子和积分球的比例,进行校正。从而可以在200~800nm的宽波长范围内测定校正光谱。 iii. 高速扫描,对于有光敏性的物质,超高的扫描速度提高通量,有效测量其量子产率。 iv. 专用量子产率计算软件,易于选择计算范围,操作更便利。2.2 测定技巧对于量子产率较大的样品,一般指量子产率大于0.5的样品,需要考虑间接激发产生的量子产率。间接激发指的是没有被样品吸收的激发光反射到积分球内壁上,被积分球内壁反射再次激发样品产生荧光。图3 直接激发示意图通过将样品放置在积分球不同位置,以校正间接激发产生的量子产率,如图4所示。 通过对样品进行不同放置,获得直接激发的量子产率Φd和间接激发的量子产率Φi,利用公式(1)得到校正之后的样品实际量子产率Φ。图4直接激发样品位置(左)和间接激发样品位置(右)更多技巧点击:量子产率测量技巧检测仪器_检测方案_日立高新技术公司 (instrument.com.cn)总结:日立荧光量子产率测量附件具有高灵敏度和六位数的动态范围,即使样品量子产率比较低,也可以准确测定;高扫描速度,减少激发光对避免光敏性物质的影响;校正积分球的波长特性,确保结果准确;吸收池支架,实现液体量子产率的测定。
  • 中国科大首次实现多体非线性量子干涉
    中国科学技术大学郭光灿院士团队在多体非线性量子干涉研究中取得重要进展。该团队任希锋研究组与德国马克斯普朗克光科学研究所MarioKrenn教授合作,基于光量子集成芯片,国际首次展示了四光子非线性产生过程的干涉,相关成果于1月13日发表在光学权威学术期刊Optica上。量子干涉是众多量子应用的基础,特别是近年来基于路径不可区分性产生的非线性干涉过程越来越引起人们的关注。尽管双光子非线性干涉过程已经实现了二十多年,并且在许多新兴量子技术中得到了应用,直到2017年人们才在理论上将该现象扩展到多光子过程,但实验上由于需要极高的相位稳定性和路径重合性需求,一直未获得新的进展。光量子集成芯片,以其极高的相位稳定性和可重构性逐渐发展成为展示新型量子应用、开发新型量子器件的理想平台,也为多光子非线性干涉研究提供了实现的可能性。任希锋研究组长期致力于硅基光量子集成芯片开发及相关应用研究并取得系列重要进展:(1)国际上首次基于硅基光子集成芯片实现了四光子源的制备(Light Sci Appl 8, 41, 2019);(2)首次实现频率兼并四光子纠缠源制备(npj Quantum Inf 5, 90, 2019);(3)首次实现波导模式编码的量子逻辑门操作(Phys. Rev. Lett. 128, 060501,2022)和超紧凑量子逻辑门操作(Phys. Rev. Lett., 126, 130501,2021)等。在这些工作基础上,研究组同MarioKrenn教授合作,通过进一步将多光子量子光源模块、滤波模块和延时模块等结构进一步片上级联,在国际上首次展示了四光子非线性产生过程的相干相长、相消过程。实验结果如图1(a)所示,四光子干涉可见度为0.78。而双光子符合并未观测到随相位的明显变化,这同理论预期一致。整个实验在一个尺寸仅为3.8×0.8mm2的硅基集成光子芯片上完成,如图1(b)所示。(a)(b)   图1. (a)量子干涉测量结果;(b)用于实现四光子非线性量子干涉的集成光量子芯片。该成果成功地将两光子非线性干涉过程扩展到多光子过程,为新型量子态制备、远程量子计量以及新的非局域多光子干涉效应观测等众多新应用奠定了基础。审稿人一致认为这是一个重要的研究工作,并给出了高度评价:“The chip is well-designed and contains various integrated optical components such as entangled photon source, an interferometer, frequency filter/combiner (该芯片设计精良,包含多种集成光学元件,如纠缠光子源、干涉仪、频率滤波器/组合器)”、“This work pushes forward the research field of integrated photonic quantum information science and technology(这项工作推动了集成光子量子信息科学与技术研究领域的发展)”。中科院量子信息重点实验室任希锋教授、德国马克斯普朗克光科学研究所MarioKrenn教授为论文共同通讯作者,中科院量子信息重点实验室特任副研究员冯兰天为论文第一作者。此外,浙江大学戴道锌教授和张明助理研究员为该工作提供了技术支持。该工作得到了科技部、国家基金委、中国科学院、安徽省以及中国科学技术大学的资助。
  • 上海高研院在量子增强的超分辨显微成像机制研究中取得进展
    中国科学院上海高等研究院王中阳课题组提出新型的基于荧光量子相干的超分辨显微成像方法,研究成果以Breaking the diffraction limit using fluorescence quantum coherence为题,近日发表在 《光学快报》(Optics Express)上。 在经典光学成像中,显微镜的空间分辨率受阿贝衍射极限限制为?λ/2NA,其中λ为光波长,NA为显微物镜的数值孔径。近二十年来,各种超分辨荧光显微成像技术的出现打破了光学衍射极限,将空间分辨率提高到纳米尺度,主流技术包括随机光学重构超分辨成像技术(STORM)、结构光照明显微技术(SIM)和受激辐射损耗技术(STED)。其中STED和STORM通过不断提升测量精度极限来提高分辨率,如STED利用非线性受激辐射损耗机制来压制衍射受限的埃里斑尺寸再通过点扫描获得超分辨成像,而STORM通过统计荧光分子中心位置的定位精度来超衍射极限分辨,其分辨率由测量精度即统计分辨率极限? ?N?1/2决定,?N?为探测到平均光子数。 在量子光学中,现有研究表明利用光的量子性质能够突破经典的空间分辨率限制,从而进一步提升分辨率。例如,利用N个纠缠光源的光子干涉能够将分辨率提升到海森堡极限?1 / N。而在荧光显微镜中,同样可以利用荧光光源的量子特性来实现分辨率的提升。单个荧光分子或原子的发射具有单光子辐射源的性质,在一次脉冲激发下仅发出单个光子,因此光子发射统计概率不同于热辐射光源的一簇一簇的光子辐射,而是一个接一个发出,体现了明显的反聚束统计特性,并且理想的单光子源发出的光子在光谱、偏振上完全相同,即具有高的光子不可区分特性。上述荧光的量子性质已被实验证明存在于荧光显微成像常用的荧光染料中,例如单个有机染料分子、单个量子点以及单个金刚石色心,为发展新型的超分辨荧光显微成像技术带来了新的量子信息维度。 基于此,王中阳课题组提出了基于荧光光源的量子性质的超分辨成像方法,并对成像机制展开研究。研究者从荧光光源的发光机制出发,考虑了大多数荧光染料所包含的退相和光谱扩散机制,构建了通用的单光子波函数并考虑其在显微系统中的时间和空间维成像变换;通过计算双光子干涉的时间和空间的探测概率分布,从而获得荧光量子相干统计模型。该模型为宏观部分相干理论与荧光微观辐射机制提供了桥梁。基于此模型,研究者还提出了一种基于荧光量子相干性的超分辨荧光显微成像方法。利用新型的单光子雪崩探测器(SPAD)阵列统计荧光光子的时间和空间涨落p(r, t)。为了提取荧光光子相干性,通过引入时间门Tg作为光子到达时间的后选择窗口来提取高度相干的光子并沿Tg积分构造时间相干调制函数p(r, Tg),如图1所示。 时间相干调制函数与荧光光源空间分离量s有关。因此,通过准确测量时间相干调制函数,并预先确定其它变量,可从中准确提取出衍射极限内荧光光源空间分离距离s。此时,分辨率(即光源分离距离s)取决于荧光时空相干性的测量精度,而相干性测量精度又与探测到的光子数和空间采样率有关,如图2所示,仿真结果表明,当探测到的光子数达到104时,分辨率可以达到50 nm。该新型量子增强成像技术能够发掘荧光量子时空涨落特性及量子相干性,有助于实现荧光弱信号下的快速超分辨成像。  论文链接   图1.基于荧光量子相干的超分辨荧光显微成像方法示意图。(a)实验装置图;(b)传统成像方式和SPAD阵列探测方案对比图;(c)成像过程时序图;(d)荧光光子时空相干性概率分布;(e)引入时间门调制后荧光光子时空相干性概率分布。 图2.不同累计光子数下p(0, Tg)的测量精度(荧光光源距离s分别为50和100 nm)
