膨胀剂膨胀定仪

仪器信息网膨胀剂膨胀定仪专题为您提供2024年最新膨胀剂膨胀定仪价格报价、厂家品牌的相关信息, 包括膨胀剂膨胀定仪参数、型号等,不管是国产,还是进口品牌的膨胀剂膨胀定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合膨胀剂膨胀定仪相关的耗材配件、试剂标物,还有膨胀剂膨胀定仪相关的最新资讯、资料,以及膨胀剂膨胀定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

膨胀剂膨胀定仪相关的厂商

  • 我公司常年生产销售:橡胶止水带,中埋式橡胶止水带,中置式橡胶止水带,遇水膨胀橡胶止水带,外贴式橡胶止水带,背贴式橡胶止水带,钢边橡胶止水带,丁基橡胶钢板止水带,PVC塑料止水带,橡胶止水片,三元乙丙橡胶止水带,闸门水封,止水橡皮,P型止水带,遇水膨胀止水条,丁基橡胶腻子片,双组份聚硫密封胶(膏),双组份聚氨酯密封胶(膏),止水胶,遇水膨胀止水胶,单组份聚氨酯密封胶,聚乙烯闭孔泡沫板,注浆管,塑料胶泥, 聚氯乙烯胶泥,桥梁支座,网架橡胶支座,板式橡胶支座,桥梁伸缩缝,各种异型橡胶板,橡胶垫块,GB柔性填料;SR塑性填料,三元乙丙橡胶防渗保护盖片,氯丁橡胶棒,PVC棒,底胶,面板坝止水材料,水泥基渗透结晶型防水涂料,透水软管,塑料盲沟,排水盲沟,土工布,土工膜,防水板及各种土工材料.本公司经营各种工程用止水材料,免费提供各种工程止水材料报价.
    留言咨询
  • 无锡文盛自动化仪器仪表有限公司 地处经济发达,交通便利的长江三角洲地区。 公司依托便利的交通和较强的区域优势以及高新园区的技术支持发展迅速,目前已成为一家专业研制生产工业用传感器、仪器仪表、 控监系统、接口产品的高科技公司。 公司拥有强大的技术开发实力和生产、加工能力。 聘请高等院校知名教授、专家作为本公司的技术顾问,产品融合高新技术和军工制 造技术,力求做到人无我有、人有我精。是您生产科研合作的首选!公司产品为国内众多汽轮机、鼓风机制药、制造厂提供配套产品。为我国火力、水力发电、炼油、 航空航天、造纸等行业提供了大量优质产品。销售网络覆盖国内大部分地区、并出口到欧美等一些国家。公司电涡流位移传感器、振动速度传感器及变送保护表等产品严格执行ISO9001国际标准质量体系标准研发、生产、检验、出厂。公司雄厚的技术实力是产品质量的有力保证。同时公司拥有先进的产品检验仪器。 公司产品性能稳定,精度高,广泛应用于电力、石油、化工、机械电子等领域。主要研发,生产,销售:监视保护仪系列:汽轮机监控保护系统、双通道轴瓦振动监视保护仪、双通道轴振动监视保护仪 智能转速监视保护仪、正反转速监视保护仪轴向位移监视保护仪、胀差监视保护仪、偏心监视保护仪热膨胀监视保护仪、油动机行程监视保护仪、油箱油位行程监视保护仪传感器系列:磁电式速度传感器、电涡流传感器 磁阻转速传感器、齿轮转速传感器、正反转速传感器热膨胀传行程感器、油动机行程传感器、油箱油位行程传感器LVDT线性差动变压器式位移传感变送器系列:振动变送器、振动测量装置轴向位移变送器、轴振动变送器、转速变送器热膨胀行程变送器、油动机行程变送器、油箱油位行程变送器校验仪器系列:便携式振动校验仪、电涡流传感器静态位移校验仪
    留言咨询
  • 鹤壁未名仪器有限公司是一家专业生产、销售仪器仪表的有限责任公司。专业从事煤炭化验设备的开发、研制、生产、销售、和服务。 产品有量热仪,测硫仪,马佛炉,智能马佛炉,矸石泥化测定仪,粘结指数测定仪,煤炭活性测定仪,二分器,胶质层指数测定,灰熔点测定仪,哈氏可磨测定仪,结渣性测定仪,碳酸盐二氧化碳测定仪,顶击式振筛机,自由膨胀序数测定仪,等产品 企业以诚信为根本,以质量为核心,不断为客户提供优质的产品和满意的服务,做到以“诚信铸就双赢、品质赢取市场”的经营理念。 我们将继续坚持企业经营方针,树百年企业,竭诚为各界客户提供优质的服务,热烈欢迎各界朋友前来参观考察,洽谈业务!
    留言咨询

