当前位置: 仪器信息网 > 行业主题 > >

透射分光测色仪

仪器信息网透射分光测色仪专题为您提供2024年最新透射分光测色仪价格报价、厂家品牌的相关信息, 包括透射分光测色仪参数、型号等,不管是国产,还是进口品牌的透射分光测色仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合透射分光测色仪相关的耗材配件、试剂标物,还有透射分光测色仪相关的最新资讯、资料,以及透射分光测色仪相关的解决方案。

透射分光测色仪相关的资讯

  • 台式分光测色仪在纺织色彩检测的应用方案
    纺织品在现代生活中扮演着至关重要的角色,而色彩在纺织行业中扮演着极其重要的角色,它不仅是产品质量的重要指标,更是引领时尚潮流、传递品牌形象以及满足消费者多样化需求的关键元素。在纺织品的生产和设计过程中,色彩能够直接影响消费者的购买决策和情感体验。纺织品的色彩选择不仅需要符合当前市场趋势,还要与品牌定位和产品风格相匹配,以吸引目标消费者群体。一种优雅的色彩搭配能够赋予纺织品独特的个性和魅力,使其在激烈的市场竞争中脱颖而出。因此,对纺织品色彩进行准确检测和控制对于纺织行业至关重要。台式分光测色仪作为一种快速、准确的色彩测量设备,在纺织色彩检测中发挥着关键作用。作为先进的色彩测量设备,它能够高精度、快速地测量纺织品样品的色彩参数,如色差、色相、明度和饱和度等。通过台式分光测色仪的应用,纺织企业可以实现对纺织品色彩的准确分析和质量控制,确保产品批次间色彩的一致性,提高生产效率并降低色彩相关问题带来的成本。此外,非接触性的测量方式还避免了样品污染和损坏,保持了样品的完整性,从而提升了样品测试的可靠性和可重复性。台式分光测色仪的广泛应用使纺织企业能够更好地满足市场需求,提升产品品质,增强品牌竞争力,进一步推动纺织行业的发展。Ci7800台式分光测色仪是一款先进的色彩测量设备,广泛应用于纺织行业以及其他领域。该仪器采用了分光学原理,能够将白光分解成不同波长的光谱成分,并通过测量样品对各波长光的反射或透射强度,获取色彩信息。这款积分球式台式色彩色差仪能够在设计灵感、配制、生产和质量控制等方面实现精准的色彩一致性,为纺织品生产提供了关键支持。,该色差仪采用了积分球式设计,具有多孔径的特点,使其能够应对复杂的纺织品样本。不同纺织品可能具有不同的表面形态和材质,包括织物、纤维、涂层等。而多孔径设计允许色彩色差仪对不同尺寸和形态的样本进行准确的测量,确保测试结果的稳定性和可靠性。Ci7800台式分光测色仪可以与ColoriQC质量控制软件配套使用,实现了高效的色彩管理。该仪器能够快速识别样品的色彩是否处于容差范围内,一旦样品超出容差范围,将立即提供直接反馈,帮助用户及时发现问题并进行调整。值得一提的是,Ci7800色彩色差仪内置了NetProfiler状态指示灯,可以验证设备的测量性能是否经过优化。这一功能确保了设备的稳定性和准确性,为色彩测量提供可靠的基础。通过与ColoriQC质量控制软件的配套使用,Ci7800色彩色差仪为纺织行业提供了完整的色彩管理解决方案。用户可以轻松地监控纺织品的色彩质量,确保产品的色彩一致性和稳定性,满足客户的高品质需求。同时,仪器的高效性和准确性也有助于提高生产效率,降低不合格品率,进一步推动纺织行业的发展和竞争力。台式分光测色仪在纺织色彩检测中具有重要的应用价值,对纺织行业的产品质量和市场竞争力有着积极的促进作用。然而,随着科技的不断进步,台式分光测色仪还有进一步优化和创新的空间,以满足纺织产业转型升级的需求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 色度计基础(三)常见测色方法和仪器
    色度计基础(三)常见测色方法和仪器摘要针对不同的测试环境和要求,需要选不同的测试仪器。在只需要知道样品色坐标的情况下,可以选用光电积分测色仪(色度计),满足卢瑟条件的色度计能满足许多场景的测色要求。在需要获取样品的精确光谱信息时,可选用分光光度计,多通道平行测色的分光光度计,测色速度快,精度高。正文目视测色:在某些特定的行业和环境中,依然保留着目视测色法,即通过人眼去判断颜色是否与预期存在误差,有时会用到标准光源或标准色样。目视测色法完全依赖观察者的经验和敏锐的分辨力来判断颜色的差别,且速度较慢。 图 1 左:一种常见于纺织和服装设计的比色卡 右:一种判断溶液中物质浓度的标准比色液光电积分测色:将入射光分别通过滤光片透射率-探测器联合响应曲线满足CIE标准三刺激值谱线(也有可能是某一特定谱线)的三条或四条通道(因为针对红光,在CIE三刺激标准中有两个峰,很难在一片滤光片做出吻合度很好的透射率曲线,有些设计中会做成四个通道),再经过信号放大与模数转换电路,获得样品在标准光源下的三刺激值。这种测色方式,获得的三刺激值大小,与光电探测器上接受到的光强成比例。这种测试方法速度快,可以获得满足大部分情况的色坐标准确度。各种色度计(或称作光电积分测色仪、比色计或色差计)普遍采用这种结构。缺点是无法获得样品的光谱信息。图 2荷兰Ademesy公司高速高精度色度计结构示意图这是一类仿人眼结构的测试设备,即用光电二极管和三色(也有可能是四色)滤光片模拟人眼中的三种色觉感受细胞,在不考虑系统电子系统稳定性、精度和环境等因素的情况下,测色结果的准确度,主要跟滤光片-探测器组成的通道的光谱响应曲线和CIE标准谱线的吻合程度有关,即卢瑟条件。该条件还指出三个线性无关的原色,经过混合能够表示任意一种颜色,故可以用在仪器做测色结果的校准,在相机和色度计中常见。图 3 左:Hyperion色度计谱线与标准CIE-XYZ体系谱线比较 右:颜色校准矩阵分光测色:(1)光谱扫描测色:这种工作方式的分光光度计往往将光源集成在设备内,通过分光器件和单色器,将光源发出的光分成一路或两路单色光(两路光路居多),将经过样品透射或反射后的光谱,与空样品池或标准白板做对比,获得样品的透射(或反射)光谱曲线。直接获得的是样品的光谱信息,需再经数据处理,才能获得样品的三刺激值。因为采用参比法测量物体透射(反射)光谱,消除了光源不稳定、光学器件效率等一些干扰因素。且往往这类设备体积较大,测试环境稳定,光学器件精密,故这种方法获得的样品光谱信息最为准确,但速度较慢,且常受限于测试场景和样品尺寸,使用成本较高。(2)多通道平行测色光源发出的光照射在样品上,经样品透射(或反射)后,通过狭缝进入设备。设备中分光器件将不同波长的光线分到不同的方向角上,经凹面反射镜聚焦到线性ccd上,CCD将光强转换为电信号,每一个CCD单元获取的光能量,对应样品光谱中某一波长范围的光谱能量,从而获得样品的透射(反射)光谱。 图 4 左:Rhea光谱仪的结构示意图 右:测得某样品的光谱图这样获得的样品光谱实际上是一系列底边较窄的柱状图,是一种实际光谱的近似,通过计算样品每一小段波长的光能量,对CIE标准下的XYZ三刺激值产生的作用并求和,就可以获得样品的三刺激值。这样的设备,将经过标准光源校准后的数据存储在设备中,在测量光源,发光屏时不需要额外的参考光路,这要求设备有较好的稳定性和光谱准确度。这样的测试方法容易获得较为准确的色坐标值,且测试速度较快。测色标准相关器件:归根结底,颜色是物体对光源光谱的选择性透射和反射,需要评价样品的颜色,就必须要建立标准,在相同条件下获得的样品光谱或色坐标,才具有可比性。除了测色仪器本身以外,我们还需要用到这些器件:如标准光源、积分球和标准白板等。这些仪器的搭配使用,也拓展了测色仪器的使用场景。1. 标准光源:标准光源有固定的光谱,和很好的稳定性。可以用于测试仪器的标定,也可以用做样品的照明,常用的有A光源,C光源,D65光源。2. 标准白板将标准白板属于全反射漫射体,波长选择性低,反射比接近1,常见的涂覆层材料有硫酸钡(BaSO4)、碳酸钙(CaCO3)、氧化镁(MgO)等。常放置于双光路分光光度计的参比光路中,作为反射测量的标准参照,可以用于仪器的校定,也可以用来和样品做对比来获得样品色度信息。3. 积分球积分球为一种内壁涂有低光谱选择性的高反射材料的球体,光在积分球中经过漫反射可以变得均匀。(1)可以让标准光源发出的光变成均匀光,这对仪器标定,样品照明都很重要;(2)可以在积分球上加光陷阱,吸收不需要的样品反射光(如吸收样品镜面反射光)。
  • 罗维朋/罗威邦发布TRA520 分光色差仪/分光测色仪多功能套装新品
    TRA520 分光色差仪/分光测色仪多功能套装 产品概述 Lovibond品牌一直以来都是液体颜色分析的佼佼者。100多年来,Lovibond也一直在专注和追求颜色分析的高精度化和最快捷化,从目视比色计,到全自动色度仪。而新近推出的Lovibond 多功能色差仪套装,更是专门针对多形态的样品色差分析而进行了创新。作为全新的色差仪套装,搭配多功能适配器,操作灵活,数据精确可靠。巧妙的设计和高性能的内部结构,使得英国lovibond这款色差仪将成为更多食品,化工,汽车,医药,化妆品等客户的首先考虑的选择。资料下载区 可获取TRA520 分光色差仪/分光测色仪多功能套装pdf版本 详细介绍 和 技术参数TRA520 分光色差仪/分光测色仪多功能套装 产品介绍• 采用独特设计的移动台式适配器,与Lovibond TR520/TR500主机联用。• 为液体,胶体,粉末和其他样品色差分析提供统一的照明环境和对应的样品比色皿。• 比色皿槽配有严密的遮光盖,避免环境光线干扰读数。• 支持多种样品测试,比色皿光程可选10mm,20mm 和30mm。• 配有白色参比板,以确保读数的一致性,在适配器内可快速进行仪器校正。• 全新人体工学设计,便于手持操作,新型、直观的界面图标• 独特设计的适配器适用于测量粉末,液体,凝胶,浆料,颗粒和固体材料。• 集成摄像头定位器易于观察,确保得到稳定、高重复性的测量结果• TR520允许您轻松切换孔径,测量大面积或小面积的样品• 标配的免费软件允许图形分析,统计控制过程,搜索色调、色差和颜色指数等• Bluetooth 蓝牙连接功能• 荧光材料可选择是否使用UV测量TRA520 分光色差仪/分光测色仪多功能套装 应用领域和测量原理广泛应用于各行各业,塑胶电子、油漆油墨、纺织服装印染、印刷纸品、食品、医药、化妆品、光学影像调试等行业,色差仪的原理主要是根据CIE色空间的Lab,Lch原理,显示出标准与被测样品的色差△E以及△Lab值。通俗的说就是如果单纯以一组Lab值来判断某个颜色并没有太大的实际意义,但是当人们对两个颜色进行比较时,人们可通过这两个颜色的Lab差值来判断出它们之间的差别。另外,通过两组Lab值人们可计算出两颜色间的色差,如果色差大于1人们的眼睛就可分辨出来。由此人们可事先设定一定的容差范围,在进行品质控制时,量测的样本与标准颜色之间色差值在容差范围内即为合格品,超出范围即为不合格产品。通过使用Lab色空间,人们的生产控制实现了数据化。TRA520 分光色差仪/分光测色仪多功能套装 技术参数技术参数TR 520TR 500光学结构d/8°积分球尺寸48mm光源组合光源 LED 和 UV组合光源 LED 分光模式分光模式 凹面光栅传感器256图像元 双阵列CMOS传感器波长范围400-700nm波长间隔10nm半带宽10nm反射率量程0-200%测量孔径双孔径模式:10mm/8mm & 5mm/4mm定制固定孔径: 8mm/4mm/1x3mm镜面反射SCI & SCE颜色空间CIE Lab, XYZ, Yxy, LCh, CIE LUV, Hunter Lab色差测量ΔE*ab, ΔE*uv, ΔE*94, ΔE*cmc (2:1), ΔE*cmc (1:1), ΔE*00v, ΔE (Hunter)其他颜色指数WI (ASTM E313, CIE/ISO, AATCC, Hunter) YI (ASTM D1925, ASTM 313, TI (ASTM E313, CIE/ISO),同色异谱指数 MI, 色牢度, 染色牢度, 颜色强度, 不透明度观测角度2° / 10°照明体D65, A, C, D50, D55, D75,F1, F2, F3,D65, A, C, D50, D55, D75, F2, F7, F11显示数据光谱图/光谱数据,样品色值,色差数据/色差图谱,合格/不合格标志,偏色测量时间2.6s重复性MAV/SCI: ΔE* ≤0.03MAV/SCI: ΔE* ≤0.05台间差MAV/SCI: ΔE* ≤0.15MAV/SCI: ΔE* ≤0.2测量模式单次测量,平均测量定位模式内置摄像机取景定位器电池锂离子电池. 5000 次测量,续航8小时尺寸184mm L x 77mm W x 105mm H重量600g光源寿命5年,超过300万次测量显示3.5 英寸 TFT- LCD彩色触屏数据接口USB, 蓝牙Bluetooth 4.0数据存储2000个标准样品, 20000个样品语言英语,中文,法语,德语,西班牙语,葡萄牙语操作环境0~40°C, 0~85% 相对湿度 (无冷凝), 相对高度 2000m存储环境-20~50°C, 0~85% 相对湿度 (无冷凝)标配配置PC OnShade软件, 黑白校准板,电源, 内置电池,用户操作手册选购配件多功能TR适配器 (用于液体,粉末和胶体)TRA520 分光色差仪/分光测色仪多功能套装 创新性产品设计TRA500 / TRA520 采用的多功能适配器,依照TR500 /TR520 分光色 差仪主机尺寸精确设计生产,优化人体工学装载角度,便于触屏操作和样品色差测量。 提供10, 20 和 30mm 光学玻璃比色皿,用于放置液体,胶状和粉末等不同类型的样品。TRA520 分光色差仪/分光测色仪多功能套装 订购信息403225 Lovibond TRA 520 403220 Lovibond TRA 500 (8mm aperture) 创新点:对于色差测定来讲,精度固然重要,但是仪器的广泛适用性同样决定了仪器的发展趋势。TRA520色差仪多功能套装,最大的创新点有以下两点:1. 独家研发设计的多功能适配器,将便携仪器瞬间切换为台式操作效果。2. 这款多功能适配器,设计简洁,集多个适配功能于一体,使得仪器应用从固体轻松扩展至液体,粉末和半固态样品,并能适用于不同比色皿光程。TRA520 分光色差仪/分光测色仪多功能套装
  • 测量茶多酚的仪器—台式分光测色仪
    在繁华的都市中,奶茶已经成为人们日常生活中不可或缺的一部分。其中,茶多酚这一活跃成分,因其出色的抗氧化、抗癌和抗辐射特性,对人体有着积极的健康影响。对于奶茶厂商以及消费者来说,了解奶茶中茶多酚含量的多少,无疑具有深远意义。这就使得我们需要一种科学的测量工具,以精确测定奶茶中茶多酚的含量,而台式分光测色仪的出现,正好满足了这个需求。那么,如何运用这个工具测量奶茶中的茶多酚含量呢?步骤其实并不复杂。我们需要准备好奶茶样品,并加入适量的乙醇或其他溶剂,使茶多酚得以提取并溶解。接着,我们将提取后的溶液置于台式分光测色仪中进行测量,这一过程应依据仪器的操作说明书进行。最后,根据分光测色仪测得的吸光度值,结合茶多酚的标准曲线,我们就能计算出样品中茶多酚的含量。为了保证测量的准确性,我们还需采取一些额外措施。包括:选择合适的波长以提高测量精度,控制温度和光照条件以防测量结果受到影响,以及进行重复测量以减小误差。在此过程中,Ci7520台式分光测色仪是我们的重要工具。这款基于分光技术的高精度、高可靠性的光学分析仪器,可以通过样品吸收特定波长的光线产生的光谱特征,计算吸光度和浓度之间的关系,从而准确分析和测定样品中的茶多酚含量。其具体运用过程中,我们将奶茶样品经过离心、过滤、稀释等制备处理,以获得具有代表性的测试样品,然后放置在Ci7520台式分光测色仪的样品架上,按下测量按钮,仪器就会自动测量样品的吸光度和反射率,结果会显示在屏幕上。最后,我们使用Ci7520台式分光测色仪的软件处理数据,转换为茶多酚的含量,并生成图表和报告。而Ci7520台式分光测色仪优势明显,可为各领域用户提供精准可靠的色彩测量服务。它具有0.15ΔE*的仪器台间差和0.03ΔE*的可重复性,确保了测量结果的精确一致性。无论在何处,无论何时,Ci7520都能为您提供准确无误的色彩测量。无论在哪个场所使用Ci7520,用户都可以享受到一致的配置。通过自动化软件设置,最大程度地减少了配置错误的可能性,大大提高了使用效率。Ci7520台式分光测色仪符合CIENo.15、ASTMD1003和ISO7724/1等行业标准。它的专业性和可靠性得到了行业内的广泛认可,测量结果权威可信。通过测量不同浓度的茶多酚标准溶液,建立了茶多酚与吸光度的关系后,再结合Ci7520台式分光测色仪的高精度、高可靠性,我们就能确保测量结果的准确性和可靠性。这种方法,无疑对于保证奶茶的质量和安全性具有着极其重要的意义。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 汉谱HP-C600分光测色仪即将新品上市
    作为国内色彩分析领域内的领先品牌,在HP-L500分光辐射照度记成功上市之后,汉谱公司另一力作HP-C600分光测色仪也隆重面世。 汉谱HP-C600分光测色仪综合了多项创新技术特性,延伸了生产中现场色彩质量控制的边界,并且具备空前直观且全面的用户界面。汉谱HP-C600分光测色仪采用人体工程学及傻瓜式的界面操作模式直观设计,使用极为简便。 当然,汉谱HP-C600分光测色仪采用的是目前最先进的技术平台——分光技术,这种精密的测色仪器在实际使用中,用户更加注重的是仪器的功能和性能。在这个基础上,汉谱公司还将仪器的直观性和易用性进行了全面的考量,这就是汉谱公司致力于开发采用人体工程学及直观设计的仪器,以方便国人使用和提供用户交互功能的原因。 在进行了大量的市场调研及技术试验的基础上,汉谱花巨资开发出了在大多数环境下均可方便操作的轻巧机身。它的一个显著特点就是配备了大型液晶彩色显示屏,并完全摒弃了以往仪器上为数众多的操作按钮,集成化的操作程序,让客户拿到即可熟练操作。 汉谱HP-C600分光测色仪能以图形或数字形式显示数据,有关测量色彩的情况一目了然。任何时候,您都可以选择使用简单的合格/不合格指标、包含色差描述的色度值或包含箱型或椭圆型临界的L*a*b色彩图形进行显示。内置软件包含所有必要的色彩方程式、适合不同任务的标准光源,及大量特定行业及应用的指标。操作系统支持中英文双语界面,且汉提供根据客户的实际需求进行界面语言的订制服务。 汉谱HP-C600分光测色仪集操作简便、舒适、直观及高度精密于一身,足以在几乎所有应用的质量控制中实现最佳的色彩测量。整个光学系统采用LED照明和高分辨率一体式双光束单色仪,不含任何活动部件,因此耐用度及可靠性极佳。
  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 电池电解液液体透射测量工具—台式色差仪