  • 东方科捷推出液氮低温量子效率测试附件
    光致发光绝对量子效率测量是发光材料表征的重要手段;温度的变化对于表征材料的特殊应用有着重要的影响。2020年首发,东方科捷推出液氮低温量子效率(LN-QE)测试功能附件。 液氮环境下,发光分子被冷冻,发光会增强,特别对于磷光材料;某些磷光材料在室温下发光较弱,不利于光致发光量子效率的准确测量及数据对比,如果在液氮温度下就能很好解决这个问题。 其他特殊材料,比如AIE材料,如果进一步了解聚集导致的空间位阻形成的发光增强,可以对比分子冷冻位阻发光差异。延迟荧光材料,比如热延迟荧光材料,可以对照不同温度调节下的发光差异,结合荧光寿命数据,即可明确给出某些结论。 同理,如果材料发光既有荧光又有磷光,研究者关注磷光部分,希望通过材料设计及修饰提高磷光发光比重,那么,采用这套附件配合磷光光谱仪,即可获得液氮低温的磷光量子效率数据。 由于设计中包括液氮温度和积分球,当然,获得液氮低温下发光材料的吸收光谱,这也是值得兴奋的事情。通常发光材料吸收光谱,不能采用常用的紫外可见近红外分光光度计获得真实数据,我们通常是采用双单色仪(比如荧光光谱仪)同步扫描的方式获得。加上液氮温度和积分球,显然,固体材料的液氮温度下的漫反射吸收数据就垂手可得。 现有设备满足HORIBA荧光光谱仪配合需要,其他设备比如EDI,欢迎合作测试。
  • “祖冲之号”量子计算云平台面向全球开放
    联网就能用上全球领先的量子计算机?这一梦想正走进现实。5月31日,科大国盾量子技术股份有限公司携手弧光量子等合作伙伴发布新一代量子计算云平台,接入“祖冲之号”同款176比特超导量子计算机。这不仅刷新了我国云平台的超导量子计算机比特数纪录,也是国际上首个在超导量子路线上具有实现量子优越性潜力、对外开放的量子计算云平台,将进一步推动量子计算软硬件发展及生态建设。  据中国科学技术大学教授、“祖冲之号”量子计算总师朱晓波介绍,比特数是衡量量子计算机可实现的计算能力的重要指标,中国科大“祖冲之号”研发团队在原“祖冲之号”66比特的芯片基础上做出提升,新增了110个耦合比特的控制接口,使得用户可操纵的量子比特数达176比特。除了比特规模,在其他涉及量子计算机性能的连通性、保真度、相干时间等关键指标上,“祖冲之号”云平台接入的新一代量子计算机的设计指标也瞄准国际最高水平,不断在实际中调试提升其性能。  据悉,量子计算云平台旨在通过云技术连接用户与量子计算设备,支持用户远程进行量子计算实验和开发等。但由于量子计算机研发门槛极高、运行环境严苛、辅助设备复杂等,目前全球接入量子计算真机的云平台很少,更缺少能实现量子优越性的高性能量子计算机。此前,中国科大研究团队构建了66比特可编程超导量子计算机“祖冲之号”,是目前全球仅有的2台完成了“量子计算优越性”里程碑实验的超导量子计算机。但“祖冲之号”量子计算机需要服务于重大科技攻关项目,难以满足外部体验和使用的需要。  为了将高性能的量子计算机真机开放给社会,多方合作、产学研协同的新一代量子计算云平台项目因此诞生。其中,量子创新研究院提供了“祖冲之号”同款量子计算芯片,国盾量子提供了测控设备等硬件设施,承担了整机和云平台系统的搭建及运维工作,与中电科十六所、中科弧光量子等合作研制开发了关键核心器件、国产量子程序编译语言和软件,共同建设了新的176比特超导量子计算机并上线云平台。  “祖冲之号”量子计算常务副总指挥、国盾量子董事长彭承志认为,量子计算未来可为密码分析、人工智能、气象预报、资源勘探、药物设计等所需的大规模计算难题提供解决方案,其中量子计算云平台是量子计算走向应用的重要一步。对于社会大众来说,可以利用量子计算云平台进行科普,亲身体验简易的量子计算编程和图像实验等;对于更广泛的产业用户来说,可远程访问具备量子优越性潜力的量子计算机,能进一步发展量子编程框架,进行应用探索;高性能量子计算机和开放共赢的云平台的发布,也将促进中国量子计算自主可控产业链发展,有助于量子技术和产业生态的健康发展。  彭承志表示,量子计算现阶段正处于从原型机到专用机的攻坚时期,我们集合所有力量,就是希望以实现通用量子计算为目标,探索出一条切实可行的道路。
  • 阿里达摩院向浙江大学捐赠大批仪器设备,助力量子研究
    由于预算和盈利原因,阿里巴巴达摩院于2023年11月24日宣布,将裁撤旗下量子实验室。此次裁撤共计裁减30余人,达摩院官网也已撤下量子实验室的相关介绍页面。11月26日,针对阿里巴巴达摩院量子实验室或已解散的说法,达摩院回应表示,达摩院联合浙江大学发展量子科技,达摩院将量子实验室及可移交的量子实验仪器设备捐赠予浙江大学,并向其他高校和科研机构进行开放。据了解,2017年阿里巴巴成立全球研究院—阿里巴巴达摩院,3年投资1000亿人民币。该院由全球实验室,高校联合研究所,全球前沿创新研究计划三大部分组成,研究包括:量子计算、机器学习、基础算法、网络安全、视觉计算、自然语言处理、下一代人机交互、芯片技术、传感器技术、嵌入式系统等,涵盖机器智能、智联网、金融科技等多个产业领域。其中达摩院量子实验室由中科院物理研究所潘建伟院士担任主任。实验室在超导量子计算、光量子计算等领域取得了一系列研究成果,在超导量子计算领域,实验室研发了高性能的超导量子比特,并实现了多比特纠缠等重要进展。在光量子计算领域,实验室研发了高亮度、低噪声的光量子芯片,并实现了量子计算的首次原理验证。实际上早在2015年7月阿里云与中国科学院便共同成立了量子计算实验室,全称为“中国科学院-阿里巴巴量子计算实验室(AQL)”,目标是在2030年前开发出通用量子计算原型机。设备捐给浙大,将极大的促进浙大量子科学的研究。不过值得注意的是,当前我国在量子科技研究中仍存在卡脖子环节,如相关设备及耗材。当前稀释制冷机是量子研究中的关键仪器设备。这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。据了解,量子计算的发展对mK级的稀释制冷机提出了更高的要求,当前有数家,甚至十余家在投入精力开发。当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。此外,林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。稀释制冷机的超低温制冷技术离不开氦,但我国却是贫氦国家。据了解,我国氦储量仅占全球2%左右,且开采难度大,目前我国还没有氦生产能力,氦气严重依赖于美国进口。虽然我国已通过资本注入等手段向卡塔尔等国家购买氦矿,但目前来讲氦还是不可再生资源,总量有限,如果不对其进行回收,在做完实验后会排入大气,现在无液氦系统传统替代氦气制冷已成为趋势。
  • 上海微系统所丁古巧团队在石墨烯量子点荧光发光机制研究获进展