膨胀剂膨胀定仪相关的仪器

  • 一、卧式收缩膨胀仪全自动混凝土收缩膨胀仪简介:全自动收缩膨胀试验监测系统可用于材料的收缩膨胀测定,适用于各种金属或非金属材料、建筑材料、橡胶 塑料等材料的收缩膨胀试验。设备通过位移计采集数据,电脑显示保存。可用于长期监测。 针对建筑建材行业,该设备可满足水泥、砂浆、混凝土、腻子、石膏、自流平等材料。 二、卧式收缩膨胀仪全自动混凝土收缩膨胀仪执行标准: C/T603-2004《水泥胶砂干缩试验方法》、 JTGE30-2005《公路工程水泥及砼试验规程》中 T0511 条规程、 JGJ70-90《建筑砂浆基本性能试验方法》、 GB11972-89《加气砼干缩试验方法》、 GB/T14685《建筑用卵石、碎石》的要求测定水泥胶砂、水泥砂浆试件各龄期的干缩率; JC313-96《膨胀水泥膨胀率试验方法》、 JC453-96《自应力水泥物物检方法》的要求测定该类水泥的膨胀率,限制膨胀率及自应力值。 JC476-2001《混凝土膨胀剂》等试验方法要求进行高精度膨胀收缩率的测定。 GB/T50082-2009《普通混凝土长期性能和耐久性能试验方法标准》 GB23439-2017《混凝土膨胀剂》之附录 A 限制膨胀率试验方法 之 A 法和 B 法 GB 50119-2013《混凝土外加剂应用技术规范》附录 B 补偿收缩混凝土的膨胀率及干缩率的测定方法 三、卧式收缩膨胀仪全自动混凝土收缩膨胀仪 设备特点 1、精度位移计:精度 0.001mm 2、测量通道可拓展:1通道、2通道、3通道、6通道、9通道 3、测量时间任意设定。满足不同期龄。 4、无需人工值守,数据自动保存。 5、试验数据可保存 excel 软件。 6、同时记录试验时间、试验环境的温湿度、试件编号、龄期、试件原始长度。 四、卧式收缩膨胀仪全自动混凝土收缩膨胀仪 技术参数: 1、位移传感器量程:±2.5mm 2、位移传感器测量误差:±1um 3、温度测量范围: 0℃~50℃ 4、温度测量误差:±0.5℃(25℃) 5、湿度测量范围: 0~100%RH 6、湿度测量误差: ±3%(5%RH~95%RH,25℃) 五、仪器配置 1、笔记本电脑:1台 2、测量模具:数量选配 3、温湿度传感器:1只 4、高精度位移传感器:1只 5、电源线:1根 6、说明书合格证:1份
    留言咨询
  • 一、智能收缩膨胀监测仪全自动混凝土收缩膨胀仪 简介: 全自动收缩膨胀试验监测系统可用于材料的收缩膨胀测定,适用于各种金属或非金属材料、建筑材料、橡胶 塑料等材料的收缩膨胀试验。设备通过位移计采集数据,电脑显示保存。可用于长期监测。 针对建筑建材行业,该设备可满足水泥、砂浆、混凝土、腻子、石膏、自流平等材料。 二、智能收缩膨胀监测仪全自动混凝土收缩膨胀仪 执行标准: C/T603-2004《水泥胶砂干缩试验方法》、 JTGE30-2005《公路工程水泥及砼试验规程》中 T0511 条规程、 JGJ70-90《建筑砂浆基本性能试验方法》、 GB11972-89《加气砼干缩试验方法》、 GB/T14685《建筑用卵石、碎石》的要求测定水泥胶砂、水泥砂浆试件各龄期的干缩率; JC313-96《膨胀水泥膨胀率试验方法》、 JC453-96《自应力水泥物物检方法》的要求测定该类水泥的膨胀率,限制膨胀率及自应力值。 JC476-2001《混凝土膨胀剂》等试验方法要求进行高精度膨胀收缩率的测定。 