当前位置: 仪器信息网 > 行业主题 > >

同步差热分析仪

仪器信息网同步差热分析仪专题为您提供2024年最新同步差热分析仪价格报价、厂家品牌的相关信息, 包括同步差热分析仪参数、型号等,不管是国产,还是进口品牌的同步差热分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合同步差热分析仪相关的耗材配件、试剂标物,还有同步差热分析仪相关的最新资讯、资料,以及同步差热分析仪相关的解决方案。

同步差热分析仪相关的仪器

  • 仪器简介:PerkinElmer 全新推出的同步热分析产品系列可在单台紧凑型设备中实现重量信号和热流信号的同步监测,赋予您双倍的热分析能力,满足您不同的需求。PerkinElmer 的同步热分析仪 (STA) 产品系列可实时监测样本重量以及热流信号随温度或者时间变化曲线。凭借独创的传感器技术和紧凑型炉体设计,我们的 STA 仪器可以胜任从常规品质检测到科学研究等各个领域。因此,无论您从事的是无机物材料表征、聚合物结构剖析、亦或是油品品质检测工作,STA 8000 系列产品将差热分析技术(DTA 或 DSC)与久经验证的热重分析 (TGA) 技术完美融合,您都可以获得可靠的测试结果和明确的数据阐释。技术参数:精确控温量热能力:STA 系列同步热分析仪具有宽广的工作温度区间,最低工作温度达 15º C,从而能够捕获完整的水分或溶剂挥发过程.卓越的热分析性能,高效的检测通量:本着高效的原则,STA 系列同步热分析仪均采用了垂直式炉体和天平设计方案,易于装卸样品。另外,该款仪器还集成了气体质量流量控制器,操作者可在软件中方便的进行气体流速的控制以及气体种类的切换,量热灵活性:STA 系列同步热分析仪外观小巧、结构紧凑,能够同时进行 TGA 和 DTA/DSC 测量,可为众多应用领域提供高质量的热分析数据。仪器配有质量流量控制器,可以根据您的分析需求保持稳定且精确的气体流速;如果您需要进行气体切换,Pyris 软件可以方便的将切换步骤编入温控程序中,全自动的进行气体切换操作。主要特点:强大的拓展能力联用分析技术往往可以有效简化数据分析的难度,而 PerkinElmer 提供多种不同的分析技术(红外、气质联用等等),均可以与 STA 8000 搭建联机工作站。此外,您也可以选择定制接口将其它制造商的实验室设备连接到您的 PerkinElmer STA 上。众多选择无论您从事何种行业,PerkinElmer 都能为您定制全套解决方案。高度集成STA 8000 仪器可选配自动进样器,满足您连续测试的要求,您可以在 Pyris 软件中独立的为自动进样器进行编程(Player List)。软件可以自动监测轻质炉体内的温度,并在 STA 6000/8000 准备就绪之后自动载入下一个样品进行测试。
    留言咨询
  • 热重分析(TGA)是一种测量样品在加热、冷却或恒温过程中重量变化的技术。TGA的心脏是天平,热重/同步差热分析仪TGA/DSC 采用世界上最好的天平-梅特勒-托利多微量或超微量天平。独一无二的内置校准砝码确保了称量结果无以匹敌的准确性。同步DSC测量的是随温度或时间变化而变化的样品与参比的热流差。根据所配置传感器的不同TGA/DSC 分为标准型、专业型和至尊型。创新技术热重/同步差热分析仪TGA/DSC 的特点与优点:梅特勒-托利多超微量天平 – 依赖领先的天平技术供应商天平灵敏度可选0.1ug或0.01ug.高效自动化 – 非常可靠的自动进样器提供高样品处理率广泛的测量范围 – 大小样品量均可测量大炉体、小炉体1克或5克量程天平宽温度范围 – 分析样品的温度从室温到 1600 °C(室温-1100°C可选)DSC 热流测量法 - 用于同时检测热效应* TGA/DSC 1标准型:配置SDTA传感器,一个铂金盘下有一对热电偶测量样品温度。热 流信号是通过计算的温度差得到的。* TGA/DSC 1专业型:配置DTA传感器,托盘由铂金制成,由两对热电偶同时测量样品和 参比的温度,直接测量提高了传感器的信噪比。DSC信号由测试的温度差得到。* TGA/DSC 1至尊型:配置DSC陶瓷传感器,有6对热电偶直接位于陶瓷保护盘的下方, 测量样品温度和参比温度。DSC传感器的设计采用梅特勒-托利多独特的MultiSTAR放大 技术。6对热电偶产生了很大的测试信号,从而大大提高了信噪比。联用技术 – 使用 MS 和 FTIR 进行逸出气体分析* 所有TGA/DSC和TGA1仪器都可以与质谱仪或FTIR光谱仪在线联用。可以与MS或FTIR 单独联用,也可以与MS和FTIR串联联用。* 选配相对湿度控制单元和增湿器,可以在数分钟之内将TGA/DSC (大炉体)转换成吸附 分析仪。材料可以在精确设定的相对湿度和温度(至90 ?C)条件下进行测试。模块化概念 – 根据当前和未来需要量身打造的解决方案* 优越的水平炉体设计最小的气流扰动和热浮力,消除了烟囱效应,有利于称重信号的稳定和准确测量。* 平行导向天平能够保证样品的位置不会影响重量的测量。在熔融的时候如果样品的位置改变,样品重量 不会发生变化。