    近日,中国科学院上海微系统与信息技术研究所纳米材料与器件实验室丁古巧团队在石墨烯量子点制备及荧光机制研究方面取得进展。该工作深化了关于石墨烯量子点发光机理的认知,阐释了多变量体系下机器学习辅助材料制备成果所包含物理内涵。相关研究成果以Precursor Symmetry Triggered Modulation of Fluorescence Quantum Yield in Graphene Quantum Dots为题,发表在《先进功能材料》(Advanced Functional Materials)上。近年来,以石墨烯量子点为代表的碳基量子点材料因独特的sp2–sp3杂化碳纳米结构,表现出优异的光学、电学、磁学的性质。在石墨烯量子点“自下而上”法制备中,多变量反应体系使其在合成与机制领域面临挑战。此外,机器学习以高效的分析算法和模型在复杂体系分析、新型材料设计等领域展现出优势。然而,由于缺失具备实际物理内涵的结构特征描述符,机器学习仅能得到难以阐释物理内涵的数学模型。这限制了机器学习在相关研究中的可迁移性和实用性。石墨烯粉体课题组博士研究生陈良锋、副研究员杨思维结合群论在分子结构描述上的优势,通过控制变量实验与结构化学理论的结合,将具有实际物理含义的描述符应用于机器学习,揭示了石墨烯量子点的前驱体结构与荧光量子产率间关联的物理内涵。该研究利用高结构刚性sp3前驱体与柔性sp2结构前驱体之间的“自下而上”反应,实现了石墨烯量子点中sp2-sp3杂化碳纳米结构的调制。研究结合热动力学理论,阐明了sp3刚性结构能够通过抑制非辐射跃迁过程提高石墨烯量子点量子产率。进一步,研究借助群论在描述分子结构方面的优势,结合主成份分析,明确了石墨烯量子点制备过程中影响石墨烯量子点荧光量子产率的三个决定性因素——结构因子、温度因子和浓度因子。与以往基于机器学习的研究工作相比,该团队基于群论的进一步研究,揭示了机器学习结果中分子的简正振动是前驱体对称性作用于石墨烯量子点量子产率增量的核心物理机制。基于上述原理的指导,该研究首次证明了分子振动的正常模式是前驱体的结构特性作用于 GQDs 荧光量子产率的核心机制。这一石墨烯量子点的光致发光性能在荧光信息防伪加密中具有应用前景。研究工作得到中国科学院青年创新促进会、上海市科学技术委员会以及集成电路材料全国重点实验室开放课题等的支持。
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • 滨松中国荧光寿命和量子效率技术交流会
    邀 请 函尊敬的 女士/先生: 滨松中国诚邀您参加滨松第二届Quantaurus产品技术交流会。会上,我们将邀请日本Quantaurus产品应用专家铃木建吾先生对滨松荧光量子效率及寿命产品的特点及应用做详细介绍,并对相关问题做进一步的技术交流。本次交流会分为上海专场和南京专场,供您自由选择。上海专场时间:2013年5月13日 下午13:20地点:上海市华东师范大学中山北路校区理科大楼A510号会议室南京专场时间:2013年5月15日 下午13:20地点:南京大学鼓楼校区科技馆2楼报告厅会议内容Quantaurus产品技术及应用介绍技术问题现场交流Quantaurus产品现场演示样品测试报告人: 铃木建吾 博士 ( 群马大学 光化学博士/Quantaurus产品应用专家) Dr.Kengo Suzuki会议联系人:产品经理 王宁波 联系电话:15127654376会务专员 王婷 联系电话:13511028882技术工程师 张纪泽 联系电话:18810048882温馨提示1 现场可为您免费测试样品(每位不超过1个)2 会后我们会有精美礼品放送。 滨松中国期待您的光临! 滨松光子学商贸(中国)有限公司 2013年4月 Quantaurus产品简介: 滨松公司新开发的测量荧光寿命的Quantaurus-Tau和测量绝对量子产率的Quantaurus-QY,具有友好的软件操作界面和精确稳定的特性!Quantaurus-Tau 和 Quantaurus-QY配合使用可以帮助用户实现全方位的分析结果!
  • Nature Nanotechnology:量子调控在芯片平台上实现基于二维材料的有序高效量子光源
    2015年中国科学技术大学潘建伟、陆朝阳教授等人在WSe2二维单原子层半导体材料中发现非经典单光子发射,连接了量子光学和二维材料这两个重要领域,打开了一条通往新型光量子器件的道路。由于基于单原子层的量子调控的潜在前景和新颖物理意义,该领域很快成为国际激烈竞争的焦点。国内外的科学家们一直在进一步探索量子发射器、量子计算机等相关领域的新技术与新应用。现在,来自史蒂文斯理工学院Stefan Strauf教授组报道了一种新的制备高效率量子发射器的方法,用于在芯片平台上创建大量的量子光源。该方法具有有序可控以及量子产率高的特点,不仅为不可破解的加密系统开发铺平道路,而且还为量子计算机的研发提供了可能的技术方案。该项工作成果发表在Nature Nanotechnology 单层WSe2中位点控制的量子发射体与等离子体纳米腔的确定性耦合一文中,文中描述了一种在芯片任意位置按需创建量子光源的新方法(如图1a所示)。 图1:在芯片上任意位置按需创建量子光源的示意图(图片来源:Nature Nanotechnology 13,1137–1142 (2018))蓝宝石衬底上分布了有序分布的金颗粒(立方体)阵列,单层WSe2被转移到衬底上,三氧化二铝分隔层与金镜子也被加入实验的设计。理论与实验证明了单光子发射器存在于每个金颗粒的四角处。实验发现单光子发射器实现了每秒发射4200万个光子,创历史新高。值得指出的是,在量子发射器光致发光谱的测量过程中(如图2所示),使用了德国attocube systems AG公司的低温强磁场共聚焦显微镜attoDRY1100+attoCFM(如图3所示),它简单易用,模块化的设计满足了光学实验开放性与灵活性的要求。低温与强磁场下的光致发光、荧光光谱、拉曼光谱、光电流、电致发光、电学测量等材料性质测量都可以由此实验平台实现。 图2:低温磁场中单层WSe2与金纳米立方体耦合的光致发光测量结果(图片来源:Nature Nanotechnology 13,1137–1142 (2018))图3:低振动无液氦磁体与恒温器—attoDRY系列超低振动是提供高分辨率与长时间稳定光谱的关键因素 无液氦低温强磁场显微镜attoCFM使用低温与强磁场适用的位移器使样品在三个不同线性轴方向上进行几个毫米范围的精细移动。配合特殊设计的适用于高NA值的低温物镜,系统可准确定位与发现微米尺度的样品。外置的光学头可自由更换光学部件,可立调节激发和接受端口。该系统因而可以实现微纳米尺度下样品定量表面性质表征。图4:无液氦低温强磁场显微镜attoCFM系统具有超高稳定性与大灵活性,简单易用,是研究具有挑战性的量子光学实验的不二之选
  • 中国科大成功实现超导体系“量子计算优越性”
    中国科学技术大学中科院量子信息与量子科技创新研究院潘建伟、朱晓波、彭承志等组成的研究团队与中科院上海技术物理研究所合作,构建了66比特可编程超导量子计算原型机“祖冲之二号”,实现了对“量子随机线路取样”任务的快速求解。根据现有理论,“祖冲之二号”处理的量子随机线路取样问题的速度比目前最快的超级计算机快7个数量级,计算复杂度比谷歌公开报道的53比特超导量子计算原型机“悬铃木”提高了6个数量级(“悬铃木”处理“量子随机线路取样”问题比经典超算快2个数量级),这一成果是我国继光量子计算原型机“九章”后在超导量子比特体系首次达到“量子计算优越性”里程碑,使得我国成为目前唯一同时在两种物理体系都达到这一里程碑的国家。相关论文发表在《物理评论快报》和《科学通报》上。图一:祖冲之二号量子处理器图量子计算机对特定问题的求解超越超级计算机,即量子计算优越性,是量子计算发展的第一个里程碑,达到该里程碑需要相干操纵50个以上量子比特。超导量子比特是国际公认的有望实现可扩展量子计算的物理体系之一。潘建伟、朱晓波、彭承志等长期瞄准超导量子计算领域,于2021年5月构建了当时国际上量子比特数目最多的62比特超导量子计算原型机“祖冲之号”,并实现了可编程的二维量子行走 [Science 372, 948 (2021)]。团队在“祖冲之号”的基础上,采用全新的倒装焊3D封装工艺,解决了大规模比特集成的问题,研制成功“祖冲之二号”,实现了66个数据比特、110个耦合比特、11路读取的高密度集成,最大态空间维度达到了1019。