    随着科技的飞速发展,电池已经成为我们日常生活中不可或缺的能量储存好帮手!从我们的便携式电子设备,到那些酷炫的电动交通工具,都要靠电池的支持才能动起来。没错,电池可是真正的能量源头呢!然而,要说到电池的性能和稳定性,可真得多亏了电解液,它是电池的核心组件之一!电解液主要由溶剂、导电盐和添加剂组成。溶剂通常是有机溶剂,例如碳酸酯、碳酸酰、醚类等,导电盐则是决定电池电导率的关键因素。添加剂的加入可以调节电解液的性质,如粘度、化学稳定性等,以提高电池的性能。有了优秀的电解液,电池的表现就会更稳定、更强劲。这样一来,我们的电子设备就能续航更久,电动交通工具也能跑得更远。所以说,不管是充电还是输出电能,电解液功不可没啊!然而,电解液的透射性质有时候可能会遇到一些问题哦!比如,如果电解液的透明性不够好,光线就可能被挡住,影响电池内部的能量传输效率,让电池性能变差。另外,电解液对特定波长的光线吸收过多,可能引起化学反应,导致电池不稳定。而且,电解液中溶质的浓度变化也会影响光线透射的特性。那么,我们要如何解决这个透射相关的问题呢?这就需要依靠Ci7x00系列的Ci7800台式分光色差仪与Ci7860精密色差仪来帮忙!这两款仪器可谓是我们的得力助手!Ci7800台式分光色差仪,可以简单快速地测量电解液的透射率,看看它有没有足够的透明性,保证光线能顺利穿过,让电池能高效传导能量。Ci7800色彩色差仪支持多达5个反射孔径和4个透射孔径,可通过不同位置的端口来测量各种样品的色彩与外观。这项功能使得它在许多领域中都得到了广泛应用。此外,Ci7800还支持多达3个UV滤光镜来控制纺织品、塑料、油漆、涂料和纸张中的荧光增白剂。设备内置数码相机具有预览和主动目标定位功能,可保证测量区域的准确定位,并能捕获图像以备日后检索。同时,它还能检测样品上的污点、划痕或缺陷,并提供随附的测量数据以备审计,为质量控制提供了有效支持。如果我们想要更深入的了解电解液的光学特性,这时候Ci7860精密色差仪就派上用场了!它不仅可以测量透射率,还能给我们提供更多数据,包括吸收特性和反射率等等。这样一来,我们就能全方位地了解电解液的性质,发现其中的问题,进而针对性地优化电解液的配方。Ci7860精密色差仪广泛应用于多个工业领域,包括纸张、纺织物、塑料、颜料、汽车以及屏幕色彩校正等。它为这些行业提供了可靠的色彩测量和管理解决方案,帮助企业提高产品质量,降低生产成本,增强市场竞争力。有了这两款色差仪,我们可以轻松解决电解液透射相关的问题!通过优化电解液的性能,我们就能让电池表现得更稳定、更强劲,让我们的电子设备续航更久,电动交通工具跑得更远,让我们的生活更便利、更美好。同时,这些仪器的应用也推动着科技的不断发展,让能源领域取得了更大的进步。随着技术的不断创新和仪器的不断完善,相信电池的未来会变得更加出色!“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。图6 膜系设计验证样品45度反射率测试双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,自动可变角附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示:图7 BRDF和BTDF测试如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。图8 样品不同波长下BSDF(BRDF+BTDF)测试窄带滤光片测试Lambda系列光谱仪为双样品仓设计,自动可变角测试附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。图9 用于生物识别的滤光片透射和OD值测试数据图10 用于激光雷达的镀膜镜片透射和OD值测试数据综上,采用Lambda系列紫外/可见/近红外分光谱仪,搭配自动可变角测试附件、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷地得到样品的光学检测数据。
  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。 本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图 图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试 采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图) 02样品变角度透射/反射曲线测试 通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04 样品变角度全波长反射曲线测试(200-2500nm) 软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05 不同膜系设计的镀膜样品性能验证 测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图) 06双向散射分布函数(BSDF)测试 除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图) 07窄带滤光片测试 Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试 珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据 Summary 综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 以“太行”之名,挺起透射电镜产业的中华脊梁——我国首台国产商业场发射透射电镜诞生
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产商业场发射透射电子显微镜TH-F120“太行”在广州发布。这标志着我国已掌握透射电镜用的电子枪等核心技术,并具备量产透射电镜整机产品的能力。  透射电镜技术跨越多个学科、工程技术复杂、攻关难度大。经过三年多努力,中国科学家们完成了我国首台100%自主知识产权的120千伏场发射透射电镜的整机研制,实现了0.2nm分辨率的成像能力,达到了产品化的水平。  “这对于我国摆脱进口依赖、实现高水平科技自立自强具有重大意义。”中国科学院院士、生物岛实验室主任徐涛介绍,这将打破国内透射电镜100%依赖进口的局面,场发射透射电子显微镜将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。  以“太行”之名,挺起透射电镜产业的中华脊梁  如果说光学显微镜揭开了细胞的秘密,那么透射电子显微镜则把纳米级的微观世界展示在人类眼前。1933年,世界上第一台透射电镜诞生,为科学研究提供更强有力的武器,也因此被誉为高端科学仪器皇冠上的“明珠”。  透射电镜具有极高的行业垄断性与技术门槛。行业数据显示,此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  生物岛实验室生物电子显微镜技术研发创新中心研究员孙飞早在2016年便带领团队联合中国科学院生物物理研究所启动了预研工作。  “我们通过广泛交流,集合了有志于从事国产电镜自主研制的科学家和工程师,涵盖了电子光学、机械、自动化控制、软件等相关领域。”孙飞介绍,其中既有来自国内外学界的科研人才,也有在产业界深耕扫描电子显微镜多年的领军人物,“大家都抱有同样的愿景,就是造出我们国家自己的透射电镜。”  2020年,这支来自全国各地甚至海外的队伍集结在广州的生物岛实验室组展开技术攻关。团队成立三年多以来,在国家自然科学基金委、科技部、广东省科技厅、广州市科技局的大力支持下,相关研发工作接连取得重大突破——先后成功研制120千伏场发射电子枪、120千伏低纹波高压电源、400万像素和1600万像素棱镜耦合CMOS电子探测相机、100万杂合像素直接电子探测相机等透射电镜核心关键部件。  据悉,电子枪是透射电镜的“光源”,其作用是发射高能电子束照射到样品上,是透射电镜最为核心的部件之一。“将原有的30千伏场发射电子枪提升为120千伏,要解决电子源发射稳定性、高压真空打火等问题。经过不断的摸索,我们突破国外相关技术壁垒,去年成功实现120kV场发射电子枪的稳定量产。”孙飞说到。如今,生物岛实验室是我国唯一有能力量产该透射电镜核心部件的单位。  孙飞直言,更大的困难在于如何将各个研制成功的部件组合起来实现联调,真正拿到高分辨率图像。“拿到分辨率优于0.2nm图像的那天,我们非常激动,我国终于突破这一关键技术。”  为了进一步推动透射电镜的产业化,生物岛实验室与国内领先的科学仪器公司国仪量子联合成立了广州慧炬科技有限公司,致力于将透射电镜技术商业化应用。  “我们成功走到今天,得益于生物岛实验室作为新型研发机构的特殊体制机制,保证了研发队伍的稳定。同体制内外并行发力,与产业界的紧密合作。同时,国家部委项目的支持,保证了项目研制的可持续性。”孙飞说。  此次广州慧炬科技有限公司推出的首款透射电镜新品TH-F120,取名源自中华名山“太行”,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。  向“珠穆朗玛”进发,将推出更高千伏电镜透视更厚材料  广州慧炬科技有限公司总经理曹峰正在推进“太行”的商业化应用。他介绍,场发射透射电镜在高端科研、产业发展应用广泛、意义重大。在生命科学研究领域,它可以看到蛋白质的生物结构;用在集成电路领域,可以实现半导体的缺陷检测;用在新材料领域,可开展锂电池的研发等等。  曹峰表示,“太行”是拥有原子级分辨率的显微放大设备,信息分辨率达0.2nm,可以呈现大多数晶体的排列结构。广州日报记者现场看到,“太行”能清晰呈现小鼠大脑中的髓鞘组织、小鼠肝脏细胞的里的线粒体。“它是多个技术的复合体。我们必须在每个环节都做到极致,才能保证设备整体达到超高分辨率。”曹峰说。  尽管“太行”是该公司推出的“入门级”产品,现已具备多项先进性能——一是自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可为用户带来更佳的图像衬度和分辨率;二是自主研制的高稳定性低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;三是标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;四是以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;五是预设充足的拓展接口和整机升级空间,满足用户需求迭代,有效延长整机使用年限。  曹峰透露,团队明年计划研制出200千伏场发射透射电镜。“电压虽然看起来只是增加了80千伏,但研制难度却是指数级增加,设备的稳定性、防护性都需要进一步探索。”  曹峰表示,电压越高意味着电子能量越高,就越能穿透更厚的样品。目前120千伏的电镜,可以穿透大约50纳米厚度的材料。但是对于常见的100纳米的材料,还需要200甚至300千伏的电镜。  在未来数年,该公司计划推出场发射透射电镜系列EM -F200“峨眉”、KL -F300“昆仑”,冷冻透射电镜系列YL -F100C“玉龙”、TGL -F200C“唐古拉”、 ZMLM -F300C“珠穆朗玛”,热发射透射电镜系列QL -T120“秦岭”、DX -LaB120“丹霞”。“我们的透射电镜产品取名均源自中华名山,代表慧炬立足中国、放眼世界,助力科研工作者勇攀高峰、不断突破。”曹峰说。  此次“太行”的发布,是生物岛实验室“二次创业”,向成果转化专业机构成功转型的缩影。作为广州市首批省实验室之一,生物岛实验室不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家,其中4家估值已经超亿元。通过技术作价、配比投入等方式撬动社会资本近1.5亿元,助力科研成果高效率转化,赋能产业科技创新,为广州高质量发展作出突出贡献。
  • 广州新技最新推出日本美能达测色仪CM-2300d
    广州市新技精密仪器有限公司最新推出便携式分光测色仪CM-2300d,该型号产品全球发售始于中国! 使用方便,高精确度,价格合理!CM-2300d是一部便携式的积分球型分光测色计,其多功能性能可用于各种实际应用之中。可应用于各个领域,可同时测定SCI及SCE。10nm的间距测定,使仪器有优良的精确度及重复性,中文显示更为中国用户带来方便。光源/ 观测系统:d/8 (散射光源,8度观测角) 配有SCI/SCE同时测定(根据DIN 5033 第七部份、JIS Z8722的条件C、ISO 7724/1、CIE No. 15、ASTM E1164) 积分球大小: ø 52mm 传感器: 双重40个组件硅光电二极管数组 分光装置: 衍射光栅 波长范围: 360nm至740nm 波长间距: 10nm 光谱半波宽:约10nm 反射率范围: 0至175%,分辨率:0.01% 光源: 脉冲氙弧灯2个 测量时间: 约1.5秒 最小测量间隔:3秒(在23℃时) 电池性能 :以10秒为间隔约1000次 (使用碱性电池)(在23℃时) 测量/照明区域: ø 8mm /ø 11mm 重复性: 光谱反射率:标准偏差在0.2%以内(360到380nm:标准偏差在0.4%以内) 色度值:标准偏差⊿E*ab在0.08以内(在白板校正后以10秒为间隔测量30次白色校正板) 器间差:⊿E*ab在0.4以内(SCI)(基于12BCRA Series II色板的平均值,比较在23℃时通过主机身测得的值) 语言模式:英语/中文 测量模式: 单次/平均值(自动模式:1到8次/手动模式) 端口 :符合RS-232C 标准 观察者: 2/10度 观测用光源: A、C、D50、D65、F2、F6、F7、F8、F10、F11、F12 (使用两个光源可进行同步计算) 显示: 光谱值/图表、色度值、色差值、“合格/不合格”判定、相对光泽度 色度空间/色度数据: L*a*b*、L*C*h、CMC (1:1)、CMC (2:1)、CIE94、Yxy、XYZ、MI、WI、(ASTM E313/CIE)、YI (ASTM E313/ASTM D1925)
  • 我国首台国产场发射透射电镜发布
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产场发射透射电子显微镜在广州发布。这标志着我国已掌握透射电镜用的场发射电子枪等核心技术,并具备量产透射电镜整机产品的能力,将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。中国科学院院士、生物岛实验室主任徐涛联合中国科学院生物物理研究所研究员孙飞在2016年启动透射电镜有关研究,并于2020年在生物岛实验室组建起一支体系完整的透射电镜研制工程技术团队。团队成立三年多以来,相关研发工作接连取得重大突破。研发团队介绍,此次推出的首款场发射透射电镜新品TH-F120,取名源自中华名山“太行”,寓意它将如太行山一样成为中国透射电镜产业的脊梁。该场发射透射电镜利用被加速到120千电子伏特的高能电子与被观测样品中的原子发生相互作用,检测透射电子携带的样品信号转化为显微放大的图像,可以用来观察材料样品中的原子排列结构、细胞组织样品的精细超微结构、病毒和生物大分子复合体的精细结构,是科学家研究微观世界的重要仪器。研发团队表示,该电镜拥有自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可带来更佳的图像衬度和分辨率。生物岛实验室是广东省首批省实验室之一。自成立至今,生物岛实验室优化整合力量,加快成果转化、产业孵化和创新体系建设,不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家。发布会现场详细信息,请关注仪器信息网后续报道。
  • 一文看懂透射电子显微镜TEM
