当前位置: 仪器信息网 > 行业主题 > >

泡沫回弹测试仪

仪器信息网泡沫回弹测试仪专题为您提供2024年最新泡沫回弹测试仪价格报价、厂家品牌的相关信息, 包括泡沫回弹测试仪参数、型号等,不管是国产,还是进口品牌的泡沫回弹测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合泡沫回弹测试仪相关的耗材配件、试剂标物,还有泡沫回弹测试仪相关的最新资讯、资料,以及泡沫回弹测试仪相关的解决方案。

泡沫回弹测试仪相关的论坛

  • 如何做慢回弹泡沫的DMA?

    请教DMA大侠,有谁做过慢回弹泡沫的DMA吗?你们是用何种夹具测试的?样品尺寸?个人感觉这种材料太软,不易制样。听我们其它实验室说用双悬臂夹具,其它详情未知。这么软的泡棉用双悬臂一夹,不是会造成很大的形变吗?望做过这种材料的大侠指点一二。谢谢!

  • 【讨论】正确快速选择海绵泡沫检测设备

    产品名称:海绵/泡沫拉伸强度试验机 制造标准: (GB/T6344-2008)软质泡沫聚合材料 拉伸强度和断裂伸长率的测定GB/T10808-2006高聚物多孔弹性材料撕裂强度的测定 ISO 1798-1997柔性泡沫聚合材料,拉力强度和断裂时延伸率的测定测试方法 主要适用范围及功能: 适用于测定软质海绵泡沫聚合物材料的拉伸强度、断裂伸长率、海绵泡沫塑料材料撕裂性能的测试。本机采用单片机测控系统,大屏幕液晶显示,汉字打印机。触摸式按键,全中文显示界面,操作简单方便,测试精度高等特点。 2海绵/泡沫疲劳压陷试验机 产品名称:海绵/泡沫疲劳压陷试验机 制造标准: GB/T 18941-2003 ISO 3385《 软质泡沫聚合材料.用定载冲击法测定疲劳》 主要适用范围及功能: 海绵泡沫压缩疲劳试验机主要用于泡沫聚合材料的往复压缩试验,测定残余变形率。由此可以了解材料的动态疲劳特性。可以满足我国汽车工业标准QCT56-93《汽车座椅衬垫材料性能试验方法》。还可满足日本汽车工业标准JASOB408-84等国外标准的要求。 3 海绵泡沫切割机(实验室专用) 产品名称:海绵泡沫切割机(实验室专用) 一、主要适用范围及功能 本机主要用于泡沫材料的切割,其可将硬质泡沫、软质泡沫、塑料切割成方形、长方形、条形等,具有切割效率高,切割尺寸准确,精确度高等优点。4海绵泡沫塑料落球回弹试验机-(液晶显示) 制造标准:(GB/T6670-2008)软质泡沫聚合材料 落球法回弹性能的测定 ·主要适用范围及功能: 本机按照GB/T6670-2008设计制造,符合ASTM美标D3574及ISO8307测试标准.适用于测定软质聚氨酯泡沫塑料的落球式回弹性能.本仪器通过给定直径和质量的钢球在规定高度上自由落在泡沫塑料试样上,计算钢球回弹的最大高度与钢球落下高度比值的百分率既回弹率,以回弹率表示泡沫塑料的回弹性能。该机采用微处理器进行控制,液晶中文显示,并可打印试验数据。该机具有使用安全,可靠,测量精度高等特点。海绵泡沫压陷硬度测定仪(微机控制) 产品名称:海绵泡沫压陷硬度测定仪(微机控制) 制作标准: 软质聚氨醋泡沫塑料 软质泡沫聚合材料压陷性能测试标准 主要适用范围及功能 主要适用于软质泡沫聚和材料如:海绵、泡沫等压陷硬度在国家标准要求的A法、B法、C法下对标准尺寸的海绵、泡沫等试样进行标准的测试,测出海绵、泡沫等材料的压陷硬度。本仪器采用计算机控制,可对试验过程中的各种数据进行快速、准确的采集、处理,并可存取、显示、打印.

  • 【原创】海绵回弹仪使用说明书

    [b][size=4][font=宋体]一、概述[/font][/size][/b][size=3][font=宋体]本仪器是将钢球自由下落在软质泡沫塑料或其他弹性材料试样上,测定其回弹高度的仪器,主要用于测定聚酯弹性材料测试项目中的因弹性能(回弹系数)。参照中华人民共和国国家标准6670-86《软质泡沫回弹性能的测定》及美国3574-81《软质泡沫材料,粘合及模型聚氨酯泡沫塑料》的要求,我们设计了KY-C型泡沫回弹仪,该仪器采用微电脑和光电技术,电磁控制,数码管直接显示回弱系数值,具有测定精确、重复性好、使用方便、造型美观等特点,同时采用目测和仪器测试两种方法,既增加了仪器的可信度,又便于使用者对照使用,为精确测定软质泡沫塑料等弹性材料的回弹性能,减少人为误差和视觉疲劳提供了切实可行的仪器测定方法。[/font][/size][b][size=4][font=宋体]二、技术参数[/font][/size][/b][size=3][font=宋体]1[/font][/size][size=3][font=宋体]、电源电压:220V 50Hz[/font][/size][size=3][font=宋体]2[/font][/size][size=3][font=宋体]、落球高度:500mm[/font][/size][size=3][font=宋体]3[/font][/size][size=3][font=宋体]、钢球直径:16 mm 重量:16.7g[/font][/size][size=3][font=宋体]4[/font][/size][size=3][font=宋体]、仪器测试分辨率:1/10000秒[/font][/size][size=3][font=宋体]5[/font][/size][size=3][font=宋体]、回弹系数测量范围:25%-80%[/font][/size][size=3][font=宋体]6[/font][/size][size=3][font=宋体]、测试误差1%[/font][/size][size=3][font=宋体]7[/font][/size][size=3][font=宋体]、仪器尺寸:长250 mm宽200 mm 高650 mm[/font][/size][b][size=4][font=宋体]三、试样要求[/font][/size][/b][size=3][font=宋体]泡沫塑料成型后,至少应存放72小时才能进行测试。测试前,试样应在温度23±2℃,相对湿度45%-50%的环境中进行状态调节至少16小时,然后在上述环境中进行测试。但在一般环境中也可进行测试[/font][/size][size=3][font=宋体]1、[/font][/size][size=3][font=宋体]试样为长方体,上下两表面应相互平行,试样不允许带表皮。[/font][/size][size=3][font=宋体]2、[/font][/size][size=3][font=宋体]试样尺寸:长100 mm、宽100 mm、高50±2 mm。[/font][/size][size=3][font=宋体]3、[/font][/size][size=3][font=宋体]数量:每组试样3个[/font][/size][size=3][font=宋体]4、[/font][/size][size=3][font=宋体]取样方向:落球回弹方向应与实际使用方向一致。[/font][/size][b][font=宋体]四、操作方法[/font][/b][font=宋体]:[/font][size=3][font=宋体]1[/font][/size][size=3][font=宋体]、首次使用该仪器要调节底座的底脚,使右角方水准仪中的水泡调至圆圈中央,保证底座处于水平状态[/font][/size][size=3][font=宋体]2[/font][/size][size=3][font=宋体]、接通电源,按下电源开关键,数码管显示“00”字样,则仪器进入工作状态,将事先切好的样品放在上面[/font][/size][size=3][font=宋体]3[/font][/size][size=3][font=宋体]、把钢球放在固定位置上面,待磁铁吸住,按下清零键,数码管显示零[/font][/size][size=3][font=宋体]4[/font][/size][size=3][font=宋体]、按启动,此时钢球会自由下落在海绵上弹起,数码管直接显示回弹系数值,记下此时的数据。[/font][/size][size=3][font=宋体]5[/font][/size][size=3][font=宋体]、连续做4至5次同样的测试,求其平均值,即为该式样的回弹系[/font][/size][size=4][font=宋体]数。[/font][/size][b][size=5][font=宋体]注意事项:[/font][/size][/b][size=3][font=宋体]1[/font][/size][size=3][font=宋体]、试样在试样要求的环境中测试较好,如没有条件,则在通常情况也可[/font][/size][size=3][font=宋体]2[/font][/size][size=3][font=宋体]、做测试时,若钢珠在自由下落过程中,碰到测试装置,则此所午数据无效,需重新补做。如果钢球在回弹过程中目测不到,表明回弹系数在25%以下。[/font][/size][size=3][font=宋体]3[/font][/size][size=3][font=宋体]、式样为长方体,要平整,不能倾斜,不允许带表皮,以免影响测试数据,如果海绵高度不够,下面可以垫同样的海绵使其达到规定高度[/font][/size][size=3][font=宋体]4[/font][/size][size=3][font=宋体]、不用时务必拔去电源[/font][/size][size=3][font=宋体]5[/font][/size][size=3][font=宋体]、测试时,按清零、启动键持续1秒,如速度较快,会使电流抖动,数据产生误差[/font][/size]

  • 预购回弹性测试仪,不知道哪个好

    各位大侠,小女子最近要采购一台测试橡胶回弹性的仪器,根据标准DIN 53512、ISO 4662、ASTM D1054测试,我只知道高铁有这类的仪器,不知道还有其他厂家么,哪个比较好呢??求帮助~~~谢谢大家!