    留言咨询
  • 差热分析仪(DTA)是一种广泛应用的热分析技术,可以提供多种样品信息。Linseis DTA PT 1600具有优异的量热灵敏度,很短的时间常数和无冷凝样品室。这些特点保证了仪器在整个寿命内优异的分辨率和基线稳定性,是材料开发、研发和质量控制一个不可或缺的工具。Linseis差热分析仪(DTA)的仪器设计具有分辨率高、功能强大和易于使用的优点。 系统的模块化设计概念可以通过可更换炉体实现-150°C到2400°C温度范围的测试,因此配置了多种不同类型的传感器和坩埚。该真空密封设计可以实现使现10E- 5 mbar的真空下或纯净气氛的环境下焓和Cp (比热)的定量测定。此外,各种配件方便系统和MA、FTIR等仪器的同步联用。温度范围:-150°C — 500/700/1000°C室温 — 1400/1500/1600/1650/1750/2000/2400°C加热速率: 0.001 K/min— 50 K/min冷却速率: 0.001 K/min— 50 K/min热电偶:E/K/S/B/W气氛: 还原性,氧化性,惰性气氛 (静态,动态)真空度:10-5mbar测量支架:TG-DTA*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询。我们定会将竭尽全力为您制定完善的解决方案。
    留言咨询
  • 差热分析仪 400-801-8116
    DZ3320C 差热分析仪产品介绍:差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温度(△T)随温度或时间的变化关系。DZ3320C 差热分析仪工作原理:在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其他化学反应。DZ3320C 差热分析仪的性能优势:1.仪器主控芯片采用STM32系列控制器,运算处理速度更快,温度控制更。2.采用USB双向通讯,操作更便捷。3.采用7寸24bit色全彩LCD触摸屏,界面更友好。4.采用铂铑合金传感器,更耐高温、抗腐蚀、抗氧化。DZ3320C 差热分析仪的技术参数:温度范围室温~1500℃ 量程范围0~±2000μVDTA灵敏度0.01μVDTA精度0.1uV升温速率0.1~100℃/min温度分辨率0.01℃温度准确度±0.1℃温度重复性±0.1℃温度控制升温:程序控制 可根据需要进行参数的调整恒温:程序控制 恒温时间任意设定炉体结构炉体采用上开盖式结构,代替了传统的升降炉体,精度高,易于操作气氛控制内部程序自动切换数据接口标准USB接口 配套数据线和操作软件显示方式24bit色,7寸 LCD触摸屏显示参数标准配有标准物,带有一键校准功能,用户可自行对温度进行校正基线调整带有基线调整功能,扣除基线的影响工作电源AC 220V 50Hz(可定制其它规格)
    留言咨询
  • 差热分析仪 400-860-5168转1531
    品牌:久滨型号:JB-DTA-1150名称:差热分析仪一、产品概述:  差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温度(△T)随温度或时间的变化关系。在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其他化学反应。二、技术参数:1. 温度范围: 室温~1150℃ 2. 量程范围: 0~±2000μV 3. DTA精度: 0.01μV 4. 升温速率: 1~80℃/min 5. 温度分辨率: 0.1℃ 6. 温度准确度: ±0.1℃ 7. 温度重复性: ±0.1℃ 8. 温度控制: 升温:程序控制 可根据需要进行参数的调整 降温:风冷 程序控制 恒温:程序控制 恒温时间任意设定9. 炉体结构: 炉体采用上开盖式结构,代替了传统的升降炉体,精度高,易于操作10.气氛控制: 内部程序自动切换11.数据接口: 标准USB接口 配套数据线和操作软件12.显示方式: 24bit色 7寸 LCD触摸屏显示13.