    p  透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。/pp strong 1 背景知识/strong/pp  在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。/pcenterp style="text-align:center"img alt="" src="http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height="316" width="521"//p/centerp style="text-align: center "strong电子束与样品之间的相互作用图/strong/pp 来源:《Characterization Techniques of Nanomaterials》[书]/pp  透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。/pp  strong2 TEM系统组件/strong/pp  TEM系统由以下几部分组成:/pp  电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。/pp  聚光镜:将电子束聚集得到平行光源。/pp  样品杆:装载需观察的样品。/pp  物镜:聚焦成像,一次放大。/pp  中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。/pp  投影镜:三次放大。/pp  荧光屏:将电子信号转化为可见光,供操作者观察。/pp  CCD相机:电荷耦合元件,将光学影像转化为数字信号。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height="359" width="358"//centerp style="text-align: center "strong透射电镜基本构造示意图/strong/pp 来源:中科院科普文章/pp  strong3 原 理/strong/pp  透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height="333" width="422"//centerp style="text-align: center "strong电镜和光镜光路图及电镜物镜成像原理/strong/pp 来源:中科院科普文章/pp  strong4 样品制备/strong/pp  由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。/pp  试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。/pp  制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。/pp  /pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height="296" width="406"//centerp style="text-align: center "strong超细颗粒制备方法示意图/strong/pp 来源:公开资料/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height="325" width="404"/br/strong材料薄膜制备过程示意图/strong/centerp  来源:公开资料/pp strong 5 图像类别/strong/pp  strong(1)明暗场衬度图像/strong/pp  明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。/pp  暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height="306" width="237"/br/strong明暗场光路示意图/strong/centercenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height="318" width="294"/br/strong硅内部位错明暗场图/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong(2)高分辨TEM(HRTEM)图像/strong/pp  HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。/pp  /pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height="312" width="213"//centerp style="text-align: center "strongHRTEM光路示意图/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height="234" width="321"/br/strong硅纳米线的HRTEM图像/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong(3)电子衍射图像/strong/pp  选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。/pp  会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。/pp  微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br//pp  /pcenterp style="text-align:center"img alt="" src="http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height="296" width="227"//ppstrong电子衍射光路示意图/strong/p/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height="174" width="173"//centerp style="text-align: center "strong单晶氧化锌电子衍射图/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height="174" width="175"//centerp style="text-align: center "strongstrong无定形氮化硅电子衍射图/strong/strong/pcenterimg alt="" src="http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height="174" width="170"/br/strong锆镍铜合金电子衍射图/strong/centerp  来源:《Characterization Techniques of Nanomaterials》[书]/pp  strong6 设备厂家/strong/pp  世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。/pp  strong7 疑难解答/strong/pp  strongTEM和SEM的区别:/strong/pp  当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。/pp  SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。/pp  strong简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理:/strong/pp  单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。/pp  多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。/pp  非晶的衍射花样为一个圆斑。/pp strong 什么是衍射衬度?它与质厚衬度有什么区别?/strong/pp  晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。/pp  strong8 参考书籍/strong/pp  《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /pp  《电子衍射分析方法》 黄孝瑛著 /pp  《透射电子显微学进展》 叶恒强,王元明主编 /pp  《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /pp  《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。/pp  来源:中国科学院科普文章《透射电子显微镜基本知识介绍》/p
  • 关于举办“透射电镜分析技术”培训通知
    近年来电子显微领域的技术发展突飞猛进,硬件和软件的新技术和新功能不断的推出。透射电镜越来越受到科研人员的重视,用途日益广泛。现在透射电镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、化学化工、生命科学、转化医学、半导体材料与器件、地质勘探、工业生产中的产品质量鉴定及生产工艺控制等。为适应广大分析技术工作者的需求,进一步提高透射电镜用户的应用和研究水平,推动显微分析应用的进一步发展,上海交通大学分析测试中心特举办“ATP 004透射电镜分析技术”培训班,NTC授权单位培训机构上海交通大学分析测试中心承办并负责相关会务工作。 现将有关事项通知如下:一、 培训目标:了解透射电镜的基本结构与原理;了解透射电镜检测/校准项目及相关要求;掌握国家标准中透射电镜的检测方法。(一)通过学习理论知识,观摩实际操作,排查仪器故障,调谐最佳机器运转状态。(二)面对应急问题,学员可理论联系实际,查找故障原因,进行仪器自检及修复。二、 时间地点:培训时间:2023年10月16日-10月18日 上海(时间安排:授课2天,考核1天)三、 课程大纲:时间内容10月16日上午透射电镜的发展、成像原理、基本结构10月16日下午透射电镜的样品制备、像衬度、基本操作及维护10月17日全天透射电镜实操培训及答疑10月18日全天考核四、 主讲专家:主讲专家来自上海交通大学分析测试中心,熟悉NTC/ATP 004 透射电镜分析技术大纲要求,具有NTC教师资格,长期从事透射电镜技术研究的专家。五、 授课方式:(一) 讲座课程;(二) 仪器操作;六、 培训费用:(一)培训费及考核费:每人3000元(含报名费、培训费、资料费、考试认证费),食宿可统一安排费,费用自理。(二)本校费用:每人1500 元(含报名费、培训费、资料费、考试认证费;必须携带学生证)。七、 颁发证书: 本证书由国家科技部、国家认监委共同推动成立的全国分析检测人员能力培训委员会经过严格考核后统一发放,证书有以下作用:具备承担相关分析检测岗位工作的能力证明;各类认证认可活动中人员的技术能力证明、该能力证书可作为实验室资质认定、国际实验室认可的技术能力证明;大型仪器共用共享中人员的技术能力证明。 考核合格者将由发放相应技术或标准的《分析检测人员技术能力证书》。考核成绩可在全国分析检测人员能力培训委员会(NTC)网站上查询(https://www.cstmedu.com/)。八、 报名方式:(一)请详细填写报名回执表(附件1)和全国分析检测人员能力培训委员会分析检测人员考核申请表(附件2),邮件反馈。(二) 注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张,有学生证的学员携带学生证复印件。(三) 报名截止时间是10月10日16:00前。(四) 如报名人数不足6人取消本次培训。 九、 联系方式联系人:吴霞(报名相关事宜)、郭新秋(技术咨询)电话:021-34208496-6102(吴霞)、021-34208496-6205(郭新秋)E-mail:iac_office@sjtu.edu.cn官方网址:iac.sjtu.edu.cn
  • 透射电镜主流厂商大揭秘
    p  作者:汪玉玲/pp  本文仅代表作者个人观点/pp  如今的透射电子显微镜市场主流厂商包括日本电子,日立和FEI。除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。本文带你全面了解透射电镜厂商的前世今生。/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong1 你不知道的日本电子株式会社JEOL/strong/span/pp  首先介绍一下老大哥日本电子株式会社JEOL。/pp  提起日本电子,大家应该都不陌生,目前在我国各大科研院所都不难看到JEOL电镜的影子。日本电子株式会社是一家世界顶级的科学仪器生产制造商。能在这么多的仪器制造商中鹤立鸡群室有原因的,日本电子有着非常丰富且高端的产品线,生产的都是技术含量非常高的科技产品,电子显微镜,核磁共振,质谱仪,X射线光电子能谱,俄歇电子能谱等。是世界上有且仅有的一家企业可以同时生产这些高端仪器产品的企业。/pp  strong透射电子显微镜/strong/pp  日本电子生产透射电子显微镜的历史算得上是非常悠久,它的前身是1949年5月在东京成立的日本电子光学实验室有限公司,成立同年就推出了第一代透射电子显微镜—JEM-1透射电子显微镜,见下图。/pcenterp style="text-align:center"img style="width: 500px height: 334px " title="" alt="" src="http://5b0988e595225.cdn.sohucs.com/images/20180105/65d5174298474dea9d7f6baf29abeb8c.jpeg" height="334" hspace="0" border="0" vspace="0" width="500"//p/centerp style="text-align: center "strongJEM-1透射电子显微镜/strong/pp  strong你知道吗?/strong/pp  其实,我们国家也在同时期开始了透射电镜的研发工作,算起来起步并不算晚,但是由于之后一些年的各种历史原因,不得不中断了。现在,日本已经是毫无疑问的电镜生产大国,而我们国家的电镜发展却只有个别在国家资助下的小规模研究(之后的文章会有专项介绍),这么重要的科研设备掌握在别人的手里,为长远考虑,国产电镜的发展必须跟上才行。/pp  1961年该公司正式改名为日本电子株式会社(JEOL Ltd.),日本电子是在二战后开始透射电镜研发,并且是以电子显微镜起家的。六十余年的技术沉淀让它的电镜产品不断的发展壮大,逐渐得形成了它的品牌影响力,成为了全球市场市场上的领头羊。/pp  2009年,日本电子成立六十周年庆,推出了当时世界上分辨率最高的商业化球差校正透射电镜JEM-ARM200F,透射模式分辨率达0.19nm,STEM-HAADF的分辨率可达0.078nm,这款产品大获成功,开启了球差校正的新时代。如下图,/pp  /pcenterimg alt="" src="http://5b0988e595225.cdn.sohucs.com/images/20180105/1a4762c278d74239aa3a94f4b48213bc.jpeg" height="287" width="249"//centerp  第一台JEM- ARM200F安装在德州大学圣安东尼奥分校University of Texas at San Antonio,2010年1月安装结束,二月初就获得了惊人的实验结果。该仪器展示了JEOL实打实的超级稳定性和超高分辨率。2010年,西安交通大学也购入了中国首台该型号的电镜,也是中国大陆第一台STEM球差校正透射电镜。之后,上海交通大学,武汉大学,东北大学,中国科技大学,中科院大连化物所,中科院物理所,神华集团低碳清洁能源研究所等也陆续上马。目前,中国大陆已经有十几台该型号电镜,相信前方大批的高能科研成果也正在路上……/pp  2014年,日本电子再次引领潮流,发布了终极分辨率的大杀器——新一代球差校正透射电镜JEM-ARM300F,也称为GRAND ARM,这是一款300kV原子分辨级透射电子显微镜,是JEM-ARM200F的升级版,采用了日本电子独自研发的十二级像差校正器,分布率达到 0.05nm,STEM-HAADF的分辨率可达0.063nm,日本电子再一次把商业化的透射电镜推向了一个新的极限,巩固了自己在电子显微镜领域的世界领先地位。/pp  strong日本电子的成功的原因/strong/pp  1. 研发与制造技术的长期积累。一台JEM-ARM300F有三万多个零配件,最佳的电子显微镜表现能力要求每一个零件都能做到百分之百。/pp  2. 销售和售后服务保障。日本电子有较为成熟的销售和售后服务渠道,可以保证高品质的维修配件的流通速度和高素质的产品服务工程师。/pp  3. 电镜专业人才培养。日本电子虽然是一家仪器制造商,但是却在一直通过各种活动对青年科研人员提供资助,例如,风户研究基金会,早在1969年就成立了,目的就是鼓励和推广电子显微镜领域的学习和研究。/pp  随着我国科技的逐步发展,中国的电镜市场已经越来越大,成为了全球第一大市场,但是中国所使用的透射电子显微镜却全部都是进口的,这种现象应该引起我们所有电镜小工匠们的深思。/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong2 关于FEI的那些“小事儿”/strong/span/pp  接下来介绍JEOL在透射电镜领域最有力的竞争者——FEI。FEI是一家美国的高科技公司,是为全球纳米技术团体提供解决方案的创新者和领先供应商, “TOOLS FOR NANOTECH”,生产的产品主要面向半导体、数据存储、结构生物学、材料和工业领域。/pp  strongFEI的透射电镜历史/strong/pp  1971/pp  FEI公司成立于1971年,仅从年份上上看,似乎它起步要比JEOL要晚很多,但是FEI生产透射电子显微镜的历史可不是从1971年开始的。要知道美国的FEI公司开始并不是做透射电子显微镜的,最初它只致力于提供高纯,单一取向晶体作为场发射材料。/pp  1997/pp  事情发生在1997年,香港回归了,这一年,除了这件大事还发生了一件小事:FEI和荷兰的飞利浦电子集团电子光学公司(PEO)宣布合并其全球业务,飞利浦电子集团成为了FEI的最大股东。由此FEI开始了电镜产业领袖之路。/pp  1949/pp  在透射电镜的商业化历史上,1949年有着重要的意义。飞利浦电子光学公司在这一年向世界推出了全球第一台商用透射电子显微镜 “EM100”,要知道JEOL的第一台JEM-1也是在1949年推出的。可以说,飞利浦电子光学公司一直是举世公认的电镜产业领袖之一。/pp  2009/pp  FEI公司最新发布第二代球差校正电镜Titan G2 60-300透射电镜,这是Titan系列电镜中一项革命性产品。FEI Titan系列产品是FEI的明星系列,自2005年推出,包括有Titan G2 60-300,Titan3 G2 60-300,Titan Krios和Titan ETEM (环境透射电镜)。该系列产品以其具有突破性的稳定优异的性能获得了商业上的巨大成功。/pp  Titan G2 60-300它的STEM分辨率可达0.08nm,Titan3 G2 60-300可达0.07nm,它是世界上唯一能够同时实现亚埃分辨率及分析型机靴(S-TWIN)的透射电镜,而且是世界上唯一的300kV Cs球差校正透射电镜。/pp  在我国,该系列的电镜普及率也是相当高的,清华大学,浙江大学,中科院金属所,重庆大学,西安交通大学,中南大学,东南大学,深圳大学,广西大学等科研院所及高校,都装备了该系列的球差校正透射电镜,随着国内科学技术的进一步发展,相信越来越多的镜子会在这片土地上生根发芽,开花结果。/pp  strong你知道吗?/strong/pp  美国总统奥巴马曾经在西海岸技术巡视时去Intel,在他们的TEM实验室里亲自经历了一把,他说:“我看到了一些原子。”从图片上就可以看到,他使用的就是正是FEI Titan系列的球差透射电镜。/pp  2016:FEI出嫁了!/pp  与JEOL不同,FEI公司的发展历经多次的收购与合并,通过这样的强强联合,使自己的实力越来越强大。