“祖冲之二号”采用可调耦合架构,实现了比特间耦合强度的快速、精确可调,显著提高了并行量子门操作的保真度。通过量子编程的方式,研究人员实现了对量子随机线路取样,演示了“祖冲之二号”可用于执行任意量子算法的编程能力。根据目前已公开的最优化经典算法,“祖冲之二号”处理量子随机线路取样问题的速度比目前最快的超级计算机快7个数量级,计算复杂度较谷歌“悬铃木”提高了6个数量级。量子计算优越性的成功演示标志着量子计算研究进入到发展的第二阶段,开始量子纠错和近期应用的探索。“祖冲之二号”采用二维网格比特排布芯片架构,直接兼容表面码量子纠错算法,为量子纠错并进一步实现通用量子计算奠定了基础。同时,“祖冲之二号”的并行高保真度量子门操控能力和完全可编程能力,有望在特定领域找到有实用价值的应用,预期应用包括量子机器学习、量子化学、量子近似优化等。图二:量子随机线路取样保真度随线路深度的变化及目前最快的超级计算机“富岳”完成相同任务需要的时间。上述项目受到了安徽省、上海市、科技部和中科院的支持。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.180501https://www.sciencedirect.com/science/article/abs/pii/S2095927321006733
  • 远不止用于量子研究的量子精密测量技术——ACCSI2021量子精密测量产业化发展论坛邀您参加
    量子力学是近代科学技术的支柱,可以追溯到1895年X射线的发现,之后普朗克于1900年提出量子论, 1905年,爱因斯坦提出光量子的概念。此后,量子力学迎来了蓬勃发展,广泛应用于诸如原子弹、晶体管、激光、核磁共振、高温超导、巨磁阻等领域的研究中,被称为“第一次量子革命”。近年来,“第二次量子革命”被提出,不同于“第一次量子革命”对量子现象的理解和直接利用,对微观量子世界进行被动观察和解释,“第二次量子革命”通过掌控量子效应、定制量子系统,扎根于纯粹量子效应的量子技术,以实现对量子状态进行人工制备和主动调控。量子科学很可能是21世纪促进人类文明进步的最重要基础科学。“第二次量子革命”的提出,引发了各国的关注,面临着激烈的国际竞争态势。2016年5月,欧盟发布《量子宣言》;同年12月,英国发布《量子时代》;2018年9月,美国公布《量子信息国家计划》;同年 11月,德国发布《量子技术-从科研到市场》。此外,中国、日本等均发布了国家支持计划,谷歌、华为、微软、IBM等也加入了量子产业竞争。2020年3月12日,在发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中更是将量子信息列到了科技前沿领域攻关的第二位,要求实现量子精密测量技术突破。而近日,德国提出了量子系统新的研究计划,德国联邦教研部随后将在该议程基础上推出2022年开始的量子系统研究计划。未来德国量子领域的研究重点主要是量子计算机、量子通信、量子测量技术、量子系统的基础技术。量子科学技术受到广泛关注主要是由于其可以突破信息和物质科学技术的经典极限。量子科学技术主要研究方向包括量子通信,量子计算和量子精密测量。量子精密测量的基本原理是利用磁、光与原子的相互作用,实现对各种物理量超高精度的测量,可大幅超越经典测量手段。目前量子精密测量已在生物与医疗、食品安全、化学与材料科学等领域显示出其独特的优势和广阔的应用前景。但我国量子精密测量在系统工程化和实用化仍有待探索,科研成果转化应用机制不成熟,产业合作和推动力量有限。为推动量子精密测量产业化进程,2021年4月23日,第十五届中国科学仪器发展年会(ACCSI2021)将召开量子精密测量产业化发展论坛,邀请领域内技术专家教授、研究院、技术公司、资本投资专家等,共同研讨如何推进并加快量子精密测量产业化。现诚邀各领域相关从业人员参加学习 ! (报名参会) ACCSI 2021“量子精密测量产业化发展论坛”邀请报告及报告嘉宾一、论坛时间:2021年4月23日 9:00-12:00  二、论坛地点:无锡融创万达文华酒店  三、参会嘉宾:领域内技术专家教授、研究院、技术公司、资本投资专家;相关仪器企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监等。  四、会议形式:现场会议 / 线上会议内容嘉宾国仪量子:引领量子精密测量技术产业化国仪量子 联合创始人、CEO贺羽皮秒高重频相干脉冲产生及量子光学应用复旦大学 教授吴赛骏量子测控系列新品在量子精密测量领域的应用国仪量子 测控事业部总经理吴亚量子精密测量在地球物理探测中的应用国仪石油技术(无锡)有限公司 系统工程师孙哲新型电子信息功能材料的原子构筑和性能调控中国科学技术大学 教授廖昭亮基于量子精密测量的科学仪器——从系综到单自旋国仪量子 高级应用工程师代映秋2021第十五届中国科学仪器发展年会(ACCSI2021)将于2021年4月21-23日在无锡市召开。ACCSI定位为科学仪器行业高级别产业峰会,经过14年的发展,单届参会人数已突破1000人,被业界誉为科学仪器行业的“达沃斯论坛”。ACCSI2021以“创新发展,产业共进”为主题,力求对过去一年中国科学仪器产业最新进展进行较为全面的总结,力争把最新的产业发展政策、最前沿的行业市场信息、最新的技术发展趋势、最新的科学仪器研发成果等在最短的时间内呈现给各位参会代表。会议期间将颁发 “年度优秀新品”、 “年度绿色仪器”、“年度行业领军企业”、“年度十大第三方检测机构”、“年度售后服务厂商”、“年度网络营销奖”“年度人物”等多项行业大奖,引领科学仪器产业方向。参会咨询报告及参会报名:010-51654077-8124 13671073756 杜老师 15611023645李老师 赞助及媒体合作:010-51654077-8015 13552834693魏老师微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。报名链接:https://insevent.instrument.com.cn/t/qK 报名二维码扫描二维码查看最新会议日程
  • 滨松UV-NIR绝对量子产率测试仪Quantaurus-QY Plus面世
    滨松近期推出了新一代UV-NIR绝对量子产率测试仪Quantaurus-QY Plus。新产品突破了传统技术无法测试300nm-1650nm大范围量子产率的瓶颈,实现了紫外-近红外(300nm-1700nm)发射光探测范围的覆盖。同时配备了高能氙灯、980nm固体激光器(可根据客户需求,配置其它波长激光器)及多通道背照式CCD探测器。以此,有效解决了上转换荧光量子产率难以测试的问题。Quantaurus-QY Plus具有极高的灵敏度,低至1%以下的量子产率也轻松测得,并精确至0.01%。可广泛用于固体、液体材料的上转换发光,单线态氧测试及光化学机理研究等。紫外-近红外绝对量子产率测量仪Quantaurus-QY Plus
  • 德国PlasmaChem推出无毒量子点等新纳米材料