  • 【原创大赛】织物柔软性判断—回弹率的测试

    【原创大赛】织物柔软性判断—回弹率的测试

    前言不论是服装还是毛毯都有一定的柔软度,一般我们都会通过手感来判断织物的柔软性,然而有没有一种能通过数据判断的方法哪,下面就介绍一种我们自己实验室创作的方法,供大家参考。一、回弹性测试用的设备回弹性测试仪一般是自己织造的设备,主要目的是为了保证测试方便,且准确;主要是由一个垂直方向能够测量的刻度尺制成。也可以用试管架和钢直尺组成。 http://ng1.17img.cn/bbsfiles/images/2013/10/201310021613_468987_1954597_3.jpg 图1 —自制的回弹性测试仪二、回弹性的测试方法 1. 测试前准备:织物测试前要经过折叠,通常要叠八层; http://ng1.17img.cn/bbsfiles/images/2013/10/201310021613_468988_1954597_3.jpg图2 —测试前织物的叠法2. 将折叠后的试验进行挤压,测试此时的高度L0 http://ng1.17img.cn/bbsfiles/images/2013/10/201310021614_468989_1954597_3.jpg图3 —挤压后的高度L0 3. 然后将产品松开,测量此时的高度L1http://ng1.17img.cn/bbsfiles/images/2013/10/201310021614_468990_1954597_3.jpg 图4 —回弹后的高度L1 4. 回弹率的计算根据挤压前后两次测量的高度来计算回弹率 http://ng1.17img.cn/bbsfiles/images/2013/10/201310021615_468991_1954597_3.jpg如:L0=3.6cm, L1=5.3cm则,T=47.2%三、回弹率的判断回弹率值得产品柔软性,一般情况下柔软性越好回弹率越大。总之,回弹率的测试正好反应了产品柔软度的,然而测试时还要注意一下几点: 1. 一般情况下样品越干柔软度越好,所以测试前样品要经过调湿并达到平衡;2. 样品高度测量时,一定要保证挤压尺寸在一个水平面上;备注:本方法为自创方法,适合部分产品,不可照搬照抄。

  • 【求购】求助!可以测试铝箔弯曲回弹试验的仪器

    大伙知道哪里有生产可以测试铝箔弯曲回弹性能的试验仪器吗?铝箔厚度在10um以下,由于客户对铝箔进行冲压,生产成波形翅片,因此需要评价材料在此冲压条件下成形性能。我们需要在一定的压力下(仪器可以调节施加压力),将铝箔片冲压成V形,卸载施加压力后,可以测得铝箔回弹距离。试验仪器有点类似GB/T 15825.5-1995 金属薄板成形性能与试验方法 弯曲试验 国标中图1所示仪器。

  • 泡沫塑料检测|泡沫塑料制品检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37875.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]泡沫塑料是由大量气体微孔分散于固体塑料中而形成的一类高分子材料,具有质轻、隔热、吸音、减震等特性,且介电性能优于基体树脂,用途很广,几乎各种塑料均可作成泡沫塑料。泡沫塑料检测范围硬质聚氨酯泡沫塑料、聚苯乙烯泡沫塑料、pe泡沫塑料、热固性丙烯酸酯树脂泡沫塑、挤塑聚苯乙烯泡沬塑料、氨基泡沫塑料、酚醛树脂泡沫塑料、环氧泡沫塑料、泡沬塑料颗粒、泡沫塑料玩具、软质泡沫塑料、复合泡沫塑料、泡沫塑料饭盒等。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]泡沫塑料检测项目电学性能检测:电绝缘性,介电常数,介电损耗等。环境性能检测:重金属、耐酸性、耐碱性,耐盐性,耐溶剂性、卤素检测、多环芳经等。物理性能检测:密度、表观密度,厚度、尺寸、吸水性、韧性、易碎性、透气性、透湿性、表面粗糙度、门尼粘度、折射率、透光率、光泽度等。力学性能,弹性模量、断裂伸长率、摩擦性能、硬度、刚度、拉伸、抗压强度、尺寸稳定性、透湿系数、粘合强度、应力松弛、摩擦性能、剥离性能、耐疲劳性能、剪切强度、压缩蠕变、弹性模量、摩擦系数、吉门试验等。燃烧性能检测:垂直燃烧、水平燃烧、烟密度、氧指数、熔点、维卡软化、防火等级等。热学性能:热稳定性、熔融温度、膨胀系数、氧化指数、线膨胀系数、水蒸气透过性、脆化温度、失强温度、比热容、流动性等。老化测试:耐高低温、盐雾试验、紫外老化、热老化性能、氩灯老化、高低温冲击、热空气老化、臭氧老化、碳弧灯老化等。生物降解性能:抗菌性能、防霉性能、生物降解等。可靠性试验:振动试验、机械中击试验、碰撞试验、包装跌落、堆码试验、温度/湿度/振动三综合试验、快速温变、恒温恒湿等。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]泡沫塑料[/td][td]泡沫塑料和橡胶线性尺寸的测定[/td][td]GB/T 6342-1996[/td][/tr][tr][td]泡沫塑料[/td][td]泡沫塑料及橡胶表观密度的测定[/td][td]GB/T 6343-2009[/td][/tr][tr][td]泡沫塑料[/td][td]绝热用模塑聚萃乙烯泡沫塑料[/td][td]GB/T 10801.1-2002[/td][/tr][tr][td]泡沫塑料[/td][td]硬质泡沫塑料的试验方法 第3部分: 压力的测定[/td][td]AS 2498.3-1993[/td][/tr][tr][td]泡沫塑料[/td][td]硬质泡沫塑料的试验方法 第1部分:取样和调节[/td][td]AS 2498.1-1993[/td][/tr][/table]