/pp  1996年:收购美国ElectronScan公司及其“环境扫描(ESEM)”技术 收购位于捷克布尔诺的Delmi公司/pp  1997年:FEI和飞利浦电子光学合并其全球业务/pp  1999年:新的FEI购并美国Micrion公司/pp  2002年:FEI收购Atomika (SIMS二次离子质谱仪)/pp  2003年:FEI收购Emispec (ESVision)/pp  2016年:FEI 正式出嫁。在2016年5月27日,赛默飞以交易最终金额为42亿美元的聘礼迎娶了电镜制造商FEI公司,这笔交易应该会在2017年年初完成,完成后,FEI将成为赛默飞旗下分析仪器业务中的一员。赛默飞是生命科学领域的领导者,FEI的电子分析技术的加入将与赛默飞的质谱技术结合。相信赛默飞也将利用公司的全球规模和商业化运作进一步推广FEI的产品。/pp  未来的透射电子显微镜领域,可以预见FEI将在生物领域大放异彩,只是不知道那时候它家的产品该姓什么?赛默飞还是FEI?毕竟都是嫁出去的人了嘛!*(^_^)/*/pp  strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "3 无所不能的HITACHI——日立/span/strong/pp  接下来主要来谈一下三家主要的透射电镜供应商的最后一家——日立HITACHI。如果说JEOL和FEI算是比较专一型的企业的话,那么Hitachi就是比较博爱了。/pp  HITACHI/pp  日立是日本的一家超级大国企,可以说它本身就是一个完整的工业体系,涉及的产业从核电站,铁路,军工,到家电,医疗,物流,通信,金融以及各种黑科技(^_?)☆,可以说是无所不做。他的总员工数约32万人,在日本是继丰田汽车之后的第二大的企业。/pp  strong日立的历史/strong/pp  日立的前身是久原矿业日立矿山附属的机械修理厂,1910日立制作所正式成立。在1920年,改组成名为日立制作所株式会社。同样,在之后的第一次世界大战及二次世界大战,给日立提供了很好的发展机会,生产各种军舰,坦克,发了战争财。到1944年,日立已经发展起来了,拥有了11家工厂。/pcenterimg alt="" src="http://5b0988e595225.cdn.sohucs.com/images/20180105/fa3c45af7ced427d93e998728a129f11.jpeg" height="300" width="444"//centerp style="text-align: center "strong日立树—日立集团的统一品牌形象/strong/pp  strong你知道吗?/strong/pp  日立树位于夏威夷瓦胡岛,树龄120年,属于雨树,日立每年支付40万美元用于维持该树的摄影资格。日立树含义有几种说法,一般认为是日立有像大树一样广阔的事业群,不过,现在也有人解读为日立把非营利业务放置在巨大的树荫下藏起来。/pp  strong日立高新技术/strong/pp  如上所说,日立的产业和产品十分丰富,子公司也非常多。而日立的电子显微镜部门属于日立高新技术公司。/pp  2001/pp  日立高新于2001 年由日立制作所旗下的测量仪器集团、半导体制造设备集团及贸易集团Nissei Sangyo公司合并而成,日立制作所持有日立高新52%的股份。虽说“日立高新”只有十几年的历史,但是其实体则于1947年就已经存在了。现在的日立高新主要提供电子显微镜、全自动生化分析仪、通用分析仪器、半导体元器件检测设备等尖端技术产品,从近两年的市场表现来看,可以说日立高新还是相当成功的。/pp  2012/pp  从FEI的发展历史可以看到,并购是一个扩充核心业务、增强企业竞争力的重要策略。然而对于日本企业来说,并购并不多见。但是2012年日立高新的一个并购项目相当成功,2012年5月日立高新收购精工电子旗下全资子公司精工电子纳米科技,成立了日立高新技术科学。精工电子以光、电子线、X射线、热分析为核心技术,特别是它的聚焦离子束技术有很好的历史和评价。同年,日立高新就推出了实时三维结构分析聚焦离子束扫描电镜(FIB-SEM)新品NX9000。/pp  strong你知道吗?/strong/pp  日立高新科学仪器营业本部本部长Okada Tsutomu曾说过,尽管日立高新的分析产品有很多,其他仪器的销售台数比电镜多很多,但是销售额却远赶不上电镜业务!可以看出,电镜业务的利润有多大,但是没办法,我们做不出来嘛!!!/pp  日立透射电子显微镜/pp  目前,日立高新在扫描电镜技术方面积累颇丰,成果也十分显著,但相比较来说,日立在透射电镜尤其是高端透射电镜技术方面却稍逊一筹。/pp  2015:球差校正透射电镜/pp  日立推出了一款球差校正透射电镜HF5000,虽然比其他两家企业稍晚一点,但是,这也标志着日立在电镜方面的水平和实力。这台球差校正电镜采用了日立高新经过考验而被认可的冷场发射电子枪技术,达到了亚埃级的空间分辨率(0.1 nm或更低)。另外,它的镜筒和样品台经过了重新的设计。该产品的推出使得日立高新形成了120kV、200kV、300kV全系列的透射电镜产品。/pcenterimg alt="" src="http://5b0988e595225.cdn.sohucs.com/images/20180105/f71329b25fb3443482c4b6a5adba9477.jpeg" height="465" width="574"//centerp  环境透射电镜/pp  另一台比较成熟的商用电镜是日立原位环境透射电镜,可以通过特制样品台施加外场刺激,同时进行实时观察。三款环境透射平台分别为H-9500ETEM、HF- 3300ETEM/STEM/SEM,以及HF-3300S Cs-corrected ETEM / STEM / SEM。在我国,浙江大学、西安交通大学、北京化工大学都安装了该系列电镜。/pp  /pcenterimg alt="" src="http://5b0988e595225.cdn.sohucs.com/images/20180105/cd78ef2556b24502beb2733bb5af5d2a.jpeg" height="359" width="505"//centerp  有人说:中国工业想要比过日本要先比过日立!确实,作为一个有完整工业体系的超级大公司,确实有很多值得学习的地方,中国工业还有很长的路要走。/pp  strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "4 光学“大咖”——卡尔 蔡司/span/strong/pp  世界上能生产透射电子显微镜的厂家并不多,除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。/pp  蔡司公司是一家老牌光学仪器公司,蔡司的历史相比于其他几家公司的历史都来得悠久。公司名称起源于创始人,德国光学家卡尔· 蔡司(Carl Zaiss),上图为蔡司商标的演变。最后一个大家一定很熟悉,在各种镜头,金相显微镜,扫描电镜上面你会经常见到。/pp  strong蔡司的历史/strong/pp  1846年,卡尔· 蔡司创立了一家精密机械及光学仪器车间,自此开始了蔡司的创奇时代。蔡司凭借其在光学领域的卓越品质,成功的经营了一个世纪,到二战以后,由于政治原因,德国被迫分裂,蔡司公司也被迫一分为二,之后,东德的产品冠名为Carl Zeiss Jena,西德产品冠名为Carl Zeiss,但东、西蔡在设计上都秉承了蔡司的优质传统。正所谓分久必合,到1990年,两个公司又重新重组成一个公司,总部设在奥伯考亨,东西合璧一直到今天,蔡司公司仍然是光学领域的执牛耳者。/pp  strong你知道吗?/strong/pp  蔡司公司还是一个非知名的军工企业。二战中德国的狙击枪,最先进的主站坦克 “豹”2A6,德国214型潜艇,性能超凡,他们都装备了蔡司公司的光学设备。因此,在战争年代,各国把光学工业列为战略工业,制造光学玻璃的原材料石英矿成为了战略物资,光学玻璃产业在军事领域的意义不亚于航天技术。/pp  strong蔡司——光学领域/strong/pp  在光学领域,蔡司是毫无疑问的独孤求败。一百多年来,蔡司光学显微镜在各行各业都展现了其强大的魅力。十九世纪末,Robert Koch博士利用蔡司显微镜发现杆菌是导致结核病的原因。1911年,挪威探险家首次踏上南极大陆,他当时用的就是蔡司的望远镜。可以说在医学,生理学,物理学,化学,军事,天文学等多个领域,都不难找到蔡司显微镜的影子。/pp strong 蔡司——电子光学领域/strong/pp  蔡司公司在电子光学领域却并不像它在光学领域如此出色。虽然蔡司公司有很悠久的历史,但是其在电子光学领域要晚于其他几家制造商,蔡司电子光学的前身为LEO(里奥),在透射电镜领域有60多年的经验。蔡司的光学技术是有口皆碑的,它的电子束技术也并不差。在1949年,就制成了世界上第一台静电式透射电镜,1992年制成了第一台带有成像滤波器的透射电镜,2003年制成了第一台具有Loehler照明的200KV场发射透射电镜及第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜。/pp  目前,蔡司主要的一款透射电镜为LIBRA能量过滤式透射电子显微镜,(libra是天秤座的意思,不知道蔡司为什么以星座来命名他的产品,知道的可以留言给小编哦!)该电镜配备了独特的OMEGA二阶校正能量过滤器和Koehler库勒照明系统。该款电镜有两种配置:LIBRA 200 CS TEM以能量过滤型200KV LIBRA TEM为基础,做了物镜透镜的球差校正。通过使用校正器,可以采集分辨率0.7A的图像。 LIBRA 200 STEM具有为聚光镜配备的校正器,可以用于在扫描模式下对分辨率远远低于1A和极高分辨率下样品化学分析的成像,尤其是EELS。校正后聚光镜允许探针尺寸减小到1A,同时增大强度。此外,独特的单色仪把能量扩散减小到0.15eV。这对于材料科学的基础研究尤其有利(尤其是纳米颗粒的化学分析)。/pp  蔡司的透射电镜普及率比另外几家较少,国外哈佛大学,德国马普研究所,国内的重庆大学等也装备了该系列蔡司透射电子显微镜。/pp  透射电镜自发明之日起已经有八十多年的历史了,它的发明对人类的科技工作的贡献不容小觑,但是能成功的进行商业化生产的公司却不多,电镜生产之繁琐复杂可见一斑。除了上述四家公司之外,国内外还有许多企业在朝着这个方向努力,我们也期待电镜国产化的那一天。/p
  • 日本电子推出透射电镜用制样设备
    日本电子推出透射电镜用最简单的制样设备 透射电镜的样品制备非常关键,但却非常麻烦,且需要很好的经验,对于一些例如含有软硬兼有成分的样品,几乎无法制备。针对这种情况,日本电子株式会社开发出了一步到位式离子制样仪EM-09010IS,它使用氩离子切割样品,实际上就是一台超小型的FIB。EM-09010IS的出现对于透射电镜的样品制备可以说是革命性的进步。从制备步骤来讲,只需将样品简单切薄,就可立即装入;从操作性上来讲,没有透射电镜样品制备经验的人也可以得到完美的薄区,从使用上来讲,对于软硬混合的样品,得心应手,还不会给脆性样品带来应力破坏;另外,由于切割角度可以随意调整,还可以为EBSD和AEM提供完美的样品制备;从运行成本来讲,EM-09010IS用的氩源比FIB用的镓源便宜的多。北京工业大学张泽院士领导的研究小组已经安装了一台该设备。目前EM-09010IS只提供给日本电子株式会社透射电镜的用户,详情请咨询日本电子株式会社各地办事处。
  • 赛默飞透射电镜助力超导理论研究
    2023年2月22日,清华大学朱静院士团队联合复旦大学车仁超教授和北京大学李源副教授在《自然》杂志上发表了题为” Topological spin texture in the pseudogap phase of a high-Tc superconductor” [1] 的文章。该研究工作采用赛默飞透射电子显微镜(TEM)首次在赝能隙态YBa2Cu3O6.5材料中发现了拓扑磁涡旋结构的存在。该拓扑磁涡旋结构的发现在实空间微观尺度上给赝能隙态下的时间反演对称性破缺提供了的直接图像证据,并且发现该拓扑磁涡旋结构在电荷密度波态时被破坏,进入到超导态时又重新出现,这一发现对揭示高温超导的微观机理具有重大的意义,而先进的透射电子显微镜在这一发现上更是功不可没。朱静院士,车仁超教授等人深耕于超导材料研究领域,洛伦兹低温原位透射电镜研究领域,电子显微学研究领域多年,取得了一系列重要研究成果。在本研究中,研究团队利用复旦大学电子显微镜实验室新安装的Spectra 300透射电子显微镜开展低温洛伦兹样品测试,获得了此次重大发现。2021年,赛默飞上海纳米港(Shanghai NanoPort, Thermo Fisher Scientific)有幸参与其中部分实验工作,在创建冷冻实验环境和原位数据采集方面积极地配合支持。本文将主要介绍两种电子显微学技术——洛伦兹透射电镜(LTEM)和积分差分相位衬度(iDPC)在该工作中起到的关键作用。洛伦兹透射电镜(LTEM)正常TEM光路下,物镜处于开启状态,样品在物镜上下极靴中间处于~2T的强磁场中,样品本征的磁结构会被物镜的强磁场破坏。为了在无磁环境下观察样品本征的磁结构,赛默飞场发射透射电镜Talos和球差校正透射电镜Spectra都可以通过关闭物镜电流使样品处于零磁场环境,再由位于物镜下极靴内部的洛伦兹磁透镜实现对样品微观本征磁结构的观察。LTEM成像模式主要有两种:Fresnel成像模式和Foucault成像模式。Fresnel成像模式是通过改变图像的离焦量实现对磁畴或畴壁的观察。其图像主要特点是欠焦和过焦条件下磁畴畴壁的衬度是相反的,而正焦图像则没有磁衬度。Foucault成像是通过遮挡或者保留后焦面上与磁畴相关的衍射信号来实现(类似于暗场像), 适用于观测不同磁化取向的磁畴。图1a-c分别为该文章中赝能隙态YBa2Cu3O6.5样品的正焦、过焦以及欠焦下的Fresnel图像,离焦量为±1.08 mm。其反转的衬度特点,切实证明了该样品中存在拓扑学特征的畴结构。此外,赛默飞透射电镜上的洛伦兹功能不仅可以实现无磁环境,还可以很方便地通过改变物镜电流来改变磁场,用于原位研究磁结构随磁场强度的变化。在本研究中,作者通过改变物镜电流对样品施加外磁场影响,拓扑学特征消失,进一步证明了该效应是由磁学特性引起的。作者通过使用强度传递方程(Transport of Intensity Equation, TIE)的相位重构技术[2],对LTEM图像进行数据处理得到拓扑磁涡旋结构的磁场方向和相对强度分布(图1d-e, i-l)。图1m-n是由LTEM结果推测出来的两种可能的磁涡旋结构示意图。该文章中LTEM实验分别在赛默飞Spectra300,Themis和Titan机台进行了重复验证,均观察到拓扑磁涡旋结构。图1 (a-c)LTEM Fresnel模式下赝能隙态YBa2Cu3O6.5样品的正焦、过焦、欠焦图像(离焦量为±1.08 mm),样品处于300 K,零磁场环境,标尺为500 nm;(d-e)为通过TIE算法得到的磁场和磁场强度图像;(f-j)为红色方框对应的剪裁放大图像;(k-l)为单个磁涡旋结构的磁场和磁场强度图;(m-n)为两种可能的拓扑磁涡旋结构示意图[1]除了常规的LTEM成像外,赛默飞球差校正透射电镜Spectra系列可以通过物镜球差校正器对LTEM光轴进行像差校正。像差校正洛伦兹模式下可以得到优于1nm的信息分辨率,从而帮助科研工作者观察到更小的磁结构。积分差分相位衬度(iDPC)球差校正透射电镜的超高空间分辨率提供了关于拓扑自旋结构的出现与局域晶体结构之间关系的更多信息。铜基超导材料中氧原子的掺杂或缺失对材料性能具有重要的影响,直接观察到氧原子的占位对深入揭示材料微观结构与性能之间的关系具有重大的意义。然而,广泛使用的扫描透射电镜(STEM)的高角环形暗场(HAADF)图像,因其主要接收高角卢瑟福散射信号,导致轻重元素无法同时成像,C、N、O等轻原子无法观察到。STEM环形明场(ABF)像虽然能观察到轻元素,但ABF图像无法直接解读,而且存在对样品厚度要求高、图像信噪比不佳等问题。为了解决以上问题,赛默飞提出并发展了积分差分相位衬度(iDPC)技术。iDPC这一全新STEM成像模式的出现,大大提高了透射电子显微镜捕获原子的能力。iDPC技术具有能实现轻重原子同时成像,能实现低电子剂量,高分辨和高信噪比成像,图像衬度易解读等优点[3]。目前,iDPC技术已成为材料表征领域技术热点,在表征轻元素占位、二维材料、电子束敏感材料、超导体等领域具有重要的应用。iDPC成像技术现已完全集成在赛默飞球差校正电镜Spectra和场发射电镜Talos上,能实现iDPC图像的在线采集和显示。图2 (a) YBa2Cu3O6.0, (b) YBa2Cu3O6.5和(c) YBa2Cu3O6.9的原子分辨率iDPC图像[1]图2为YBa2Cu3O6.0、YBa2Cu3O6.5和YBa2Cu3O6.9的高分辨iDPC图像,可以清楚的观察到氧原子的位置,随着氧掺杂含量的不同,Cu-O链上的氧占位逐渐增加。值得注意的是赝能隙态YBa2Cu3O6.5的Cu-O链上出现了氧富集和氧缺失的有序排列。作者认为这种氧的有序排列有利于拓扑磁涡旋结构沿c轴自由排列,是观察磁涡旋结构的最佳区域。作者认为现阶段不能完全排除氧填充链激发磁性的可能。赛默飞将致力于相关电子显微学技术的研发与应用,为材料的电、磁学性能研究提供更强大的助力。作者:刘建参考文献[1] Zechao Wang, Ke Pei, Liting Yang, Chendi Yang, Guanyu Chen, Xuebing Zhao, Chao Wang, Zhengwang Liu, Yuan Li, Renchao Che & Jing Zhu. Topological spin texture in the pseudogap phase of a high-Tc superconductor. Nature (2023). https://doi.org/10.1038/s41586-023-05731-3[2] M. Beleggia, M.A. Schofield, V.V. Volkov, Y. Zhu. On the transport of intensity technique for phase retrieval. Ultramicroscopy 102 (2004) 37–49.[3] Ivan Lazi&cacute , Eric G.T. Bosch and Sorin Lazar. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265-280 (2016).
