当前位置: 仪器信息网 > 行业主题 > >

控制流量传感器

仪器信息网控制流量传感器专题为您提供2024年最新控制流量传感器价格报价、厂家品牌的相关信息, 包括控制流量传感器参数、型号等,不管是国产,还是进口品牌的控制流量传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合控制流量传感器相关的耗材配件、试剂标物,还有控制流量传感器相关的最新资讯、资料,以及控制流量传感器相关的解决方案。

控制流量传感器相关的论坛

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 差压式流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 差压式流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font][/font][font=宋体] [font=宋体]—— 电子流量控制器中的流量传感器 —— 差压式流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][/font][font=宋体]电子[/font][font='Times New Roman'][font=宋体]流量控制[/font][/font][font=宋体]单元的[/font][font='Times New Roman'][font=宋体]流量测量[/font][/font][font=宋体]原理[/font][font='Times New Roman'][font=宋体]和[/font][/font][font=宋体]常见流量传感器[/font][font='Times New Roman'][font=宋体]的原理[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量计(节流式流量计)[/font][/align][font='Times New Roman'][font=宋体] 采用电子流量控制方式[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],[/font][/font][font=宋体]进样口、检测器或者其他辅助部件单元中,均安装有[/font][font='Times New Roman'][font=宋体]电子流量控制[/font][/font][font=宋体]单元[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]可以给进样口、色谱柱、检测器以及特殊部件提供准确和稳定的气体流量。[/font][font=宋体] 气体流量的大小可以由流量控制单元内置的流量计予以测定,流量计的具体形式较多,其中[/font][font='Times New Roman'][font=宋体]比较常见的为差压式流量计。[/font][/font][font='Times New Roman'][font=宋体] 差压式流量计是工业生产中[/font][/font][font=宋体]用以测定[/font][font='Times New Roman'][font=宋体]气体、液体和蒸汽流量的[/font][/font][font=宋体]较为常见[/font][font='Times New Roman'][font=宋体]的[/font][/font][font=宋体]一类[/font][font='Times New Roman'][font=宋体]流量计[/font][/font][font=宋体],包括节流式流量计、均速管流量计、弯管流量计等。其中使用最多的是节流装置和差压计组成的节流式流量计[/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体] 节流式流量计具有结构简单、工作可靠、成本低、易标准化的优点,在工业生产中应用较为广泛。其[/font][font='Times New Roman'][font=宋体]基本原理如图[/font]1[font=宋体]所示,管路中如果存在截面积小于管路的[/font][/font][font=宋体]节流装置[/font][font='Times New Roman']R[font=宋体],[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]流体通过[/font][/font][font=宋体]该节流装置[/font][font='Times New Roman'][font=宋体]时,在[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]的前后[/font][/font][font=宋体]两端[/font][font='Times New Roman'][font=宋体]将产生一定的压力差。[/font][/font][font='Times New Roman'][font=宋体] 在一定的流体参数条件之下([/font][/font][font=宋体]节流装置的[/font][font='Times New Roman'][font=宋体]尺寸、压力测量位置、[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的管路状况),[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的压力差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']p[/font][font=宋体]与流体[/font][font='Times New Roman'][font=宋体]流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]之间有[/font][/font][font=宋体]确[/font][font='Times New Roman'][font=宋体]定的函数关系。因此可以通过测量[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的差压来确定流体的流量。[/font][/font][align=center][img=,298,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911348571_4335_1604036_3.jpg!w684x403.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]差压式流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体] 对于可压缩流体([/font][/font][font=宋体]例如[/font][font='Times New Roman'][font=宋体]气体),体积流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]与[/font][/font][font=宋体]节流装置两端[/font][font='Times New Roman'][font=宋体]压力差[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]流量关系式为:[/font][/font][align=center][img=,170,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010913553235_7720_1604036_3.jpg!w559x133.jpg[/img][font=宋体] [font=宋体]([/font][font=Times New Roman]1-1[/font][font=宋体])[/font][/font][/align][font=宋体] [font=宋体]公式[/font][font=Times New Roman]1-1[/font][/font][font='Times New Roman'][font=宋体]中[/font][/font][font=宋体]:[/font][font=宋体] [/font][font='Times New Roman']Α[/font][font=宋体] [/font][font='Times New Roman'] [/font][font=宋体]—— [/font][font='Times New Roman'][font=宋体]流体的流量系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']ε[/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]可膨胀性系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']A[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]管路截面积[/font][/font][font='Times New Roman'] ρ [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]流体密度[/font][/font][font='Times New Roman'] Δ[/font][font='Times New Roman']p[/font][font=宋体] [font=宋体]—— 节流装置两端的压力差[/font][/font][font=宋体][font=Times New Roman] F[/font][/font][sub][font=宋体][font=Times New Roman]v [/font][/font][/sub][font=宋体]—— 流体的体积流量[/font][font=宋体] 该公式中流量系数、可膨胀系数与流体的粘度、可压缩性、温度均有关。[/font][font=宋体] 差压式流量计适用于性质和状态均匀的牛顿流体的流量测量,一般不适用于流体脉动较大的场合。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量传感器[/font][/align][font=宋体][font=宋体] 随着微电子[/font][font=宋体]——微机械系统的发展,差压式流量计目前可以被制作成体积较小的单个电子元件——流量传感器,可以安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口流量控制单元或者系统辅助流量控制单元中,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体] 流量传感器内置有微气体阻尼器,代替经典差压式流量计的节流装置,阻尼器的两端集成两个微压力传感器,测定阻尼器两端的压力差。[/font][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统根据实际工作过程中使用的气体种类(不同的气体粘度和可压缩系数)、环境温度等参数,对阻尼器压力差进行计算和修正,获得正确的气体流量。[/font][align=center][img=,389,98]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911232086_5053_1604036_3.jpg!w690x204.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]流量传感器原理示意图[/font][/font][/align][font=宋体][font=宋体]流量传感器一般安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口电子流量控制单元或辅助流量控制单元内部,与微电磁阀等部件构成负反馈控制系统,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的指令协调下多个部件联合工作,用以提供流量准确、重现性良好的气体,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,526,177]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911470920_3574_1604036_3.jpg!w690x232.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]流量传感器在流量控制单元中的位置[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]差压式流量计的特点和使用注意事项[/font][/align][font=宋体][font=宋体] 与传统的机械阀方式调节流量控制器相比较,电子流量控制器有更高的精密度和重现性,在保留时间要求较高的分析应用场合下(例如复杂样品的[/font][font=Times New Roman]PONA[/font][font=宋体]分析,多阀多柱的复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析系统等),有更好的应用表现。[/font][/font][font=宋体][font=宋体] 差压式流量计组成元件较少,结构比较简单,长期运行的可靠性较高,装配差压式电子流量计的电子流量控制器的故障率较低。通过良好的电气[/font][font=Times New Roman]-[/font][font=宋体]气流控制设计,差压式流量计可以获得较好的惯性,压力[/font][font=Times New Roman]-[/font][font=宋体]流量调节速度较快。差压式流量计的流量测量范围较大,适用色谱分析方法的范围较广。[/font][/font][font=宋体] 使用带有电子流量传感器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],需要注意以下几个方面的问题:[/font][font=宋体][font=Times New Roman] 1 [/font][font=宋体]气体类型的配置信息必须准确[/font][/font][font=宋体][font=宋体] 由公式[/font][font=Times New Roman]1-1[/font][font=宋体]可知,气体流量与节流装置(阻尼器)两端的压力差与气体种类、环境温度等参数有关,使用不同种类的气体,流量——压力差的特性不同。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的硬件[/font][font=Times New Roman]/[/font][font=宋体]软件配置需要正确指定正确的气体类型,否则最终测定的气体流量数值不正确。[/font][/font][font=宋体][font=Times New Roman] 2 [/font][font=宋体]流量——压力需要进行校准[/font][/font][font=宋体][font=宋体] 色谱系统在长时间运行之后,有可能存在电子元件电气性能变化,从而造成流量传感器测定的阻尼两端的压力值的偏差,进而导致流量值测定发生错误,在必要的情况下需要运行压力[/font][font=宋体]——流量的校准。[/font][/font][font=宋体][font=Times New Roman] 3 [/font][font=宋体]气源的要求[/font][/font][font=宋体][font=宋体] 流量传感器要求气源洁净,操作时尽可能去除气体中的水分、[/font] [font=宋体]油污等有机物杂质和固体颗粒物,以避免损坏压力传感器和堵塞阻尼,造成流量测量产生一定误差。[/font][/font][font=宋体]避免气源或管路气流压力、流量的瞬间剧烈变化,可能对流量计造成较大的压力和流量冲击。[/font][font=宋体]气源压力不可超出色谱系统允许输入压力,避免损坏流量计中的压力传感器。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体]本文简单介绍压差式流量测量的原理,和压差式流量传感器的原理和使用注意事项。[/font][font='Times New Roman'] [/font]