GB/T50082-2009《普通混凝土长期性能和耐久性能试验方法标准》 GB23439-2017《混凝土膨胀剂》之附录 A 限制膨胀率试验方法 之 A 法和 B 法 GB 50119-2013《混凝土外加剂应用技术规范》附录 B 补偿收缩混凝土的膨胀率及干缩率的测定方法 三、智能收缩膨胀监测仪全自动混凝土收缩膨胀仪 设备特点:1、高精度位移计:精度 0.001mm 2、测量通道可拓展:1通道、2通道、3通道、6通道、9通道 3、测量时间任意设定。满足不同期龄。 4、无需人工值守,数据自动保存。 5、试验数据可保存 excel 软件。 6、同时记录试验时间、试验环境的温湿度、试件编号、龄期、试件原始长度。 四、智能收缩膨胀监测仪全自动混凝土收缩膨胀仪 技术参数:1、位移传感器量程:±2.5mm 2、位移传感器测量误差:±1um 3、温度测量范围: 0℃~50℃ 4、温度测量误差:±0.5℃(25℃) 5、湿度测量范围: 0~100%RH 6、湿度测量误差: ±3%(5%RH~95%RH,25℃) 五、仪器配置 1、笔记本电脑:1台 2、测量模具:数量选配 3、温湿度传感器:1只 4、高精度位移传感器:1只 5、电源线:1根 6、说明书合格证:1份
    留言咨询
  • 一、全自动砂浆收缩膨胀仪水泥干缩测定仪简介:全自动收缩膨胀试验监测系统可用于材料的收缩膨胀测定,适用于各种金属或非金属材料、建筑材料、橡胶 塑料等材料的收缩膨胀试验。设备通过位移计采集数据,电脑显示保存。可用于长期监测。 针对建筑建材行业,该设备可满足水泥、砂浆、混凝土、腻子、石膏、自流平等材料。 二、全自动砂浆收缩膨胀仪水泥干缩测定仪执行标准: C/T603-2004《水泥胶砂干缩试验方法》、 JTGE30-2005《公路工程水泥及砼试验规程》中 T0511 条规程、 JGJ70-90《建筑砂浆基本性能试验方法》、 GB11972-89《加气砼干缩试验方法》、 GB/T14685《建筑用卵石、碎石》的要求测定水泥胶砂、水泥砂浆试件各龄期的干缩率; JC313-96《膨胀水泥膨胀率试验方法》、 JC453-96《自应力水泥物物检方法》的要求测定该类水泥的膨胀率,限制膨胀率及自应力值。 JC476-2001《混凝土膨胀剂》等试验方法要求进行高精度膨胀收缩率的测定。 GB/T50082-2009《普通混凝土长期性能和耐久性能试验方法标准》 GB23439-2017《混凝土膨胀剂》之附录 A 限制膨胀率试验方法 之 A 法和 B 法 GB 50119-2013《混凝土外加剂应用技术规范》附录 B 补偿收缩混凝土的膨胀率及干缩率的测定方法 三、全自动砂浆收缩膨胀仪水泥干缩测定仪设备特点: 1、精度位移计:精度 0.001mm 2、测量通道可拓展:1通道、2通道、3通道、6通道、9通道 3、测量时间任意设定。满足不同期龄。 4、无需人工值守,数据自动保存。 5、试验数据可保存 excel 软件。 6、同时记录试验时间、试验环境的温湿度、试件编号、龄期、试件原始长度。 四、全自动砂浆收缩膨胀仪水泥干缩测定仪技术参数:1、位移传感器量程:±2.5mm 2、位移传感器测量误差:±1um 3、温度测量范围: 0℃~50℃ 4、温度测量误差:±0.5℃(25℃) 5、湿度测量范围: 0~100%RH 6、湿度测量误差: ±3%(5%RH~95%RH,25℃) 五、仪器配置 1、笔记本电脑:1台 2、测量模具:数量选配 3、温湿度传感器:1只 4、高精度位移传感器:1只 5、电源线:1根 6、说明书合格证:1份
    留言咨询