  • 武汉大学采购JEOL全系列透射电镜
    近期,武汉大学打包采购了三台JEOL透射电镜,包括球差校正透射电镜JEM-ARM200F一台,场发射透射电镜JEM-2100F一台,120kV透射电镜JEM-1400Plus一台。 武汉大学是国家教育部直属重点综合性大学,中国最著名的名牌大学之一,是国家“985工程 ”和“211工程 ”重点建设高校。老一辈电镜专家王仁卉先生在全国乃至世界都有很大的知名度,电镜水平很高。2002年武汉大学曾经引进过JEOL生产的欧米伽能量过滤场发射透射电镜JEM-2010FEF,在没有球差校正技术的年代,代表了当时电镜的最高水平。甚至很多国外知名学者都慕名前来参观该仪器,为武汉大学增添了不少光彩,而武汉大学使用该仪器也发表了很多高水平的文章。十年后,武汉大学再次引进世界上最先进的球差校正透射电镜JEM-ARM200F,必将使武大的电镜水平更上一层楼。 JEM-2100F是日本电子的常规场发射透射电镜,以其良好的性能被称为世界标准。JEM-1400Plus是目前世界最新的120kV透射电镜,特别适用于生命科学研究。 JEOL是全世界最大的电子光学供应商,生产各种类型的电子显微镜。要了解电镜详细性能,请咨询捷欧路(北京)科贸有限公司及各地分公司。
  • 名古屋大学安装日本电子超高压环境透射电镜
    日本电子株式会社与名古屋大学共同开发的超高压环境透射电镜JEM-1000K RS已经于2009年年底供货。  常规的透射电镜的加速电压在100~300kV之间,加速电压在1000kV 的透射电镜被称为超高压透射电镜。超高压透射电镜的优点在于穿透能力极强,可以直接观察更接近实际状态的厚样品。在三维重构研究和原位观察方面也有明显优势,虽然近年场发射技术和球差校正技术发展迅猛,但超高压电镜仍然具有其巨大魅力。  日本电子株式会社有45年开发超高压透射电镜的经验,全世界有21个用户,性能优良,广受世界好评。中国曾经在上个世纪70年代引进了一台,安装在北京有色金属研究总院。最新开发的JEM-1000K RS是一台环境透射电子显微镜(RS是英文Reaction system的缩写),可以在多种气体环境下进行直接观察。我们相信很快就会看到其应用成果。
  • 原位液体环境透射电镜技术初相遇
    p  撰文:王文/pp  在透射电子显微镜中,搭建nano-lab,原位观察纳米材料在外场,如力、热、光、电、磁等作用下的行为,对于纳米材料研究者已经并不陌生。目前,原位电镜研究进行地如火如荼,并取得了很多令人瞩目的成果。今天,就为大家简单介绍一下原位透射电镜技术中的一种——液体环境透射电镜(Liquid cell TEM)。/pp  strong一、为什么要研究液体环境透射电镜技术?/strong/pp  绝大多数的液体,包括水和其他有机溶剂,有着较大的饱和蒸气压,无法在透射电镜的高真空环境中存在,因此在研究液体环境中纳米材料的行为时,需要构建液体存放单元,将液体与电镜中高真空环境隔离开来,这就需要利用Liquid cell TEM。Liquid cell TEM实际上就是通过微纳加工,制作液体存放单元(Liquid cell),然后将它固定在普通样品杆或者专用液体样品杆头部,放入电镜进行观察。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ad89408b-a05e-4162-a393-3ace84a9b2e2.jpg" title="1.jpg"//pp style="text-align: center " strong 图 1. Liquid Cell 结构示意图/strong/pp  strong二、原位液体透射电镜技术发展史/strong/pp  In-situ Liquid cell TEM的雏形可以追溯到1934年,比利时布鲁塞尔自由大学的Morton,利用两片铝箔包裹样品的方法首次尝试活体生物样品的透射电子显微学研究,但是由于铝片及液体层较厚,其分辨率仅能达到微米量级。/pp  近年来得益于微纳加工技术以及微流控技术的进步,Liquid cell的制备得到突破性进展。2003年F. M. Ross设计制作的原位电化学Liquid cell芯片,是近代Liquid cell制备的里程碑。其结构如图2所示,底层硅片沉积一层多晶金电极,与顶层硅片之间通过SiO2环垫片胶合形成电化学反应器,顶层硅片有两个容器,分别引出两个电极用来施加电偏压。使用时将液体注入,通过毛细作用流入观察窗口,然后将Liquid cell密封,放入电镜中观察。由于成像电子束需要透过100nm氮化硅薄膜窗口,以及接近1μm液体层空间分辨率仅为5nm。这种在两层硅片之间形成液体腔室,采用氮化硅薄膜做观测窗口的芯片,是后续很多改进Liquid cell的发展原型。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/472b1387-271a-44da-a837-6d00c56951ea.jpg" title="2.jpg"//pp  strong图2 (A). Liquid cell示意图,(B)二电极Liquid cell光学照片(Rosset al., Nat. Mater., 2003, 532)。/strong/pp  目前Liquid cell制作方式主要有两种,一类是closed cell,另一类是包含液体流通管道的flow cell(见图3)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/f501f1c1-4897-4d45-a12b-57c2381ca6f6.jpg" title="3.jpg"//pp  strong图 3. A.closed cell 三维结构示意图,B. 沿A图中横线横断面结构图(Zhenget al., Science, 2009, 1309)C. flow cell结构示意图(de JongeN et al., PNAS, 2009, 106)./strong/pp  2009年郑海梅报道了一种超薄氮化硅窗口Liquid cell如图3A& B,其氮化硅薄膜厚度仅为25nm,上下层芯片之间用超薄铟垫片键合形成Liquid cell室,观测窗口内液体层厚度约为200nm。在此基础上,2014年Liao等人对超薄氮化硅窗口Liquid cell技术进行改进,将氮化硅薄薄膜度进一步减小为13nm,液体层厚度约为100nm,有效地将空间分辨率提高到原子级。/pp  2009年Neils de Jonge等人设计了开放Liquid cell,如图3C,在无需冷冻和干燥的条件下,原位观察完整细胞中的单个分子。其液层厚度约为7μm,空间分辨率可以达到4 nm。/pp  除了采用氮化硅薄膜作为观测窗口,2012年Jong Min Yuk首次提出利用石墨烯薄膜制备Liquid cell,并原位研究了钯纳米晶体的生长过程,如图4。利用石墨烯作为观察窗口材料,可以有效较少甚至忽略电子散射进而实现原子级分辨率。随后,利用石墨烯作为电子束透射窗口,衍生出了多种复杂的石墨烯Liquid cell结构。特别的,2014年JongMin Yuk利用Liquid cell观察了硅纳米颗粒表面各向异性锂化过程,使得利用石墨烯Liquid cell进行电化学研究成为可能。但由于石墨烯薄膜很薄,很难放置常规的电化学电极,石墨烯Liquid cell用来研究电化学过程仍然受到很大的限制。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/d7943de3-4150-46a7-b462-f5f785b7233b.jpg" title="4.jpg"//pp style="text-align: center "  strong图 4 石墨烯 Liquid cell 示意图(Li et al.,Science 2010,330)./strong/pp  Liquid cell TEM不仅可以用来原位观察液体环境中纳米材料的行为,还可以在Liquid cell芯片和液体杆上集成加热、冷冻元件,用于纳米材料功能性测试,极大地拓宽了透射电镜的研究范围。如Haimei Zheng 课题组Kai-Yang Niu等利用可加热Liquid cell,原位研究了柯肯达尔作用下,氧化铋空心纳米颗粒的形成过程。K.Tai利用冷冻平台,研究了结晶期间冰中的相变,以及结晶前表面与金颗粒的动态相互作用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/a142ae6e-5b9c-46c5-805d-1c81aab4e20f.jpg" title="5.jpg"//pp  strong图5. A.Hollownanoparticle growth dynamics via Kirkendall effect (Paul Alivisatoset al., Nano Lett,2013,13). B.The dynamic interactions of Aunanoparticles at the ice crystallization front (Dillon et al.,Microsc. Microanal, 2014, 330)/strong/pp  综上,目前Liquid cell芯片多是基于硅基衬底加工,窗口材料一般采用超薄氮化硅薄膜,Haimei Zheng课题组可以将氮化硅薄膜做到13nm左右,其他课题组以及商业化Liquid cell窗口材料一般做到30nm左右,窗口大小50*50μm。分辨率可以达到原子级,接近电镜固有分辨率。并且可以集成加热和冷冻功能,但对liquid cell稳定性要求较高,并不容易实现。/pp strong 三、原位液体透射电镜技术的应用/strong/pp  利用In-situ Liquid cell TEM可以观察纳米颗粒成核和生长的过程,用实验证明一直存在争议的问题,例如纳米颗粒液相生长过程中主导机制是单体附加,还是颗粒融合。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/deb70f24-dd19-4eba-8290-004651bb1c0e.jpg" title="6.jpg"//pp strong 图 6. Video images showing simple growth by means of monomer addition (left column) or growth by means of coalescence (right column). (Zheng et al., Science, 2009, 1309)/strong/pp  可以研究异质纳米晶体生长过程/pp style="text-align: center"img style="width: 450px height: 246px " src="http://img1.17img.cn/17img/images/201803/insimg/d3a4a6f9-e362-45d2-9efc-3eb88e58cc1c.jpg" title="7.jpg" height="246" hspace="0" border="0" vspace="0" width="450"//pp  strong图7. Comparison of Pdgrowth on 5 and 15 nm Au seeds. (a, d)Starting dark-field STEM images of a 5 nm(a) and a 15 nm (c) Au nanoparticles in 10 μM aqueous PdCl2 solution (samescale). (b,e) The same two particles after Pd deposition (84 s total beamexposure). (c, f) Schematic illustration of the Pd growth morphology for thetwo sizes of Au seed nanoparticles (E. A. Sutter et al., Nano Lett, 2013, 13) ./strong/pp  可以研究纳米颗粒自组装过程/pp style="text-align: center"img style="width: 450px height: 409px " src="http://img1.17img.cn/17img/images/201803/insimg/a1977cd7-4f4d-412b-a23d-ae50c19761d1.jpg" title="8.jpg" height="409" hspace="0" border="0" vspace="0" width="450"//pp  strong图8.TEM images of NPassembly formed under electron beam irradiation (a,b) and drop casting (c,d) onSiNx TEM grid. The scale bar is 100 nm (Jungwon Park et al., ACS NANO, 2012, 6) ./strong/pp  可以研究锂离子电池锂化过程。Huang 等人在开放 Liquid cell 中原位研究锂离子电池锂化过程中,氧化锌纳米线的膨胀、伸长和螺旋行为。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/965878a3-55a6-46c9-b846-05e5d30fc04a.jpg" title="9.jpg"//pp  strong图 9. Schematic of the experimental setup(Li et al.,Science 2010,330)./strong/pp  还可以用来观察一些生物样品。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/a94ef351-8826-4e37-be8b-e3ff343c362c.jpg" title="10.jpg"//pp  strong图 10. Image of the edge of a fixed COS7 cell after 5-min incubation with EGF-Au(de Jonge N et al., PNAS, 2009, 106)./strong/pp  当然Liquid cell TEM的研究内容不仅局限于这些,感兴趣的可以阅读Hong gang Liao 2016年发表在Annu. Rev. Phys.Chem.的一篇综述文章Liquid Cell Transmission Electron Microscopy。/pp  看到这里,估计有人会问,在研究过程怎么排除电子束对反应过程的影响呢?电子束的确是让人又爱又恨的存在,既需要利用它来成像,又不希望它与研究材料发生相互作用影响实验结果。不过,别担心,Liquid cell TEM领域大牛Ross已经为你提供了量化电子束影响的理论依据!说到这里,小编不禁要感叹,Ross是一位学术造诣很深又乐于分享的大牛。某次会议有幸向Ross当面请教,她非常nice地鼓励了我蹩脚的英语和并不成熟的想法,并且很耐心地给我讲解,我们刚入门的科研人需要这样优秀的偶像。/pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201803/insimg/ef62778c-b47c-42b7-af9f-ca7df8f18d17.jpg" title="00.jpg"//pp strong 四、国内研究现状/strong/pp  08年以来国内的透射电镜发展十分迅速,目前国内应该有超过60台带有球差校正的透射电镜,而且这一数字还在迅速增加。其中做Liquid cell TEM相关研究的课题组也有不少,并取得了不少重量级研究成果,鼓掌~~~~目前国内从事Liquid cell TEM研究的课题组主要有:浙江大学张泽院士、厦门大学廖洪刚教授、北京工业大学隋曼龄教授、上海交通大学邬剑波研究员、华东理工大学陈新教授,等。当然,还有弱弱的小编~(如有遗漏,恕小编才疏学浅)。/pp  那么最后一个问题来了,想做in-situ Liquid cell TEM研究去哪里找芯片呢?目前Liquid cell芯片和液体样品杆已经部分商业化,如Hummingbird 和Protochip等,但其售价比较昂贵,适合土豪课题组。很多课题组仍然在使用自制液体芯片,或与其他国内微纳加工公司合作。/pp  小编只是抛砖引玉,为大家做一下简单介绍一下,如有兴趣,可以先参阅Frances M. Ross, Honggang Liao, Xin Chen三位的综述文章。没错,其中有两位是中国人,而且目前在国内任职,小编是如此骄傲~~~/p
  • 了解球差校正透射电镜,从这里开始