  • 气相色谱仪流量控制原理与维护 —— 压力传感器

    气相色谱仪流量控制原理与维护 —— 压力传感器

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力传感器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]压力传感器是电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或[/font][font=Times New Roman]EFC[/font][font=宋体])的重要组成元件,目前常见[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配备的压力传感器主要为压阻式传感器,其灵敏度高、分辨率高、体积小、工作频带宽、响应速度快。[/font][/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]维修人员在检查或维修电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]过程中,当拆解或者检查电子流量控制器时[/font][font=宋体]——不论是进样口流量控制器或者检测器流量控制器,都可以观察到如图[/font][font=Times New Roman]1[/font][font=宋体]所示的元器件,尺度大约[/font][font=Times New Roman]10mm*10mm[/font][font=宋体]左右,此即为压力传感器,用来测定气体压力和协助控制气体流量。[/font][/font][align=center][img=,189,150]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231551479727_3572_1604036_3.jpg!w531x423.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]压力传感器外观[/font][/font][/align][font=宋体]目前常见[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配备的压力传感器主要为压阻式传感器,其灵敏度高、分辨率高、体积小、工作频带宽、响应速度快。压阻传感器的工作原理基于压阻效应,压力敏感元件是使用集成电路工艺在半导体材料的基片上制成的扩散电阻,当受到流体压力作用于敏感元件时,扩散电阻的阻值发生对应的变化。[/font][font=宋体][font=宋体]对于某个确定的导电材料,其电阻值的变化率可以由公式[/font][font=Times New Roman]1[/font][font=宋体]决定:[/font][/font][font=宋体] [/font][img=,240,76]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231551556750_971_1604036_3.jpg!w600x191.jpg[/img][font=宋体] [/font][font=宋体][font=宋体]公式[/font] [font=Calibri]1[/font][/font][font=宋体][font=宋体]公式中[/font][font=Times New Roman]R [/font][font=宋体]为电阻值、ρ为电阻率、[/font][font=Times New Roman]l[/font][font=宋体]为导电材料长度、[/font][font=Times New Roman]s[/font][font=宋体]为导电材料截面积。[/font][/font][font=宋体]对于金属电阻(常见于工业测量中使用的金属应变片),上式中的[/font][font=宋体]Δ[/font][font=宋体][font=宋体]ρ[/font][font=Times New Roman]/[/font][font=宋体]ρ项数值较小,即电阻率变化较小,而尺度的变化率([/font][/font][font=宋体]Δ[/font][font=宋体]l/l和[/font][font=宋体]Δ[/font][font=宋体]s/s[/font][font=宋体])较大,所以金属电阻阻值的变化主要由其尺寸变化率引起。而对于半导体电阻,受力时其尺寸变化率较小,而电阻率变化率([/font][font=宋体]Δ[/font][font=宋体][font=宋体]ρ[/font][font=Times New Roman]/[/font][font=宋体]ρ)较大,这就是压阻式传感器的基本工作原理。[/font][/font][font=宋体][font=宋体]当压力作用于半导体硅晶片时,硅晶体晶格发生变形,是载流子产生不同能谷之间的散射,载流子的迁移率发生变化,从而使硅晶片的电阻率发生变化。对于半导体电阻,其压阻系数较大,压阻传感器的灵敏度是金属应变片灵敏度的[/font][font=Times New Roman]50-100[/font][font=宋体]倍。[/font][/font][align=center][font=宋体]压阻式传感器的结构[/font][/align][align=center][font=宋体] [/font][/align][font=宋体]压阻传感器的压力敏感元件是采用集成电路工艺在半导体基片(硅晶片)上制成的扩散电阻,扩散电阻依附于弹性元件才能工作。单晶硅材料纯度高、功耗低、滞后和蠕变小、机械稳定性好,传感器的制造工艺和硅集成电路工艺有很好的兼容性,所以扩散硅压阻传感器作为检测元件的压力测试仪表在工业测量领域得到广泛应用。[/font][align=center][img=,221,213]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231552062434_3094_1604036_3.jpg!w332x320.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]压阻传感器的结构[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Times New Roman]2[/font][font=宋体]为压阻式传感器的机构示意图,在硅膜片上用离子注入和激光修正方法形成[/font][font=Times New Roman]4[/font][font=宋体]个阻值相等的扩散电阻,并连接成惠斯登电桥形式,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,215,194]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231552138775_83_1604036_3.jpg!w690x624.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]惠斯登电桥[/font][/font][/align][font=宋体][font=宋体]使用[/font][font=Times New Roman]MEMS[/font][font=宋体]技术在硅膜片上形成一个压力室,一测与大[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]连(或真空),一侧与取压口相连,此结构即为硅杯。当待测压力作用于膜片上,膜片发生部分拉伸和部分压缩,电桥失去平衡,产生输出电压,电压的大小反应了膜片受到的压力情况。该电路一般采用恒电流工作方式,可以抑制环境温度的变化对传感器带来的影响。[/font][/font][align=center][font=宋体]压阻传感器的使用注意事项[/font][/align][font=宋体][font=宋体]压阻传感器具有灵敏度高、分辨率高、体积小、工作频带宽、测量电路以及传感器一体化等优点。压阻传感器可以测量[/font][font=Times New Roman]0.01kPa[/font][font=宋体]左右的微小压力变化,频率响应高,可以测量数十[/font][font=Times New Roman]kHz[/font][font=宋体]的脉动压力,其有效面积可以做的很小,可以做到[/font][font=Times New Roman]1[/font][font=宋体]平方毫米左右。对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]得到高精度高灵敏的气体流量和压力控制非常有益。[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]工作者使用电子流量方式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]时,需要注意避免气源压力过高或者过于剧烈的变化,造成传感器损坏;注意控制气源质量加强维护,避免水、油污或者细小的固体颗粒物进入色谱仪流量控制器内,造成传感器损坏。在使用电解水方式的气体发生器时,尤其需要注意仪器的维护,发生器故障或者维护不足导致气源中含有大量水,对于压力传感器而言是致命的。电子式的压力传感器,随着不断的使用,还存在零点漂移问题,造成压力显示不正确或者出现压力显示为负值等异常现象,需要色谱工作者进行零点校正。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]压阻式传感器的原理和使用注意事项。[/font]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 质量流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 质量流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]电子流量控制器中的流量传感器 [/font][font=Times New Roman]—— [/font][font=宋体]质量流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的电子流量控制单元的流量测量原理和常见流量传感器(质量流量计)的原理[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]质量流量计[/font][/font][/align][font='Times New Roman'][font=宋体]工业监控中常见的容积式、叶轮式、涡街式流量计都被用来直接测定流体的体积流量(压差式流量计可以通过流体参数的转化计算获得质量流量),质量流量计与其不同,可以用来直接测定流体的质量流量,而不受流体密度、温度或者压力的影响。[/font][/font][font='Times New Roman'][font=宋体]质量流量计的压力损失较低、流量测量范围较大。内部无可动部件,可靠性和精度较好,可以用于较低气体流量的测量和控制。[/font][/font][font='Times New Roman'][font=宋体]质量流量计可以分成科里奥利质量流量计和热式质量流量计两类,可以用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url][/font][/font][font=宋体]的电子流量控制器[/font][font='Times New Roman'][font=宋体]中气体流量测定的是热式流量计([/font]Thermal Mass Flowmeters[font=宋体],[/font][font=Times New Roman]TMF[/font][font=宋体])。[/font][/font][font='Times New Roman'][font=宋体]热式质量流量计利用流体流过外热源加热的管路时产生的温度场变化来测量流体的质量流量;或者利用加热流体时流体温度上升某一数值所需能量与流体质量之间的关系来测定流体质量流量。[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计利用[/font][/font][font='Times New Roman'][font=宋体]热[/font][/font][font='Times New Roman'][font=宋体]传导原理测定气体的质量流量,即气体的放热量或者吸热量与该气体的质量成正比[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]被测定[/font][/font][font='Times New Roman'][font=宋体]气体流过[/font][/font][font='Times New Roman'][font=宋体]对称排布的两个或者多个温度传感器[/font][/font][font='Times New Roman'][font=宋体]表面[/font][/font][font='Times New Roman'][font=宋体],[/font][/font][font='Times New Roman'][font=宋体]在不同的质量流速下,温度传感器表面温度会发生不同变化。在一定的流量范围之内,温度变化与气体质量流量存在确定的对应关系,可以利用此原理来进行流量测定,其基本结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,352,249]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513235212_6069_1604036_3.jpg!w624x442.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]质量流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体]如图[/font]1-a[font=宋体]所示,在气体流经的管路中安装有加热器[/font][font=Times New Roman]Heater[/font][font=宋体],在其前后对称的位置,各安装一个温度传感器[/font][font=Times New Roman]TS[/font][/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]和[/font]TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]当气体流速为[/font]0[font=宋体]时,由于温度场分布是对称于加热器[/font][font=Times New Roman]Heater[/font][font=宋体],那么两个传感器的[/font][/font][font=宋体]测定[/font][font='Times New Roman'][font=宋体]温度相同,均为[/font]T[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]气体质量流量[/font][/font][font=宋体]逐渐增加时[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]气体将逐渐[/font][font='Times New Roman'][font=宋体]携带[/font][/font][font=宋体][font=宋体]加热器[/font][font=Times New Roman]Heater[/font][font=宋体]表面的[/font][/font][font='Times New Roman'][font=宋体]部分热量,[/font][/font][font=宋体]流量计内部[/font][font='Times New Roman'][font=宋体]温度场[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]对称性被破坏,温度传感器[/font]TS[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]表面温度下降[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变成[/font]T[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]温度传感器[/font][font='Times New Roman']TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]表面温度上升[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变为[/font]T[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]在一定的[/font][/font][font=宋体]气体[/font][font='Times New Roman'][font=宋体]流量范围内,两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]([/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [font=Times New Roman]= [/font][/font][font='Times New Roman']T2[/font][font=宋体] [/font][font='Times New Roman']-[/font][font=宋体] [/font][font='Times New Roman']T1[/font][font=宋体] [/font][font='Times New Roman'][font=宋体])[/font][/font][font='Times New Roman'][font=宋体]与流体的质量流量有确定定量关系[/font][/font][font=宋体]。[/font][font=宋体]两个温度传感器温度差[/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]会随着质量流量的增加而增加,[/font][font='Times New Roman'][font=宋体]当气体的质量流量趋向于无穷大时,两个温度传感器接触到的几乎都是未被加热的气体,温差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]也趋向于[/font]0[font=宋体],如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][align=center][img=,372,166]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513338640_4809_1604036_3.jpg!w690x307.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]温差与质量流量的关系特性[/font][/font][/align][font=宋体][font=宋体]由温差[/font][font=宋体]——质量流量关系特性曲线可知,[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计[/font][/font][font='Times New Roman'][font=宋体]不适合分析[/font][/font][font=宋体]过高[/font][font='Times New Roman'][font=宋体]的气体流速。[/font][/font][font=宋体]测量微小气体流量由于信号微弱,也存在测量精度较低的问题。[/font][font=宋体]质量流量计测定的[/font][font='Times New Roman'][font=宋体]气体的质量流量[/font]F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'][font=宋体]与两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]关系式为:[/font][/font][align=center][img=,143,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513409949_3356_1604036_3.jpg!w690x138.jpg[/img][font='Times New Roman'] [font=宋体]([/font]1-1[font=宋体])[/font][/font][/align][font='Times New Roman'] [font=宋体]公式[/font]1-1[font=宋体]中:[/font][/font][font='Times New Roman'] F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]气体的质量流量[/font][/font][font='Times New Roman'] E —— [font=宋体]加热器的功率值[/font][/font][font='Times New Roman'] Cp —— [font=宋体]气体的比热容[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [/font][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]温度差[/font][/font][font=宋体][font=宋体]随着现代微电子[/font][font=Times New Roman]-[/font][font=宋体]微机械技术的发展,出现了微型热分布式质量流量计,外观尺寸可以缩小到[/font][font=Times New Roman]cm[/font][font=宋体]级别,可以作为一个单独的电子元件,方便的安装在色谱仪电子流量控制器的线路板上,并且可以成功解决测定微小气体流量的问题。[/font][/font][font=宋体][font=宋体]其基本原理与热式质量流量计相同,但是加热部件和温度传感器部件的排布方式有所不同,其结构原理如图[/font][font=Times New Roman]3[/font][font=宋体]所示[/font][/font][align=center][img=,338,104]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513483717_5810_1604036_3.jpg!w690x213.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]热分布式质量流量计结构图[/font][/font][/align][font=宋体]流量计的温度传感器在内部电气线路设计方面被连接成电桥方式,可以感知极微弱的温度差异,并且由于总体部件尺寸的缩小,微型热分布式质量流量计可以测定微小的气体流量。与热式流量计相似,热分布式质量流量计不太适合直接测定过高的气体流量。当需要测定较大流量时,需要配备有分流部件,可以较大范围扩展其测量范围。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]质量流量计的特点和[/font][font='Times New Roman'][font=宋体]使用注意事项[/font][/font][/align][font=宋体]质量流量计具有较高的流量测定精度,比较适合测定微小的气体流量,测量灵敏度较高,使用性能稳定可靠。可以安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口载气电子流量控制器中。[/font][font=宋体][font=宋体]比较差压式流量计,质量流量计的惯性较大,不容易实现迅速的流量控制;[/font][font=宋体]’气体的温度和压力变化对流量计的测量准确性影响较小。[/font][/font][font=宋体]质量流量计的使用注意事项:[/font][font='Times New Roman']1 [font=宋体]气体[/font][/font][font=宋体]的类型设置[/font][font=宋体][font=宋体]对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],不同的载气具有不同的比热容,会对流量计的温度[/font][font=宋体]——流量响应关系带来一定的影响[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]在设定[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析方法时,需要在色谱仪硬件和色谱数据工作站软件中设置正确的载气类型。[/font][font='Times New Roman'] [/font][font='Times New Roman']2 [/font][font=宋体]质量[/font][font='Times New Roman'][font=宋体]流量[/font][/font][font=宋体]——压力[/font][font='Times New Roman'][font=宋体]校准[/font][/font][font=宋体][font=宋体]与差压式流量计相同,配置有质量流量计的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]随着运行时间的增长,电气部件性能会发生逐渐变化,流量计内的管路散热情况也会因为堵塞、污染等问题产生差异,都会影响流量计的温度[/font][font=宋体]——质量流量关系,从而影响流量测定的准确性。[/font][/font][font='Times New Roman']3 [font=宋体]气源的要求[/font][/font][font=宋体]气源要求洁净、不含有油污、水分或者固体颗粒物,尽量避免气源压力和流量的瞬间剧烈变化造成流量计的损坏。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体]介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制器内置质量流量计的基本原理和使用[/font][font='Times New Roman'][font=宋体]注意事项。[/font][/font]