    纳米材料著名供应商-德国PlasmaChem公司最近推出了一系列新产品:1. ZnCdSeS 复合量子点,低镉,疏水复合量子点是最新一代低镉、高发光半导体纳米晶,稳定性及与复合物的相容性有了较大的提高。表面用疏水性有机分子修饰。很容易溶解于己烷、庚烷.、甲苯、氯仿、四氢呋喃和吡啶等溶剂中。直径约6 nm。干粉包装 2. Zn-Cu-In-S/ZnS 量子点, 无镉, 疏水无毒发光量子点 Zn-Cd-In-S / ZnS (核/壳) ,表面经过疏水有机配体修饰。很容易溶解于己烷、庚烷.、甲苯、氯仿、四氢呋喃和吡啶等溶剂中。不溶于水、乙醇和醚。发射峰宽度(FWHM)约100 nm。大斯托克跃迁(约120 nm),典型量子产量40-70%。颗粒直径约4-5 nm。干粉包装。 3. ZnO 量子点, 干粉, 亲水性无毒ZnO 纳米晶体掺入镁,很容易分散于水中。表面用 -OH and -COOH 修饰。发光峰宽最大激发 320-370 nm. 颗粒大小: 2-3 nm 4. 石墨烯-纳米片,干粉厚度: 1-4 nm颗粒大小: 最大2 &mu m比表面积: 700-800 m² /g纯度: 91 at.%. 其他元素: O 7 at.% N 2 at.% 5. 氮化硼, 六方体BN 纳米粉颗粒分布范围: 100-1000 nm平均颗粒大小: 500± 100 nm比表面积: 23± 3 m2/g纯度: 98,5% 氮含量 55%控制杂质 %: O 1 C 0,1 B2O3 0,1 欢迎联络:北京安唯安实验设备有限公司Beijing AnWeiAn Lab Equipment Co.,Ltd地址:中国北京市海淀区昆明湖南路9号云航大厦4029室邮编:100195电话:+86 10 88132032传真:+86 10 82386759E-mail: info(at)al-tt.com网址: www.al-tt.com 德国PlasmaChem纳米材料中国独家代理商-----碳纳米管、富勒烯、纳米金刚石、纳米石墨、纳米金属、纳米陶瓷、纳米线、量子点、纳米配体、自组装聚甘氨酸。。。。 全部电子版PlasmaChem纳米材料目录:http://www.instrument.com.cn/netshow/SH102845/
  • 中国科学技术大学郭光灿院士团队在中红外量子纠缠的研究中取得重要进展
    近日,中国科学技术大学物理学院郭光灿院士团队在中红外波段量子纠缠的制备与表征研究中取得重要研究进展。该团队史保森教授、周志远副教授及其合作者首次制备了3微米中红外波段时间-能量纠缠光子对并演示了双光子Hong-Ou-Mandel干涉。该成果以“Quantumentanglementandinterferenceat3μm”为题于3月6日在线发表在国际知名学术期刊《Science Advances》上。光量子信息技术的发展离不开量子光场的产生、调控与探测。尽管近红外波段(0.7um∽2.5um)相关技术的发展已相对成熟,但鲜有其它波段非经典光子对/单光子制备、调控和探测的工作报道。近年来,科研工作者开始逐步探索量子信息在中红外光谱领域应用的理论和实验研究,发现中红外非经典光子源与传统通信、成像和传感技术相结合,可以产生新的通信技术和探测、感知手段,这是因为:1.中红外波段覆盖了几乎所有物质分子的振动光谱,具有分子的“指纹”特征,可用于物质成分鉴定和分析;2.中红外波段包涵多个重要的大气通信传输窗口,适合远距离自由空间光通信和遥感探测;3.温度为115K∽1150K的黑体辐射中心波长在中红外波段,这为物体探测提供了一种有效的热成像手段。该研究工作是中红外光子纠缠制备的第一个工作,对该领域的发展具有重要影响。通过选择合适的非线性晶体及其参数,结合非线性上转换探测技术,原则上可以制备和表征任意波长的中红外纠缠光子对。由于中红外光谱具有分子的“指纹”特征、包含大气层的低损传输窗口以及与物体的热辐射光谱重叠,因此可以预期中红外非经典光子源与传统通信、成像和传感技术的结合一定会为人们认知世界提供新技术和新方法,为量子信息技术的发展带来新机遇。该研究得到了科技部、国家自然科学基金委、安徽省和电磁空间安全国家重点实验室开放基金的资助。
  • 单分子量子相干成像取得新进展,助力肿瘤诊疗与精准医学
    近日,山西大学贾锁堂教授和肖连团教授带领的团队与山西医科大学李思进教授、武志芳教授开展合作,基于单分子相干显微技术在细胞的量子相干可视化研究中取得重要进展。研究成果以“Visualizing Quantum Coherence Based on Single-Molecule Coherent Modulation Microscopy”为题于2021年2月26日发表于《纳米快报》(Nano Letters, 21, 1477, 2021)。论文第一作者为山西大学博士生周海涛(现已入职山西医科大学,分子影像山西省重点实验室),通讯作者为山西大学秦成兵教授、肖连团教授,山西医科大学武志芳教授、李思进教授。显微技术是人类探索微观世界的有力工具,可以帮助我们了解生命的起源和发展过程。随着人类观测世界尺度的不断缩小,已经发现了许多新奇的量子现象。例如研究表明绿色植物光合作用主要是与单个光俘获复合体的量子相干机制密切相关。在这一过程中,微环境在维持系统量子相干稳定性方面起着至关重要的作用,有助于光俘获复合体在生理环境下保持长期稳定的量子相干特性。一些其他的生理过程,包括新陈代谢(例如呼吸过程)和细胞癌变也被证实与细胞的量子相干机制密切相关。对这些细胞内量子相干机制和途径的研究将有助于揭示细胞的生理过程和疾病的发病机制。图 (a)小球藻的传统荧光成像与(c)量子相干成像随观测时间的变化行为。(b)与(d)分别是相邻传统荧光成像与量子相干成像的差减效果。为了提高对比度,(a,c)两幅图均通过其最大值进行了归一化。单分子荧光显微技术不仅克服了系综平均效应,而且对局部微环境具有很高的灵敏度,是研究生物系统量子相干效应的有效方法之一。然而,荧光自发辐射过程中损失了单分子的相干信息,利用荧光显微技术研究单分子相干特性需要将量子相干信息转化为单分子的激发态布居几率。肖连团教授研究团队长期从事单分子荧光显微成像与量子信息处理研究,近年来基于量子光场统计特性,在单分子水平上获得了单个光敏化单元产生单线态氧的实时变化特征(The Journal of Physical Chemistry Letters,9, 5207, 2018);发展了量子相干调制增强单分子显微成像的新原理与新技术(The Journal of Physical Chemistry Letters, 10, 223, 2019);基于单分子量子相干研究了单分子与二维材料以及共轭聚合物单分子体系中的能量转移过程(Journal of Physical Chemistry Letters,10, 2849, 2019)。在这些工作的基础上,通过结合单分子显微和超快光谱的优势,引入调制解调技术,利用相对相位调制的激光脉冲对制备与操控单分子相干叠加态,该团队实现了对单分子极微弱量子相干信息的有效测量。通过定义量子相干可视度(coherent visibility)来消除单分子偶极取向的影响,并以相干可视度为成像物理量,获得了基于量子相干调制的单分子显微成像。基于这种方法,该团队研究了标记染料分子的小球藻的传统荧光成像与量子相干显微成像效果,如图所示。研究结果表明:1).传统荧光成像受小球藻强自发荧光的影响,无法体现小球藻内部结构;而量子相干成像可以抑制小球藻自发荧光的影响,显现小球藻内部结构;2).量子相干成像表现出新奇的振荡行为,反映了小球藻呼吸作用等生理行为对单分子退相干行为的影响。该研究成果为精准医学、肿瘤诊断及其治疗提供了一种新的技术手段。该项目受到国家科技部重点研发计划、国家自然科学基金重大仪器研制项目、“新型光场调控物理及应用”重大研究计划、山西大学量子光学与光量子器件国家重点实验室、极端光学省部共建协同创新中心和面上项目等资助。论文链接:https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.0c04626