参数标准: 配有标准物,带有一键校准功能,用户可自行对温度进行校正14.基线调整: 用户可通过基线的斜率和截距来调整基线15.工作电源: AC 220V 50Hz【差热分析仪加热炉】★ 加热炉是采用1kW Fe-Cr-Al丝双向绕制的,消除了炉丝产生磁场对样品测试结果的影响,且具有较长的加热恒温带。【差热分析仪温度控制器】★利用调压器控制加热炉炉丝的输入电压,使加热过程以一定的速率升温或降温、恒温。三、主要特点:★仪器主控芯片采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更准。★采用USB双向通讯,操作更便捷。★采用7寸24bit色全彩LCD触摸屏,界面更友好。★采用镍铬合金传感器,更耐高温、抗腐蚀、抗氧化。
    留言咨询
  • 差热分析仪(高温) 400-860-5168转1531
    品牌:久滨型号:JB-DTA-1350名称:差热分析仪(高温)一、产品概述:  差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温度(△T)随温度或时间的变化关系。在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其他化学反应。二、技术参数:1. 温度范围: 室温~1350℃ 2. 量程范围: 0~±2000μV 3. DTA精度: 0.01μV 4. 升温速率: 1~80℃/min 5. 温度分辨率: 0.1℃ 6. 温度准确度: ±0.1℃ 7. 温度重复性: ±0.1℃ 8. 温度控制: 升温:程序控制 可根据需要进行参数的调整 降温:风冷 程序控制 恒温:程序控制 恒温时间任意设定9. 炉体结构: 炉体采用上开盖式结构,代替了传统的升降炉体,精度高,易于操作10.气氛控制: 内部程序自动切换11.数据接口: 标准USB接口 配套数据线和操作软件12.显示方式: 24bit色 7寸 LCD触摸屏显示13.参数标准: 配有标准物,带有一键校准功能,用户可自行对温度进行校正14.基线调整: 用户可通过基线的斜率和截距来调整基线15.工作电源: AC 220V 50Hz【差热分析仪加热炉】★ 加热炉是采用1kW Fe-Cr-Al丝双向绕制的,消除了炉丝产生磁场对样品测试结果的影响,且具有较长的加热恒温带。【差热分析仪温度控制器】★利用调压器控制加热炉炉丝的输入电压,使加热过程以一定的速率升温或降温、恒温。主要特点:★仪器主控芯片采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更准确。★采用USB双向通讯,操作更便捷。★采用7寸24bit色全彩LCD触摸屏,界面更友好。★采用镍铬合金传感器,更耐高温、抗腐蚀、抗氧化。
    留言咨询
  • 产品介绍:同步热分析将热重分析TG与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。测量与研究材料的如下特性:DSC:熔融、结晶、相变、反应温度与反应热 TG:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等DZ-STA200 同步热分析仪的性能优势:1.炉体加热采用贵金属合金丝双排绕制,减少干扰,更耐高温。2.托盘传感器,采用陶瓷杆作为连接杆,具有耐高温,抗氧化,耐腐蚀等优点。3.供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。4.采用上开盖式结构,操作方便。5.主机采用隔热装置隔绝加热炉体对机箱及微热天平的热影响。6.可根据客户要求更换炉体。DZ-STA200 同步热分析仪的技术参数:温度范围室温~1200℃ 温度分辨率0.01℃温度波动±0.1℃升温速率0.1~100℃/min温控方式升温、恒温恒温时间0~300min 任意设定(可拓展72h)冷却时间≤15min(1000℃~100℃)天平测量范围0.1mg~2g 可扩展至5gTG的精度0.01mgTG的解析度0.1ugDSC量程0~±1000mWDSC解析度0.1uW精度0.01mW显示方式24bit色,7寸 LCD触摸屏显示气氛装置内置气体流量计,包含两路气体切换和流量大小控制气氛: 惰性、氧化性、还原性,静态、动态软件智能软件,可对TG、DTG、TG-DSC等曲线进行数据处理、导出EXECL,生成PDF报告,打印实验报表数据接口标准USB接口电源AC 220V 50Hz坩埚类型陶瓷坩埚、铝坩埚软件温度、热焓多点校正,满足不同温度段样品测试