    p  作者:Mix + CCL br//pp strong前言:/strong/pp  球差校正透射电镜(Spherical Aberration Corrected Transmission Electron Microscope: ACTEM)随着纳米材料的兴起而进入普通研究者的视野。超高分辨率配合诸多分析组件使ACTEM成为深入研究纳米世界不可或缺的利器。本期我们将给大家介绍何为球差,ACTEM的种类,球差的优势,何时才需要ACTEM、以及如何为ACTEM准备你的样品。最后我们会介绍一下透射电镜的最前沿,球差色差校正透射电镜。/pp  strong什么是球差:/strong/pp  100 kV的电子束的波长为0.037埃,而普通TEM的点分辨率仅为0.8纳米。这主要是由TEM中磁透镜的像差造成的。球差即为球面像差,是透镜像差中的一种。其他的三种主要像差为:像散、彗形像差和色差。透镜系统,无论是光学透镜还是电磁透镜,都无法做到绝对完美。对于凸透镜,透镜边缘的会聚能力比透镜中心更强,从而导致所有的光线(电子)无法会聚到一个焦点从而影响成像能力。在光学镜组中,凸透镜和凹透镜的组合能有效减少球差,然而电磁透镜却只有凸透镜而没有凹透镜,因此球差成为影响TEM分辨率最主要和最难校正的因素。此外,色差是由于能量不均一的电子束经过磁透镜后无法聚焦在同一个焦点而造成的,它是仅次于球差的影响TEM分辨率的因素。/pp style="text-align: center"img style="width: 450px height: 246px " src="http://img1.17img.cn/17img/images/201803/insimg/565984ed-0352-4b62-8539-a16db18b6f6b.jpg" title="1.jpg" height="246" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong图1:球差和色差示意图/strong/pp自TEM发明后,科学家一直致力于提高其分辨率。1992年德国的三名科学家Harald Rose (UUlm)、Knut Urban(FZJ)以及Maximilian Haider(EMBL)研发使用多极子校正装置(图3)调节和控制电磁透镜的聚焦中心从而实现对球差的校正(图4),最终实现了亚埃级的分辨率。被称为ACTEM三巨头的他们也获得了2011年的沃尔夫奖。多极子校正装置通过多组可调节磁场的磁镜组对电子束的洛伦茨力作用逐步调节TEM的球差,从而实现亚埃级的分辨率。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/2080a2cf-4ab3-41ab-b731-7719f0c32d28.jpg" title="2.jpg"//pp style="text-align: center " strong 图2 三种多极子校正装置示意图/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/090bb4c0-aeea-4ab4-8601-79bcf74b7c8e.jpg" title="3.jpg"//pp style="text-align: center "strong图3 球差校正光路示意图/strong/pp  strongACTEM的种类:/strong/pp  我们在前期TEM相关内容已经介绍了透镜相关内容,TEM中包含多个磁透镜:聚光镜、物镜、中间镜和投影镜等。球差是由于磁镜的构造不完美造成的,那么这些磁镜组都会产生球差。当我们矫正不同的磁透镜就有了不同种类的ACTEM。回想一下STEM的原理,当我们使用STEM模式时,聚光镜会聚电子束扫描样品成像,此时聚光镜球差是影响分辨率的主要原因。因此,以做STEM为主的TEM,球差校正装置会安装在聚光镜位置,即为AC-STEM。而当我们使用image模式时,影响成像分辨率的主要是物镜的球差,此种校正器安装在物镜位置的即为AC-TEM。当然也有在一台TEM上安装两个校正器的,就是所谓的双球差校正TEM。此外,由于校正器有电压限制,因此不同的型号的ACTEM有其对应的加速电压,如FEI TITAN 80-300就是在80-300 kV电压下运行,也有专门为低电压配置的低压ACTEM。/pp  strong球差校正电镜的优势:/strong/pp  ACTEM或者ACSTEM的最大优势在于球差校正削减了像差,从而提高了分辨率。传统的TEM或者STEM的分辨率在纳米级、亚纳米级,而ACTEM的分辨率能达到埃级,甚至亚埃级别。分辨率的提高意味着能够更“深入”的了解材料。例如:最近单原子催化很火,我们公众号也介绍了大量相关工作。为什么单原子能火,一个很大的原因是电镜分辨率的提高,使得对单原子的观察成为可能。浏览这些单原子催化相关文献,几乎无一例外都用到了ACTEM或者ACSTEM。这些文献所谓的“单原子催化剂”,可能早就有人发现,但是因为受限于当时电镜分辨率不够,所以没能发现关键的催化活性中心。正是因为球差校正的引入,提高了分辨率,才真正揭示了这一系列催化剂的活性中心。/pp  strong何时才需要用球差校正电镜呢?/strong/pp  虽然现在ACTEM和ACSTEM正在“大众化”,但是并非一定要用这么高大上的装备。如果你想观察你的样品的原子级结构并希望知道原子的元素种类(例如纳米晶体催化剂等),ACSTEM将会是比较好的选择。如果你想观察样品的形貌和电子衍射图案或者样品在TEM中的原位反应,那么物镜校正的ACTEM将会是更好的选择。就纳米晶的合成而言,球差校正电镜常用来揭示纳米材料的细微结构信息。比如合成一种纳米核壳材料,其中壳层仅有几个原子层厚度,这个时候普通电镜下很难观察到,而球差电镜则可以拍到这一细微的结构信息(请参见夏幼男教授的SCIENCE,349,412)。/pp  strong如何为ACTEM准备你的样品:/strong/pp  首先如果没有合作的实验室的帮助,ACTEM的测试费用将会是非常昂贵的。因此非常有必要在这里介绍如何准备样品。在测试之前最好尽量了解样品的性质,并将这些信息准确地告知测试者。其中我认为先用普通的高分辨TEM观察样品是必须的,通过高分辨TEM的预观察,你需要知道并记录以下几点:一、样品的浓度是否合适,目标位点数量是否足量 二、确定样品在测试电压下是否稳定并确定测试电压,许多样品在电子束照射下会出现积累电荷(导电性差)、结构变化(电子束的knock-on作用)等等 三、观察测试目标性状,比如你希望测试复合结构中的纳米颗粒的原子结构,那么必须观察这些纳米颗粒是否有其他物质包覆等,洁净的样品是实现高分辨率的基础 四、确定样品预处理的方式,明确样品测试前是否需要加热等预处理。五、拍摄足量的高分辨照片,并标注需要进一步观察的特征位点。在ACTEM测试中,与测试人员的交流非常重要,多说多问。/pp  strong球差色差校正透射电镜:/strong/pp  球差校正器经过多年的发展,在最新的五重球差校正器的帮助下,人类成功地将球差对分辨率的影响校正到小于色差。只有校正色差才能进一步提高分辨率,于是球差色差校正透射电镜就诞生了。我们欣赏一下放置在德国Ernst Ruska-Centre的Titan G3 50-300 PICO双球差物镜色差校正TEM (300 kV分辨小于0.5埃)以及德国乌尔姆大学的TitanG3 20-80 SALVE 低电压物镜球差色差校正TEM (20 kV 分辨率小于1.4埃)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/04b96c4d-c6fe-40d2-85c0-b86ce091e6e8.jpg" title="4.jpg"//pp style="text-align: center "strong图4 Titan G3 50-300 PICO、TitanG3 20-80 SALVE及其矫正器/strong/p
  • 日立高新推出200kV透射电镜新品
    p  2015年7月21日,日立高新宣布推出200kV场发射a title="" href="http://www.instrument.com.cn/zc/1139.html" target="_self"strong透射电子显微镜/strong/aspan style="COLOR: rgb(84,141,212)"/spanHF5000,HF5000集合了日立高新的透射电镜及扫描透射电镜技术,达到了亚埃级的空间分辨率(0.1 nm或更低),球差校正器为其标准配置。将于2015年10月正式启动销售。/pp  从纳米材料、电子器件的科学研究,到企业研发及质量控制,用户对于电子显微镜的空间分辨率及元素分析能力的需求都在提升。这反过来也促进了对于电子显微镜像差校正和高灵敏度分析的需求。/pp  为了响应这方面的需求,日立高新开发了200kV及300kV透射电镜专用的STEM球差校正器和大立体角EDX。根据用户的反馈,日立高新将这两种技术整合到了200kV的透射电镜平台上,推出了HF5000场发射透射电镜,同时实现了亚埃级的高分辨率成像和高灵敏度分析。/pp style="TEXT-ALIGN: center"img title="23.jpg" src="http://img1.17img.cn/17img/images/201507/insimg/a29bbaca-f26c-47cf-aceb-83c7b04e8ec7.jpg"//pp style="TEXT-ALIGN: center"HF5000透射电镜br//pp  HF5000继承了日立高新HD-2700扫描透射电子显微镜的技术特点,如它的内部球差校正器,自动像差校正功能,原子分辨率的二次电子像,并综合了日立高新HF系列透射电镜的技术。/pp  另外,HF5000采用了日立高新经过考验而被认可的冷场发射电子枪技术,并且它的镜筒和样品台经过了重新的设计,从而显著提升了仪器的性能和稳定性。/pp strong主要技术参数/strongbr//pp style="TEXT-ALIGN: center"img title="3.jpg" src="http://img1.17img.cn/17img/images/201507/insimg/2bdb33e9-e1c4-4a12-880a-83b462498079.jpg"//p
  • 2021年度中国市场电镜新品盘点(18款): 场发射、扫描透射成主流
    经历2020年疫情笼罩,2021年全球电镜市场规模回暖,规模再次以个位数速率增长,作为最大需求单一市场国家,中国则实现20%以上增长。电镜新品发布也迎来活跃一年,发布新品不仅低、中、高端产品基本覆盖,大部分主流品牌皆有输出,国产方面也多点开花。以下对2021年在电镜新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充或邮件(yanglz@instrument.com.cn )。2021年电镜发布新品速览(按发布时间顺序)类型品牌产品名称型号描述SEM蔡司新一代Gemini场发射扫描电镜系列GeminiSEM 360GeminiSEM 460GeminiSEM 560高分辨,不挑样日本电子肖特基场发射电镜JSM-IT800(i)/(is)适用观测半导体器件聚束科技高通量(场发射)扫描电镜Navigator-100B PLUS国产高通量场发射升级款祺跃科技原位高温扫描电镜-国产原位高温日本电子新型扫描电子显微镜JSM-IT510钨灯丝电镜升级飞纳台式场发射扫描电镜Phenom Pharos G2分辨率提至1.8nm日立两款场发射扫描电子显微镜SU8600SU8700聚焦自动获取大量数据功能国仪量子场发射扫描电镜SEM5000国产场发射扫描电镜TEM日本电子新一代冷冻电镜CRYO ARMTM 300II (JEM-3300)速度、操作、通量全面升级赛默飞球差校正透射电镜Spectra Ultra适合电子束敏感材料的球差电镜赛默飞扫描透射电镜Talos F200E为半导体行业设计纳镜鼎新高通量生物扫透电镜智眸365(Smart View 365)国产高通量生物扫描透射电镜聚焦离子束显微镜赛默飞聚焦离子束扫描电子显微镜 (FIB-SEM)Helios 5 PXL Wafer DualBeam聚焦半导体领域其他日本电子超微电子衍射平台Synergy-ED电镜-x射线衍射平台赛默飞定制球差校正电镜Spectra φ定制球差电镜扫描电镜:11款齐发,9款场发射!扫描电镜方面,场发射产品成为新品主流,蔡司和日立分别发布3款、2款场发射电镜,日本电子发布场发射和钨灯丝升级产品,飞纳台式场发射电镜分辨率提升至1.8nm。国产方面,国仪量子也加入场发射产品行列,聚束科技发布高通量场发射升级产品,祺跃科技则基于其原位力学技术,发布原位高温扫描电镜。蔡司|新一代Gemini场发射扫描电镜系列【3款】Gemini系列新品,左至右:GeminiSEM 360,GeminiSEM 460,GeminiSEM 560【发布会专题】 发布时间:3月24日参考价格:300-600万元蔡司此次发布的GeminiSEM 360,GeminiSEM 460,GeminiSEM 560是Gemini电子光学系统针对不同的应用场景衍生出的三款新型号。GeminiSEM 360搭载1型Gemini镜筒,是一款高通用性成像工具。其物镜为静电透镜+磁透镜复合透镜,在提高其电子光学性能的同时将它们对样品的影响降至更低。即使对极具挑战的样品也能进行高品质成像。Beam booster技术具有镜筒内的电子加减速功能,可确保获得小束斑和高信噪比;Gemini镜筒内带有平行设计的镜筒内二次电子和背散射电子探测器,可实现信号的高效采集,同步获取形貌衬度和成分衬度像。GeminiSEM 460搭载2型Gemini镜筒,专为应对复杂的分析工作而设计。它除了复合透镜和镜筒内加减速设计以外,利用双聚光镜设计实现更加灵活的束流调节。用户可以在小束流的高分辨成像模式与大束流的分析模式之间进行无缝切换,对称设计的EDS接口可让您获得无阴影的成分分布图,而物镜无漏磁设计可以让您获得无畸变的大面积EBSD花样。您还可以通过加装各种原位实验附件将Gemini 460升级为一个自动化原位实验平台。GeminiSEM 560搭载3型Gemini镜筒,带给用户极致的高分辨成像体验。该款镜筒拥有两个可协同工作的电子光学系统:Nano-twin透镜和新型电子光学引擎Smart Autopilot,可通过聚光镜优化所有工作条件下的电子束会聚角,进一步提升分辨力;还可实现1倍到200万倍的无缝过渡,大视野导航和亚纳米成像一镜到底。日本电子|场发射电镜JSM-IT800半透镜版本(i)/(is)新型肖特基场发射扫描电子显微镜JSM-IT800【产品链接 】 发布时间:8月31日参考价格:200-400万元JSM-IT800 集成了用于高分辨率成像的透镜内肖特基 Plus 场发射电子枪、创新的电子光学控制系统“Neo Engine”, 以及追求易用性的GUI“ SEM中心”可以完全整合JEOL 的x射线能谱仪。JSM-IT800 有五种不同物镜版本:混合镜头版本 (HL),这是一种通用 FE-SEM;超级混合镜头版本(SHLs/SHL,功能不同的两个版本),可实现更高分辨率的观察和分析;以及新开发的半透镜版本(i/is,两个不同功能的版本),适用于半导体器件的观察。半透镜通过在物镜下方形成的强磁场透镜会聚电子束来实现超高分辨率。此外,该系统有效地收集从样品发射的低能量二次电子,并使用上部透镜内检测器 (UID) 检测电子。因此,它可以对倾斜样品和横截面样品进行高分辨率观察和分析,这正是半导体器件故障分析所需的。此外,它对于电压对比度观察也非常有用。聚束科技|高通量(场发射)扫描电子显微镜 Navigator-100B PLUS高通量(场发射)扫描电子显微镜 Navigator-100B PLUS【 产品链接 】 发布时间:8月参考价格:500-700万元成像速度在同等条件下是同类机型的10倍以上,可在72小时内以4nm 像素完成对10x10 mm2 区域的无遗漏采集。 新机型在硬件部分模组提升较大,配备新型电子枪,电子束落点能量范围可达30keV,涵盖绝大多数扫描电镜落点能量需求范围。分辨率可达1.0nm (15keV下), 且在1-3kV低加速电压下即可获得1.5nm高分辨率的同时,仍能保持1‰以下的低图像畸变。具备高度智能化,包括简单快捷全景光学导航、一键全自动换样、全景光学导航、实时聚焦追踪,可以实现全自动超大区域(100mm×100mm)全息地图集式拍摄,并绘制成全景地图式信息浏览。祺跃科技|原位高温扫描电镜祺跃科技原位高温扫描电镜新品【发布详情】 发布时间:10月14日新开发的扫描电镜设计理念包括样品室空间从紧凑到合理,样品台承载能力较大、成像探测器承温能力提升、保证高真空足够的抽气能力等,达到追求时序信息的目标。本次新品实现整机国产化的核心部件包括高温二次电子探测器、三维移动平台与大载荷拉伸平台、1400度原位加热器、超大结构样品腔室和超高真空系统等。保障电镜极端环境长时间稳定运行的相关模块包括冷阱、等离子清洗、极靴屏蔽、红外测温等。同时兼容EDX和EBSD等,还预留设置了多种通讯接口,为今后拓展更多原位技术留有余地。 日本电子|钨灯丝扫描电镜升级产品JSM-IT510钨灯丝扫描电子显微镜JSM-IT510【产品链接】 发布时间:11月8日参考价格:130-200万元为了满足基础研究、工业现场对更快获取结果数据等, JSM-IT510系列进一步提升了InTouchScope™ 的可操作性。借助新增的Simple SEM功能,现在可以将日常工作 “交给”仪器。主要特点包括:新型“Simple SEM”功能、最新型低真空二次电子探头 (LHSED)、 扫描电镜图像和能谱的一体化、实时立体三维图像、实时分析功能、新的导航放大功能、0 倍放大、显示X射线产生区域、SMILE VIEW™ Lab管理软件等。飞纳|第二代肖特基场发射台式扫描电镜Phenom Pharos G2飞纳台式场发射扫描电镜 Phenom Pharos G2【 产品链接 】 发布时间:11月24日参考价格:200-300万元Phenom Pharos G2, 集背散射电子成像、二次电子成像和能谱分析功能于一体。高亮度肖特基场发射电子源,使用户可以轻松获得高分辨率图像,且低电压性能优异。Pharos G2分辨率提升至1.8nm,采用热场发射电子源,信噪比高,使用寿命长,保证长期稳定的性能。飞纳台式场发射扫描电镜能谱一体机标配背散射电子成像、二次电子电子成像和能谱分析功能,可对各种样品进行高分辨成像及元素分析。日立|全新场发射扫描电镜SU8600和SU8700全新冷场发射扫描电镜SU8600(左)和热场发射扫描电镜SU8700(右)【发布会专题】 发布时间:12月9日全新一代冷场发射扫描电镜SU8600不光保留了日立传统冷场电镜的优点,还采用了新型冷场电子枪,可选择更多种类的探测器,而且具有全新的自动数据获取功能,这些技术的加入使得SU8600的成像、分析能力以及自动化性能都有了质的飞跃。具体特点包括:强大自动化功能、成熟的电子光学系统、强大的图像显示和存储、简便的操作等。全新一代热场发射扫描电镜SU8700是一款集高分辨观察、高效率分析、自动化操作等特点于一身的扫描电镜。全新的自动数据获取功能,电子光学系统,多探头检测系统等技术的加入使得SU8700的成像和分析能力有了质的飞跃。具体特点包括:强大的自动化功能、全新的电子光学系统、高效的分析能力、丰富的样品适用性、简便的操作等。国仪量子|场发射扫描电子显微镜SEM5000场发射扫描电镜SEM5000【 发布信息 】 参考价格:200-300万元新品场发射扫描电子显微镜SEM5000,是一款高分辨的多功能扫描电镜,分辨率优于1 nm,放大倍数超过一百万倍。