  • 1462万!河南省科学院中原量子谷仪器共享中心一期建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-12152、项目名称:河南省科学院中原量子谷仪器共享中心一期建设项目3、采购方式:公开招标4、预算金额:14,628,000.00元最高限价:14628000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20231970-1河南省科学院中原量子谷仪器共享中心一期建设项目包1533600053360002豫政采(2)20231970-2河南省科学院中原量子谷仪器共享中心一期建设项目包2395600039560003豫政采(2)20231970-3河南省科学院中原量子谷仪器共享中心一期建设项目包3211600021160004豫政采(2)20231970-4河南省科学院中原量子谷仪器共享中心一期建设项目包4322000032200005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1项目地点:郑州(采购方指定地点);5.2招标范围:河南省科学院中原量子谷仪器共享中心一期建设项目:包1主要包括1套差示扫描量热仪、1套热重分析仪、1套X射线荧光光谱仪、1套全自动气体吸附分析仪、1套紫外可见近红外分光光度计;包2主要包括1套气相色谱质谱联用仪、1套气相色谱仪、1套荧光分光光度计、2套液相色谱仪、1套原子吸收分光光度计;包3主要包括2套颗粒物光量子雷达;包4主要包括1套基础设施平台、1套计算&网络系统平台、1套测试工具平台。以及各包相关配套设施的采购、安装、调试、验收及质保服务等工作;5.3标包划分:本招标项目共划分四个包;5.4交付时间:详见招标文件要求;5.5质量要求:符合国家现行验收规范和标准,满足采购人的相关要求;6、合同履行期限:详见招标文件要求;7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年11月17日 至 2023年11月24日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:登录河南省公共资源交易中心(http://www.hnggzy.net)3.方式:凭CA密钥市场主体登录并在规定时间内按网上提示下载招标文件及资料;投标人需要完成信息登记及CA数字证书办理,才能通过省公共资源交易平台参与交易活动,具体办理事宜请查询河南省公共资源交易中心网站-公共服务-办事指南-新交易平台使用手册(培训手册);4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省科学院地址:郑州市郑东新区龙子湖湖心岛崇德街与明理路交叉口西南角联系人:何老师联系方式:0371-675200102.采购代理机构信息(如有)名称:河南博鑫创展工程管理有限公司地址:郑州市郑东新区永和龙子湖广场联系人:尹丽联系方式:0371-558916783.项目联系方式项目联系人:尹丽联系方式:0371-55891678
  • 中科院理化所量子点荧光检测病变研究获新进展
    生物传感器在医学领域也发挥着越来越大的作用。临床上用免疫传感器等生物传感器来检测体液中的各种化学成分,为医生的诊断提供依据。  在国家自然科学基金和中科院理化所青年基金项目的支持下,中科院理化所研究员唐芳琼领导的研究团队采用超声雾化法制备的水溶性碲化镉量子点,实现对乳酸脱氢酶(LDH)活性的定性定量分析。  日前,该研究成果在国际电化学与传感器领域影响因子排名第一的杂志《生物传感器与生物电子学》(Biosensors and Bioelectronics)上相继发表两篇论文。相关工作已申请两项中国发明专利。  拓展纳米材料的应用  生物传感器已应用于监测多种细菌、病毒及其毒素。生物传感器还可以用来测量乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。  乳酸脱氢酶存在于机体所有组织细胞的胞质内,并有着一定的正常范围。机体代谢异常,出现病变会引起乳酸脱氢酶含量的变化。因此,开发新型、快速、高效检测乳酸脱氢酶活性水平的方法可实现对常见的心肌炎、心肌梗塞、肾病、肝癌等疾病的早期诊断和实时调控。  “而将具有激发范围宽,发射光谱窄,荧光量子产率高,可通过调节尺寸、组成或结构来调节发射峰位,实现多色发光等优异光学特性的量子点用于开发信息容量大、响应速度快、灵敏度高、操作简便、成本低廉、便于携带的生物传感器,成为光学生物传感器研究的新热点。” 该团队成员之一、中科院理化所研究员任湘菱说。  唐芳琼领导的纳米材料可控制备与应用研究室一直致力于用价廉、可工程化的方法制备量子点并应用于生化检测,采用超声雾化法制备的水溶性碲化镉(CdTe)量子点实现对乳酸脱氢酶活性的定性定量分析。她们制备的新型生物传感器的检测范围为150~1500U/L,最低检测限达75U/L。  研究人员进而把这种方法拓展到血清中葡萄糖浓度的测定,并初步实现了对这两种物质的同时检测。她们构建的新型光学生物传感器与其他的量子点光学生物传感器(例如基于荧光能量共振转移的光学生物传感器)相比,不需要昂贵而复杂的生化分子修饰,方法简单快捷,操作易于掌握。此方法拓展了纳米材料的应用领域,为开拓生化检测分析的新途径提供了可供参考的实验和理论基础,促进了酶生物传感器的实用化发展。  “我们的目标是家庭化”  “通常用于检测乳酸脱氢酶的传感器制备过程复杂,需要一些复杂的分子,或者酶自身需要修饰,这样就需要一两天甚至更长的时间。而且需要经过专门培训的人来操作。我们这个检测体系可以用一些商品化的酶,医疗或生物制品市场可以买到的酶直接进行配制,配制过程一般只需要半个小时。”任湘菱说。  大多数人会每年进行一次体检,医生们却认为这个时间过长。不过,去医院体检是件很麻烦的事。通常要排队、挂号、检查要花上大半天时间,过几天还要再去取结果。很多人嫌麻烦,就不去体检了。  “如果我们能做到检测设备微型化,检测方法很容易掌握,而且能快速检测。自己在家隔几个月检查一下,既能发现疾病隐患,又方便了居民。” 任湘菱说,“现在家庭自己检查血压、血糖的多些,检测其他指标的比较少,主要是因为检测设备技术复杂,我们的目标就是实现体检家庭化。”  该团队用这一新技术作了血清检测,其结果和医院常用的设备对比十分吻合。  “要实现体检家庭化,还有大量的工作要做。未来我们会考虑做成试剂盒或试纸,和现在的血糖仪一样是用试纸插进去读数。”任湘菱说,“这属于光学传感器,我们主要的研究领域是生物试剂和纳米材料,因此也希望能和进行光传感、光器件研究的人合作,将比色转化成读数。”
  • 上海量子科研工作者在合肥重归老本行,所研发的量子计算机已成功交付使用
    1999年,18岁的上海人张辉考入中国科学技术大学物理系,本科期间曾跟随中国科学院院士郭光灿完成了关于量子不可克隆的研究。2003年,张辉保研到中科院量子信息重点实验室硕博连读,继续师从郭光灿,从事量子相关科研工作,并成为国内第一个半导体量子计算的博士。然而,彼时的量子技术仍只是实验室中的项目,尚未走向商用。毕业后,张辉一度找不到一份专业对口的工作。直到2009年,中国科学院院士潘建伟团队成立国内第一家量子通信产业化公司,量子技术逐渐从实验室走出来,转化为实实在在的应用。此后,一批量子信息企业相继从合肥涌现,量子领域的产业化开始加速。2017年9月,本源量子计算科技(合肥)股份有限公司成立,张辉也回到合肥,重归老本行,如今成了总经理。除他以外,许多中科院量子信息重点实验室的早期毕业生也陆续回归。在张辉和研发团队的共同努力下,本源量子已发展成国内头部的量子计算企业,研发出多台量子计算机,并成功交付使用。本源量子已研发出多台量子计算机,并成功交付使用近年来,合肥正在打造“量子之都”。数据显示,合肥高新区直接从事量子领域的科研人员超过600人,合肥市量子信息产业相关专利占全国的12.1%,仅次于北京,位居全国第二。还有投资人直言:“做量子领域的投资之前,必须得逛逛合肥的‘量子大道’和中科大。”为什么是合肥?记者试图在与张辉的对话中寻找答案。“毕业就失业”“遇事不决,量子力学。”这句网络热梗曾被用来调侃量子科学。对张辉来说,从事量子领域的科研学习,也颇有种冥冥中注定的玄学意味。张辉开玩笑:“当时保研选择半导体量子计算方向,因为实验室项目经费最充足,看起来最有前途。”