    留言咨询
  • 1、仪器简介差示扫描量热法(DSC)这项技术一直被广泛应用。差示扫描量热仪既是一种例行的质量测试工具,也是一个研究工具。测量的是与材料内部热转变相关的温度、热流的关系。我公司的仪器为热流型差示扫描量热仪,具有重复性好、准确度高的特点,特别适合用于比热的精确测量。该设备易于校准,使用难度低,快速可靠,应用范围非常广,特别是在材料的研发、性能检测与质量控制上。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。我公司有多种类型差示扫描量热仪,客户根据实验参数以及实验需求选择不同的型号。差示扫描量热仪应用范围有: 高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度等。不同型号的仪器,测试不同的指标。2、产品特点:2.1全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片;2.2仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便;2.3采用 Cortex-M3 内核 ARM 控制器,运算处理速度更快,温度控制更加精准;2.4采用 USB 双向通讯,操作更便捷,采用 7 寸 24bit 色全彩 LCD 触摸屏,界面更友好;2.5采用专业合金传感器,更抗腐蚀,抗氧化;2.6支持中/英文切换。 2.7原始数据保存,分析,分析之后数据保存。 2.8超高灵敏度,源自于更平的基线和更好的信噪比. 2.9支持温度校准,调入基线,多点校准. 2.10试验进行中,可查看实时数据。 2.11支持时间/温度,(热流率 dH/dt)/温度切换。 2.12智能软件可自动记录 DSC 曲线进行数据处理、打印实验报表. 2.13数据支持导出 txt,excel,bmp 图片格式 2.14支持曲线分析,平滑,放大,缩放功能。 2.15支持多曲线打开,便于实验的重复性比较。3、仪器参数:3.1 全新的炉体结构,更好的解析度和分辨率以及基线稳定性;3.2 仪器下位机数据实时传输,界面友好,操作简便。DSCDSC-214DSC-204DSC-404DSC-214HDSC-404HDSC量程0~±600mW温度范围RT~600℃-40℃~-600℃-150℃~-600℃RT~600℃(带降温扫描)-150℃~600℃(带降温扫描)升温速率0.1~100℃/min温度精确度±0.01℃温度准确度0.001℃温度波动±0.01℃温度重复性±0.1℃DSC精确度0.001mWDSC解析度0.001mW工作电源AC220V/50Hz或定制控温方式升温、恒温、降温(全程序自动控制)程序控制可实现六段升温恒温控制,特殊参数可定制曲线扫描升温扫描、降温扫描、曲线扫描气氛控制两路自动切换(仪器自动切换)气体流量0-300mL/min(可定制其它量程)气体压力≤0.55MPa显示方式24bit色7寸LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质(锡),用户可自行矫正温度和热焓仪器热电偶三组热电偶,一组测试样品温度,一组测试内部环境温度,一组炉体过热自检传感器软 件带有温度多点校正功能设备尺寸500*500*300(mm)(长宽高)备注所有技术指标可根据用户需求调整作为现代仪器分析方法的一个重要分支,热分析方法在许多领域中获得了越来越广泛的应用。在经历了一百多年的发展之后,热分析方法已经逐渐发展成为与色谱法、光谱法、质谱法、波谱法等仪器分析方法并驾齐驱的一类重要的分析手段。热分析方法除了可以用来广泛地研究物质的各种转变(如玻璃化转变、固相转变等)和反应(如氧化、分解、还原、交联、成环等反应)之外,还可以被用来确定物质的成分、判断物质的种类、测量热物性参数(如热膨胀系数、比热容、热扩散系数)等。迄今为止,热分析方法已在矿物、金属、石油、食品、医药、化工等与材料相关的领域中获得了广泛的应用。热分析是研究物质的物理过程与化学反应的一种重要的实验技术。这种技术是建立在物质的平衡状态热力学和非平衡状态热力学以及不可逆过程热力学和动力学的理论基础之上的,该方法主要通过精确测定物质的宏观性质如质量、热量、体积等随温度的连续变化关系来研究物质所发生的物理变化和化学变化过程。根据所测量性质的不同,各种热分析技术之间也存在着不同程度的差异,通常根据其测量的性质来对每一种热分析技术进行分类。我国于2008年5月发布并于2008年11月开始实施的国家标准《热分析术语》(GB/T6425—2008)对热分析技术的定义为:“在程序控制温度和一定气氛下,测量物质的某种物理性质与温度或时间关系的一类技术。”