  • 【转帖】提高回弹法检测混凝土抗压强度精确度的探讨

    提高回弹法检测混凝土抗压强度精确度的探讨回弹法检测混凝土抗压强度在我国使用已达四十余年,因其简便、灵活、准确、可靠、快速、经济等特点而倍受工程检测人员的青睐,是我国目前工程检测中应用最为广泛的检测仪器之一。当对工程结构质量有怀疑时,均可运用回弹法进行检测。但回弹法在使用过程中还是出现了较多的操作不规范、随意性大、计算方法不当等问题,造成了较大的测试误差。如何保证检测精度,使其在监督检验结构工程和混凝土质量中发挥应有的作用,已成为众多工程建设者所关注的话题。要提高回弹法的检测精度,应综合考虑以下几个方面因素。 1  注意回弹法检测的适用条件 回弹法是通过回弹仪检测混凝土表面硬度从而推算出混凝土强度的方法,当出现标准养护试件数量不足或未按规定制作试件 对构件的混凝土强度有怀疑 或对试件的检验结果有怀疑时,可按《回弹法检测混凝土抗压强度技术规程》(JGJPT2322001) (以下简称《规程》) 进行检测。必须注意回弹法的使用前题是要求被测混凝土的内外质量基本一致,当混凝土表层与内部质量有明显差异,如遭受化学腐蚀、火灾、冻伤,或内部存在缺陷时,不能直接采用回弹法检测混凝土强度。 2  测试前必须进行回弹仪的率定试验回弹仪的质量及测试性能直接影响混凝土强度推定的准确性,只有性能良好的回弹仪才能保证测试结果的可靠性。回弹仪的标准状态应是在洛氏硬度HRC 为60 ±2 的标准钢砧上,垂直向下弹击三次,其平均率定值应为80 ±2 ,否则回弹仪必须进行调整或校验。在单个构件检测中,一般只需测试前进行率定即可,但在大批量检测时,由于受现场灰粉及回弹仪自身稳定性等因素的影响,随着工作时间的延长,回弹仪的工作状态逐渐低于标准状态。有时一个批量检测项目检测前后回弹仪率定值的差异较大,从而导致测试结果偏低。因此,在大批量检测时,应随身携带标准钢砧,以便随时进行率定检测,适时更换,从而保证检测结果的精确性。 3  测区选择要正确 检测构件布置测区时,相邻两测区的间距应控制在2 m以内,测区离构件端部或施工缝边缘的距离不宜大于0. 5 m且不宜小于0. 2 m 测区应选在使回弹仪处于水平方向检测混凝土浇筑面,并选在对称的两个可测面上,如果不能满足这一要求时,也可选在一个可测面上,但一定要分布均匀,在构件的重要部位及薄弱部位必须布置测区,并应避开预埋件。当遇到薄壁小构件时,则不宜布置测区,因为薄壁构件在弹击时产生的振动,会造成回弹能量的损失,使检测结果偏低。如果必须检测,则应加以可靠支撑使之有足够的约束力时方可检测。 4  测试动作要规范,切忌随意操作 回弹法本身是一种科学的操作方法,国家也专门制定了相应的规程,不容许操作人员随意操作。回弹的精度也取决于操作人员用力是否合适和均匀,是否垂直于结构或构件的表面,是否规范操作。但实际检测中却很少有人严格按照标准规定的技术要求进行检测操作,责任心不强,敷衍了事,这样的检测将带来较大的测试误差,无法保证回弹质量,为此,应加强检测人员的职业道德素养,提高检测责任心,也只有如此,才能真正提高回弹法的检测精度。 5  消除测试面因素的影响 《规程》规定:用于回弹检测的混凝土构件,表面应清洁、平整,不应有疏松层、浮浆、油垢、蜂窝、麻面。我们在检测时经常遇到麻面或有浮浆的构件,回弹前必须有砂轮磨平,否则结果偏低。在测试面达到清洁、平整的前提下,还需注意混凝土表层是否干燥,混凝土的含水率会影响其表面的硬度,混凝土在水泡之后会导致其表面硬度降低。因此,混凝土表面的湿度对回弹法检测影响较大,对于潮湿或浸水的混凝土,须待其表面干燥后再进行测试。建议采用自然干燥的方式。禁止采用热火、电源强制干燥,以防混凝土面层被灼伤,影响检测精度。 6  注意碳化深度的测试取值 碳化深度值的测量准确与否与回弹值一样,直接影响推定混凝土强度的精度。在碳化深度的测试中,注意其深度值应为垂直距离,而非孔洞中呈现的非垂直距离。孔洞内的粉末和碎屑一定要清除干净之后再测量,否则将难以区分已碳化和未碳化的界线,造成较大的测试误差。测量碳化深度值时最好用专用测量仪器,不能采用目测方法。还有一种情况应特别注意,在检测已用粉刷砂浆覆盖的构件碳化深度时,由于测试面受水泥砂浆的充填渗透影响,其表层含碱量较高,而用于碳化测试的酚酞酒精溶液遇碱即变红,极易使人产生视觉误差,认为其碳化深度值很小。如果认真观察测试孔,可发现外表层颜色较深,而孔内混凝土所变的颜色较浅,这颜色较浅部分的厚度即为混凝土实际的碳化深度。这一点细微的差别,检测人员一定要注意区分。 7  注意混凝土回弹值的修正 近年来,随着城市泵送混凝土使用的普及,采用回弹法按测区混凝土强度换算值表推定的测区混凝土温度值将明显低于其实际强度值。这是因为泵送混凝土流动性大,粗骨料粒径较小,砂率增加,混凝土的砂浆包裹层偏厚,表面硬度较低所致。因此在运用回弹法检测混凝土强度时,必须要事先了解到施工单位浇注混凝土的方式,并注意修正。另外,当检测时回弹仪为非水平方向且测试面为非混凝土侧面时,一定要先按非水平状态检测时的回弹值进行修正,然后再按角度修正后的回弹值进行不同浇筑面的回弹值进行修正,这种先后修正的顺序不能颠倒,更不能用分别修正后的值直接与原始值相加或相减,否则将造成计算错误,影响对混凝土强度的推定。 8  测试异常时,需与钻芯法配合使用现行的工程施工中,普遍采用胶合板面的大模板,此种模板密闭性能极好但不透气,振捣过程中产生的气泡聚集在混凝土表面和大模板之间,不易排出,致使拆模后在混凝土表面存在大量的微小气孔,使混凝土表面不是很密实,如果混凝土养护跟不上,混凝土表面将不能有效地进行水化反应,不仅有粉化现象,而且混凝土碳化深度较大,造成混凝土表面强度低。如我市某一框架结构商住楼,在使用回弹仪抽检三层剪力墙混凝土时发现,全部抽检构件混凝土表面强度都比较低,只达到原设计强度等级的67 %。经查施工技术资料,该工程的混凝土配合比以及使用的原材料均不存在问题,施工单位混凝土搅拌后的管理也比较到位,遂用钻芯法取样复检,芯样上观察,混凝土表层10 mm 较疏松。内层较为坚硬,芯样检测结果是实际混凝土抗压强度符合原设计强度等级,从而避免了一次误判。 9  建立本地区的专用测强曲线 国家标准虽给出了全国通用回弹法检测的测强曲线并由此得到测定混凝土强度值换算表,但全国统一曲线仅综合考虑到全国各地的原材料使用情况,没有把碎、卵石普通混凝土区分开来,而实际上回弹法检测碎、卵石普通混凝土强度是有很大差异的。而地区测强曲线正是充分考虑本地区的混凝土原材料、气候条件和成型养分护工艺,通过试验、校核、修正所建立的曲线,与通用测强曲线相比较,该曲线比通用测强曲线更接近实验数据,能更好的推算本地区混凝土的实际强度。因此,建立本地区的专用测强曲线,能有效地提高回弹法的检测精度。

  • 烹调中产生的泡沫 该不该撇掉?

    泡茶、榨果汁、煮肉时,水上面都会出现一层泡沫。有的人说这是食材的精华要保留,有的人怀疑其中含有害物质得除掉。到底该如何和泡沫“和平相处”呢?《生命时报》采访美国普度大学农业与生物系食品工程专业博士云无心为大家解开“泡沫之谜”。 煮粥或煮面的泡沫  大米和面粉中都含有一些蛋白质,煮的过程中会有一些溶到水中起到表面活性剂的作用。此外,大米和面中的淀粉也会有一些溶到水中,增加水的黏度。  高黏度的汤有助于泡沫的稳定存在,也就是说汤的黏度越高,泡沫可能越多。这些泡沫对健康没有害处,可以放心食用。  炖肉的泡沫  煮肉时的泡沫稍微复杂一些,其起泡的主要成分也是蛋白质。肉中的脂肪以及其他成分也都会出现在泡沫中,此外,肉中的许多血管,以及残留的一些血液也会跑到汤里,经常产生令人反感的气味和外观。  所以,煮肉初期产生的泡沫主要源自肉中残留的血水,伴随着一些杂质,最好撇去。如果此后再产生白色的泡沫,主要是肉中的蛋白质,可以保留。  泡茶的泡沫  泡茶时产生泡沫的物质叫做“茶皂素”,是皂苷的一种。根据目前的科学研究,它可能具有抗菌作用,并能抑制脂肪的吸收。因此,喝茶时不要把这层泡沫去掉。不过,茶中的茶皂素实在太少,距离产生抗菌等健康作用所需要的量差得很远。  打豆浆的泡沫  打豆浆时产生的泡沫主要是其中的皂苷产生的。它本身没有什么问题,但它的存在会使得豆浆在没有被加热到沸腾时就满锅泡沫,造成沸腾的假象。  此时的豆浆中含有蛋白酶抑制剂等反营养物质,会影响蛋白质的吸收。所以,可以加一点油来消泡,或者小火加热等泡沫消失,把豆浆加热到真正沸腾。  咖啡的泡沫 咖啡中能产生泡沫的成分很多,细微的咖啡颗粒本身也能产生泡沫。而卡布其诺的泡沫则是牛奶产生的。不管是咖啡本身还是牛奶产生的泡沫,不损害健康,可以尽情享用。  榨果蔬汁的泡沫  榨果蔬汁时的泡沫跟咖啡中的泡沫一样,有多种物质可能产生,它们也都是果蔬汁中的营养成分,并不影响健康。

  • 【原创】罗氏泡沫测定

    【原创】罗氏泡沫测定

    http://ng1.17img.cn/bbsfiles/images/2011/06/201106021521_297534_1626663_3.jpg知道上面这个家伙是做什么的吗?对了,这个就是传说中的洗涤剂行业用来测定泡沫厚度的罗氏泡沫仪了。十分简单的设计,胖嘟嘟的,要连接水域漕,水温50℃进入夹套,会在壁上形成小小的泡泡。可好玩了。那么我们如何测量洗涤剂中的泡泡呢?因为我没有做过。希望大家能够分享下经验吧。来丰富我们这个版面。你用罗氏泡沫测试那种产品?测试泡沫时候需要注意哪些问题?http://ng1.17img.cn/bbsfiles/images/2011/06/201106021537_297536_1626663_3.jpg

  • 如何除去加热过程中产生的泡沫

    小弟我用同时蒸馏萃取装置测定皮蛋中挥发性风味物质,不过加热时皮蛋会产生大量的气泡,温度高一些的话泡沫会直接冲进蒸馏萃取管子里,可是温度低了时蒸汽又上不去,请问大侠们知道有什么东西可以除加热过程中产生的泡沫又不影响沸腾呢?