SEM5000的新型镜筒,优化了电子光路设计,采用高压隧道技术,在高电压和低电压下均能实现高质量成像;系统配置了无漏磁物镜,实现了无漏磁高分辨成像,适用于磁性样品分析;可选配多种探测器及其它分析仪器,能够满足用户的各种需求。将广泛应用于锂电池材料、新型纳米材料、半导体材料、矿物冶金、地质勘探、生物等领域。透射电镜:冷冻电镜、球差电镜,国产扫描透射透射电镜方面,面向高端市场的扫描透射电镜成为新品主流。日本电子新一代冷冻电镜JEM-3300年初上市。赛默飞球差电镜新品Spectra Ultra、扫描透射电镜新品Talos F200E更加关注半导体领域。国产方面,基于生物到实验室和生物物理所合作,针对病理组织样本高通量成像需求的专用扫描透射电子显微镜SmartView发布。日本电子|新型冷冻电镜JEM-3300新型冷场发射低温电子显微镜(cryo-EM)——CRYO ARM™ 300 II (JEM-3300)【 产品链接 】 发布时间:1月22日参考价格:3000-5000万元JEM-3300新型冷冻电镜基于“快速、易于操作、获得高对比度和高分辨率图像”的理念而开发。与之前的CRYO ARM™ 300相比,JEM-3300可进行高质量数据的快速采集、操作简便,并在通量方面有大幅提升。主要特点:通过最佳电子束控制实现高速成像,独特的“Koehler mode”照射模式允许均匀电子束照射到样品的特定位置,JEM-3300吞吐量相比上一代提升两倍或更高;提高了高质量图像采集的硬件稳定性,配备了一种新型冷场发射枪(cold FEG)、新的柱内 Omega 能量过滤器;系统升级后可操作性更高等。赛默飞| 球差校正透射电镜Spectra Ultra 新一代扫描透射电镜Spectra Ultra S/TEM【产品详情】 发布时间:3月3日参考价格:2500-5000万元全新Spectra Ultra在数分钟内即可灵活优化高级成像和分析条件。出于加快材料研究进程以及高通量需求,用户现在可以以非常快的速度稳定地调节加速电压。这极大扩展了研究的样品范围,最大程度地减少了电子束损伤,并显著降低了工具的优化耗时。“配置了Ultra-X的Spectra Ultra改变了材料科学研究人员和半导体从业者的游戏规则。它可以通过迅速施加不同的加速电压来显著减少电子束损伤,并且用户将能够检测极低浓度的轻元素。”赛默飞世尔材料科学副总裁Rosy Lee表示,“此外,与其他商业化解决方案相比,用户可以以更高的分辨率快速成像快速分析,以研究新材料和改进现有材料。”赛默飞| Talos F200E扫描透射电镜Talos F200E扫描透射电镜发布时间:3月17日参考价格:600-1500万元Talos F200E (S)TEM提供原子级分辨率成像、快速EDS)分析和增强的数据可靠性,专为满足半导体行业日益增长的需求而设计。且具有成本效益,易用性高,帮助半导体实验室实现快速的样品表征,加快可以量产的速度,提高制程良率。“随着创新的步伐不断加快,半导体企业要求其分析实验室加快周转时间,并在各种设备和工艺技术上提供更可靠和可复现的(S)TEM数据,以支持他们的业务,”赛默飞半导体事业部副总裁Glyn Davies表示,“Talos F200E通过提供高质量的图像数据、快速的化学分析和行业领先的缺陷表征等特质,可以为客户提供高性价比、易用的解决方案。”纳镜鼎新|高通量生物扫描透射电子显微镜SmartView高通量生物扫透电子显微镜智眸365(Smart View 365)【产品详情】 发布时间:7月28日智眸365(Smart View 365)以其高通量、全自动、超高清图像的优越特性在降低人员工作强度的同时为专家分析和诊断病理提供更多的信息,有效提高诊断的效率与正确率。满足专业用户对超微病理诊断的需求。主要特点包括:高通量高效率,插入病理切片样品仓,选定工作模式,一次性自动连续完成多至500个样品成像等;高分辨,分辨率高达0.9nm STEM图像;高稳定运行,长寿命、超稳定的场发射电子源;使用简单等。聚焦离子束显微镜赛默飞|Helios 5 EXL晶圆聚焦离子束扫描电子显微镜Helios 5 EXL晶圆聚焦离子束扫描电子显微镜【产品详情】 发布时间:4月21日参考价格:700-1500万元Helios 5 EXL旨在满足半导体厂商随着规模化经营而不断增加的样品量以及相应的分析需求。这款产品拥有的机器学习和先进的自动化能力,可提供精确的样品制备,以支持5纳米以下节点技术和全环绕栅极半导体制程以及良率提高。赛默飞半导体事业部副总裁Glyn Davies 表示:“半导体实验室正面临着巨大的压力,在不增加成本的情况下,他们需要更快地提供TEM分析数据,以支持制程监控并提升学习曲线,Helios 5 EXL可以通过可扩展的、可复现的和高精度的TEM样品制备来应对这一挑战。”其他新品:扩展技术与定制产品日本电子|超微电子衍射平台Synergy-ED超微电子衍射平台Synergy-ED发布时间:5月31日日本电子与Rigaku公司联合开发出Synergy-ED,一个超微电子衍射平台(ED),通过将日本理学的结构分析技术和设备(如其高灵敏度检测器)与日本电子的透射电子显微镜相结合,将两者的核心技术结合起来,希望新品的技术能够应用于材料研究、化学和药物开发等领域,并为利用电子衍射进行单晶结构分析提供新的解决方案。在以前困难的亚微米范围内,结构分析成为可能。赛默飞|定制球差校正电镜Spectra φ定制的高分辨率扫描透射电子显微镜Spectra φ发布时间:5月20日定制的高分辨率扫描透射电镜Spectra φ,用以支持莫纳什大学在先进材料方面的研究。该仪器安装在澳大利亚莫纳什电子显微镜中心(MCEM)。Spectra φ提供增强的电子束灵活性,以优化复杂材料系统的高速多维成像。Spectra φ 的设计和制造符合由MCEM 和澳大利亚科学院院士Joanne Etheridge教授领导的团队的规格。通过将 Spectra φ 纳入其仪器阵容,莫纳什大学将继续推动对重要能源相关的开创性研究,包括高效光伏设备、电池、材料轻量化、低功耗电子产品和清洁发电等。
  • FEI发布Talos 透射电镜新品
    Talos先进科技集于一身 Talos™ 是新一代 TEM 产品,致力于让用户迅速访问二维和三维数据,从而专注于研究发现。Talos 的配置适合开展材料研究和生命科学研究,是一款融合了众多创新技术的多功能系统,能够在未来数年里满足您的研究需求。Talos 的材料科学应用Talos 可以在多个维度开展快速、精确、量化的材料表征分析,而且配备了全新的软件功能,能够改善成像效果和易用性。Talos 将出众的高分辨率 S/TEM 和 TEM 成像与行业领先的 EDS 性能(包括独一无二的 EDS 断层扫描技术)融为一体,能够以二维图像和三维容积的形式提供结构信息。创新的新软件拓宽了可以分析的材料范围,同时全新的 Ceta 16M 摄像头可迅速从大视场切换到原子级别。全新的压电工作台可确保实现无漂移成像和精确导航。而且,Talos 还预留了配件接口,可以配备特定于应用的原位样本支架以开展动态实验。 创新点:为帮助研究人员在低束流条件下更快速地获得各类型样品(包括电子束敏感材料)的二维和三维化学信息,我们在Talos F200i扫描透射电镜(S/TEM)中加装了一对对称设计的100 mm2 Racetrack能谱仪(双X射线)。这一更新突破了使用非对称EDS难以获得有效定量数据的瓶颈,并能让科研工作者以最快的方式在(亚)纳米尺度对材料进行表征。Talos 透射电镜
  • 嘉兴学院单一采购透射电镜 赛默飞1500万元中标
    p  strong仪器信息网讯 /strong嘉兴学院分析测试中心日前发布公共服务平台建设项目(二期)单一来源公示,采购200KV场发射透射电子显微镜、场发射扫描电子显微镜、聚焦离子束和电子束系统各一套,赛默飞世尔以1500万元中标,供应商为浙江省科学器材进出口有限责任公司。/pp  strong一、 采购人名称/strong: 嘉兴学院(含平湖师范)/pp  strong二、 单一来源编号/strong: singleSource2020021183265695/pp  strong三、 采购项目名称/strong: 分析测试中心公共服务平台建设项目(二期)/pp  strong四、 采购组织类型/strong: 分散采购-分散委托集采/pp  strong五、 采购项目概况/strong:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/32ada1fb-f862-4e38-89d5-f2191dffffe4.jpg" title="2020-02-27_212748.jpg" alt="2020-02-27_212748.jpg"//pp  strong六、 拟采用的采购方式/strong: 单一来源/pp  strong七、 申请理由:/strong/pp  透射电镜(TEM)是材料科学中十分重要的分析工具。可以进行样品的形貌分析,结构分析和成分分析。形貌分析可以获得非晶材料的质厚衬度像、多晶材料的衍射衬度像和单晶薄膜的相位衬度像(原子像)。结构分析可以进行电子衍射、原子位错、孪晶类型、晶界结构等研究。成分分析可对小到纳米尺度的微区或晶粒的成分进行测量。该设备是探索物质表观特性及微观本质的强有力工具。/pp  分析测试中心作为校级公共服务平台,不仅服务于全校师生,同时为嘉兴地区的科研院所和生产企业提供技术支持。本项目仪器设备主要用于校内外的科研工作,对仪器设备的性能、功能要求高,需要具有高灵敏度、高分辨率、快速高效的特点,并具备磁性样品直接观察并实时测试磁力线分布状况、TEM/ STEM /EDS快速三维重构的功能。此外,由于透射电镜对制样要求非常高,人工制样不仅操作繁琐、十分耗时,而且操作人员的制样技术严重影响透射电镜的测试结果,因此需要具备为透射电镜进行全自动制样功能。 目前场发射透射电子显微镜(TEM)生产商只有美国赛默飞世尔科技(并购美国FEI品牌)和日本电子两家,而满足我校采购需求的仅美国赛默飞世尔科技一家(代理商:浙江省科学器材进出口有限责任公司)。/pp  赛默飞世尔的TalosF200X是目前在无球差校正技术的同类型场发射透射电镜中性能最优异的产品:1)专利独特的4探头STEM设计可以同时快速采集来自不同角度的电子信号,4个对称分布的无窗SDD检测器的能谱仪系统,具有极高的灵敏度,每秒可收集高达105幅能谱图,其Mapping的采集时间可缩短一半以上。EDS Mapping的分辨率可达500x500 像素 2)因为检测器是无窗设计,对于轻元素的灵敏度比常规有窗能谱仪检测器提高1倍以上 3)独特的微分相位衬度技术(DPC)可实现对磁性样品的直接观察,并实时测试磁力线分布状况 4)三维重构功能的应用,不但实现TEM模式和STEM模式的三维成像,配合4探头的能谱仪系统还可实现三维EDS成像。另外,美国赛默飞世尔公司的Helios 5 CX聚焦离子束和电子束系统,其离子束分辨率30kV下2.5nm,电子束分辨率30kV下STEM 0.6nm、1kV下1.0nm,具备为透射电镜进行全自动制样功能、自动切割和三维重构功能。/pp  由于本项目仪器设备主要用于我校科研工作并服务嘉兴地区的科研单位,对仪器设备的性能、功能要求高,符合我校需求的只有美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统,因此计划单一来源采购美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统(Helios 5 CX聚焦离子束和电子束系统和场发射扫描电子显微镜)。/pp  strong八、 拟定供应商:/strong/pp  1、拟定供应商名称/pp  浙江省科学器材进出口有限责任公司/pp  2、拟定供应商地址/pp  浙江/pp  strong九、 论证专业人员信息及意见:/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/b13f829d-a4f7-41fa-8600-60af2bcc4f66.jpg" title="2020-02-27_212758.jpg" alt="2020-02-27_212758.jpg"//pp  专业人员对供应商因专利、专有技术等原因具有唯一性的具体论证意见: 无球差校正的200kV场发射透射电子显微镜目前无国产设备,国外生产商只有美国赛默飞世尔科技和日本电子两家,不适合公开招标采购方式。根据用户调研,符合采购需求的只有美国赛默飞世尔科技公司一家。美国赛默飞世尔科技公司的Talos F200X场发射透射电子显微镜和Helios 5 CX聚焦离子束和电子束系统具有独特技术领先优势,符合用户需求,建议单一来源采购美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统(Helios 5 CX聚焦离子束和电子束系统和场发射扫描电子显微镜)。/p
  • 中科院遗传发育所2320万采购1套冷冻透射电镜
    p  日前,中国科学院遗传与发育生物学研究所发布冷冻透射电镜系统采购项目公开招标公告,预算2320万元。/pp  公告中要求:冷冻透射电镜系统包括120kv冷冻透射电子显微镜和200kv冷冻透射电子显微镜,是目前生物医学研究中非常重要的大型仪器设备。其中120kv冷冻透射电子显微镜主要用于冷冻电镜负染色样品的观察以及简单冷冻样品的筛选,200kv冷冻透射电子显微镜主要用于冷冻蛋白样品的筛查和数据收集工作。/pp  项目名称:中国科学院遗传与发育生物学研究所冷冻透射电镜系统采购项目/pp  项目编号:OITC-G190311076/pp  预算金额:2320.0 万元(人民币)/pp  开标时间:2019年08月20日 13:30/pp  采购项目的名称、数量、简要规格描述或项目基本概况介绍:/pp/ptable border="1" cellspacing="0" cellpadding="0" align="center" width="605"tbodytr class="firstRow"td width="6%"p style="text-align:center "包号/p/tdtd width="7%"p style="text-align:center "货物名称/p/tdtd width="8%"p style="text-align:center "数量br/ (套)/p/tdtd width="40%"p style="text-align:center "简要技术规格/p/tdtd width="5%"p style="text-align:center "交货br/ 期/p/tdtd width="9%"p style="text-align:center "交货(竣工)地点/p/tdtd width="13%"p style="text-align:center "是否允许采购进口产品/p/tdtd width="8%"p style="text-align:center "采购br/ 预算/p/td/trtrtd width="6%"p style="text-align:center "1/p/tdtd width="7%"p style="text-align:center "冷冻透射电镜系统/p/tdtd width="8%"p style="text-align:center "1/p/tdtd width="40%" align="center" valign="middle"p style="text-align:center "冷冻透射电镜系统包括120kv冷冻透射电子显微镜和200kv冷冻透射电子显微镜,是目前生物医学研究中非常重要的大型仪器设备。其中120kv冷冻透射电子显微镜主要用于冷冻电镜负染色样品的观察以及简单冷冻样品的筛选,200kv冷冻透射电子显微镜主要用于冷冻蛋白样品的筛查和数据收集工作。/p/tdtd width="5%"p style="text-align:center "合同签订后9个月/p/tdtd width="9%"p style="text-align:center "用户指定地点/p/tdtd width="13%"p style="text-align:center "是/p/tdtd width="8%"p style="text-align:center "2320万元/p/td/tr/tbody/tablepbr//pp/ppbr//p
  • “几家欢乐几家愁”-论TESCAN发布独创版的透射电镜TENSOR