由该定义可见,由于所测量的物理性质(如质量、热效应、体积等)多种多样,因此衍生出了不同的热分析技术。根据所测定的物理性质不同, 国际热分析与量热协会(International Confederation for Thermal Analysis and Calorimetry,ICTAC)将现有的热分析技术划分为9类17种,如表1.1所示。表1.1 热分析技术分类物理性质分析技术名称简称物理性质分析技术名称简称质量热重法TGA尺寸热膨胀法DIL等压质量变化测定力学特性热机械分析TMA逸出气体检测EGD动态热机械分析DMA逸出气体分析EGA声学特性热发声法放射热分析热声学法热微粒分析光学特性热光学法温度加热曲线测定电学特性热电学法差热分析DTA磁学特性热磁学法焓差示扫描量热法DSC本章仅对热分析技术的定义和分类进行简要介绍,详细内容见第2章。1.2 热分析技术的特点如前所述,热分析技术主要被用来研究在一定气氛和程序控温作用下,物质的物理性质与温度或时间的变化关系。与其他分析方法相比,热分析技术具有如下特点。1.2.1 热分析技术的优势概括来说,热分析技术的优势主要表现在以下10个方面。1.2.1.1对样品的要求不高,实验时样品用量较少对于大多数固态和液态的物质而言,根据实验需要不做或稍做处理即可进行热分析实验。另外,与其他常规分析方法相比,热分析实验需要的样品量一般较少。随着仪器技术的发展,热分析实验所需要的样品量越来越少。例如,与早期仪器相比, 当前的热重仪可以用来检测质量低至0.1 mg 的样品随温度变化而发生的质量变化, 而几十纳克的样品也可以用来进行量热实验。微量量热实验所需样品的量更少, 如通过微量差示扫描量热实验可用来测定质量体积浓度为1×10-5gML-1的溶液中的相转变行为。与传统分析方法相比, 使用热分析技术分析较少的样品能更真实地反映某些材料的热学特性。例如, 在加热过程中较大试样量存在试样内部与表面之间的温度差。当试样发生分解时,分解产物尤其是气体产物存在一个从内层向外层的扩散过程,在热分析技术中使用较少的试样量则可以更加方便地避免这种影响。图1.1为不同样品质量的低密度线性聚乙烯(LLDPE)的DSC实验曲2°。图1.1表明,在相同的加热速率下,样品的质量对LLDPE熔融峰的形状和位置均产生了不同程度的影响,这种差异是由于样品内部的温度梯度引起的。需要特别指出的是,有时为了与样品的真实加热处理工艺相近,分析时会有意地加入更多的样品量,这样可以更加真实地反映试样在真实环境中的热行为。使用热机械分析仪研究材料在不同温度下的机械性质时,通常需要使用具有规则形状的样品。例如,在ASTM E831-14标准中要求进行静态热机械分析实验时试样的长度应为2~10mm,且平行截面的端部的尺寸误差应在±25μm之内,横向尺寸不得超过10mm,这种尺寸要求仍远低于其他材料试验机对样品的要求。1.2.1.2 灵敏度高作为分析仪器的一个重要分支, 热分析技术具有灵敏度高的特点。一般来说, 灵敏度与仪器待测量的测量范围呈负和关的关系。灵敏度越高, 其量程越窄, 反之亦然。在进行实验时, 应根据研究目的选择具有合适的灵敏度的仪器。例如, 对于热重仪而言, 其灵敏度最高可达0.1μg,但天平的最大称质量一般不超过1g。虽然微量差示扫描量热仪的量热精度最高可达0.02μW, 但共温度范围一般不超过150℃。一些灵敏度高的等温量热仪的温度稳定性最高可达±10-4℃。用于静态热机械分析仪和动态热机械分析仪的力学测量精度最高可达0.001N,而位移的测量精度则可达0.1μm。对于常规热分析仪而言, 其主要采用热电偶测量温度,测温精度一般为±0.1℃。1.2.1.3 可以连续记录所测量的物理量在所选择的实验条件下随温度或时间变化的曲线与通过其他的光学、电学等分析方法测量材料的热性质不同, 通过热分析技术可得到试样的物理性质(如质量、热流、尺寸等)随温度(或时间)的连续变化曲线。由实验得到的曲线可以更加真实地反映材料的物理性质随温度(或时间)的连续变化情况,而通过传统的采用不同温度下等温测量的间歇式实验方法则容易遗漏材料的性质在温度变化过程中的一些重要信息。图1.2为硬脂醇与棕榈酸混合物的DSC加热和冷却曲线。图中硬脂醇的加热曲线仅显示一个吸热峰,起始温度为58.1℃,对应于其从单斜有序的γ相到α旋转相的固-固转变与熔融转变的重叠过程。然而, 硬脂醇的冷却曲线却显示了两个放热峰。第一个放热过程的起始温度为57.8℃,该过程对应于从熔融态到α旋转相的转变过程。