  • 【调查】回弹仪使用情况

    我国回弹仪产品标准只包括有直读式,单纯数显式回弹仪没有检定标准,不宜使用。如果是普通结构检测,或按批检测,回弹工作量很大,使用直读式比较经济,精度和准确度也能够满足。如果是鉴定检测,可以使用数显式。数显式回弹仪功能先进,一人操作,数据自动计算,但有时容易出故障,价格较贵。直读式要两人操作,相对较慢,但故障较少,价格便宜。调查一下大家单位用何种回弹仪。欢迎大家发表自己的看法。

  • 【讨论】泡沫对培养物的影响

    在培养过程中都会遇到培养体系出现泡沫的情况,大家经常会采用机械除泡或用消泡剂除泡。但是泡沫对培养物的影响一直未能搞清楚,至少我手头的基本资料都没有合理的解释,可是泡沫对培养物会造成负面的影响这是肯定的,甚至会造成污染。 大家对泡沫的起因和对发酵造成的影响有何理解?在发酵过程中控制泡沫的形成有何方法?

  • 【原创大赛】菜鸟实验经历之化妆品泡沫的测定

    【原创大赛】菜鸟实验经历之化妆品泡沫的测定

    菜鸟实验经历之化妆品泡沫的测定题记:开展新项目测试化妆品泡沫的测定,之前从未接触过类似的实验,没有相通之处,比如重金属测试,有的新项目前处理一致性较高,至少相类似。有机类项目测试也是一样,前处理提取多少有相通之处。此次开展泡沫测定项目,没有类似经验,网络上也很少该项目实际碰到问题的讨论。只能凭标准的简单几句话进行摸索,菜鸟实验经历就这么开始了。1. 测试参考标准产品标准:QB/T1974-2008洗发液(膏)限量要求:成人产品透明型≥100mm,非透明型≥50mm。 2. 仪器与试剂(洗发液)a) 罗氏泡沫仪;b) 温度计:精度±2℃;c) 天平:精度0.1g;d) 超级恒温仪:精度±1℃;e) 量筒:100mL;f) 烧杯:1000mL;g)试剂:1500mg/kg硬水:称取无水硫酸镁(MgSO4)3.7g和无水氯化钙(CaCl2)5.0g,充分溶解于5000ml蒸馏水中。3. 操作程序 将超级恒温仪预热到(40±1)℃,使罗氏泡沫仪恒温在(40±1)℃。称取样品2.5g,加入1500mg/kg硬水100mL,再加入蒸馏水900mL,加热至(40±1)℃。搅拌使样品均匀溶解,用200mL定量漏斗吸取部分试液,沿泡沫仪管壁冲洗一下。然后取试液放入泡沫仪底部对准标准刻度至50mL,再用200mL定量漏斗吸取试液,固定漏斗中心位置,放下试液,立即记下泡沫高度。结果保留整位数。4. 实验碰到的问题 跟同事一起采用新购的罗氏泡沫仪按照实验操作程序测试,测试结果只有30mm左右,反复测试还是如此,初步判断客户该批样品该项目应该是没有问题的,估计还是测试方面出现了偏差,网络查找资料,希望能借鉴前辈经验。估计该项目比较偏,没有查找的有价值的经验,倒是找到很多厂家卖罗氏泡沫仪的资料,然后下载了一些说明书,提示说实验操作要快,温度的变化对泡沫的产生影响较大,吸取初次教训,加热到41度然后开始快速测试,效果还是不佳,这时有点怀疑样品是否有问题。从某同事使用的飘柔洗发液(大品牌,应该是合规的)取了部分来做实验,测试结果还是不理想,只有40mm左右。 5. 破局,思维转换 同事网络查找厂家资料发现有2种型号的罗氏泡沫仪,分别为2151型罗氏泡沫仪及2152型改进罗氏泡沫仪。然后不断的查找资料终于还是发现了问题所在,我们购买的是2152型改进罗氏泡沫仪,适用于表面活性剂发泡力的测定(改进Ross-Miles法,GB/T 7462-94)。而我们的标准需要采用的是2151型罗氏泡沫仪,国标啊国标,你的规定能否详细些,避免让我们这些没有经验的检测人员无所适从,自行摸索,走了不少弯路。http://ng1.17img.cn/bbsfiles/images/2013/10/201310051337_469287_2329805_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/10/201310051337_469288_2329805_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/10/201310051337_469289_2329805_3.jpg图1、2151型罗氏泡沫仪 图2、2152型改进罗氏泡沫仪 图[/fo

  • 【转帖】聚氨酯泡沫塑料的阻燃

    聚氨酯泡沫塑料的阻燃聚氨酯泡沫塑料由于含可燃的碳氢链段、密度小、比表面积大,未经阻燃处理的聚氨酯是可燃物,遇火会燃烧并分解,产生大量有毒烟雾,特别是聚氨酯软泡开孔率较高,可燃成分较多,燃烧是由于较高的空气流通性供给氧气,且不易自熄,给灭火带来困难。1. 阻燃原理一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。在聚氨酯泡沫塑料中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。含卤素阻燃剂主要在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。据有关资料,为使泡沫获得较满意的阻燃性能,茂密体中溴(Br)质量分数应达12% -14%,或氯(cl)质量分数达18% ~ 20%。当磷- 卤联用时,由于存在一定的协同效应,故0. 5%P +(4% - 5%)Br 或1%P +(8% - 12%)CI 即可使聚氨酯泡沫具有自熄性。典型的磷- 氮阻燃体系可有聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气:在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。同时,它也是一种烟气抑制剂。2. 添加阻燃剂制备阻燃泡沫塑料人们发现,含磷、氮、卤素、锑、铝,硼等元素的塑料制品具有较好的阻燃性能,一般可通过在制备聚氨酯泡沫塑料时在发泡配方中添加阻燃剂,使聚氨酯泡沫塑料具有一定的阻燃性能。选择阻燃剂,除了要考虑它对制品的阻燃效果(包括长期阻燃效果、遇火时的烟雾性等),还需考虑加入阻燃剂对发泡工艺的影响,以及对制品物性的影响。2.1 添加液态有机阻燃剂在聚氨酯泡沫塑料中应用最早而且成本经济的品种是TCEP。它容易迁移和挥发,阻燃持久性较差。为了减少挥发损失,可选用多氯化(多)磷酸酯和高分子量的齐聚磷酸酯。如三(二氯丙基)磷酸酯和卤代双磷酸酯。在硬泡配方中加入20%以内的三(2,3—二氯丙基)磷酸酯,可使硬泡的氧指数达26:添加15%该阻燃剂可使软泡的阻燃性能达到UL94HF - 1 或ASTMDl692阻燃要求。卤代双磷酸酯是聚氨酯泡沫塑料常用的液态低挥发阻燃剂,耐水解性和热稳定性较好,尤其适用于聚胺酯软泡的阻燃。典型的产品有:四(2 - 氯乙基)二亚乙基醚二磷酸酯,含磷12%,氯27%;四(2 - 氯乙基)亚乙基二磷酸酯,含磷13%、氯30. 5%。其他产品如3 - 亚丙基二磷酸酯、四(1,3 - 二氯- 2 - 丙基)—亚乙基二磷酸酯、2 - 亚乙基二磷酸酯,在聚氨酯泡沫特别是在软泡中具有良好的阻燃效果。相对于100 份聚醚多元醇,在配方中加入12 份上述阻燃剂中的一种,可使软泡的氧指数大于23,软泡的燃烧速率降低到原来的50%以下,可使软泡自熄;添加量为20%时,水平燃烧速率下降64%。阻燃剂用量15 ~ 10 份时,氧指数可达25。甲基磷酸二甲酯是一种不含卤素的高磷液态阻燃剂,磷元素的质量分数高达25%,因此用量小,软泡种添加5% - 10%的DMMP,可达到离火自熄的效果。在硬泡加入5%的DMMP,相当于加入14%TCEP 火加入18%磷酸三(2,3 - 氯丙基)酯所达到氧指数24. 5 的相似阻燃效果。加阻燃剂延缓了泡沫的热分解,使得起始分解温度提高。在一定程度内,泡沫中阻燃剂含量越高,则阻燃性越高。阻燃剂对制品的某些物性有不良影响,所以一般应在保证泡沫物性的前提下,尽可能少地使用阻燃剂而达到阻燃效果。液态添加型阻燃剂的加入对发泡工艺的影响不大,但由于阻燃剂的增塑作用,将使得泡沫的硬度降低;并且阻燃剂添加量多时会明显延缓发泡时间。卤代磷酸酯类阻燃剂虽然与多元醇等原料有良好的混溶型,常温下为液态,但泡沫燃烧时,阻燃剂也分解,产生大量烟雾和腐蚀刺激性气体,因此国内外近年来关注无卤阻燃剂,包括含磷、氮元素的阻燃剂及无机阻燃剂。2.2 添加固态阻燃剂固态阻燃剂添加到液态原料中容易沉淀,一般在发泡前或发泡时加入。在组合聚醚中加入固态阻燃剂后一般需不停搅拌,以使料液均匀。固态阻燃剂会使物料粘度增加,降低了泡沫物料的流动性,添加无机阻燃填料对泡沫性能有一定的负面影响。颗粒越细越有利于阻燃性能的发挥,并且减轻对泡沫物性的不利影响。三聚氰胺是一种用于模塑聚氨酯泡沫的固体阻燃剂,主要通过分解吸热发挥阻燃效果。三聚氰胺研成微细颗粒,加入到聚醚多元醇中,进行发泡,它多用于软泡的阻燃。2.3 固态和液态阻燃剂复合使用固态阻燃剂使物料粘度加大,而液态阻燃剂降低料液粘度,它们可结合使用,不仅具有协同效应,而且可调节反应物料的粘度,得到高阻燃的聚氨酯泡沫塑料。天津消防科学研究所采用高用量固态阻燃剂与液态阻燃剂相结合的方法,研制出难燃、低烟硬质聚氨酯泡沫塑料,泡沫的阻燃性能高,氧指数可达30 以上,甚至50,可以通过建材GB8624 难燃B1 级试验;烟密度小,发烟速度低,比一般阻燃产品降低了数倍;耐火隔热性能优良。由于采用了大量粉末阻燃填料,不适合于喷涂、连续化生产,但可机械混合灌注成型。2.4 阻燃剂复合使用时的协同作用不同的阻燃元素,不同的阻燃剂复配使用,会产生良好的协同效应。如磷化物与含氮化物等一起使用,有显著的协效作用。磷、卤阻燃剂共同使用时,阻燃效果更佳。固体阻燃剂三氧化锑粉末与卤化物配合使用才能发挥较好的阻燃效果。有研究表明,采用粉碎并经表面处理的三聚氰胺分散于聚醚多元醇中,并添加含溴、氯和磷的复合阻燃剂T201,泡沫物性没受阻燃剂影响,可制得泡沫氧指数达26 的阻燃聚氨酯软泡,达到汽车座椅所要求得阻燃性能。但不是所有的不同类型的阻燃剂都产生协同效应。据报道,在通常情况下,含卤代磷酸酯不与锑化合物产生协同阻燃效应。其原因可能是当被阻燃的材料受热时,所含得卤代磷酸酯与锑化合物作用生成不挥发的磷酸锑,从而阻碍锑化合物进入[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发挥阻燃作用所致。3. 结束语在对聚氨酯泡沫塑料进行阻燃时,不仅需尽可能减少阻燃处理对发泡工艺和泡沫性能的不利影响,还必须注意环保,采用高效、低卤或无卤阻燃剂。聚氨酯泡沫塑料用于许多领域,作为一种日常生活中接触到的材料,国内外对聚氨酯泡沫塑料的阻燃越来越重视,在许多应用领域都有严格的阻燃要求。对阻燃问题不重视,就会给使用这种泡沫塑料的场所带来了火灾隐患。