  • 【原创大赛】气相色谱仪电子流量控制原理与维护 (三-五) 流量传感器和测控注意事项

    【原创大赛】气相色谱仪电子流量控制原理与维护   (三-五)  流量传感器和测控注意事项

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](三)[/font] [font=宋体]压力和流量传感器的位置[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]如何测量进样口压力和流量[/font][font=宋体] [/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]与常见的工业测量场合不同,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样口的压力(流量)传感器并不处于样品流路之中,或者说压力(流量)传感器可能会直接接触样品,如图[/font]1[font=宋体]所示:[/font][/font][align=center][img=,690,242]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023467318_8346_1604036_3.png!w690x242.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]常见工业测量场合[/font][/font][/align][font=宋体][font=宋体]不论进样口采用手工流量控制器或者自动流量控制器,不论进样口使用压力表、转子流量计或者电子传感器,含样品气体都不会直接接触传感器表面。如图[/font]2[font=宋体]所示:[/font][/font][align=center][img=,690,213]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023590096_8789_1604036_3.png!w690x213.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]进样口压力(流量)传感器的位置[/font][/font][/align][font=宋体]手工流量控制器经常采用的的压力测量单元是压力表,流量测量单元是流量计。[/font][font=宋体]电子流量控制器的压力测定一般是基于压阻式压力传感器的。核心部件类似应变片,不耐有机污染物和水。[/font][font=Calibri] [/font][font=宋体] [/font][font=宋体]柱流量的测量:[/font][font=宋体]柱流量的控制一般通过进样口压力的控制来实现。[/font][font=宋体]柱流量一般数值比较小,较小的流量和不容易测量准确。如果在色谱柱后检测器之前放置流量传感器,那么传感器一般难以承受色谱柱的高温,样品导致的污染,腐蚀等问题。[/font][font=宋体]另外压力或流量传感器一般会存在较大的死体积,会对气流的控制带来不良的影响。[/font][font=宋体]隔垫吹扫流量的测量:[/font][font=宋体]隔垫吹扫流量面临与柱流量较为类似的问题。[/font][font=Calibri] [/font][font=宋体]分流流量的测量:[/font][font=宋体]分流出口往往存在较大量的样品,可能会严重污染传感器。日常使用中,一定要注意分流出口捕集阱的使用和维护,以保护控制器。[/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] (四) 进样口是否漏气的判定[/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以Shimadzu [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2010/[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2030系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]为例,讲述进样口泄漏检查的方法。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的缺陷[/font][/align][font=宋体]目前越来越多的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]安装了电子流量控制器,可以比较智能的感知到进样口的“比较严重”的泄漏问题,一般会发出报警、强制停机以利于实验人员进行确认和解决。[/font][font=宋体]但是不可以过分依赖电子流量控制器。[/font][font=宋体]可能有两种情况:微漏和实际上不漏。[/font][font=宋体]如果进样口漏气的情况比较微弱,那么电子流量控制器是不能感知到的,此时[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统也不会报警,但是实验数据会发生保留时间和峰面积的重复性不良。[/font][font=宋体]如果分析方法不良,造成电子流量控制器误报警。[/font][font=宋体]我们还是回顾一下电子流量控制的结构原理,如图1[/font][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025211084_352_1604036_3.png!w690x419.jpg[/img][font=Calibri] [/font][font=宋体] [/font][align=center][font=宋体] [/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]电子流量控制器开启后,流量控制器向进样口供给确定的流量,如果进样口压力升高到设定值以上,那么分流控制打开,使得进样口压力稳定在设定值。[/font][font=宋体]如果进样口存在微漏,那么分流控制器仍然可以控制保持进样口压力,那么[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会认为不漏气。[/font][font=宋体]如果分析方法中给定的进样口总流量过低,进样口的压力长时间不能达到设定值,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会错误的认为进样口存在泄漏,而产生误报警。特别需要注意的,使用小口径色谱柱时,一定要避免使用太小的分流比。[/font][font=宋体] [/font][align=center][font=宋体]进样口漏气的确认[/font][/align][font=宋体]Shimadzu的[font=Calibri][url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2010[/font]或[font=Calibri]2030[/font]系列的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],可以利用不分流方式或者直接注入方式,来确认进样口是否漏气。[/font][font=宋体]在仪器面板或者工作站,将进样口工作方式修改为“不分流”或者“直接注入”,当系统流量状态达到就绪之后,由于分流关闭的原因,进样口的总流量应该等于柱流量和隔垫吹扫流量之和。[/font][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025289045_632_1604036_3.png!w690x368.jpg[/img][font=Calibri] [/font][align=center][font=宋体]图2 进样口进样模式[/font][/align][font=宋体]如果在仪器面板或者工作站的监视器中观察到总流量大于柱流量和隔垫吹扫之和,那么进样口应该存在泄漏。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]不要过分依赖电子流量控制器。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体](五) [/font][font=宋体]进样口压力流量不稳定的原因[/font][/align][align=center][font=宋体]概述[/font][/align][align=center][font=宋体]进样口电子流量控制器的控制原理,和进样口压力流量不稳定的可能原因。[/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体]进样口压力流量的控制原理[/font][/align][font=宋体]进样口电子压力(流量)控制系统是一个比较典型的闭环控制系统,大致的原理如图1所示:[/font][align=center][img=,690,215]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030026598217_4950_1604036_3.png!w690x215.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体]图1 进样口流量压力闭环控制原理[/font][/align][font=宋体]以流量为例讲述:[/font][font=宋体]流量控制器在工作的同时,会不断的测量输出流量反馈回比较器,当系统的输出流量由于某种原因产生增加,比较器将感知这一变化,输送给流量调节器“降低流量”的命令,最终使输出流量稳定下来。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的延迟[/font][/align][font=宋体]在这个控制过程中,存在一个时间延迟的问题,比较器可以迅速的感知输出流量的变化,但是命令发送给流量控制器后。流量控制器开始动作(降低输出流量)与实际流量恢复动作之间是存在时间延迟的。在延迟的期间内,系统仍旧检测到流量偏大的现象,就会发出流量再次降低的指令,就会造成调节过度。最终就会观察到流量震荡的现象。[/font][font=宋体]实际仪器设计的时候,流量的感知和控制器动作之间特意设计一段时间的延迟,以满足实际硬件系统的要求,达到流量稳定。[/font][font=宋体] [/font][align=center][font=宋体]流量压力震荡的原因[/font][/align][font=宋体]当仪器的硬件系统出现时间延迟的较大变化(或者说系统阻尼变化),就会破坏控制,产生流量震荡。[/font][font=宋体] [/font][font=宋体]常见的原因有[/font][font=宋体]1 气源压力流量不稳定。[/font][font=宋体]任何控制系统都会对输入量的稳定性有一定要求,如不满足,系统难以稳定。[/font][font=宋体]2 堵塞造成系统阻尼变化。[/font][font=宋体] 分流部分、隔垫吹扫部分的堵塞,都可能导致流量(压力)震荡。[/font][font=宋体]3 漏气会造成系统阻尼变化[/font][font=宋体]4 外设的引入会影响阻尼,例如顶空,热解析,吹扫捕集,进样阀等部件。[/font][font=宋体]5 进样口输入流量太小,会使阻尼变化[/font][font=宋体]6 进样口工作与分流和不分流状态下,阻尼不同,如果进样口压力可以恒定,就不影响进样。[/font][font=宋体] [/font][font=Calibri] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]流量控制器的阻尼变化,是压力流量震荡的主要原因。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 气相色谱仪流量控制原理与维护 —— 压力测量元件 压力表和压力传感器

    气相色谱仪流量控制原理与维护 —— 压力测量元件  压力表和压力传感器

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]压力测量元件[/font][/font][/align][align=center][font='Times New Roman'][font=宋体]压力表和电子压力传感器[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统中的载气或者辅助气体控制器,一般需要装备有精确、可靠的压力测量元件,用以正确的显示流路压力。此外压力测量元件也是流量控制器[/font][font=Times New Roman]——[/font][font=宋体]尤其是电子流量控制器[/font][font=Times New Roman]——[/font][font=宋体]的重要组成部分,压力测量元件与比例电磁阀接受色谱系统的控制并协同工作,实现流路气体流量(或压力)的精确控制。[/font][/font][font='Times New Roman'][font=宋体]一般情况下,机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用机械式压力表,电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用压力传感器作为压力测量元件。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的外围气源、和某些外接设备中也会有压力测量元件,实时显示和辅助实现准确的压力(或流量)控制。[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]一[/font] [font=宋体]机械[/font][/font][font=宋体]流量[/font][font='Times New Roman'][font=宋体]式[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url][/font][font='Times New Roman'][font=宋体]色谱仪的压力测量元件[/font][font=Times New Roman]——[/font][font=宋体]压力表[/font][/font][/align][font='Times New Roman'][font=宋体]压力表是一种以弹簧管为测量元件的指针式测量仪表[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]因其结构坚固、生产成本较低、性能可靠等特点,在机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气流量控制和检测器流量控制器中较为常见。[/font][/font][font=宋体]压力表的工作原理为:[/font][font='Times New Roman'][font=宋体]当[/font][/font][font=宋体]待测[/font][font='Times New Roman'][font=宋体]气体压力发生变化时,表内的敏感元件(波登管、膜盒、波纹管)将会发生弹性形变,再由表内机芯的转换机构将压力形变传导至指针,引起指针转动来显示压力。压力表的结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151709527102_9907_1604036_3.jpg!w616x435.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]压力表结构图[/font][/font][/align][font='Times New Roman'][font=宋体]压力表中的弹簧管(也称为波登管)的自由端是封闭,通过机械传动装置驱动压力表指针。其内部压力发生变化时,弹簧管发生形变,自由端产生位移,其位移量与被测压力的大小成正比。通过机械传动装置驱动指针偏转,在度盘上指示出压力值,如图[/font]2[font=宋体]所示。[/font][/font][img=,513,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151709596556_7465_1604036_3.jpg!w690x236.jpg[/img][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]图[/font]2 [font=宋体]不同压力下压力表状态图示[/font][/font][/align][font='Times New Roman'][font=宋体]如果表壳内通有大气,压力表测出的压力为相对压力,如果将表壳密封并抽真空,压力表测出的压力就是绝对压力。一般情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力表均指示相对压力数值。[/font][/font][font=宋体]压力表一般用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气控制器、检测器气体控制器和气源减压阀上,需要注意其响应速度一般极低,不适合测定极速变化的气体压力。[/font][font=宋体]使用时需要注意气源清洁、气源的压力范围符合要求、尽量避免较为剧烈的压力冲击,以避免弹性元件发生故障造成压力显示数值不正确,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]关机或者长时间不使用时,需要将气源的压力表泄压以保护弹性元件。[/font][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]二、电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力测量元件[/font][font=宋体]——压力传感器[/font][/font][/align][font=宋体]机械流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],流量控制系统较为复杂,较为笨重,使用较多的气流控制阀和压力表,调节效率较低,并且重现性较差。电子流量式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],体积小,调控方法简易,重现性良好,目前在各个行业的实验室中逐渐得到较为广泛的应用。[/font][font=宋体][font=宋体]电子流量控制器主要由比例电磁阀、流量传感器和压力传感器以及对应的控制系统组成,如图[/font][font=Times New Roman]3[/font][font=宋体]所示(以压力传感器为例):[/font][/font][align=center][img=,338,72]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151710067697_8338_1604036_3.jpg!w690x146.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]电子流量控制器组成结构图[/font][/font][/align][font=宋体]某些固体(常见的材质是单晶硅片)收到力的作用后,其电阻值(或电阻率)会发生相应变化,这种现象称为压阻效应。压阻式传感器是利用固体的压阻效应制成的一种测定装置。[/font][font=宋体][font=宋体]现代的压力传感器采用集成电路工艺制成,测量电路和半导体硅片扩散电阻可以集成到零点几毫米大小的尺寸,能够感知[/font][font=Times New Roman]0.01kPa[/font][font=宋体]左右的压力变化,可以显著减小电子流量控制器的尺寸。压阻式传感器体积小、灵敏度较高,分辨率高,响应速度快,广泛的应用于航空、航天、化工、生物医学等多个领域。[/font][/font][font=宋体]需要注意压力传感器测定的气体,不能含有水、固体颗粒等杂质,避免剧烈的压力变化,长时间使用后,可能会产生一定的偏差,需要注意进行压力校准。[/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体][font=宋体]简单叙述机械流量和电子流量控制方式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的压力测量元件[/font][font=宋体]——压力表和压力传感器的基本原理和使用注意事项。[/font][/font]