该过程的过冷度可以忽略不计,而从γ相到α相的固-固转变则显示出5℃的过冷度。这充分表明通过DSC曲线可以实时记录下物质在温度发生变化时所经历的结构转变过程。1.2.1.4通过温度调制技术可以测量同时发生的两个转变20世纪90年代初,英国学者 M. Reading 最先提出温度调制技术。该技术最早应用于差示扫描量热仪,即温度调制差示扫描量热法(Temperature-Modulated Differential Scanning Calorimetry,TMDSC)。使用该技术可以对两个同时发生的转变进行测量。现在这种技术也可应用于热重分析法和静态热机械分析法中。这两种方法中的温度调制技术与TMDSC有很大的差别,将在本书的相关章节中进行详细的阐述。1.2.1.5 测量温度范围宽当前可以用热分析技术测量最低为8K的极低温下热性质(如比热、热流、热扩散系数、热膨胀系数等)的变化。在高温测量方面,通过一些特殊用途的热分析仪可以测量高达2800℃ 的温度变化。也就是说, 热分析技术可以用来测量-265~2800 ℃范围内的热性质的变化。显然,仅通过一台热分析仪器很难测量如此宽广的温度范围内的性质变化, 研究人员通常通过缩小仪器的工作温度范围来提高仪器的测量精度。例如,高灵敏度的微量差示扫描量热仪的温度测量范围一般为-10~130℃。此外,用来研究高温下材料热分解的热重-差热分析仪或热重-差示扫描量热仪的量热精度也远低于单一功能的差示扫描量热仪。1.2.1.6 温度控制方式灵活多样热分析技术可以在程序控制温度和一定气氛下测量材料的物理性质随温度或时间的变化。在实验过程中,如果试样发生了至少一个从特定的温度(甚至环境温度)到其他指定温度的变化,则在指定温度下进行的等温实验属于热分析的范畴。如果实验仅在室温环境下进行,则该类实验不属于热分析。温度变化(temperature altcration)意味着可以实现预先设定的温度(程序温度)或样品控制温度的任何温度随时间的变化关系。其中,样品控制的温度变化是指利用来自样品的性质变化的反馈信息来控制样品所承受的温度的一种技术。其中,程序控制温度的变化方式主要分为以下几种:①线性升/降温,如图1.3(a)和图1.3(b)所示;②线性升/降温至某一温度后等温,如图1.3(c)和图 1.3(d)所示 ③在某一温度下进行等温实验,如图1.3(e)所示;④步阶升/降温,如图1.3(f)和图1.3(g)所示;⑤)循环升/降温,如图1.3(h)所示;⑥以上几种方式的组合,如图1.3(i)所示。需要说明的是, 以上这些温度变化过程可以通过仪器的控制软件实时记录下来, 这是热分析技术有别于其他分析方法的主要优势之一。1.2.1.7 可以在较短的时间内测量材料的物理性质随时间或温度的变化对于热分析技术而言, 完成一次实验所需时间的长短取决于具体的温度控制程序。日前商品化的热分析仪器的最快升温和降温速率各有不同。例如, 热重仪可以实现的瞬时最快升温速率可以达到2000℃min-1, 最快线性加热速率为 500℃min-1。梅特勒-托利多公司的闪速差示扫描量热仪(Flash DSC)的最快升温速率可以达到 24000000℃min-1,与此相对应,对于一台比较稳定的热分析仪器而言,可以很容易实现低于1℃min-1的温度变化速率。实验时采用的温度变化程序取决于具体的实验需要。对于较慢的温度变化速率而言,其耗时很长。除非特殊的实验需要,在热分析技术的实际应用中很少采用低至2℃min-1的温度变化速率。微量量热法属于例外的情形。对于微量量热法而言, 由于实验时所用的试样(大多为溶液)量较大,因此所采用的加热/降温速率大多十分缓慢。常用的加热/降温速率一般为0.1~1℃min-1,有时还会采用更低的加热/降温速率,如每小时几摄氏度的温度变化速率。1.2.1.8 可以灵活地选择和改变实验气氛对于大多数物质而言,与试样接触的气氛十分重要,使用热分析技术可以比较方便地研究试样在不同的实验气氛下的物理性质随温度或时间的变化信息。气氛一般可以分为静态气氛和动态气氛两种。静态气氛主要指三种类型:①常压气氛,即实验时不通入其他的气体; 高压或低压气氛,即在试样周围充填静态的气氛气体;③真空气氛。动态气氛主要可以分为:①氧化性气氛,如氧气;②还原性气氛,如H2、CH4、CO、C2H4、C2H2等;③惰性气氛,如N2、Ar、He、CO2等;④腐蚀性气氛,如SO2、SO3、NH3、NO2、N2O、HCI、Cl2、Br2等;⑤其他反应性气氛,即在实验时根据需要通入可能与试样或产物发生化学反应的气体。