  • 【原创大赛】金属泡沫和多孔金属材料热导率测试方法选择和测量准确性保证措施

    【原创大赛】金属泡沫和多孔金属材料热导率测试方法选择和测量准确性保证措施

    [align=center][color=#990000]金属泡沫和多孔金属材料热导率测试方法选择和测量准确性保证措施[/color][/align][color=#990000][/color][align=center]Selection of Thermal Conductivity Test Methods for Foam and Porous Metal Materials and Measures to Ensure Measurement Accuracy[/align][align=center][img=,690,311]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101109288670_1537_3384_3.png!w690x311.jpg[/img][/align][color=#990000]摘要:针对金属泡沫和多孔金属材料热导率测试,本文介绍和分析了常用的各种测试方法,选择了热流计法作为金属泡沫和多孔金属材料热导率测试的适合方法,提出了热流计法测试过程中测量准确性的保障措施,同时针对热流计法的不足,提出了一种新型绝对瞬态法(热波法)。热波法具有更高的测试精度、宽热导率和温度测试范围、样品形式多样以及测试仪器低造价的特点。[/color][color=#990000]关键词:泡沫金属,多孔金属,热导率,稳态法,瞬态法,保护热板法,热流计法,热波法[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size]  金属材料中存在有很大体积比(典型的约占75%~95%)的气孔,如果这些气孔是相互独立的闭孔,则称为金属泡沫;如果气孔是开孔,则称为多孔金属。为叙述方便,本文将金属泡沫和多孔金属通称为多孔金属材料。  多孔金属材料的类型众多,如典型的泡沫铜铝镍材料,如图1-1所示;如3D打印的TPMS晶格结构钛合金多孔材料,如图1-2所示。[align=center][color=#990000][img=,570,350]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101113113659_2804_3384_3.jpg!w570x350.jpg[/img][/color][/align][align=center][color=#990000]图1-1 各种规格的泡沫铝[/color][/align][align=center][color=#990000][img=,690,279]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101113237076_4077_3384_3.jpg!w690x279.jpg[/img][/color][/align][align=center][color=#990000]图1-2 TPMS晶格结构钛合金多孔材料[/color][/align]  由于多孔金属材料的独特结构,特别是孔的闭合形式、形状、尺寸和气孔率的不同,使得多孔金属材料整体看似是均质材料,但在小尺度上又有严重的非均质特性,这就给这种材料的热导率准确测量带来的很大困难。由此,如何选择合理的热导率测试方法,以及采取哪些措施来保证测量的准确性,就成为准确测试评价多孔金属材料传热性能的关键。  本文将特别针对多孔金属材料,介绍现有的各种热导率测试方法,选择出多孔金属材料热导率测试的合适方法,同时介绍为保证热导率测量的准确性需要哪些具体措施。[size=18px][color=#990000]2. 常用热导率测试方法介绍[/color][/size]  多孔金属是一种以热导率普遍较高的金属材料为基体且内部含有大量气孔的刚性材料。由于气孔的存在,使得多孔金属材料整体的密度要远小于基体金属密度,因此多孔金属材料的整体热导率一般会比基体金属热导率低1个数量级以上,但由于有基体金属的存在使得整体热导率又无法达到绝热材料的水平,通常依据基体金属的不同,多孔金属材料的热导率在0.05~10W/mK范围内。  由于多孔金属材料的热导率介于低导热和高导热之间,理论上可以采用很多测试方法对多孔金属材料热导率进行测量,这些测试方法主要分为稳态法和瞬态法两类。[size=16px][color=#990000]2.1. 稳态法[/color][/size]  稳态法热导率测试是对样品在所关心的方向上施加了与时间无关的温度梯度,其主要优点是高精度、测量公式简单和测量定向热导率的能力。此外,测试过程中的热流穿过整个被测样品,是对完整样品的整体热导率进行测量。稳态法测量中需要在被测样品上形成一定的温度梯度,温度梯度可能使得热导率随温度变化的测量变得复杂,因此稳态法测量得到的是整体样品的等效热导率,代表了导热、对流和辐射三种传热机理的耦合效应。稳态法另一个特点是确保热稳态所需的测量时间较长,特别是对于低导热材料。  在测量精度最高的绝对稳态方法中,可直接测量热导率,这种方法的典型代表是常用的保护热板法,相应的标准有GB/T 10294、ISO 8302和ASTM C177。样品位于热板和冷板之间以在样品内产生温度梯度,当冷热板度差小于20℃时,测量的是热导率;冷热板温差大于20℃,由于热流和辐射传热的存在,测量的是等效热导率。保护热板法能作为一种绝对测量方法,是因为其中心量热计中的电加热热量完全无损的流经被测样品,精确测量并可溯源的电能转换为量热计热量输出,特殊的热保护装置对量热计进行绝热隔离消除侧向热损。保护热板法的测量原理如图2-1所示。[align=center][color=#990000][img=,516,301]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101113353083_3634_3384_3.jpg!w516x301.jpg[/img][/color][/align][align=center][color=#990000]图2-1 保护热板法热导率测量原理图[/color][/align]  目前采用保护热板法的标准热导率测试仪器一般样品截面积尺寸在300mm×300mm以上,大样品尺寸的选择主要是保证样品边长与样品厚度有一个合适的比例,从而有效保证流经样品厚度方向上的热流是一维形式。  相对于绝对法是一种相对稳态法,也可直接测量热导率,典型的有热流计法和保护热流计法。热流计法是上述保护热板法的一种变形,这类方法不是直接测量加热热量,而是通过放置在不同位置处的热流计测量流经被测样品的热流量,一般是将热流计放置在样品两端,相应标准是GB/T 10295、ISO 8301和ASTM C518,其原理如图2-2所示。[align=center][color=#990000][img=,640,361]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101113513138_968_3384_3.jpg!w640x361.jpg[/img][/color][/align][align=center][color=#990000]图2-2 热流计法热导率测量原理图[/color][/align]  热流计法的特点是热流计必须经过绝对法进行校准,所以测量精度要低于绝对法,但热流计法可适用于小尺寸样品和高温测试,特别适用于实际隔热工况下大温差隔热材料的等效热导率测试,可准确评价冷热面大温差下多种传热机理共存时的等效热导率。  在稳态热流计中,热流计可以有多种结构形式,热流计可以薄膜结构,也可以是块体结构。薄膜结构的热流计一般直接布置在被测样品冷端,如图2-2所示,而块体结构热流计则采用校准过的已知热导率材料并布置在被测样品的两端(或冷端),如图2-3所示。采用块体热流计进行材料热导率测试的标准有ASTM D5470、ASTM E1225和ASTM E1530。热流计法的主要特点是可以适用于各种规格尺寸大小和厚度的样品材料,薄膜结构热流计一般适用于高低温范围内低导热材料的热导率测量,块体结构热流计一般适用于常温附近和压力加载条件下的中高热导率测量,但为了保证测量精度,热流计法需要对热流计进行准确校准和侧向漏热处理。[align=center][color=#990000][img=,690,269]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101114031441_5410_3384_3.png!w690x269.jpg[/img][/color][/align][align=center][color=#990000]图2-3 三种块状热流计法热导率测量原理图[/color][/align][size=16px][color=#990000]2.2. 