  • 岛津气相柱口压力传感器怎么控制ESC

    岛津[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]柱口压力传感器是怎么控制ESC的,如果分流捕集阱没有完全堵死柱流量会发生什么样的变化?谢谢,还望不吝赐教!

  • 什么是光电液位控制传感器?

    什么是光电液位控制传感器?

    [size=24px][font=宋体]在当今电子时代,光电传感器仍有许多应用,发展速度也很快,特别是随着智能机器的出现,对传感器的使用变得更加依赖。光电传感器的特性使得它在未来能够得到更多的发展。[/font][font=宋体]而可以用来控制液位的光电传感器,简称光电液位传感器。它可以控制电磁阀、水泵等,从而实现半自动化或全自动。有很多方法,取决于不同产品的选择。[/font][font=宋体]光电液位传感器就是利用光学折射原理来检测液位。光电液位传感器利用这种现象来区分有水状态和无水状态,从而将其转换为电平信号输出。光电液位传感器内部有一个红外发射管,当传感器处于水的状态时,光线会在水中发生折射;它在无水状态下不会折射。[/font][img=,600,324]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081755422476_2512_4008598_3.jpg!w600x324.jpg[/img][font=宋体]对比[/font][font=宋体]原始机械式的浮球液位传感器来说,其可靠性及精度、稳定性方面都可以维持在一个较高的范围内,具有液位控制精度高、一致性强、可靠性高、寿命长的特点。[/font][font=宋体]液位传感器配合控制器可以实现液位控制,当被测液体到达传感器[/font][font=宋体]检测[/font][font=宋体]位置时,芯片[/font][font=宋体]就会[/font][font=宋体]输出高电平或低电平信号,然后与控制器配合实现对液位的控制。然后在液位下降到没有液体时,传感器可以发出信号实现缺水预警,或者驱动水泵加水。在液位上升到设定一个位置时,传感器检测到后可以实现满水提醒并控制水泵停止工作。[/font][/size]

  • 空气流量传感器加热元件的使用

    [align=left]通过将流量传感器发热元件的温度T与空气温度TG之间的差值控制为恒定值,可以从流量传感器发热元件的加热电流I获得气流的质量流量QM。在热丝和热膜流量传感器中,使用恒温差控制电路来实现流量检测。[/align]恒温差控制电路,加热元件电阻RH和温度补偿电阻(进气温度传感器)RT分别连接到惠斯通电桥电路的两个臂。当加热元件的温度高于进气温度时,桥电压可以达到平衡,并且加热电流(50-120mA)由控制电路A通过电流放大来控制,以保持流量传感器加热元件温度TH和温度补偿电阻温度TT。差值保持不变(即ΔT= TH-TT = 120℃)。当空气流被加热元件冷却时,加热元件的温度降低,电阻降低,电桥电压失衡,控制电路增加供给加热元件的电流以保持温度更高温度补偿电阻温度为120.°C。电流增加的大小取决于加热元件被冷却的程度,即流过流量传感器的空气量。当桥电流增加时,采样电阻器RS两端的电压上升,从而将气流的变化转换成电压信号US的变化。输出电压和空气流量之间的关系约为4根。在信号电压输入到ECU之后,ECU可以基于信号的电平计算空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量流量QM的大小。当发动机怠速或空气为热空气时,空气流量低,风量低,因为节气门在怠速时关闭或接近关闭 由于空气温度较高,空气密度较小,因此相同体积的热量相同。空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量很小,因此加热元件冷却到很小的程度,电阻值减少了一小部分,维持电桥平衡所需的电流很小,所以采样时的信号电压电阻很低。控制单元ECU可以根据信号电压计算风量。捷达AT、 GTX轿车的气流标准值为2.0-5.0g / s。当发动机负荷增加或空气是冷空气时,由于节气门开度增加,流量传感器空气流量增加,并且空气流量增加。冷空气密度大,在相同体积的情况下冷空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量大,因此流量传感器加热元件被冷却。增加程度大大增加了电阻值,并且维持电桥平衡所需的电流增加,因此当发动机负载增加时,信号电压上升。温度补偿原理当进气温度改变时,加热元件的温度改变,并且测量进气量的精度受到影响。设置温度补偿电阻(温度传感器)后,从电桥电路可以看出,当进气温度降低并且流量传感器加热元件上的电流增加时,为了保持电桥平衡,温度上的电流补偿电阻相应增加。为了确保加热元件的温度与温度补偿电阻器的温度之间的差值保持恒定,流量传感器的测量精度不受进气温度变化的影响。流量传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨[/color][color=#333333]流量传感器https://mall.ofweek.com/category_12.html[/color][color=#333333]丨压电薄膜传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器[color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨传感器https://mall.ofweek.com/category_5.html丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 家电水位控制传感器的介绍

    [color=#000000]在家用行业,电器需要传感器提供必要的信息,以正确执行相关的操作。光电液位传感器是家用电器常用的一种传感器。例如净水器、饮水机、洗衣机、空气净化器、电蒸锅、热水器等。液位传感器可以更精准、更快速的检测到液位的变化,比人工查看更便捷,可更快速的实现[url=http://www.eptsz.com][color=#000000]缺水保护[/color][/url]、防水满溢出等功能。[/color][color=#000000]与其他液位传感器相比,光电式液位传感器检测精度高、可靠性更高。光电式液位传感器内部是由发光二极管和光敏接收器组合而成。是通过光学折射原理来进行液位的检测,因此对被测介质影响小。[/color][color=#000000] [/color][color=#000000]不同的厂家、不同的家电都会有所差异,这就注定了不同的机器中会有不同的水箱。且每个产品的功能、需检测的液位不一样,有的液位传感器会受到产品水箱等结构的限制,而光电式液位传感器可多方位安装,上置、下置、斜置、侧置安装。[/color][img=光电液位开关安装,758,289]http://www.eptsz.com/Upload/20181102/2018110211243510.jpg[/img][color=#000000]灵敏度高也是判断光电液位传感器良好品质的标准之一,如电蒸锅,如果当水箱没有水的时候,灵敏度低的液位传感器仍然判断为有水状态,电蒸锅根据接收到的信号继续工作,有可能会导致电蒸锅干烧导致电器损坏等现象。而光电式液位传感器性能稳定,灵敏度高。[/color][color=#000000] [/color][color=#000000]与浮球式液位传感器相比,光电式液位传感器出现得较晚一些。浮球式液位传感器采集方法、工作原理都是较为落后的,所以其可靠性低、液位控制精度低。而光电式液位传感器则是采用红外线折射原理来进行液位的检测。通过光学检测的原理更为可靠,例如水中含有杂物、沉淀物等都不会影响光电液位传感器检测。而换为浮球式液位传感器就极有可能会遇到浮球被液体的杂物卡死无法检测的情况。[/color][color=#000000] [/color][color=#000000]光电式液位传感器可多方位安装的特点满足了家用电器的各类形状的水箱的安装需求。且光电式液位传感器分离式液位传感器只需在水箱中添加一个棱镜后便可实现非接触式检测。例如咖啡机、加湿器、冲奶机等各类水箱需要移动清洗、加水等的电器。[/color][color=#000000][img=分离式液位开关]http://www.eptsz.com/Upload/20181102/2018110217165451.jpg[/img][/color][color=#000000]作为一种新型接触式点液位测控装置的光电[color=#000000][url=http://www.eptsz.com/Products.aspx]水位传感器[/url] [/color]。光电液位传感器具有结构简单、定位精度高,没有机械部件,不需调试,灵敏度高及耐腐蚀、耗电少、体积小等诸多优点,还具有耐高温、耐高压、耐强腐蚀,化学性质稳定,对被测介质影响小等特征。相对于浮球式液位传感器、电容式液位传感器液位测量精度更高,且可靠性高,寿命长。[/color]深圳市能点科技有限公司成立于2003年,是一家专注于研发,生产,销售各类液位传感器,流量控制传感器,光电位置传感器,光电倾倒传感器等产品的高科技公司。 官方网站:www.eptsz.com [color=#000000][/color]

  • 水箱水位控制有什么合适的传感器?

    水箱水位控制有什么合适的传感器?