膨胀剂膨胀定仪相关的资讯

  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • 砂浆收缩膨胀变化试验方法
    砂浆收缩膨胀变化试验方法一、前言:在现代建筑材料科学与工程领域,对砂浆性能的精确测量与评估。随着建筑技术的不断进步和对工程质量要求的日益提高,准确掌握砂浆在不同条件下的收缩与膨胀特性成为确保建筑结构稳定性与耐久性全自动砂浆收缩膨胀仪能够实时、连续地监测砂浆在不同阶段的收缩与膨胀变化,为科研人员、工程师以及建筑行业从业者提供可靠的数据支持。二、设备选择1.全自动砂浆收缩膨胀测定仪:具备高精度传感器,能够准确测量微小的长度变化。具有稳定的结构和良好的温度补偿功能,以确保测量结果的准确性不受环境温度影响。可连接计算机进行数据采集和分析,方便存储和处理大量数据。2.标准模具:符合相关标准要求的模具,确保砂浆试件的尺寸准确。材质应具有良好的耐久性和稳定性,不易变形。三、试验准备1.材料准备:按照所需的配合比准备砂浆原材料,包括水泥、砂、水等。确保原材料的质量符合相关标准要求。2.模具准备:将标准模具清理干净,并在模具内壁涂抹一层脱模剂,以便于试件成型后脱模。3.试件制备:将搅拌好的砂浆倒入模具中,振捣密实,确保试件内部无气孔。按照标准要求进行养护,待试件达到规定的龄期后进行测试。四、测试步骤1.设备安装与调试:将全自动砂浆收缩膨胀测定仪安装在平稳的工作台上,并进行水平调整。连接传感器和计算机,启动测试软件,进行设备调试和校准。2.试件安装:将养护好的砂浆试件从模具中取出,清理表面的杂物。将试件安装在测定仪的测量平台上,确保试件与传感器接触良好。3.开始测试:设置测试参数,如测试时间间隔、温度范围等。启动测试程序,测定仪将自动记录试件的长度变化数据。4.数据采集与分析:测试过程中,计算机实时采集试件的长度变化数据,并绘制出收缩膨胀曲线。根据测试结果,分析砂浆的收缩膨胀性能,包括收缩率、膨胀率、变化趋势等。四、质量控制1.设备校准:定期对全自动砂浆收缩膨胀测定仪进行校准,确保测量结果的准确性。使用标准试件进行校准,验证设备的性能。2.试件制备:严格按照标准要求制备砂浆试件,确保试件的尺寸和质量符合要求。控制搅拌时间、振捣力度等因素,保证试件的均匀性。3.环境控制:测试过程中,保持测试环境的温度和湿度稳定,避免环境因素对测试结果的影响。五、报告生成1.测试结束后,根据测试数据生成详细的测试报告。2.报告内容应包括试件信息、测试参数、收缩膨胀曲线、测试结果分析等。3.报告应具有清晰的格式和准确的数据,以便于用户查阅和分析。测试编号试件编号测试时间初始长度(mm)当前长度(mm)长度变化(mm)收缩/膨胀率(%)备注1A0012024/9/21 8:00100.00100.000.000.00新制试件1A0012024/9/21 12:00100.0099.98-0.02-0.021A0012024/9/21 16:00100.0099.96-0.04-0.041A0012024/9/22 8:00100.0099.92-0.08-0.081A0012024/9/22 12:00100.0099.90-0.10-0.101A0012024/9/22 16:00100.0099.88-0.12-0.122B0012024/9/2 2 18:00100.00100.000.000.00新制试件2B0012024/9/21 12:00100.00100.020.020.022B0012024/9/21 16:00100.00100.040.040.042B0012024/9/22 8:00100.00100.060.060.062B0012024/9/22 12:00100.00100.080.080.082B0012024/9/22 16:00100.00100.100.100.10解释:测试编号:用于区分不同批次的测试。试件编号:对每个试件进行标识。测试时间:记录每次测量的具体时间。初始长度:试件刚制作完成时的长度。当前长度:每次测量时试件的长度。长度变化:当前长度与初始长度之差。收缩/膨胀率:长度变化量与初始长度的比值,乘以 100%。备注:可用于记录一些特殊情况或说明。
  • 我司自动快速热膨胀相变仪中标
    我司中标中科院金属研究所“全自动快速热膨胀相变仪”招标采购项目  我司北京销售部,在北京销售部经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中科院金属研究所的青睐,成功中标其“全自动快速热膨胀相变仪”招标采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。