瞬态法[/color][/size]  所谓瞬态法一般是通过接触式传感器或非接触光源给温度恒定样品加载一个热脉冲扰动,使受热面温度升高0.5~5℃,通过检测传感器或样品前后表面的温度响应,来计算得到相应的热导率或热扩散率。  常用瞬态法主要包括瞬态热线法、瞬态热带法、瞬态平面热源法(HOT DISK法)和闪光法。热线法、热带法和平面热源法基本属于同一类测试方法,不同之处是测量传感器由一维热线转变为二维热带和热盘,但它们的测试过程和测试过程基本相同,都是将测量传感器夹持在两块相同被测样品中间,测量样品的大小尺寸使得传感器发出的热脉冲能量不会控制在样品内,即相对于探测器和热功率假设被测样品为无限大测试模型,典型的测量原理如图2-4所示。[align=center][color=#990000][img=,500,154]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101114191601_1291_3384_3.jpg!w690x213.jpg[/img][/color][/align][align=center][color=#990000]图2-4 瞬态平面热源法(HOT DISK法)测试原理图(热线法和热带法类似)[/color][/align]  瞬态平面热源法是一种绝对测试方法,由于瞬态平面热源法探测器是一种圆盘形式,传热更具有对称性,并与被测样品具有良好的接触,所以目前瞬态平面热源法的应用十分普遍,在合适的被测样品情况下,热导率测量可覆盖0.01~400W/mK范围,相应的标准测试方法为ISO 22007-2。  闪光法是一种非接触式测量方法,测试过程中闪光脉冲照射被测样品前表面,使样品表面温度升高1~5℃,通过红外探测器检测样品背面的温升变化,测量原理如图2-5所示。[align=center][color=#990000][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101114318067_1312_3384_3.jpg!w690x236.jpg[/img][/color][/align][align=center][color=#990000]图2-5 闪光法热扩散系数测量原理图[/color][/align]  闪光法的最大特点是样品尺寸较小,最大直径不超过25.4mm,最高测试温度可以达到2800℃,可测量1~500W/mK范围的材料热导率,但闪光法只能直接测量热扩散率,然后通过其他方法得到比热容和密度,通过计算得到热导率。[size=18px][color=#990000]3. 多孔金属材料热导率测试方法选择[/color][/size]  从上述各种测试方法介绍中,可以采用排除法来选择哪种测试方法更适合多孔金属的热导率测量。  首先可以舍弃闪光法,这主要因为闪光法测试多孔金属热导率中存在以下严重缺陷:  (1)闪光法是非接触测量方法,闪光热脉冲以非接触方式照射样品前表面,这势必使得很大一部分热脉冲会穿过样品空隙直接照射到样品内部,从而严重破坏样品前表面受热模型。另外红外探测器是以非接触方式测量样品背面温度,但由于孔隙的存在,探测器会探测到后表面一定深度的温度变化,这些因素都会造成无法得到合理的测量结果。  (2)上述热脉冲和背温红外探测穿过空隙的问题,可以通过在样品的前后表面制作薄的实心表面来解决。但闪光法样品尺寸较小且薄,对于实体金属材料,闪光法要求样品厚度一般在1~3mm范围内,如果按照此厚度在多孔金属材料上取样,对于微小孔洞材料问题不大,而对于较大孔洞材料而言往往会造成被测样品不具有代表性问题,这是舍弃闪光法最重要的因素。  对于多空金属材料热导率的测量,其他瞬态法也可以舍弃,原因如下:  (1)在热线、热带和热源法中,要求两块被测样品夹持探测器并形成良好的热接触。但由于多孔金属表面很难做到高精度的平整,势必在样品表面与探测器之间形成较大的接触热阻,而这种接触热阻还无法使用热界面材料来进行消除。  (2)瞬态法测试中,若消除上述较大的接触热阻,需要在多孔金属的被测表面进行实心层处理。但在样品表面增加一层金属层后,瞬态法热脉冲会首先在此金属层内传递,然后再通过孔壁金属传递,由此测量得到热导率是金属层面内方向和多孔金属样品厚度方向的复合热导率,此复合热导率要比多孔金属厚度方向热导率大很多。  在稳态法中,保护热板法可以直接舍弃,原因如下:  (1)为了保证测量精度,特别是为了保证一维热流和足够的护热空间尺寸,保护热板法对样品的尺寸要求普遍较大,常规商用仪器的样品尺寸为300×300×20mm,最小也要200×200×10mm,这种规格尺寸对多孔金属样品而言过于庞大。  (2)为了减少保护热板法测试中的接触热阻,被测样品的平整度有严格要求,如平行度和平整度要小于0.05mm,这对多孔金属材料样品的加工要求比较苛刻。  (3)保护热板法一般用于测量热导率小于1W/mK的低导热材料,对于热导率通常大于1W/mK的多孔金属材料,样品厚度上的温差较小,保护热板法测量误差非常大。如要减少测量误差,就势必增大样品厚度,这又带来样品体积较大的问题。  通过上述分析,只剩下的稳态热流计法,热流计法在多孔金属热导率测试中主要有以下几方面的特点:  (1)尽管热流计法是一种相对测试方法,但如果热流计进行了准确的校准,热导率的测试精度完全能够满足工程需要,相对测量误差可以控制在±7%以内。  (2)热流计法即可以用于各种尺寸大小样品的热导率测试。对于多孔金属材料,考虑到被测样品的代表性,可以采用图2-3所示的三种热流计法,样品尺寸可以控制在适中尺寸大小(如直径50mm×高度30mm),由此可以满足不同孔洞大小的多孔金属材料测试。  (3)采用热流计法,特别是采用块状热流计进行测量,样品两个端面温度可以控制在较小的温差范围内,在保证足够测量精度的温差要求外,这样可以最大限度的减小较大温差带来孔洞内的对流和辐射,可以测量纯基材的等效热导率。  (4)由于多孔金属材料属于中等热导率材料,高温下热导率测试需要很复杂的护热机构,所以采用块状热流计法一般直进行100℃以下(最高不超过300℃)的测试。[size=18px][color=#990000]4. 测量准确性保障措施[/color][/size]  通过上述分析,针对多孔金属材料的热导率测量,可以选择图2-3所示的三种测试方法和相应仪器。但在使用这些测试方法过程中,为保证测量准确性,必须采取以下保障措:  (1)测试仪器一定要按照相应测试方法的规定制定相应的校准操作流程,校准流程必须是在线校准方式,不能将热流计取出进行离线校准,这是因为热流计安装后会存在一定的接触热阻,必须通过在线校准才能真正得到实际仪器测试过程中的热流测量值。  (2)根据热导率测试范围和样品的可能厚度,换算出相应的热阻测量范围,选择至少三种已知热导率的参考材料,并按照不同厚度和不同温度来对应整个热阻范围,然后通过这些参考材料对热导率测试仪器进行校准,而且这种校准需要半年进行一次,以避免仪器使用一段时间后接触热阻的改变所带来的影响。  (3)为了进一步保证多孔金属材料热导率测量的准确性,在对多孔金属样品进行完热导率测量后,最好对与被测多孔金属样品热阻近似且已知的实心样品(直径相同,但高度不同)进行对比测试。  (4)如果多孔金属样品表面很难加工成平整表面,则要考虑将样品制成图1-2所示结构,即在多孔金属样品的两个测试面上增加一层相同材质的金属薄层,对于大尺寸孔洞样品这点尤为重要,否则会引入较大的接触热阻而使得热导率测量结果偏小。[size=18px][color=#990000]5. 测试方法的改进[/color][/size]  通过以上分析可以看出,尽管选择采用热流计法对多孔金属热导率进行测量,但还是存在以下不足:  (1)热流计法需要繁复的校准过程,但测量精度还是不如保护热板法,这将非常不利于多孔金属材料的结构设计和精细优化。  (2)热流法热导率测试设备整体结构还是复杂,能满足一定测量精度要求的测试仪器整体造价还是偏高。  (3)能进行多孔金属热导率测试的热流计法导热仪普遍测试温度不高,无法满足目前和今后更高温度的测试需求。  为此,我们提出一种基于绝对稳态法热导率测量的崭新瞬态测试方法——热波法。热波法基于绝对稳态法,在样品冷面温度线性变化过程中,在样品热面加载设定功率和宽度的方波热脉冲,通过冷热面温差波形可以直接测量出样品热导率随温度的变化。  热波法作为一种瞬态法,但如果方波脉冲宽度变得无限大,则热波法就转变为典型稳态法,稳态法是热波法的一种特例。热波法作为一种绝对测试方法,其最大特点是测量精度高,且是在温度线性升降温过程中连续扫描测量热导率,同时热导率测试范围宽泛(0.1~2000W/mK),测试温度范围宽泛(液氮温度~1000℃),测试仪器整体造价低,以及模块式结构可实现各种几何形状固态材料(薄膜、薄板、细棒、块体)的热导率测量。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】发酵过程泡沫的形成与控制