    水箱水位控制一般会使用什么传感器呢?一般是采用水位传感器来进行检测,水位传感器可以很好的检测水位的变化,检测到水位达到某一位置时发出信号给出提示。配合控制板还可以实现自动加水功能。所以水箱水位控制通常最适合的是水位传感器。水位传感器又有很多种类型,目前机器设备中是有采用哪些水位传感器呢?比如浮球式水位传感器、光电式、电容式等水位传感器。1.[b]电容式水位传感器[/b]价格便宜,体积小,并不直接接触液体,而是安装在水箱外壁使用。可检测各类各类带杂物、腐蚀性等液体。[img=,690,440]https://ng1.17img.cn/bbsfiles/images/2018/10/201810251019466712_2449_3397320_3.jpg!w690x440.jpg[/img]2.[b]浮球式液位传感器[/b]运作简单,优点是价格便宜,缺点是液位控制精度低,通常只能控制在±3mm之内甚至更高。浮球式水位传感器只能上置、下置安装,会局限了产品要求。并且浮球式水位传感器在使用一段时间后会产生水垢,水垢导致浮球增重的同时会影响液位检测精度,且不符合食品卫生认证标准。 [img=,253,210]https://ng1.17img.cn/bbsfiles/images/2018/10/201810251025552067_5793_3397320_3.png!w253x210.jpg[/img]3.[b]光电式水位传感器[/b]可上置、下置、侧置、斜向安装,防水等级达到IP 64,液位检测精度高,可以控制±0.5mm。且体积小、寿命长,安装工艺简单,稳定性强,可靠性高。应用环境广,受液体中的腐蚀性、沉淀物、漂浮物等影响较低。且接触液体面积小,易清洁更卫生[img=,629,386]https://ng1.17img.cn/bbsfiles/images/2018/10/201810251029499801_167_3397320_3.jpg!w629x386.jpg[/img]4.[b]超声波水位传感器:[/b]超声波水位传感器重量轻,检测精度高,非接触式的检测,更加卫生。具有安全、寿命长、可靠性高的特点。适用环境广,安装方式多样。超声波式水位传感器易有盲区,盲区内则检测不到液体或物体。超声波水位传感器下面不易有障碍物,以及有粉尘、水雾、易产生大量泡沫的液体,或者液体易挥发的情况下不适合超声波水位传感器。容易导致测量误差、信号丢失、精度下降等等。超声波式传感器价格较贵。5.[b]电极式[url=http://www.eptsz.com/Products.aspx][color=#000000]液位传感器[/color][/url]:[/b]电极式水位传感器结构简单,价格低廉,电极式传感器是直接利用水的电阻检测水位,这种传感器一般以不锈金属,或导电硅橡胶作为导电体,其封装工艺的优劣直接关系到产品的质量。电极式水位传感器在使用时间长久后会产生电解,产生的电解物质是有毒的,会影响人体健康。

  • 分离式光电液位传感器是如何控制水位的

    分离式光电液位传感器是一种创新的液位控制技术,通过独特的设计和应用方式,实现了对水位的精准监测和控制。这种传感器采用了传统光学传感器的基础,但在设计上有了重大改进。传统光学传感器需要直接置于水箱内部,而分离式液位传感器则将菱镜部分设计成一体化,并置于水箱外部,通过光学组件分离感应水位,解决了水箱移动加水的难题。分离式液位传感器的工作原理十分巧妙。其内部集成了光学电子元件,通过外置的感应方式,实现了无接触、无机械运动的水位检测。这种设计不仅使传感器寿命更长,而且具有高精度、快速反应的特点,同时还支持个性化定制,满足不同用户的需求。[align=center][img=非接触式液位检测,660,440]https://ng1.17img.cn/bbsfiles/images/2024/03/202403191530008680_3779_4008598_3.jpg!w660x440.jpg[/img][/align]安装分离式[url=https://www.eptsz.com]光电液位传感器[/url]非常简便,只需在水箱上设计菱镜结构,即可从外部实现水位感应,无需直接接触水箱内部。这种安装方式不仅方便快捷,而且避免了外部结构件对水位传感器的干扰,也更容易清洁,有效地避免了细菌滋生的问题。这种先进的技术已经在多个领域得到了广泛的应用,如加湿器、冲奶机、净水器、热水器、咖啡机、洗碗机、电蒸锅、冷气扇、家电宠物饮水机、水泵、鱼缸、智能机器人、洗地机等工业设备中都可以看到它的身影。通过分离式光电液位传感器,这些设备可以实现更精确、更可靠的水位控制,提升了整体的使用体验和效率,为用户带来了诸多便利。

  • 液体流量传感器有哪些

    液体流量传感器有哪些

    [font=宋体][color=#1E1F24]液体流量传感器是一种用于检测流量多少,控制流量开关一种电子元器件,常用于咖啡机、啤酒机等需要控制流量的设备等。根据不同的工作原理,液体流量传感器有多种类型,其中常见的包括霍尔流量计和光电流量计。[/color][/font][font=宋体][color=#1E1F24]霍尔流量计是一种利用霍尔效应测量液体流量的传感器。当带有两极磁铁的叶轮在垂直于磁场中旋转时,叶轮会切割磁力线并产生霍尔电压,通过测量霍尔电压可以计算出叶轮的转速,从而得出液体流量。[/color][/font][font=宋体][color=#1E1F24] [/color][/font][align=center][img=小型流量开关,439,378]https://ng1.17img.cn/bbsfiles/images/2023/11/202311101645241564_7993_4008598_3.png!w439x378.jpg[/img][/align][font=宋体][color=#1E1F24][url=https://www.eptsz.com]光电流量计[/url]则是一种利用光学原理测量液体流量的传感器。它通过在管道中安装一个叶轮,叶轮的转动会切断光通路并产生脉冲信号,通过计算转轮的转动次数,可以测量液体流量。光电流量计具有不含磁铁、纯光学感应、对水质保护更好等特点,适合透光率高的液体。[/color][/font][font=宋体][color=#1E1F24] [/color][/font][font=宋体][color=#1E1F24]霍尔流量传感器和光电流量传感器各有优势,在选择哪种流量计取决于具体应用场景。[/color][/font]

  • 雾化器流量控制

    请大家发表一下自己的见解:是用压力传感器控制还是质量流量计控制好,为什么?

  • 电子流量控制装置的流量校准

    一般认为,电子流量控制装置通过压力传感器和流量传感器可以获得相应的压力值和流量值。但实际上,对于从供应商处购买的传感器,都需要进行校准——因为未经校准的传感器测得的数值和实际数值可能并不一致。压力传感器稍微好一些,流量传感器则可能偏差较大。[font=微软雅黑, sans-serif]校准[/font][font=微软雅黑, sans-serif]在计量上的定义是在规定条件下,为确定计量器具示值误差的一组操作。即是在规定条件下,为确定计量仪器或测量系统的示值,或实物量具或标准物质所代表的值,与相对应的被测量的已知值之间关系的一组操作。在本文中,只进行简单的示意和举例,[color=red]说明流量传感器如何使示值接近真实值[/color],可能并不严格的遵循相应的法律和法规,同时与计量上的检定和校准也略有区别。[/font][font=微软雅黑, sans-serif]简单举例,对于未经校准的流量传感器,其信号值对应的流量是30ml/min,但通过精度和准确度较高的流量计测量,其实际流量可能是40ml/min,也可能是25 ml/min。见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/40/7e/a407ea8c51458ec224ca27729516c8e8.png[/img][/align]依上图所示,初始的流量传感器可以依据流量值-信号值做一条曲线(上图右中的实线);实际中,流量传感器在某一确定的信号输出值处,其流量可能会在一定范围内有偏差(上图右中的虚线)。换句话说,对于某一确定的实际流量(如200ml/min,见图中红线),流量传感器的信号输出值可能是3,也可能是3.5 —— 那么,电子流量控制装置流量的校准,指的就是找到其组成部件流量传感器在某一流量时的真正的信号输出值。实际操作中,一般在一定的温度、压力等条件下,为电子流量控制装置/流量传感器设定一个信号值,通过精度和准确度更高的流量计测量其实际流量;通过测定一系列的点形成信号-实际流量曲线,并将其存入电子流量控制装置内部,从而完成电子流量控制装置的流量校准。[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/f1/2aef1c833fcb9d04d71b14b1f3509ac3.png[/img][/align]简单来说,电子流量控制装置/流量传感器的校准就相当于色谱分析中的标准曲线法:信号值相当于峰面积,气体流量相当于样品浓度。完成校准以后,电子流量控制装置则可以正常工作。当在仪器上设定一定的流量值之后,电子流量控制装置的比例阀调节开度,使流量传感器的信号值达到曲线上设定流量对应的信号值,从而完成调节。以上是本节的全部内容,最后需要说明的是,压力传感器和流量传感器校准的方法类似。对于电子流量控制装置而言,其校准极为重要,保证准确度可以确保分析的重现性,同时也便于分析方法的比较、讨论和移植。

  • 检修空气流量传感器应该注意的问题

    空气流量传感器是一种可以把吸入的空气的流量转换成为输出电信号,将其送到电控单元,那是决定喷油的一个基本信号,用来测量吸入到发动机中的空气气量的精密测量仪器。空气流量信号属于发动机的电控单元控制混合的气体浓度的其中一个信号,如果进气的容量变大,那么电控单元所控制的喷油的容量也会相应地变大,反过来情况也是一样的。空气流量传感器在检修的时候需要注意以下的有关事项: 1、维修的要点 (1)损坏热模式空气流量传感器之后的有关处理 现在有很多的车型使用的热膜式空气流量传感器都是BOSCH公司生产出来的,它的核心的组成是惠斯登电桥以及一块集成电路,但是没有设有稳压电路。所以,如果突然发生瞬间高电压或者是电源的电压偏高的时候,这种传感器是很容易烧毁的。电路的峰值电压偏高一般是因为蓄电池的硫化比较严重,导致它的容量降低而不可以吸收到发电机的峰值电压,因此这种传感器的损坏其中一个原因是蓄电池的硫化。那么解决的方法是在这种传感器的前端位置多安装一个7812三端子稳压的集成电路。 (2)热膜和热线弄脏以后的清洗 当发动机发生回火这个故障的时候,传感器的损伤会比较严重。这是因为在进气歧管里发动机的气流会发生逆向的流动,里面就有炭颗粒,这一些颗粒就很容易地贴在传感器的感应元件上面,然后会引起以下的后果:如果怠速的时候,传感器的信号就会过大,而如果大负荷和加速的时候,信号就会过小。检查热线的自洁的能力是否正常的办法有:先把空气滤清器拆下来,透过传感器的进气口的地方仔细观察热线,如果发动机已经熄火到达五秒之后,还是没有看到热线发出淡红色的光辉大概为一秒钟的时间的时候,这个现象就说明了热线已经失去了自洁的能力。当热线被污染之后,可以选择在怠速、热机的工作状态下,把空气滤清器的滤网拆下来,使用汽化器清洗液洗去粘附在热膜或者是热线上的积炭。 2、有关大众车系列传感器故障码的特点 除了发动机以外的部件不正常工作,可能是记录传感器的故障码。当氧传感器坏了的时候,当节气门位置传感器的性能有缺陷的时候,当节气门弄脏的时候,都有可能会记录传感器的故障码。 3、初步判断空气流量传感器的性能 拔下传感器插接器可以判断它的性能。 (1)当出现的故障现象保持不变的时候,这就证明传感器已经被损坏了。 (2)当出现的故障现象稍微减轻的时候,这就证明传感器的性能在一定的程度上漂移,信号就会出现偏值的现象。 (3)当出现的故障现象已经开始恶化的时候,这就证明传感器没有被损坏,是属于正常的。 4、空气流量传感器的不正常工作对汽车可能产生的影响传感器的不正常工作不一定会造成发动机不能启动,但是对发动机的有关动力的性能是一定有影响的,例如进气管回火、加速不好、怠速的不稳定以及排气管会冒出黑烟等等的这些问题,而且还会导致尾气的排放量超标。