当时,国内的量子计算相关研究刚刚起步。张辉到中科院量子信息重点实验室的第一件事,就是和导师团队一起组建实验室,包括搭建平台和实验设施等。张辉记得,实验室大到挖坑埋设备,小到在铝质屏蔽盒上打孔,几乎都由他们手工完成。“我们那一批人,动手能力都很强。不过,我们真正参与科学研究的时间比较短,很多实验都没有过多参与。”张辉说。好不容易搭完了平台,他又开始愁起了毕业。做实验需要的周期很长,也有可能会失败,还会导致延期毕业,为此他只好转向理论研究。好在,那时候很多相关领域都是一片空白,张辉很快就发表了几篇论文并顺利毕业。回过头看,张辉认为,这可能是早期国内量子计算难以跨步向前的症结所在。当时的量子计算还停留在实验室阶段,很多研究者都面临毕业的压力以及转行或科研“二选一”的抉择,不少科研成果难以传承。张辉给记者解释:“比如,‘前浪’做了五六年研究就毕业了,‘后浪’又要从头再来,那时候我们实验室的工艺技术就一直停留在那个五六年的水平。研究成果缺少延续性,很难向前进。”张辉在工作中。受访者供图没想到,毕业难只是第一道坎。由于当时国内尚没有一家量子计算企业,甚至在实验室所在的合肥,张辉也找不到一份专业对口的工作。张辉回忆:“我们这些早期的毕业生,除了极个别的留在实验室继续做科研,其他人基本毕业就失业了。”毕业后,张辉回到老家上海,放下量子计算博士的光环,进入了某园区的招商部门,从零开始,接触金融服务投资等。等张辉再回到合肥,已过去将近10年。在此期间,合肥发展在加速,中科大对合肥的反哺效应逐渐显现。在张辉熟悉的量子领域,全球量子领域的顶尖科学家,几乎全部出自中科大,并涌现出全球首颗量子通信卫星“墨子号”、全球首台光量子计算机、全球首条量子保密通信网络“京沪干线”等一批重大成果。同时,量子技术逐渐从实验室走向产业应用,国盾量子、国仪量子、本源量子等多家拥有量子核心科技的企业相继在合肥成立。其中,本源量子脱胎于张辉曾就读的中科院量子信息重点实验室,由郭光灿和他的学生郭国平联合创立,是国内第一家量子计算公司。2017年,张辉以“编外人员”的身份,帮助本源量子处理融资事宜。两年后,他正式入职,先担任公司副总裁、行政与人力资源总监,负责企业的日常运营管理和相关人才招募,后任职总经理,全面统筹量子计算工程化研发、项目规划等工作。量子计算火了记者在办公室见到张辉时,他正在打电话。通话结束后,他边整理有些褶皱的衬衫边连连表示歉意:“实在不好意思,公司最近有点忙。”采访期间,他接了5次电话,两部调成振动模式的工作手机时不时会收到消息提醒。张辉感觉到,量子计算真的火了。然而,就在几年前,形势还是另一幅光景。当时,尽管市场上已成立了不少应用量子技术的公司,但大部分人对此几乎一无所知。张辉决定入职本源量子的选择,遭到了家人的一致反对。“我之前在企业已经做到管理层,收入不低,来这里的收入可能只有之前的1/3。再加上刚毕业的时候差点找不到工作,还要背井离乡,家里人都不理解。但我始终觉得,这是个好机会。”张辉说。投资人也不了解。创立本源量子之前,郭光灿、郭国平曾接触过一些国内领先的科技企业,但这些企业普遍认为量子时代还很遥远,无一愿意在当时就提前布局。转机出现在2019年。2019年9月,谷歌宣布率先实现“量子霸权”,他们研发的“悬铃木”量子计算原型机,可以在200秒内完成百万量子采样,而美国最快的“顶点”超级计算机需要1万年才能模拟完成。这一下子引爆了当时的科技圈。张辉记得,当天晚上,他就接到好多投资人的电话,还有人直截了当地问:“你们的量子计算机什么时候能造出来?”一年后,本源量子推出国内首个工程化的量子计算机——本源悟源超导量子计算机,而且在众多关键技术领域实现了国产自主研发。同年,本源量子还发布了超导量子计算云平台和量子计算机操作系统等。作为一家致力于量子计算全链条开发的企业,本源量子已成功完成多台量子计算机工程化研制,正发力量子芯片设计与生产制造链,还开发出国产自主知识产权量子芯片工业设计软件、量子芯片激光退火仪、量子芯片无损探针仪等量子芯片工业母机。工作人员正在调试量子计算机有硬核科技的加持,再加上量子赛道的火爆,张辉笑着说,近年来,只要坐在办公室里,就有各类资本主动找上门,还有不少政府部门来考察调研,商讨研究产业政策,帮企业解决实际困难。去年8月,本源量子宣布完成近10亿元B轮融资,刷新全球量子计算企业融资纪录,未来将用于更高位数量子计算机的研制、量子计算应用的落地推广。本源量子的成长轨迹也是量子行业从无到有的发展缩影。2021年,“量子信息”首次出现在“十四五”规划及政府工作报告中,国家在量子通信、量子计算、量子测量等量子信息科学重点领域的投入将持续增加,并将大力支持相关企业的发展。市场资本也持续涌入,数据显示,2022年全球量子信息公司共完成23.5亿美元以上的融资,超过2021年,相比2020年实现翻番。未来还有多远?今年春节,《流浪地球2》上映。电影中,以MOSS为代表的“550系列量子计算机”拥有顶尖算力,可以调动全球计算资源,控制太空电梯、行星发动机的运行等。张辉表示,在可见的未来,量子计算机将为金融交易、药物研发、新材料设计、航空航天、机械制造等领域提供“量子算力”支持,这些都是经典计算无法超越的。对很多人来说,MOSS的形象可能是他们第一次对量子计算机有直观印象。2月6日,本源量子宣布其4台量子计算机首次向社会开放参观活动后,受到广泛关注。不到5天时间,预约报名超过2000人,开放的参观名额仅为30人。张辉觉得,推动量子计算这一前沿技术的普及,相应的科普必不可少,“要让更多人对量子计算产生兴趣并参与进来”。此前,他们在合肥落成了本源量子计算体验中心,并携手广东德美、容山中学共同探索量子计算教育在中小学校园的实践。从2021年开始,教育部正式把量子信息学科加入本科生教育,旨在加快量子领域人才梯队培养。3年前,张辉和同事筹办量子计算编程比赛,计划邀请国内外知名的高校和相关团队参加。“当时根本搞不起来。一共就只有20多支队伍,大家互相之间都认识。”张辉苦笑。去年,姗姗来迟的首届量子计算编程挑战赛终于开赛,吸引到约700支队伍参赛。今年4月,第二届比赛举办,参赛队伍超过800支,还分设了高校组和专业组两个赛道。除量子计算机外,本源量子还自主研发出国内首个量子计算机操作系统。越来越多的人才、资本流向量子赛道,带动的是整个产业的蓬勃发展。比如,聚焦量子计算全产业链开发,本源量子在量子计算机的工程之路上“沿途下蛋”,催生出一大批原创性成果,并推动了量子计算产业联盟的成立。张辉的设想是,通过产业联盟集聚起包括计算科技、机器学习、人工智能等在内的上下游企业,加速量子计算技术开发,探索量子计算应用落地,共同建立和拓展量子计算产业生态圈。这也是合肥乃至安徽的雄心。早在2017年,安徽省就专设总规模100亿元的量子科学产业发展基金,并设立墨子量子科技基金等。如今,依托中科大的人才优势和众多量子信息头部企业的聚合优势,合肥正成为量子产业发展的高地。这些年,张辉和不少地方政府打过交道,但相比而言,合肥提供的政策落地性更强,规划也更为长远。未来,合肥还将规划建设覆盖全产业链的量子科技产业园。接下来,本源量子即将发布最新量子计算机“悟空”,同时将开启新一轮融资。对张辉来说,他和量子计算的故事,还有更多可书写的篇章。
  • 岛津新荧光分光光度计RF-6000上市