    发酵过程起泡的利弊:气体分散、增加气液接触面积,但过多的泡沫是有害的 一、泡沫形成的基本理论 泡沫的定义:一般来说:泡沫是气体在液体中的粗分散体,属于气液非均相体系 美国道康宁公司对泡沫这样定义:体积密度接近气体,而不接近液体的“气/液”分散体。 (一)泡沫形成的原因 1、气液接触 因为泡沫是气体在液体中的粗分散体,产生泡沫的首要条件是气体和液体发生接触。而且只有气体与液体连续、充分地接触才会产生过量的泡沫。气液接触大致有以下两类情况: (1)气体从外部进入液体,如搅拌液体时混入气体 (2)气体从液体内部产生。气体从液体内部产生时,形成的泡沫一般气泡较小、较稳定。 2、含助泡剂 在未加助泡剂,但并不纯净的水中产生的泡沫,其寿命在0.5秒之内,只能瞬间存在。摇荡纯溶剂不起泡,如蒸馏水,只有摇荡某种溶液才会起泡。 在纯净的气体、纯净的液体之外,必须存在第三种物质,才能产生气泡。对纯净液体来说,这第三种物质是助泡剂。当形成气泡时,液体中出现气液界面,这些助泡剂就会形成定向吸附层。与液体亲和性弱的一端朝着气泡内部,与液体亲和性强的一端伸向液相,这样的定向吸附层起到稳定泡沫的作用。 3、起泡速度高于破泡速度 起泡的难易,取决于液体的成分及所经受的条件;破泡的难易取决于气泡和泡破灭后形成的液滴在表面自由能上的差别;同时还取决于泡沫破裂过程进行得多快这一速度因素。 高起泡的液体,产生的泡沫不一定稳定。体系的起泡程度是起泡难易和泡沫稳定性两个因素的综合效果。 泡沫产生速度小于泡沫破灭速度,则泡沫不断减少,最终呈不起泡状态;泡沫产生速度等于泡沫破灭速度,则泡沫数量将维持在某一平衡状态;泡沫产生速度高于泡沫破灭速度,泡沫量将不断增加。 4、发酵过程泡沫产生的原因 (1)通气搅拌的强烈程度 通气大、搅拌强烈可使泡沫增多,因此在发酵前期由于培养基营养成分消耗少,培养基成分丰富,易起泡。应先开小通气量,再逐步加大。搅拌转速也如此。也可在基础料中加入消泡剂。 (2)培养基配比与原料组成 培养基营养丰富,黏度大,产生泡沫多而持久,前期难开搅拌。 例:在50L罐中投料10L,成分为淀粉水解糖、豆饼水解液、玉米浆等,搅拌900 rpm,通气,泡沫生成量为培养基的2倍。如培养基适当稀一些,接种量大一些,生长速度快些,前期就容易开搅拌。 (3)菌种、种子质量和接种量 菌种质量好,生长速度快,可溶性氮源较快被利用,泡沫产生几率也就少。菌种生长慢的可以加大接种量 (4)灭菌质量 培养基灭菌质量不好,糖氮被破坏,抑制微生物生长,使种子菌丝自溶,产生大量泡沫,加消泡剂也无效。 (二)起泡的危害 1、降低生产能力 在发酵罐中,为了容纳泡沫,防止溢出而降低装量 2、引起原料浪费 如果设备容积不能留有容纳泡沫的余地,气泡会引起原料流失,造成浪费。 3、影响菌的呼吸 如果气泡稳定,不破碎,那么随着微生物的呼吸,气泡中充满二氧化碳,而且又不能与空气中氧进行交换,这样就影响了菌的呼吸。 4、引起染菌 由于泡沫增多而引起逃液,于是在排气管中粘上培养基,就会长菌。随着时间延长,杂菌会长入发酵罐而造成染菌。大量泡沫由罐顶进一步渗到轴封,轴封处的润滑油可起点消泡作用,从轴封处落下的泡沫往往引起杂菌污染。 (三)泡沫的性质 泡沫体系有独特的性质,研究泡沫的性质,是解决消泡问题的基础。 1、气泡间液膜的性质 泡沫中气泡间的间距很小,仅以一薄层液膜相隔,研究液膜的性质很有代表意义,又因为,只有含有助泡的表面活性剂,才能形成稳定的泡沫,所以应当首先研究表面活性剂与液膜的关系 表面活性剂示意图 如图所示,表面活性剂是由疏水基与亲水基构成的化合物,在水中,表面活性剂的分子不停地转动在以下两种情况下泡沫才能比较稳定,停留时间比较长: 第一种情况 表面活性剂的亲水基留在水相,疏水基伸到气相中,形成定向吸附层 第二种情况 表面活性剂的疏水基在水相中互相靠在一起,减少疏水基与水的接触,形成“胶束”。 溶液中当表面活性剂的浓度低于临界胶束浓度时,以第一种情况为主;表面活性剂浓度高于临界胶束浓度时出现第二种情况。在泡沫不断增加时,表面活性剂会从胶束中不断转移到新产生的气液界面上 表面活性剂为什么会定向排列在表面? 在液相中因为水分子之间的吸引力大于水对表面活性剂的吸引力,表面活性剂的疏水部分被水分子之间的吸引力挤出溶液,到达气液界面。这就是表面活性剂易于在泡沫上形成定向吸附层的原因。 2、泡沫是热力学不稳定体系 热力学第二定律指出:自发过程,总是从自由能较高的状态向自由能较低的状态变化。起泡过程中自由能变化如下: △G=γ△A △G——自由能的变化 △A——表面积的变化 γ——比表面能 起泡时,液体表面积增加,△A为正值,因而△G为正值,也就是说,起泡过程不是自发过程。另一方面,泡沫的气液界面非常大,例如:半径1cm厚0.001cm的一个气泡,内外两面的气液界面达25cm2;可是,当其破灭为一个液滴后,表面积只有0.2cm2,相差上百倍。显然,液体起泡后,表面自由能比无泡状态高得多。泡沫破灭、合并的过程中,△A是一个绝对值很大的负数,也就是说泡沫破灭、合并的过程,自由能减小的数值很大。因此泡沫的热力学不稳定体系,终归会变成具有较小表面积的无泡状态。 3、泡沫体系的三阶段变化 即使外观看来平静、比较稳定的泡沫体系,泡沫液也在不断地下落、蒸发,不断进行着下述三阶段的变化 (1)气泡大小分布的变化 液膜包裹的一个气泡,就像一个吹鼓了的气球。由于气球膜有收缩力,所以气球中压力大于气球外的压力;同样气泡膜有表面张力,气泡中压力大于气泡外的压力。气泡大小的再分布,就是由气泡膜内气体的压力变化引起的。气泡中气体压力的大小,依赖气泡膜的曲率半径 由定量观点看,气泡内外压差 △P= 由该式可知:压差△P与气泡半径成反比。若气泡膜的表面张力均相同,则小气泡中的压力比大气泡中的压力大。因此当相邻气泡大小不同时,气泡会不断地由小气泡高压区,经过吸附、溶解、解析,扩散到大气泡低压区。于是小气泡进一步变小,大气泡进一步变大。即使相邻气泡曲率半径最初差别不大,也会由于△P的不同,气体的扩散,泡径差别逐渐增大,直至小泡完全并入大泡。结果气泡数目减少,平均泡径增大,气泡大小分别发生变化 (2)气泡液膜变薄 取一杯泡沫,放置一段时间,就会在杯底部出现一些液体,而逐渐形成液相及液面上的泡沫相这样具有界面的两层。底部出现的液体一部分是泡沫破灭形成的,一部分是气泡膜变薄,排出液体形成的。 泡沫生成初期,泡沫液还比较厚,以后因蒸发排液而变薄,泡沫液会受重力的影响向下排液,泡沫液随时间延续而变薄。 (3)泡沫破灭 泡沫由于排液,液量过少,表面张力降低,液膜会急剧变薄,最后液膜会变得十分脆弱,以至分子的热运动都可以引起气泡破裂。因此只要泡沫液变薄到一定程度,泡沫即瞬间破灭。 泡沫层内部的小气泡破灭后,虽一时还不能导致气液分离,只是合并成大气泡,但排液过程使泡膜液量大幅度减少,使合并成的大气泡快速地破灭,最后泡沫体系崩溃,气液分离。