  • 具有备份传感器功能的超高精度PID调节器以保证控制过程的安全性

    具有备份传感器功能的超高精度PID调节器以保证控制过程的安全性

    [size=14px][color=#990000]摘要:为了保证科研生产中的安全运行和控制,针对一些对可靠性、安全性和产品价值要求较高的控制对象,往往要求传感器具有冗余设计。本文介绍了VPC 2021-1系列多功能超高精度PID控制器,主要介绍了此控制器的双传感器冗余功能及其使用方法。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~[/align][size=14px] 在各种工业和科研领域中,会采用大量各种传感器进行相应的过程参数测量和控制。在一些使用环境比较恶劣的条件下,如高低温、高压力、腐蚀、侵蚀、振动和强磁场等,传感器往往会受到损伤而发生故障,由此会在使用过程中给测量和控制带来严重影响,从而造成测量和控制效果降低,甚至造成产品报废和试验失败,更严重的还会造成控制失控而引发事故。特别是在一些高价值产品的长时间生产控制过程中,绝不允许期间出现中断而造成控制参数巨变造成高价值产品报废现象。[/size][size=14px] 为了解决上述运行过程中传感器损坏而带来的控制失效问题,最好的解决方法是进行冗余设计,即对工作用传感器进行备份。如图1所示,在被控对象中布置至少两个传感器,一个作为主传感器,另一个为备份传感器。当主传感器出现故障时,特别是主传感器出现断路时,控制器自动切换到备份传感器。[/size][align=center][size=14px][color=#990000][img=双传感器冗余示意图,500,294]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161612313860_2879_3221506_3.jpg!w690x407.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#990000]图1 冗余设计的双传感器(主传感器和备份传感器)[/color][/align][size=14px] 在控制过程和运行设备中配备双传感器比较容易实现,条件是主传感器和备份传感器的规格型号和量程要完全一致,但发挥这种冗余设计功效的关键是要求相应的PID控制器具有传感器断路自动监测能力,并同时要求能将控制回路自动切换到备份传感器。[/size][size=14px] 为了满足安全生产和控制需要,VPC2021-1系列多功能超高精度PID控制器配备这种双传感器冗余功能。如图2所示,此系列PID控制器具备万能型传感器输入功能,可连接的47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压。在备份传感器的具体使用中,可以将两只完全相同的传感器分别接入主输入端和辅助输入端,并将辅助输入通道设置为双传感器冗余功能。开始运行后,控制器同时采集两只传感器信号,但采用主传感器信号进行控制。当主传感器开路时,当前测量自动转入辅助输入端(备份传感器)的测量值并继续进行控制。[/size][align=center][size=14px][color=#990000][img=具有双传感器冗余功能的多功能超高精度PID控制器,350,388]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161614314227_180_3221506_3.jpg!w496x551.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#990000]图2 具有双传感器冗余功能的PID控制器[/color][/align][size=14px] 这种双端口输入信号的功能还可以进行扩展,可以通过相应的设置用来进行加热器断丝报警、阀位反馈、远程设定、不同量程双传感器切换。[/size][size=14px] 总之,这种具体双传感器冗余功能的PID调节器完全可以满足安全控制的需要,功能十分强大,同时还保持了超高精度的测量控制能力。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 具有双传感器自动切换功能的双通道24位高精度PID控制器

    具有双传感器自动切换功能的双通道24位高精度PID控制器

    [align=center][size=14px][img=双传感器自动切换PID控制器,690,426]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281550092924_2978_3384_3.png!w690x426.jpg[/img][/size][/align][color=#990000]摘要:为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的英国欧陆公司2704系列产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换。采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可使备份传感器成为可能,可有效保证过程控制的连续性和安全性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=24px][color=#990000]1. 问题的提出[/color][/size][size=14px][/size]  在许多工业控制领域中,如真空热处理、冷冻干燥机、高压釜、半导体加热炉、空间环境模拟室等,被控参数的量程往往会很宽泛,为了覆盖全量程范围内的准确测量和控制,往往需要两只不同量程的传感器。[size=14px][/size]  如在温度测控过程中,往往在低温段采用热电偶温度传感器,在高温段采用红外测温仪,有时也会采用两种不同类型的热电偶温度传感器来覆盖宽的温度区间。[size=14px][/size]  如在真空度测控过程中,往往会采用10Torr和1000Torr两只薄膜电容真空计来完成0.1~760Torr全量程范围的真空度准确测量和控制。[size=14px][/size]  对于这种需要双传感器测量和控制的场合,目前普遍还是采用人工判断切换方式,这给实际应用带来很大不便。[size=14px][/size]  国外著名厂商欧陆(EUROTHERM)公司针对上述应用,专门推出了2704系列PID过程控制器,但价格较贵。[size=14px][/size]  为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的国外产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换,采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可以使备份传感器成为可能,有利于控制过程中若一只传感器出现故障而自动切换到第二只备份传感器,保证过程控制的连续性和安全性。[size=24px][color=#990000]2. 基本原理[/color][/size][size=14px][/size]  双传感器自动切换的基本原理是在控制器主输入接口的基础上引入了一个辅助输入接口,如图2-1所示为两只传感器切换的情况。以温度传感器为例,高切换点(2-3)是第一只传感器工作的高点,低切换点(1-2)是第二只传感器工作的低点,在这两点之间控制器进行平滑计算。当主输入PV1和辅助输入PV2的测量值连续采样低于下切换点,切换到低温传感器。当主输入PV1和辅助输入PV2的测量值连续采样高于上切换点,则切换到高温传感器。[align=center][color=#990000][img=双传感器自动切换原理,690,452]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281552543835_2273_3384_3.png!w690x452.jpg[/img][/color][/align][size=14px][/size][align=center][color=#990000]图2-1 双传感器自动切换原理图[/color][/align][size=24px][color=#990000]3. 控制器参数设置[/color][/size][size=14px][/size]  双传感器高低量程的切换点数值判断以辅助输入测量值为判断依据,因此当系统采用双传感器测量和控制时,辅助输入接口做为高端量程传感器的信号输入源。[size=18px][color=#990000]3.1. 双传感器切换功能时,输入类型分辨率的设置[/color][/size][size=14px][/size]  (1)主输入接口输入类型为热电偶或热电阻时[size=14px][/size]  此时的温度单位“摄氏度”和“开尔文”设置为0.1度分辨率,温度单位“华氏度”为1度分辨率。即,主输入类型为热电偶或热电阻,温度单位为摄氏度或开尔文时,辅助输入通道小数点设置为1位小数。温度单位为华氏度时,小数点设置为0位小数。[size=14px][/size]  (2)主输入通道的输入类型为模拟信号时(真空度测控情况)[size=14px][/size]  根据小数点设定分辨率,两通道必须相同分辨率,即主输入和辅助输入保持相同小数位数,但相应的量程要根据传感器的实际量程进行设置。如对于10Torr和1000Torr两只真空计,其对应的模拟信号都是0~10V,但显示量程分别要设置为10和1000。[size=18px][color=#990000]3.2. 双传感器切换功能中的上下限切换点设置[/color][/size][size=14px][/size]  在使用双传感器切换功能时,还需在控制器上进行相应子菜单设置,分别设置上限切换点和下限切换点,具体内容详见控制器使用说明书。[size=24px][color=#990000]4. 双传感器自动切换功能的应用[/color][/size][size=14px][/size]  具有双传感器自动切换功能的PID过程控制器可应用于多种场合:[size=14px][/size]  (1)由于双传感器功能能够同时从两个独立的传感器接收输入信号,这就使得控制器可用于测量两传感器之间的差值和平均值,如温差、平均温度、真空压力差和真空压力平均值。[size=14px][/size]  (2)双传感器自动切换功能也可作为备份传感器切换功能使用,即在控制器上连接两只完全一样的传感器,当第一只传感器开路时,当前测量自动切换到第二只传感器测量值进行控制,由此对测量和控制起到保护和保险作用。[size=14px][/size]  (3)由于上海依阳公司的VPC2021-2系列PID过程控制器具有双通道同时测控能力,而每一通道都配备了辅助输入端口,这样就可以同时连接4只传感器。这种4只传感器的接入能力,能带来非常多的组态形式,如同时进行两路不同变量(如温度和真空度)的测量和控制,其中2只传感器同时测控温度和真空度,其他2只传感器用来同时监测其他两个测量点处的测量值变化情况。[size=14px][/size]  (4)在高真空工艺过程中,最常见的是使用扩散泵,并将扩散泵放置在真空炉膛和机械泵(粗真空)之间,而扩散泵和机械泵之间的区域称为前级室。机械泵将前级室气压降低到扩散泵的最大吸入压力以下,扩散泵才能开始正常运行。在典型的单室真空系统中,一般会配备三个真空计:在主真空室(或炉膛)中将安装两个真空计,一个用于低真空(皮拉尼真空计10-3 mbar),另一个用于高真空(有源倒磁控管AIM)仪表10-8mbar。而另一个皮拉真空计被视为单独的输入用来监控前级室气压。在实际应用中需要两个主真空室上的真空计进行自动切换,同时外加一个真空计监测前级室气压和一个温度传感器进行腔室温度测控。两种类型的真空计(每种都需要24V直流电源)提供2~10V直流对数输出,涵盖不同的真空范围。在实际控制过程中,两通道控制器将前级室与主真空室隔离并打开前级泵,当前级室达到设定的真空度时,控制器将改变其联锁装置,使扩散泵能够将炉子抽真空。同样,当炉子达到设定的真空度时,两通道控制器将控制执行设定的温度曲线,同时继续监测是否保持必要的真空度。[align=center]=======================================================================[/align][align=center][img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281553360737_7536_3384_3.jpg!w690x349.jpg[/img][/align][size=14px][/size]

  • 美国MKS公司上游流量控制阀及其控制器的国产化替代

    美国MKS公司上游流量控制阀及其控制器的国产化替代

    [color=#990000]摘要:对标美国MKS公司的148J、248A和154A 系列上游流量控制阀以及244、250、946和651系列控制器,介绍了相应的国产化替代产品电子针阀和多功能高精度控制器,并介绍了国产化替代产品的相应特点和技术指标 。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、MKS公司上游流量控制阀[/color][/size] MKS上游流量控制阀是一类真空型电磁比例阀,如图1所示,主要有以下三个系列产品: (1)148J全金属流量控制阀:金属密封,流量范围0.01~20L/mim。 (2)154B大流量控制阀:橡胶密封,流量范围20~200L/mim。 (3)248D通用型流量控制阀:橡胶密封,流量范围0.01~50L/mim。[align=center][color=#990000][img=MKS上游气体流量控制阀,690,259]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251024178_4191_3384_3.png!w690x259.jpg[/img][/color][/align][align=center][color=#990000]图1 MKS公司上游流量控制阀[/color][/align][size=18px][color=#990000]二、MKS公司流量/压力控制器[/color][/size] MKS公司的流量/压力控制器是一类PID控制器,如图2所示,主要有以下4个系列产品: (1)244系列:手动PID控制,单通道控制,适配多种传感器,0~10VDC输入信号,手动/自动/外部控制模式,精度为满量程的0.25%,多个设定点(3或4),控制偏差指针显示。此型号系列控制器现已停产。 (2)250系列:手动PID控制,单通道控制,适配多种真空传感器,0~10VDC输入信号 ,手动/自动/外部控制模式,精度为满量程的0.25%,最多4个设定点,外部编程设定,数码显示测量值和控制偏差值。此型号系列控制器现已停产。[align=center][color=#990000][img=MKS流量压力控制器,690,102]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251398451_7424_3384_3.png!w690x102.jpg[/img][/color][/align][align=center][color=#990000]图2 MKS公司流量/压力控制器[/color][/align] (3)946系列:自动PID控制,16位A/D采集,6通道控制,适配多种真空传感器,最多可同时监测6路传感器信号,0~10VDC输入/输出信号 , 手动/自动/外部控制模式,内部编程设定,数字显示测量值和控制偏差值,12路继电器输出,RS232/485通讯。 (4)651系列:自调节快速PID控制,16位A/D采集,单通道控制,适配多种真空传感器,0~10VDC输入/ 输出信号 , 手动/自动/外部控制模式,重复性为满量程的±0.1%,外部编程设定,数字显示测量值, 多路I/O接口,RS232/485通讯。[size=18px][color=#990000]三、国产化电子针阀替代MKS电磁控制阀[/color][/size] MKS公司的上游流量控制阀是一种传统的电磁阀,电磁阀最大的问题是磁滞比较大,会明显的影响线性度和控制精度。这些控制阀的整体价格较高,也没有相应的国产品牌。 为了实现上游流量控制阀的国产化替代并提高性价比,我们在针阀技术上采用数控步进电机来代替电磁阀,开发了一些列不同流量的电子针阀,如图3和图4所示,完全实现了国产化替代。[align=center][color=#990000][img=电子针阀,500,428]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252026101_430_3384_3.gif!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][img=电子针型阀技术指标,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252322209_7636_3384_3.png!w690x452.jpg[/img][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术参数[/color][/align][align=left][size=18px][color=#990000]四、国产化高精度PID控制器替代MKS控制器[/color][/size][/align] MKS公司的气体流量/压力控制属于专用控制器,只能满足真空领域内的气体流量和压力控制,尽管功能十分强大,但价格较贵。国产化替代的PID控制器,采用了更高精度的24位A/D采集器,控制器更趋于通用性,可实现温度和真空压力的同时控制,如图5所示。[align=center][color=#990000][img=VPC-2021系列控制器,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252599268_5639_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图5 国产VPC-2021系列温度/压力控制器[/color][/align] 国产高精度多功能PID控制器主要特点如下: (1)高精度:±0.05%满量程,24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID,分组输出限幅功能。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:支持20条工艺曲线,每条50段,支持段内循环和曲线循环。[hr/]