膨胀剂膨胀定仪相关的方案

膨胀剂膨胀定仪相关的资料

膨胀剂膨胀定仪相关的论坛

  • 麦克压汞仪膨胀剂杯口裂了,请大家帮忙分析原因,谢谢。

    麦克压汞仪膨胀剂杯口裂了,请大家帮忙分析原因,谢谢。

    麦克压汞仪膨胀剂玻璃杯口裂了 ,我们测了两百个样品已经裂了5个膨胀计,操作密封时也没大力拧紧的,不知道什么原因?请大家帮忙解惑,实在受不了了![img]https://ng1.17img.cn/bbsfiles/images/2019/10/201910190428277256_4442_4022697_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/10/201910190431567016_622_4022697_3.jpg[/img]

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

膨胀剂膨胀定仪相关的耗材

  • 热膨胀芯(TEC)光纤跳线
    热膨胀芯(TEC)光纤跳线特性热膨胀芯增大了模场直径(MFD),便于耦合不仅更容易进行自由空间耦合,还能保持单模光纤的光学性能工作波长范围:980 - 1250 nm或1420 - 1620 nm光纤的TEC端镀有增透膜,以减少耦合损耗库存的光纤跳线:2.0 mm窄键FC/PC(TEC)到FC/PC接头2.0 mm窄键FC/PC(TEC)到FC/APC接头具有带槽法兰的?2.5 mm插芯到可以剪切的裸纤如需定制配置,请联系技术支持Thorlabs的热膨胀芯(TEC)光纤跳线进行自由空间耦合时,对位置的偏移没有单模光纤那样敏感。利用我们的Vytran® 光纤熔接技术,通过将传统单模光纤的一端加热,使超过2.5 mm长的纤芯膨胀,就可制成这种光纤。在自由空间耦合应用中,光纤经过这样处理的一端可以接受模场直径较大的光束,同时还能保持光纤的单模和光学性能(有关测试信息,请看耦合性能标签)。TEC光纤经常应用于构建基于光纤的光隔离器、可调谐波长的滤光片和可变光学衰减器。我们库存有带TEC端的多种光纤跳线可选。我们提供两种波长范围:980 nm - 1250 nm 和1460 nm - 1620 nm。光纤的TEC端镀有增透膜,在指定波长范围内平均反射率小于0.5%,可以减少进行自由空间耦合时的损耗。光纤的这一端具有热缩包装标签,上面列出了关键的规格。接头选项有2.0 mm窄键FC/PC或FC/APC接头、?2.5 mm插芯且可以剪切熔接的裸光纤。?2.5 mm插芯且可以剪切的光纤跳线具有?900 μm的护套,而FC/PC与FC/APC光纤跳线具有?3 mm的护套(请看右上表,了解可选的组合)。我们也提供定制光纤跳线。更多信息,请联系技术支持。 自由空间耦合到P1-1550TEC-2光纤跳线光纤跳线镀有增透膜的一端适合自由空间应用(比如,耦合),如果与其他接头端接触,会造成损伤。此外,由于镀有增透膜,TEC光纤跳线不适合高功率应用。清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。Item #PrefixTECEnd(AR Coated)UncoatedEndP1FC/PC (Black Boot)FC/PCP5FC/PC (Black Boot)FC/APCP6?2.5 mm Ferrule with Slotted FlangeScissor CutCoated Patch Cables Selection GuideSingle Mode AR-Coated Patch CablesTEC Single Mode AR-Coated Patch CablesPolarization-Maintaining AR-Coated Patch CablesMultimode AR-Coated Patch CablesHR-Coated Patch CablesStock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables耦合性能由于TEC光纤一端的纤芯直径膨胀,进行自由空间耦合时,它们对位置的偏移没有标准的单模光纤那样敏感。