  • 织物测试仪器 透气性测试仪测试原理及常规标准介绍

    透气性是指对于具有一定气体阻隔性能的材料进行特定的渗透性的检测,透气性作为物理性能检测的项目之一,用于检测的材料首先具有透气性能。常见的材料有纺织品、皮革、纸张、纸板、泡沫塑料、多空瓷砖等等。目前透气性测试仪主要分为两种测试原理的仪器:压差法和等圧法。其中最为广泛的是压差法,压差法透气性测试仪可检测的实验范围也比较广泛。今天主要介绍一下[b]测试原理及常规标准[/b]:纺织透气性测试仪的原理:样品通过设备的夹紧手柄固定在测试区域上, 通过按下夹紧手柄以开始进行测试,一个强有的吸泵便开始在一个圆形开口处通过可互换的测试头抽取空气。预设好的测试压力被自动启动并维持了数秒钟后;,受测试样的透气度就会以预设的测量单位显示出来。再按下夹紧手柄一秒钟后,测样品便被松开,抽吸泵关闭。常用标准:[align=left]AFNOR G 07-111法国标准协会 透气性测试[/align][align=left]ASTM D 737纺织织物透气率的标准试验方法[/align][align=left]ASTM D 3574软质多孔材料测试方法[/align][align=left]BS 5636英国标准 纺织品透气性的测定方法[/align][b]DIN 53887纺织物空气透气度的测定[/b][align=left]EDANA 140.1 欧洲用可弃和非织造布制造协会[/align][align=left]EN ISO 7231软质泡沫聚合材料.恒定压降下的空气流量评估方法[/align][align=left]EN ISO 9237纺织品.纤维织物透气性的测定[/align][align=left]JIS L 1096- A日本工业标准:一般织物试验方法[/align]TAPPI T 251多空纸,织物、手抄纸的透气性[align=left]GB/T5453纺织品 织物透气性的测定[/align][align=left]GB/T 22819高透气纸张透气性的测定[/align][align=left]仪器参数:[/align][align=left]测试单位: mm/s, cfm, cm3/cm2/s, l/m2/s, l/dm2/min,m3/m2/min, m3/m2/h, dm3/s[/align][align=left]测量精度: ± 2 % 显示值[/align][align=left]测试压力: 10~ 2,500 Pa[/align][align=left]测试面积: 20cm2 (标配),5, 25, 38, 50 and 100 cm2 (可选配)[/align]

  • 【讨论】泡沫板中的Cd为何有几百PPM?

    我对泡沫板测试了很多次,其测试结果令人疑惑:一、测试条件: 1、使用EDX-720进行测试; 2、直接放上去进行测试,没有进行压紧,厚度大约为7CM,大小足够; 3、使用PVC-PE工作曲线进行测试。二、测试结果: 1、测试结果最高会达到几百PPM,有时候换一下测试位置进行测试(同一个样品),测试结果会是N.D.; 2、在测试结果是几百PPM时,看谱图,CdKa和CdKb都没有波峰,整个测试波形就差不多与背景线重叠。三、疑问: 1、请问这是什么原因引起的?请详细解答一下。 2、可以用什么办法来解决这个问题?(最好不是说要把泡沫板压紧之类的,因为我这里没有设备可以做到) 3、这个测试结果我是判断合格的,不知道各位认为如何? 请各位朋友指点一下。先谢谢了!

  • 【资料】泡沫吸附硫脲石墨炉原子吸收法测定化探样品中的金

    泡沫吸附硫脲石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定化探样品中的金武警黄金第十二支队化验室 黄艳波一、方法提要:样品经焙烧后,用王水溶解,泡沫振荡吸附分离金,分离的泡沫洗净后于10g/L(1%)的硫脲溶液中经沸水解脱,用石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定。二、本方法测定范围:0.5×10-9~0.2×10-9 g/g三、试剂:1、硝酸(分析纯);2、盐酸(分析纯);3、王水(HCl+HNO3=3+1);4、硫脲(分析纯),配制成10g/L(1%)的水溶液,现用现配5、泡塑:聚胺脂型,剪成1×1×3cm形状,用水洗净后,用4%的盐酸溶液煮沸半小时,最后用清水洗至中性晾干备用;6、标准储备液:ρ(Au)=1mg/mL,称取国家标准物质纯金1.0000克于400mL烧杯中,加入新配制的王水20mL和氯化钾1克,稍加热溶解,冷却后移入1000mL容量瓶中,用水稀释至刻度、摇匀;7、标准工作液:ρ(Au)=100ng/mL 。将ρ(Au)=1mg/mL的储备液逐级稀释成100ng/mL的金标准工作溶液,介质10%王水(现用现配);8、标准系列:分别吸取0、0.1、0.2、0.5、2、5、10mL和3mL 100ng/L和1000ng/L的金标准工作液8个100mL的三脚瓶中,加10mL王水,用水稀释至体积100mL,加入泡塑,与样品一起振荡吸附,加10mL10g/L的硫脲于25mL比色管中,与样品一起于沸水中解脱半小时,趁热取出泡沫。四、仪器条件:日立 Z—5000型塞曼[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计(一)、仪器条件:波长(nm):242.8 狭 缝(nm):1.3 时间常数(s): 0.2灯电流(mA):7 负高压(V):382 取样体积(uL): 20测量方式:PeakHight 石墨炉原子化器:Tube A背景校正:BKG Corr. 方程式线性:Quadratic(二)、原子化条件: 起始/结束温度 斜坡/保持时间 载气流量 (℃) (sec) (mL/min)干 燥 80/160 35/0 200灰 化 400/400 15/0 200原子化 2400/2400 0/5 30清 除 2600/2600 0/4 200冷 却 0/0 0/12 200五、分析手术:称取10克已加工好的样品于40mL瓷坩埚中,经650-700℃高温灼烧1h(在400℃保温0.5h),取出冷却后,将样品转移至250mL三角瓶中,加少量水润湿样品,加新配制的1:1的王水约40mL,用手摇动三角瓶,使样品在溶液中散开,置于电热板上加热分解样品,溶解至体积剩有10mL左右,取下,用自来水稀释体积至100mL左右,加入已经浸泡好的泡沫塑料,盖上塞子,放在振荡器上振荡30min,取出泡沫,用自来水冲洗至中性,挤干,放入预先加有10g/L硫脲的25mL比色管中,沸水浴中保持30min,取出泡塑,冷至室温,在石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计上测定。从工作曲线上查出相应的金量。六、注意事项:1、痕量金测试过程中易发生污染,所以玻璃器皿要洗涤干净,焙烧样品的坩埚要擦拭干净(遇到高含量样品,相应的坩埚用王水浸泡)。避免与常量分析物品,设备混用。2、配制金标准系列的移液管、容量瓶、烧杯要用水彻底、反复浸泡,否则低含量金标准溶液很容易污染而变高。较低含量的金标准溶液极不稳定,放置时间过长,器皿产生吸附,使浓度变低,应现配现用。3、泡沫塑料应处理干净,否则影响测试结果。4、振荡吸附时,溶液必须在室温下,热溶液会造成吸附率降低。酸溶液要控制在10%左右,超过30%,泡沫会失去弹性,降低吸附率。5、解脱出来的待测溶液应立即上机测试,否则器皿产生吸附,使结果偏低。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=88238]泡沫吸附硫脲石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定化探样品中的金[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=88237]泡沫吸附硫脲石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定化探样品中的金[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制