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

  • 电气比例阀采用外置传感器和PID控制器实现化学机械抛光超高精度压力控制的解决方案

    电气比例阀采用外置传感器和PID控制器实现化学机械抛光超高精度压力控制的解决方案

    [color=#990000]摘要:为大幅度提高现有CMP工艺设备中压力控制的稳定性,在现有电气比例阀这种单回路PID压力调节技术的基础上,本文提出了升级改造方案,即采用串级控制法(双回路PID控制,也称级联控制),通过在现有电气比例阀回路中增加更高精度的压力传感器和PID控制器,可以将研磨抛光压力的稳定性提高一个数量级,从1~2%的稳定性提升到0.1~0.2%。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]在半导体制造过程中,化学机械抛光(CMP)是在半导体晶片上产生光滑、平坦表面的关键工艺。CMP工艺中的压力控制是决定最终产品质量的关键因素。如果压力过高,会损坏半导体材料;如果压力太低,会导致表面不平整。CMP系统中需要配置专用的压力调节装置,以确保压力保持在安全范围内。通过将压力保持在安全范围内,压力调节装置有助于确保半导体晶片在CMP过程中不被损坏。目前的CMP系统中普遍采用电气比例阀作为压力调节器,其典型结构如图1所示。在CMP中采用比例阀来控制抛光过程中施加在晶圆上的压力。由于比例阀是电子控制和压力值的模拟信号输出,因此可以通过控制系统(如PLC)对其进行动态编程和压力监控,这意味可以根据被抛光的特定晶片准确改变施加的压力。此外,由于电气比例阀作为压力调节器是一个闭环控制,即使在下游压力发生变化期间,施加在抛光垫上的压力也会保持不变,由此实现压力的自动调节。[align=center][img=常规研磨机电气比例阀压力控制系统结构,600,280]https://ng1.17img.cn/bbsfiles/images/2022/09/202209150917534790_1434_3221506_3.png!w690x322.jpg[/img][/align][align=center]图1 常规CMP系统中电气比例阀压力控制装置结构示意图[/align]在一些CMP工艺的实际应用中,要求抛光压力具有很高的稳定性,图1所示的常规压力调节装置则无法满足使用要求,这主要体现在以下几方面的不足:(1)电气比例阀的整体控制精度明显不足,其整体精度(包含线性度、迟滞和重复性)往往在1~2%范围内。这种精度水平主要受集成在比例阀内的压力传感器、高速电磁阀和PID控制器性能和体积等因素制约,而且进一步提高的空间非常有限。(2)电气比例阀安装位置与气缸有一定的距离,由此造成比例阀所检测到的压力值并不是气缸的真实压力,而且比例阀处压力与气缸压力之间有一定的时间滞后。为解决上述存在的问题,进一步提高现有CMP工艺设备中压力控制的稳定性,在现有电气比例阀这种单回路PID压力调节技术的基础上,本文将提出升级改造方案,即采用串级控制法(双回路PID控制,也称级联控制),通过在电气比例阀回路中增加更高精度的压力传感器和PID控制器,可以将研磨抛光压力的稳定性提高一个数量级,从1~2%的稳定性提升到0.1~0.2%。[size=18px][color=#990000][b]二、CMP设备压力控制的串级PID控制方案[/b][/color][/size]在传统的CMP设备压力调节过程中,采用电气比例阀进行压力调节的稳定性完全受集成在比例阀内的压力传感器、高速电磁阀和PID控制器性能和体积等因素制约。为了提高压力控制的稳定性,并充分发挥电气比例阀的自身优势,我们采用了一种串级控制技术,即在作为第一回路的电气比例阀中增加第二控制回路,其中第二控制回路由更高精度的压力传感器和PID控制器构成。串级PID控制方案的整体结构如图2所示。[align=center][img=03.超高精密研磨机电气比例阀压力串级控制系统结构,600,333]https://ng1.17img.cn/bbsfiles/images/2022/09/202209150918245058_1534_3221506_3.png!w690x384.jpg[/img][/align][align=center]图2 串级控制法CMP系统压力控制装置结构示意图[/align]在图2所示的串级控制法压力调节装置中,安装了一个外置压力传感器用于直接监测气缸内的气压,压力传感器检测到的气缸压力信号传输给外置的PID控制器,外置PID控制器根据设定值或设定程序将控制信号传送给电气比例阀,比例阀根据此控制信号再经其内部PID控制器来调节高速电磁阀的动作,使得电气比例阀输出到气缸的气体气压与设定值始终保持一致。从上述串级控制过程可以看出,串级控制是一个双控制回路,是两个独立的PID控制回路,电气比例阀起到的是一个执行器的作用。串级控制法(也称级联控制法)是一种有效提升控制精度的传统方法,但在具体实施过程中,需要满足的条件是:[color=#990000]第二回路的传感器和PID控制器(这里是外置压力传感器和PID控制器)精度一般要比第一回路的传感器(这里是电气比例阀内置的压力传感器和PID控制器)要高。[/color]为了实现更高稳定性的CMP系统压力控制,我们推荐的实施方案是采用0.05%精度的外置压力传感器和超高精度PID控制器(技术指标为24位ADC、16位DAC和双浮点运算的0.01%最小输出百分比)。此实施方案我们已经进行过大量考核试验,压力稳定性可以轻松达到0.1%。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 液氮罐压力控制装置故障:压力传感器失灵的修复方法

    液氮罐压力控制装置故障:压力传感器失灵的修复方法

    液氮罐在现代科技中扮演着重要的角色,被广泛应用于许多领域,如冷冻、医疗和科学实验等。而在这些应用中,一个关键的组成部分就是液氮罐的压力控制装置。然而,压力传感器失灵可能导致罐内压力无法正常监测,从而可能带来一系列问题。本文将探讨液氮罐压力传感器失灵的原因,并提供解决方案和修复措施。一、压力传感器失灵的原因1. 电路故障压力传感器的失灵很可能是由于电路故障引起的。电路故障可能包括电线断裂、焊接点松动或老化、电源供应问题等。当电路故障发生时,压力传感器无法准确地向控制装置发送信号,导致压力无法正常监测。2. 传感器损坏压力传感器可能会受到外界物理力或不合适的使用环境影响而损坏。例如,摔落、挤压或过度震动可能导致传感器内部元件的损坏。此外,如果传感器长时间处于高温或低温环境中,也可能影响其性能。二、修复压力传感器失灵的方法1. 检查电路连接当发现压力传感器失灵时,首先应检查电路连接是否正常。仔细检查电源线、信号线和地线是否有断裂或松动的情况。如果发现问题,应立即修复或更换损坏的电线。2. 更换传感器如果电路连接正常,但压力传感器仍然失灵,那么可能需要考虑更换传感器。首先,检查压力传感器周围是否有损坏的迹象,如裂纹或变形。如果发现传感器有损坏,应及时更换新的传感器。同时,确保新传感器与原传感器的规格相匹配,并按照制造商的指示进行安装。[img=液氮罐,690,517]https://ng1.17img.cn/bbsfiles/images/2023/12/202312130935077943_3504_3312634_3.jpg!w690x517.jpg[/img]3. 调试和校准传感器一旦更换了新的传感器,还需要调试和校准传感器以确保其正常工作。这包括使用专业设备对传感器进行校准,并调整传感器的灵敏度和响应时间。校准后,应使用合适的工具和方法测试传感器的工作状态,以确保其准确地监测罐内压力。[url=http://www.mvecryoge.com/]金凤液氮罐[/url]三、预防措施除了修复压力传感器失灵之外,还可以采取一些预防措施,以延长传感器的寿命并减少故障的可能性。1. 定期检查定期检查液氮罐的压力传感器,确保其连接牢固并没有损坏。定期检查可以发现潜在问题,并及时采取措施修复或更换传感器。2. 控制温度维持合适的温度范围也是保护压力传感器的关键。避免将液氮罐暴露在过高或过低的温度环境中,这样可以减少传感器受损的风险。[url=http://www.yedanguan365.com/]液氮罐[/url]正确使用[url=http://www.yedanguan1688.com/]液氮罐[/url]和相应的压力控制装置是保护压力传感器不被损坏的重要措施。严禁摔落、挤压或强烈震动罐身,同时避免使用液氮罐处于超出规定温度的环境中。液氮罐压力控制装置是确保液氮罐正常工作的重要组成部分。当压力传感器失灵时,可能会导致一系列问题。本文讨论了压力传感器失灵的原因,并提供了修复方法和预防措施。通过及时检查、更换传感器以及正确使用液氮罐可以确保压力传感器的正常运行,并延长其寿命,从而提高液氮罐的性能和安全性。

  • 流量计与液位传感器之间的功能简述和应用

    流量计与液位传感器之间的功能简述和应用

    [size=24px][font=宋体]流量计主要的功能是检测液体流量的多少,液位传感器的主要功能是检测液位状态变化情况。[/font][b][font=宋体]流量计安装应用:[/font][/b][font=宋体]将流量计进出水口的两端用水管连接,当水泵开始抽水时,水流进入流量计内部时会带动叶轮转动,流量计则会输出对应的脉冲信号,叶轮每转动一圈就会产生一个脉冲信号输出,通过计算叶轮的转动次数来测量水流量的多少。[/font][img=,690,212]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230959007615_9949_4008598_3.jpg!w690x212.jpg[/img][b][font=宋体]液位传感器安装应用:[/font][/b][font=宋体]液位传感器有接触式和非接触式两种,接触式液位传感器是安装在水箱上的,非接触式液位传感器是安装在水箱外的,不直接接触液体检测,将传感器安装在水箱底部(或低液位处),当液位下降至传感器检测位置时,传感器则会发出信号提醒,即缺水提醒。把传感器安装在高液位处,可实现满水提醒。[/font][img=,690,333]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230959408673_7209_4008598_3.jpg!w690x333.jpg[/img][font=宋体][url=https://www.eptsz.cn/Product/89457.html][b]流量计[/b][/url]也可以实现缺水检测功能,将流量计和液位传感器组合起来使用,不仅可以控制流量,还可以实现缺水检测双重保护。[img=,640,378]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230959167483_348_4008598_3.png!w640x378.jpg[/img][/font][/size]