    岛津RF-6000荧光分光光度计即日起在中国市场上市。RF-6000凝聚了岛津长期培育的高超技术与最新科技,具有荧光分析所追求的卓越精度和操作简便性,出类拔萃的测定精度与操作简便、崭新设计的新软件『LabSolutions RF』,满足用户各种测定需求。 RF-6000主要特点如下: 多种光谱技术集于一身(1) 超高灵敏度和宽动态范围的荧光光谱和生物发光、化学发光、电致发光光谱测量。(2)高速三维荧光采集。(3) 激发和发射光谱的自动光谱校正。(4)可以测量荧光量子产率和绝对荧光量子效率。 高灵敏度、高稳定性和高速度(1)同档次最高信噪比1000:1(RMS 值)/350:1(峰-峰值)。(2)最快60000nm/min 的扫描速度。(3)2000小时的长寿命稳态氙灯。(4)标配宽范围的光电倍增管(900nm)。 出色的易用性(1)新版LabSolutions RF 软件简化分析流程。(2)标配仪器自动验证功能。(3)灯和附件状态实时显示。(4)超大样品室适合多种分析应用。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • Light: 黄维&王建浦|顶发光微腔结构实现高效率钙钛矿发光二极管
    金属卤化物钙钛矿材料具有可溶液法制备、高荧光量子效率、高色纯度等特点。近年来,钙钛矿发光二极管(PeLED)的器件效率提升迅速,成为下一代照明与显示技术的有力竞争者。然而,由于钙钛矿材料较大的折射率,导致大量的光子被限制在器件内部,阻碍了PeLED效率的进一步提升。近日,南京工业大学黄维院士和王建浦教授团队在国际顶尖期刊Nature子刊 Light: Science & Applications 发表论文,他们提出通过构筑光学微腔,制备顶发射PeLED,从而大幅度提升器件效率的新思路。光学微腔一方面能够通过Purcell效应提高辐射复合速率,提升材料的荧光量子效率;另一方面,优化的微腔结构可以使更多光子沿着微腔的光轴出射,从而提高器件的出光耦合效率。现代信息社会的快速发展,对发光显示技术提出了高效率、高亮度、柔性可穿戴等要求。传统的无机发光二极管通常在单晶衬底上通过外延法生长制备,难以获得大面积柔性器件。近年来快速商业化的有机发光二极管能够通过溶液法、蒸镀法制备大面积柔性器件,但有机材料本身的激子特性使其难以在大电流下实现高亮度和高效率。钙钛矿材料兼具无机半导体高导电性和有机材料可溶液法制备的优点,在下一代显示领域极具竞争力。然而,近年来底发光PeLED的效率逐渐达到瓶颈,效率提升速度放缓。发光二极管的效率是由荧光量子效率、载流子注入效率、光耦合效率共同决定的。平板型底发光器件的光耦合效率通常为20%左右,其发光层发出的光子大部分被限制在了器件内部,无法从正面出射。另一方面,将发光器件应用于显示时,还需加上不透光的控制电路,因此显示面板上一部分区域无法发光,也就是产业化过程中面临的开口率的问题。设计具有微腔结构的顶发光器件,能够有效地同时解决以上两个问题。这是由于微腔结构能够提高器件的出光耦合效率,而顶发光能够解决显示面板的开口率问题。图1 顶发光器件和底发光器件构筑基于光学微腔的高效率PeLED需要解决三个难题:1)制备具有高荧光量子效率的钙钛矿薄膜;2)制备高质量光学微腔;3)实现器件内部平衡的载流子注入。在钙钛矿薄膜的选择上,作者选择了具有多量子阱(MQW)结构的准二维钙钛矿。其优点在于,通过调控大尺寸阳离子和小尺寸阳离子的组分,能够精确地调控钙钛矿的结晶性、形貌以及薄膜内部量子阱的分布。基于此思路,作者获得了致密的MQW钙钛矿薄膜,并将其荧光量子效率提升到了78%。图2 MQW-PeLED的能级结构及钙钛矿层形貌构筑高质量的光学微腔需要在器件的两端分别制备全反射和半反射的电极。为此,作者在器件底端蒸镀了100 nm的金电极作为全反射层,并且优化了顶端半反射金电极的厚度,将器件的光耦合效率从20%提升到了30%。要实现增强型的微腔效应,还需将微腔的光学长度设计到发光半波长的奇数倍。作者发现,通过调控电子传输层ZnO和空穴传输层TFB的厚度,可以有效地调控微腔的光学长度。值得注意的是,优化ZnO、TFB厚度的同时,还要考虑发光层在微腔内部所处的位置是否位于微腔效应增强的位置。此外,高性能PeLED的实现还依赖于器件内部载流子的平衡注入。作者前期的研究表明,MQW钙钛矿层内部存在快速的(皮秒量级)能量转移,从而使得发光区域主要位于与TFB的交界处。考虑到ZnO和TFB都具有较高的载流子迁移率,因此ZnO的厚度通常低于TFB的厚度。图3 微腔器件内部不同位置的增强效果及发光区域基于以上对钙钛矿发光层、器件光学结构及载流子注入/输运方面的优化,作者将微腔结构顶发射PeLED的外量子效率提升至20.2%。该器件表现出显著的微腔效应,不同于底发光器件的朗博体发光,顶发射微腔PeLED在正面的出光显著增强,从而大幅度提升了光耦合效率。图4 微腔器件外量子效率及发光轮廓较低的光耦合效率是限制平板发光的重要原因之一,该工作将顶发射微腔结构应用于PeLED,实现了超过20%的外量子效率,是目前顶发射PeLED的效率最高值。该工作的发表,使钙钛矿这种明星材料在LED实际应用方面更进了一步。此外,高质量微腔的制备及其器件内整合,也对电泵浦钙钛矿激光器的实现具有重要的借鉴意义。文章信息:该成果以“ Microcavity top-emission perovskite light-emitting diodes ”为题发表在 Light: Science & Applications 。本文共同第一作者为南京工业大学先进材料研究院博士生缪炎峰、程露、邹伟,通讯作者为王建浦教授、黄维院士、彭其明副研究员。论文地址:https://www.nature.com/articles/s41377-020-0328-6文章来源:中科院长春光机所 Light学术出版中心
  • 烟台海岸带所纸基芯片检测环境微囊藻毒素研究获进展
    近年来,水华、赤潮现象频发,故监测藻类及其代谢物浓度对于水质监测意义重大。微囊藻毒素是一类具有强烈促癌作用的环状寡肽肝毒素,在众多蓝藻毒素中其毒害能力最强。它的致病机理是通过抑制肝细胞中蛋白磷酸酶的活性,诱发细胞角蛋白高度磷酸化,致使哺乳动物肝细胞微丝分解、破裂和出血,同时会对动物的肾脏等器官作用导致生理病变。然而,以往开发出的多种检测微囊藻毒素的方法复杂且昂贵,因此先进的荧光纳米传感器在检测微囊藻毒素方面颇具潜力。中国科学院烟台海岸带研究所陈令新团队研究员李博伟、博士齐骥等,在构建痕量环境非荧光物质的检测技术领域取得了重要进展。相关研究成果以《基于纸基芯片的分子印迹非荧光微囊藻毒素间接荧光检测策略》(Molecular imprinting-based indirect fluorescence detection strategy implemented on paper chip for non-fluorescent microcystin)为题,发表在《自然-通讯》(Nature Communications)上。荧光纳米传感器因在化学、生物学检测中的简便、灵敏和高通量而备受关注,是分析化学的重要研究方向之一。由于微囊藻毒素不能增强/猝灭量子点的荧光发射,难以直接荧光检测,因而该团队利用电荷转移效应和分子印迹技术开发了一种通用的间接荧光传感策略,用于高灵敏、高选择性、快速检测微囊藻毒素。该策略以微囊藻毒素作为模型分析物设计间接荧光传感机制,以分子印迹聚合物(MIPs)薄膜包裹铁酸锌纳米颗粒(ZnFe2O4@MIPs)作为模拟猝灭剂,并与荧光量子点结合制备功能化纸基芯片。在识别过程中,分子印迹聚合物的印迹空腔不仅充当捕获微囊藻毒素分子的结合位点,而且作为连通铁酸锌纳米颗粒和荧光量子点之间电子转移的唯一途径,在微囊藻毒素存在情况下,印迹空腔被微囊藻毒素所占据,阻碍了铁酸锌纳米颗粒和荧光量子点之间电子转移,导致量子点荧光强度恢复。本研究首次设计了“可滑动夹”型纸基芯片,无需样品前处理,构建了在复杂环境下痕量、高效检测微囊藻毒素的多功能平台,并应用于无锡太湖实际水样中的微囊藻毒素快速灵敏检测(检测限为0.43 μg/L,时间为20min)。该策略是对荧光惰性类目标物的高灵敏检测的重要尝试。研究工作得到国家自然科学基金和山东省自然科学基金重点项目等的支持。基于纸基芯片的分子印迹非荧光微囊藻毒素间接荧光检测构建示意图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制