为了进行比较,我们改变x轴和z轴上的偏移,并测量自由空间光束耦合到TEC光纤跳线和标准光纤跳线时的耦合损耗(如右图所示)。使用C151TMD-C非球面透镜,将光耦合到标准光纤和TEC光纤。在980 nm 和1064 nm下,测试使用1060XP光纤的跳线和P1-1060TEC-2光纤跳线,同时,在1550 nm下,测试使用1550BHP光纤的跳线和P1-1550TEC-2光纤跳线。通过MBT616D 3轴位移台,让光纤跳线相对于入射光移动。 下面的曲线图展示了所测光纤跳线的光纤耦合性能。一般而言,对于相同的x轴或z轴偏移,TEC光纤跳线比标准跳线的耦合损耗低。而在x轴或z轴偏移为0 μm 时,标准跳线与TEC跳线的性能相似。总而言之,这些测试结果表明,TEC光纤对光纤位置的偏移远远没有标准光纤那样敏感,同时还能在zui佳光纤位置保持相同的耦合损耗。请注意,这些测量为典型值,由于制造公差的存在,不同批次跳线的性能可能有所差异。测量耦合性能装置的示意图。上图显示了用于测量耦合性能的测试装置。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。11550BHP标准光纤和P1-1550TEC-2热膨胀芯光纤之间的耦合性能比较图。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 UltraFiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。 Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a. 所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b. 这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c. 这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。MFD定义模场直径的定义模场直径(MFD)是对在单模光纤中传播的光的光束尺寸的一种量度。它与波长、纤芯半径以及纤芯和包层的折射率具有函数关系。虽然光纤中的大部分光被限制在纤芯内传播,但仍有极小部分的光在包层中传播。对于高斯功率分布,MFD是指光功率从峰值水平降到1/e2时的直径。MFD的测量通过在远场使用变孔径法来完成MFD的测量。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)的正弦为坐标作图得到数据。使用彼得曼第二定义确定MFD,该数学模型没有假设功率分布的特定形状。使用汉克尔变换可以从远场测量值确定近场处的MFD大小TEC光纤跳线,980 nm - 1250 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1060TEC-21060XP980 - 1250 nm12.4 ± 1.0 μm6.2 ± 0.5 μm850 - 1250 nm≤2.1 dB/km @980 nm≤1.5 dB/km @ 1060 nm0.070.14125 ± 0.5 μm /245 ± 10 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1060TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 m
  • 可膨胀石墨
    参数:联系我们sales@sunano.com.cnParameter:Contact us:sales@sunano.com.cn
  • 低温可膨胀石墨
    参数:联系我们sales@sunano.com.cnParameter:Contact us:sales@sunano.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制