    “千呼万唤始出来”,TESCAN2022年11月8号“犹抱琵琶半遮面”,但业界已经感受到“高手出招”的犀利,在“剑锋”下“瑟瑟发抖”。“Vratislav Koštál, Chief Product Officer at TESCAN: “We’ve listened to our customers and delivered what they’ve asked for – a more accessible TEM solution that is high-performing and productive for mainstream use.” 所以,TENSOR的推出是源自对客户需求的调研、定位和转化,是一款在常规应用上“平易近人”的,但又是“身怀绝技”的,态度上“吃苦耐劳”的“主流”机型。1990年,即使是在Tesla公司倒闭、科学仪器研究所减员的情况下,捷克Brno的电子显微镜时代也并未就此结束;相反,市面上却出现了三家新的电镜公司,公司的员工都来自Tesla和捷克科学仪器研究所。TESCAN接管了Tesla的扫描电镜部门;并很快的,从最初的六个人发展到近百倍的规模;另一支约20余人,也成立了一家公司叫Delmi,并开始生产型号叫Morgagni的常规透射电镜;随后,Delmi被飞利浦电子光学部收购,后又被FEI公司收购,直到2016年被赛默飞收购,一路风尘才最终尘埃落定;1990年同年,Kolarik及其同事成立了Delong Instruments公司,他们制造的是加速电压为5kV的小型透射电镜;2014年后,Delong开始制造加速电压为25kV的小型透射电镜,并供货给很多公司和机构。从2000年在Brno举办的EUREM,到2014年在捷克布拉格举办的ICEM,与会代表都曾发言说:世界上大约30%的电镜在捷克Brno生产;Brno因此也获得了“电镜谷”的称号。“For crystallographers, the TENSOR STEM helps to determine the crystallographic structure of small, sub-micron natural or synthetic particles that are too small to be characterised using micro-XRD techniques.” 时间过了超过半个世纪了,TESCAN的TENSOR一如既往,充分尊重了透射电镜利用电子选择性微区衍射对晶体结构的强大分析能力,又能够接力XRD的通量优势完成更小分工的显微分析,贯彻了TESCAN对实验室显微成像和分析workflow的深刻理解。“Applications within the semiconductor lab include multimodal nano-characterisation of thin films for R&D and failure analysis of logic, memory, and storage devices and advanced packaging.” 半导体实验室仍是“众矢之的”,TENSOR显然没有“甘居人下”-光刻显影量测、逻辑闪存芯片、存储设备、以及先进封装的缺陷检测,一个不落,解决“多模态纳米级别表征”的需求清晰明了。值此TENSOR发布之际,笔者也不由得想起和TESCAN同属于捷克电子光学三支之一的Delong Instrument: 世界上最小型的低加速电压透射电镜厂家;小型透射电镜的成功设计和搭建,是捷克电子显微镜发展的成就。早在1951年,建立小型透射电镜的想法,就已经起源于捷克理论和实验电工学研究所;这项工作启动于两年后的1953年的Delong;其目的是利用不需要特殊处理的材料,制造尽可能简单结构的透射电镜;这种电镜对生产的要求不会太高,因此,工程师能够设计出可靠性更高的部件;另一方面,小型设计为用户提供最大化的操作可能性。一小队年轻的Delong工程师在1954年完成了第一个原型机,从图中的横截面图可以看出:台式透射电镜具有相对较高的配置-其照明系统仅由一个使用Steigerwald(1949)设计的“远距聚焦”的电子枪组成;因此,它提供给研究对象相对较窄的电流密度范围和照明角度。从图中的横截面图还可以看出:Delong BS242的成像系统由四个电磁透镜:物镜、中间透镜、衍射透镜和投影透镜组成,这种设计不仅允许了较宽的放大范围,而且可以完成电子束选区衍射;真空系统由位于镜筒后方的旋转油泵和扩散油泵组成,通过空气对流冷却;在扩散泵上方安装了一个简单的阀门系统,只有在更换相机35毫米胶片时,显微镜才会放气;样品的更换通过杆式气闸操作;因此,物镜配有平坦的上极靴,以便于将样品放置在离物镜足够距离的位置上;杆式气闸由两部分组成;样品支架的部件被插入XY工作台,使得样品在垂直于光轴的方向上能够移动;另一部分与第一部分拧在一起时,能在样品杆插入真空中时保护样品;样品杆拧松开之后,样品室就密封了;这个简单的原理被证明很成功,并且多年来一直在使用。杆式气锁的构造也采用了同样的原理,这有助于将样品自动降低到上极靴的孔中;轴向像散由位于真空外部的四个线圈组成的像散器补偿消除;因此,它们很容易在没有任何真空馈通的情况下转动;三透镜投影系统,由插入磁路的机械中心极靴组成;电子光学系统由三个可从外部居中的光阑组成:限制照明面积的光阑、物镜光阑和用于选区衍射的光阑;图像观察室和胶片照相机室,通过车削和铣削制成;显微镜的镜筒安装在一个平台之上,平台两侧配有用于样品位移和聚焦的操作旋钮;为了实现电子加速,Delong设计了60kV的油绝缘高频电源,它的大小正好可以放在平台的镜筒旁边;最初用于激励透镜线圈的蓄能器,很快在1955年被安装在桌下旋转泵上的电子稳定器取代了;显微镜的分辨率最初是25Å,后来甚至达到15Å。“With the launch of TENSOR, TESCAN is the go-to company for turnkey ‘medium-voltage’, Schottky FEG, analytical 4D-STEM solutions,” said Jaroslav Klíma, Chief Executive Officer of TESCAN ORSAY Holding (TOH a.s.). “TESCAN understands the challenges of integrating not only STEM, but 4D-STEM capabilities particularly, onto legacy TEM columns. This extensive knowledge was leveraged into the design, from the ground up, whereby scanning of the electron beam is synchronised with diffraction imaging using a hybrid-pixel direct electron detector, electron beam precession, EDS acquisition, beam blanking, and near real-time analysis and processing of 4D-STEM data.” 超过半个世纪之后的今天,TESCAN这台TENSOR大概率是200kV的热场发射枪,“混合”像素电子直读相机,TESCAN推出的“一体式整合式”的,直接输出贴近“原位”的四维STEM数据的分析平台;这让我们一下子都有“文盲”的感觉。业界朋友推荐了一个网站:https://www.superstem.org/ , 应该能够帮助我们恶补一下什么叫做4D-STEM,还有为什么透射电镜不好好地就叫TEM,而直接叫了STEM。“JK Weiss, TEM Applications R&D Manager and General Manager of TESCAN Tempe, adds, “It is not just the hardware that sets this system apart from every other TEM currently available on the market, but rather, it’s the integration of the hardware and software for a totally revolutionised new user experience that does not require months of Ph.D. or post-doc training or hours of column adjustments between different analysis modes.” TESCAN的这段承诺掷地有声:上手操作都很容易,软硬一体化,革命性的用户体验,有别于市场上任何现有TEM。这又使笔者想起,同属一脉的Delong小型透射电镜的特性,就是结构简单,因此操作简便;一名受过普通技术培训的操作员就能够进行安装和拆卸,维护工程师可以很容易地了解电镜所有部件的功能;很容易地证明物镜光阑对对比度的影响,从而说明亮场和暗场模式下的对比度和成像原理;很容易地通过操作衍射透镜在晶格处证实电子衍射,并用选区光阑让衍射图像对应研究对象的部分光学图像。这种简单的设备就像光学显微镜一样,在简单维护的情况下,也能可靠地工作多年,这无疑是这一派系的TEM的优点。我们熟悉的现代透射电镜设计的初衷是为了达到电子光学的理论分辨率;但如果没有维护,我们很难将这样复杂的设备保持在最佳性能水平。TENSOR这类新生代STEM的出现,许诺将会展示用户如何用最小的努力,可靠地实现有保证的分辨率;在这里,我们又不得不说,超过半个世纪后的今天,TESCAN对电镜极简化使用的情怀犹在。五十年代的Delong也很快发现,TEM领域缺少一个简单的装置,与简化的SEM相对应,在不影响设计原则,即结构简单、操作简单、价格低廉的情况下,将两种设备结合在一起的成为紧要的需求,Delong就是这样成为了STEM的先驱;TENSOR这类新生代扫描透射电镜完美地致敬了捷克电镜这一脉重要的分支。同时我们也不难看出,TENSOR这次的WORKHORSE定位决定了它不会带CEOS或是NION的球差矫正器了,同时上单色器的概率也应该很小;那么会有能量过滤器吗?ZEISS的OMEGA流派,还是GATAN的ENFINA路数?这个可能这次我们也想多了。“TESCAN TENSOR is the next example of innovation by TESCAN, following the company’s launch of the world’s first focused ion beam/scanning electron microscope (FIB/SEM) and Plasma FIB/SEM, time-of-flight secondary ion mass spectrometry (ToF-SIMS) applications on FIB/SEM platforms, Dynamic-CT and Spectral-CT.”回顾TESCAN精准的研发定位,从第一台RISE,到第一台电镜一体化TOF-SIMS,再到第一台pFIB,还有最近的两款显微CT产品,我们不得不再一次佩服TESCAN的BD团队的“行业嗅觉”。随着赛默飞在“冷冻电镜”上赚得“钵满盆满”,已是高端“结构生物学”餐桌上的“必点”菜目;在半导体离线破坏式检测领域,又凭借在pFIB上的“后来居上”,搭档“老骥伏枥”的Metrios,稳居榜首;TENSOR的出现,撕下了赛默飞“沾沾自喜”的遮羞布,似乎让业界清晰地看到了赛默飞的短板-材料分析TEM;TENSOR的出现,又让业界“久旱逢甘雨”。“For materials scientists and semiconductor R&D and FA engineers, the TENSOR 4D-STEM provides multimodal, high contrast, high-resolution 2D & 3D characterisation of functional (engineered) materials at the nanoscale.” 不出所料,材料科学显然是TENSOR的重点照顾对象。“几家欢乐几家愁”,进口电镜五大家中,赛默飞可以暂时“熟视无睹”,“倚老卖老”,假装“不愁”;两家日系的也是家底深厚,“树大根深”,也不像欧美上市公司有业绩压力,可以“不愁”;最后一家ZEISS却是完全“眼不见心不愁”,因为在这家的产品线上,早已“赫然”没有了透射电镜-这个电镜企业的“看家法宝”,电子光学“技术下放”的源头;这家德企有着颇为“瞩目”的TEM根基,加上一路并购“DSM”,“Cambridge Instrument”,“LEO”,最后都改姓“ZEISS”小兰标,不能不说是“根骨清奇”;“Orange Column”的用户仍然对其津津乐道;然而,对Omega能量过滤器的执着,既成就了它对TEM的最高水平的呈现,也直接成了其在2008年全球经济危机中的黯然隐退的导火索;“欲练神功,必先自宫”的极左思维模式,ZEISS不仅将标配了场发射源和能量过滤器的200kV顶配透射电镜“下架”,而且“一不做二不休”,将120kV Libra,以及刚收购一年有余的乌克兰Selmi公司的100kV TEM,整条产线同时“自戕”;拿着如此级别的“家当”,却是如此“败家”,“弃珍宝之如敝履”,可谓令人“瞠目结舌”;西欧的“百年老店”自废武功,东欧的“世家子弟”TESCAN却一心一意,凭着捷克硕果仅存的三支之一的电镜纯正“火种”,从钨灯丝扫描电镜起步,“见龙在田”,一步留下一个脚印,终于祭出了全新一代的TEM,且直接冠名发布为STEM,“亢龙有悔”,完成了Tesla电镜的华丽“回归”,相信下一个发布会是“飞龙在天”,“励志”所有电镜研制团队。电镜是一种集成了光、机、真空、电、软、算、系、数项基础和先进学科及技术的综合学科科学,及显微成像和分析类仪器设备,电镜的精度及可靠性来自于对上述学科基础知识的牢固掌握,及对产品化的深刻理解和实行;近五年来,国产电镜百家争鸣,其中不乏拥有多项自主专利的实干厂家;笔者综合评价,国产替代的突破点主要集中在“光”,即电子光学,而在其余多项分支多为直接采购,或堆砌模仿,或生硬整合;国产替代虽然已经在电镜的核心技术-电子光学上突破重围,但其多项配套技术发展的不平衡性,在加上来自于各种材料、各项技术和各类人才的缺口,导致电镜这只需要多块木板才能拼就成功的“木桶”,数块木板长短参差不齐;所有公差的集合,直接导致了国产电镜来自于系统整合集成,积累沉淀在工程产品化的差距;这项差距相比起进口欧美日厂商,尤其巨大。所以,电镜的“重灾区”已经不再是“电子枪和镜筒”,而更多地集中在了精密机械、高真空及超高真空、高速高稳定性电路设计制造,及各个模组子系统之间的有效有机整合。笔者认为,比起进口主流,国产电镜的性能差距具体表现为两方面:一是仪器关键精度的出厂重复性很差,难以控制和把握;电子光学仿真软件完成光路设计之后,电子枪和电子光学镜筒即进入选料及加工阶段,精密加工主要集中在电子透镜特别是物镜的极靴的生产上,然后再进入部件组装、机械调试及电子调试等各阶段;而在这些阶段累计的问题,最终表现为实测电子束分辨率和设计精度之间的差距,单台模组在不同时间段指标性能表现不一致的差距,还有多台电子光学关键模组及整机实测指标之间的差距,等等;二是电镜研制多学科发展,交叉但又不融合;表现为光、机、电子系统联合运行匹配问题频出,并与真空,软件、算法等子系统互为交叉影响,仪器整体使用感受不顺畅,小毛病多,不明问题多,导致机器磨合及解决问题时间比正常运行时间多等等,不能符合科研及产业对普适类工具稳定性表现的要求。相对于半导体产业的电子束量测设备,如CD-SEM,普适型扫描电镜使用了对长期使用、高密度使用整体稳定性要求相对较低的可用标准原材料;就像Delong选择了小型透射电镜的细分赛道那样,如果要达到极限性能,复杂的TEM是关乎材料、技术和生产的非常复杂的装置;如果我们接受比极限分辨率低的指标,要求也会相应减少很多;Delong台式透射电镜的材料成本和生产时间较低,因此卖价也不高;仍以Delong为例,20世纪50年代初,台式透射电镜的构建就证实这条路线是非常成功的;因为,一种结构简单、操作方便、价格低廉的设备满足了许多实验室的基本需求,也并没有让大多数追求极限分辨率显微镜的用户对高端电镜产品失去兴趣。关于国产电镜,还有一个更有趣的方面,使得国产电镜难以在正常赛道上与进口抗衡:就是进口电镜简单廉价的生产成本和低价格。很明显,这是由于欧美日电镜厂商早已消化完毕前期研发的高额投入和成本,而电子光学模组的创新和迭代也相对缓慢,再加上西方完整齐备的电镜产业供应链支撑,种种优势,使得国产电镜步履维艰,任重而道远;相信国家,还有投资界已经听到了国产仪器人的呼声,这也是为什么近五年来国产高端仪器能够蓬勃发展的原因。话说至此,笔者还是相当“清醒”的,我们当前“念念有词”的国产电镜,只限于电子显微镜的“弟弟”-扫描电镜,成像类工具的“大哥”级别的存在,仍然是透射电镜;我们现在之所以能够自我研制扫描电镜了,是相关材料,技术火种和它们的载体-行业人才“因势利导”、“水涨船高”、“水到渠成”的结果;所以,国产透射电镜,包括FIB双束电镜的亮相,会更多的是随着时间的推移能够“浮出水面”的。书归正传,就这次TENSOR的高调发布,完全可以肯定的是:从一路扫描至发布透射的扩张,这次TESCAN的功力提升不是一点点,这是一个质变和飞跃;从做好扫描到向上做好透射,是要看TESCAN在年轻的TESLA时候有没有练过“童子功”的;TESCAN的市场、产品、应用、乃至销售和售后团队都会水涨船高,从“散仙”飞升“晋神”;ZEISS的“自宫”只要“挥刀”就行,TESCAN的“飞升”需要经年累月,甚至“三生三世”的修炼;所以,从整体建制需要基建“配套”的角度看,这次TENSOR的推出也不会是“拔苗助长”式的,TESCAN迈过了“小升初”,“中高考”,现在正在“本硕连读”之阶段,一路走来“精彩”归“精彩”,现在正是“吃劲”的关头;祝TESCAN能够凭借TENSOR,完成“复兴”的起步;更希望TESCAN可以凭借TENSOR,自创新的“赛道”,不仅能够稳居“四绝”之一,更能引领;就像他们的愿景说的那样:“An analytical 4D-STEM that is as easy to use as TESCAN SEMs, with all the efficiency and economic benefits of a results driven Electron Microscope.” 透射电镜能像扫描电镜一样易用,高效,经济,以能出高质量结果为最终导向。愿TESCAN这次“出击”能够站稳脚跟,期待看到他们下一次的惊艳。(完)
  • JEOL发布新概念冷场发射透射电镜
    2016年新年伊始,日本电子株式会社(JEOL)即全球同步推出了新款场发射透射电镜JEM-F200。 为了全面整合近年发展起来的透射电镜上的各种功能,JEM-F200进行了全新设计,在保障各种功能达到极限的同时,追求操作的简单化和自动化,为用户提供透射电镜操作的全新体验。具体特点表现为: 1)精炼的全新设计:在提高机械和电气稳定性的同时,凭借对透射电镜的丰富经验,对电镜整体进行了精炼全新设计,力求为用户提供全新感受; 2) 四级聚光镜设计:为了最大程度发挥出STEM功能,JEM-F200进行了全新概念的四级聚光镜设计,亮度和汇聚角可以分别控制; 3)高端扫描系统:在照明系统扫描功能之上又增加了成像系统的扫描功能(选购件)可以获得大范围的EELS分析,可进行表面等离子共振(Surface Plasmon resonance)等近代物理研究; 4)皮米样品台控制:标配的压电陶瓷控制样品台,可以在原子尺度上获得精准的移动; 5)全自动装样测角台(SPECPORTER):样品杆的插入拔出只需电钮即可全自动实现,彰显其便利性及安全性; 6)成熟的冷场发射技术:将JEOL应用在球差校正技术上的高端冷场发射技术移植到普通的场发射透射上,可获得更好的高分辨观察、更高效的成分分析和更好的化学结合状态分析; 7)双超级能谱设计:可安装双超级能谱,将普通电镜能谱的分析能力拓展到原子尺度; 8)节能减排:启用省电模式耗电量降低80%。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制