  • 流量计和流量传感器的区别

    流量计和流量传感器的区别

    [align=left][font=宋体]流量计和流量传感器在工业生产中都是常用的设备,但它们之间有着明显的区别。[/font][/align][align=left][font=宋体]流量计是一种测量流体流量的设备,通常由机械结构和电子元件组成。[/font][font=宋体]霍尔式流量计:[/font] [font=宋体]利用霍尔效应,把带有两极磁铁的叶轮置于垂直于磁场中,通过叶轮转动产生的[/font] GS [font=宋体]值转换成脉冲信号输出。广泛应用于咖啡机、饮水机、洗地机、净水器、泡茶机、饮料机、啤酒机等需要流量检测的设备上。[/font][/align][align=center][img=小型流量计,360,360]https://ng1.17img.cn/bbsfiles/images/2023/12/202312131638222062_9671_4008598_3.jpg!w360x360.jpg[/img][/align][align=left][font=宋体][url=https://www.eptsz.com]流量传感器[/url]是一种测量液体的装置,通过感应水管液体参数的变化,来计算流量熟知,并输出处理结果,[/font][font=宋体][color=#333333][back=white]要用于检测流体的流速、流量、温度等参数[/back][/color][/font]。[/align][align=left][font=宋体]流量计和流量传感器虽然都是用于测量流体流量的设备,但它们在结构、原理和应用方面有着明显的区别。因此,在选择和使用这两种设备时,需要根据实际需要进行选择,以确保测量和控制的准确性和可靠性。[/font][/align]

  • 位置传感器控件_位置传感器性能受损

    一般来说,一辆汽车最容易出现故障的地方就是它的发动机了,而我们都知道发动起是一个汽车的核心部位,如果发动机发生故障,那么整个车辆是无法运行的。发动机中位置传感器又是相对重要零部件,所以通常判断汽车发动机是有问题的时候都需要先对位置传感器的性能状态进行检查,排除一定的故障。位置传感器安装在曲轴前端、凸轮轴前端、分电器内或飞轮上,用于检测活塞上止点和曲轴的转角。曲轴位置和转速信号既发送给发动机电控单元,又发送给转速表。位置传感器损坏后,发动机既不会点火,也不会喷油。因此,位置传感器是发动机电子控制系统的最主要的传感器。  按照工作原理的不同,位置传感器划分为磁脉冲式、霍尔式和光电式等三大类。日产公爵王、伏尔加、本田雅阁、日产蓝鸟、北京切诺基、三菱太空以及丰田(K、5R、12R)等系列汽车采用磁脉冲式位置传感器,大众车系(桑塔纳、捷达、奥迪、红旗等)大多采用霍尔式位置传感器,而日产公司有的车型采用光电式位置传感器。  磁脉冲式位置传感器又称为可变磁阻式传感器,它是基于变化的磁场与电流之间相互感应这一电学原理而工作的。这种传感器带有磁铁和感应线圈(称为“传感头”),与安装在转动部位(如曲轴、飞轮)的铁磁质信号发生盘(俗称“转子”)配合工作。当带齿的信号发生盘转动时,转子与传感头之间的磁场产生变化,于是在传感头的线圈内感应出交流电压。如果信号发生盘的转速发生变化,传感头输出的信号电压和频率也随之变化,这就是磁脉冲式位置传感器的基本工作原理。   首先,位置传感器的脉冲信号发生盘的安装位置不能弄反,必须靠近传感头。否则,传感头感知不到曲轴位置的变化,甚至发出错误的信号,使得发动机ECU据此确定的点火指令和喷油指令也是错误的,进而导致发动机无法正常运转。  其次,磁脉冲式位置传感器信号发生盘的齿顶与传感头之间的气隙必须符合要求,否则难以感知磁力线的变化,将造成输出信号减弱或者无信号输出。  有的车型位置传感器的传感头固定在油底壳上,而信号发生盘安装在曲轴上,汽缸体与油底壳之间没有密封垫圈(依靠密封胶)。有时为防漏油,在汽缸体与油底壳之间加装密封垫圈,可致使位置传感器气隙达到3mm(标准为0.8~1.2mm)。位置传感器的传感头与信号发生盘的气隙过大,转速增加时,会出现曲轴位置信号不准或者丢失,导致发动机加速不良甚至无法启动等不良后果。  对于需要调整气隙的磁脉冲式位置传感器,可以采用类似分电器触点间隙的调整方法进行。装配位于飞轮上的位置传感器。应当在组装完大飞轮和变矩器以后,再安装位置传感器,而且要紧固可靠,不允许随意增加垫片,如果拧得不紧或乱加垫片,都会使位置传感器与飞轮的间隙超过规定值,从而导致曲轴转速及位置信号失常。位置传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器丨[url=http://mall.ofweek.com/category_127.html]位置传感器[/url][/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • FID气相色谱流路的EPC压力控制和EFC流量控制哪个更优

    首先说明 :EPC,内部使用压力传感器和电磁比例阀,实现稳定的电子压力控制EFC,内部使用MEMS流量传感器和比例阀,实现稳定的流量控制部分厂家采用EPC和通径来计算的流量控制不在此讨论中。曾经请教过色谱技术人员,对方说氢气和助燃空气采用EFC流量控制合适。色谱柱载气采用EPC控制。论坛里有网友说EFC流量控制精度不高,也有网友说EFC是更新一点的先进技术。我的个人看法是氢气、空气和色谱柱载气使用EFC更好,流量更直观,EPC并不能完全反应流量。但是填充柱和毛细柱的内径差很多,是否毛细柱用EPC压力控制更好?大家怎么看

  • 气相色谱中的电子流量控制装置概述

    1 概述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。无论使用什么样的名词,一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气(以及氢气、空气等各种辅助气体)进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量;同时,也可以有更多的流量/压力操作模式,如使用压力编程、流量编程等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/85/8b/5858b3500c995683ff3ef85201d0e334.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/02/52/50252701047c00b67f30eef56f064434.png[/img]国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,早期多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/06/cf/206cf3f6eff14718ef9d9bd8abc8be8e.jpeg[/img]上述模式主要应用于单气路通道的填充柱载气控制、检测器的燃气(氢气)、检测器的助燃气(空气)以及尾吹气的使用上;对于毛细柱进样口等需要多气路通道(载气、分流、隔垫吹扫)的结构而言,初期时候是将多个上述模块分别安装的载气、分流、隔垫吹扫气路上,但是实际使用效果很差;后期则逐渐在模块中安装压力传感器,使用压力控制柱前压和毛细柱的载气流量,使用上述模块控制分流流量;目前,多数厂家已经抛弃上述模式,逐渐转向多气路通道(载气、分流、隔垫吹扫)整体和关联调节的集成式的气路模块。二 组成部件和简单的工作原理使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/56/55c562d04af13eec09a42850ee170c6a.png[/img]其中:气路部件用以气体穿过,同时在气路部件上安装比例阀、流量传感器、压力传感器等其他部件;气路部件一般为金属材质;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/be/63/3be636931161170518396a8f833014ba.png[/img]比例阀通过调节开度的大小来调节出口处的流量或者压力;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bd/5e/2bd5eed5a52e4b81c88d76c8bdfd5be3.png[/img]流量传感器用以测量比例阀前或者比例阀后流量的大小;压力传感器用以测量比例阀前或者比例阀后压力的大小;在一个电子流量控制模块中,可能只安装流量传感器或者压力传感器,也可能两者同时安装。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/3c/ec/63cec76faee1a7d47079b33fad1de5bf.png[/img]另外,在出口之后根据实际需要,还可能安装有气阻等部件电子流量装置工作的简单原理是:控制电路获取仪器设定的流量或者压力的数值,通过比较压力传感器或者流量传感器的实测值,来调节比例阀的开度大小,从而使设定值和实测值相同。以上是本节的全部内容,在随后的文章中将介绍电子流量控制装置的具体工作模式和其他相关内容,敬请关注

  • 净水器如何实现流量控制

    净水器如何实现流量控制

    [font=宋体]净水器是我们日常生活中常用的设备之一,它可以将自来水中的杂质和污染物过滤掉,提供干净的饮用水。在净水器中,流量控制是非常重要的一项功能,它可以确保水的流量适中,保证净水器的正常运行。[/font][font=宋体]净水器中常用的流量控制器有霍尔流量计和光电流量计。霍尔流量计是一种基于霍尔效应的流量传感器,它通过测量液体通过管道时产生的磁场变化来确定流量。当水流经过霍尔流量计时,流体中的磁场会引起霍尔元件的电压变化,从而测量出流量大小。净水器中的霍尔流量计可以根据设定的流量范围来控制水的流量,确保净水器的正常运行。[/font][align=center][img=小型流量计,639,367]https://ng1.17img.cn/bbsfiles/images/2023/09/202309041755402808_6964_4008598_3.jpg!w639x367.jpg[/img][/align][font=宋体]净水器中的流量控制是确保设备正常运行的重要功能。[url=https://www.eptsz.com]霍尔流量计[/url]和光电流量计是常用的流量控制器,它们可以根据设定的流量范围来控制水的流量,保证净水器提供稳定的饮用水。通过合理选择和使用流量控制器,可以提高净水器的效率和使用寿命,为我们提供更加健康和安全的饮用水。[/font]

  • 流量控制阀的工作特点及其原理

    流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的产品特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。

  • 净水器流量控制流量计

    净水器流量控制流量计

    [font=&][size=18px]家用型独立式的净水器,通常有内外2个水箱。在净水器内部管路上增加一个霍尔流量计,除了可以计算出水量外,还可以检测水箱是否缺水,防止水泵空抽。[/size][/font][size=18px] [/size][font=&][size=18px] 霍尔流量计是一段为进水口,一端为出水口,2端分别连接水管。内部含有一个可以旋转的叶轮,当进水口进入到流量计内部时,会带动叶轮旋转,流量计顶盖处有霍尔感应元件,叶轮每旋转一圈,霍尔感应元件根据叶轮旋转次数输出对应的脉冲信号。[/size][/font][align=center][size=18px][img=,633,195]https://ng1.17img.cn/bbsfiles/images/2021/12/202112181059347714_7150_4008598_3.jpg!w633x195.jpg[/img][/size][/align][size=18px] [/size][font=&][size=18px] 设备可根据流量计输出的脉冲信号判断此时流量计的出水量,由此控制出水量。如内水箱满水状态为300ml,则当流量计输出的脉冲信号对应为300ml的出水量时,设备判断此时内水箱水满,停止抽水。若是用来控制饮用水水量,如设备设定按一次按钮,则出水量100ml,那么当流量计输出的脉冲信号达到对应100ml毫升时,停止抽水。[/size][/font][size=18px] [/size][font=&][size=18px] 除了控制出水量外,还可以实现水箱缺水检测,在水箱底部连接管道,将霍尔流量计装在管道上,当水箱无水时,水泵空抽,流量计位置也处于无水状态,由此输出信号,净水器接收到信号后判断水箱处于缺水状态,从而控制电路提醒用户加水。[/size][/font][size=18px] [/size][font=&][size=18px] 不过考虑到体积结构等问题,一般流量计用来控制出水量的较多,检测水箱缺液通常是采用管道液位传感器、非接触式光电液位传感器等来实现。[/size][/font][align=center][size=18px][img=,600,492]https://ng1.17img.cn/bbsfiles/images/2021/12/202112181100119750_3730_4008598_3.jpg!w600x492.jpg[/img][/size][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制