需要说明的是,对于有些过程而言,在③中所列的惰性气氛是相对的,例如,对于大多数物质而言,CO2是惰性气体;而对于一些氧化物如CaO等而言,在一定温度下会与CO2发生反应生成CaCO3。再如,N2在高温下会与一些金属发生反应而形成氮化物。因此,在实际实验中选择实验气氛时,气氛的反应活性应引起足够的重视。实验时,应根据实际需要来灵活选择实验气氛。在现代化的大多数商品化的仪器中,可以通过仪器的控制软件十分灵活地在设定的温度或时间下切换气氛种类及流量。例如,对于一个试样的热分析实验而言,可以在一台配置了质量流量计的仪器上通过其控制软件来方便地实现以下的实验条件:(1)在N2气氛流速为50mLmin-1下,以10℃min-1的加热速率由室温升温至600℃;(2)在等温 30 min 后氮气流速由50mL min-1增加至 100mLmin-1,继续等温30 min (3)以5℃min-1的加热速率升温至800℃,等温30min;(4)实验气氛由N2切换为 70%N2+30%O2(流速为50mLmin-1), 继续等温60min (5)实验气氛再切换至N2,流速为100mLmin-1,等温30min;(6)以10℃min-1的加热速率升温至1000℃.等温30min。1.2.1.9 可以相对方便地得到转变或分解的动力学参数在热分析技术中,通过改变加热/降温速率(一般为3~5个速率)测量材料的物理性质随温度或时间的变化,根据相应的动力学模型可以得到相应的动力学参数(如指前因子A、活化能E。、反应级数或机理函数)。对于等温实验而言,一般通过测量材料在不同温度下(一般为3~5个等温温度)的实验曲线来得到动力学参数。在本书的相关章节中将详细阐述相关的动力学分析方法。1.2.1.10 方便与其他实验方法联用在现代分析方法中,仅通过一种方法得到的信息是有限的,并且实验操作也十分繁琐和耗时,样品的消耗量也较大。另外, 在对由多种方法进行独立实验所得到的结果进行对比时也很难得到相对一致的结论。例如,对试样在高温时分解得到的气体产物进行实时分析时,如果把高温的分解产物富集后再用光谱、色谱或质谱的方法对其进行分析, 由于温度的急剧变化会引起部分产物发生冷凝或进一步的反应, 在此基础上得到的分析结果往往不能反映气体产物的真实信息。如果采用热分析技术与光谱、色谱或质谱等技术进行联用的方法, 则可以实时地对分解产物的浓度和种类变化进行在线分析。图1.4 为由 TG/MS方法得到的CaC2O4H2O在氩气氛下的热分解行为的实验曲线。由该图可见,在110~150℃范围内,在热重曲线上出现了一个约5%的失重过程,图中的MS曲线显示第一阶段中的质量损失是由于H2O(m/z(荷质比)=18)引起的。在第二阶段中主要检测到了一氧化碳(m/z=28)和较少量的二氧化碳(m/z=44),而在第三阶段中则主要检测到了二氧化碳和少量的一氧化碳。当在氧气中(图1.5)而不是在氩气中加热CaC2O4H2O时,在分解的第二步所对应的过程结束时的质量下降非常明显。这可以归因于CO部分氧化成了二氧化碳,当这一步反应开始时通常会加快第二步的反应速率,由此就会导致在氩气中二氧化碳的量也比一氧化碳的量高。 表1.2中列出了目前可以实现的热分析联用方法,在本书第10章中将阐述这些方法的工作原理及应用领域。表1.2 常用的热分析联用方法联用方式联用方法简称备注同时联用技术热重-差热分析TG-DTATG-DTA和TG-DSC又称同步热分析法,简称STA热重-差示扫描量热法TG-DSC差热分析-热机械分析法DTA-TMA热重-差热分析-热机械分析法TG-DTA-TMA差热分析-X射线衍射联用法DTA-XRD差热分析-热膨胀联用法DTA-DIL显微差示扫描量热法OM-DSC差示扫描量热仪和光学显微镜联用仪,用于物质的结构形态研究光照差示扫描量热法Photo-DSC也称光量热计差示扫描量热-红外光谱联用法DSC-IR差示扫描量热-拉曼光谱联用法DSC-Raman动态热机械-介电分析联用法DMA-DEA由动态热机械分析仪和介电分析仪两个主要部分组成,并由相应的配件和软件连接动态热机械-流变联用法DMA-Rheo串接联用法热重/质谱联用法TG/MS同步热分析/质谱联用法STA/MS热重-红外光谱联用法TG/IR同步热分析/红外光谱联用法STA/IR热重/红外光谱/质谱联用发TG/IR/MS同步热分析/红外光谱/质谱联用法STA/IR/MS间接联用法热重/气相色谱联用法TG/GC同步热分析/气相色谱联用法STA/GC热重/气相色谱/质谱联用法TG/GC/MS同步热分析/气相色谱/质谱联用法STA/GC/MS复合联用法热重/(红外光谱-质谱联用法)TG/(IR-MS)同步热分析/(红外光谱-质谱联用法)STA/(IR-MS)热重/[红外光谱-(气相色谱/质谱联用法)]TG/[IR-(GC/MS)]同步热分析/[红外光谱-(气相色谱/质谱联用法)]STA/[IR-(GC/MS)]注:①间歇联用法可以看做串接联用法中的一种,由于其分析对象为某一温度或时间下的气体产物,且其分析时间较长,故单独将其列为一种联用方法②由于同步热分析目前以一种独立的仪器形式存在,STA与质谱和红外光谱的联用形式通堂归于串接式联用法。1.2.2 热分析方法的局限性以上列举了热分析技术相对其他分析方法的优势,然而热分析技术作为一种唯象的宏观性质测量技术,其本身还存在着一定的局限性。在应用该类方法时,使用者必须清醒地认识到这些局限性,以免在方法选用和数据分析时误入歧途。一般来说,热分析方法主要存在着以下局限性。1.2.2.1 方法缺乏特异性由热分析技术得到的实验曲线一般不具有特异性。例如,在使用差热分析法分析试样的热分解过程时,若一个试样在分解过程中同时伴随着吸热和放热两个相反的热过程,则在最终得到的DTA曲线上有时会只呈现出一个吸热或放热过程,曲线的形状取决于这两个吸热和放热过程的热量的大小。如果吸热过程的热量大于放热过程的热量,则DTA曲线最终会表现为吸热峰,反之放热峰。如果这两个相反的过程不同步,但温度相近,得到的DTA曲线会发生变形,呈现不对称的“肩峰”现象。一般通过改变实验条件或与其他方法联用来克服热分析技术的这一局限性。1.2.2.2 影响因素众多如前所述,在测量材料的物理性质时,在实验中可以改变温度和气氛等实验条件。然而,在实际的实验中,温度的变化方式(加热速率和加热方式)和实验气氛(包括气体种类和流速)等均会对试样在不同温度或时间时的性质变化产生不同程度的影响。此外,试样的状态(如尺寸、形状、规整度等)和用量也对实验曲线有不同程度的影响。值得注意的是,除了以上几种因素之外,在实验时采用的仪器结构类型、热分析技术种类(如热重法、差热分析、热机械分析等)以及不同的操作人员等因素均会给实验结果带来不同程度的影响。客观地说,热分析技术的这些影响因素给数据分析和具体应用带来了不少麻烦。但是任何事物都具有两面性,热分析技术的这些影响因素恰恰反映了其自身的灵活性和多样性,实验时可以通过改变实验条件来分析这些因素对实验结果的影响程度, 从而可以深入探讨试样在不同条件下物理性质的变化, 使研究者对试样在不同温度或时间下的性质变化规律有更深入的理解,获得试样在不同的温度下与性质相关的更多信息。例如,很多非等温热分析动力学方法主要通过获取三条以上不同的加热/降温曲线,并由此得到转变或分解过程的动力学信息。1.2.2.3曲线解析复杂如上所述,热分析实验受到实验条件(主要包括温度程序、实验气氛、制样等)、仪器结构等的影响,由此得到的曲线之间的差异也很大。在实验结束后对曲线进行解析时,应充分考虑以上影响因素,对于所得到的曲线进行合理的解析。在本书的相关章节中,将结合实例对曲线的解析方法进行阐述。1.3 热分析仪器的组成当前的商品化热分析仪主要由仪器主机(主要包括程序温度控制系统、炉体、支持器组件、气氛控制系统、物理量测定系统)、辅助设备(主要包括自动进样器、湿度发生器、压力控制装置、光照、冷却装置、压片密封装置等)、仪器控制、数据采集及处理组成。热分析仪的结构框图如图1.6所示。在本书第5章中将详细介绍热分析仪器的每一组成部分及其功能。1.4 热分析技术的应用领域热分析技术自问世至今已有一百多年的历史,在过去的一百多年中,经过几代人的努力,目前热分析仪器已经日趋成熟,其在各个领域的应用也逐渐日益扩大并向更深层次发展。现在热分析技术从最初应用于黏土、矿物以及金属合金领域至今已经扩展到几乎所有与材料相关的领域。在所有学科门类中,热分析技术在历史学(主要为科技考古领域)、理学、工学、农学、医学等学科中有广泛的应用。在一级学科中,热分析技术已经在考古学、物理学、化学、地理学、地质学、生物学、力学、材料科学工程、冶金工程、动力工程及工程热物理、建筑学、化学工程与技术、石油与天然气工程、纺织科学与工程、环境科学与工程、生物医学工程、食品科学与工程、生物工程、安全科学与工程、公安技术、作物学、畜牧学、水产、草学、林学、药学、中药学、军事装备学等学科中得到了不同程度的应用,当前热分析技术应用较多的是物理学、化学、生物学、地质学、环境科学与工程、化学工程学等学科中与材料相关的石油、冶金、矿物、土壤、纤维、塑料、橡胶、食品、生物化学、物理化学等领域。1.5 热分析技术的发展前景展望未来热分析仪器的发展将主要在以下几个方面有所突破。1.5.1提高仪器的准确度灵敏度以及稳定性提高仪器的灵敏度和稳定性是热分析仪器研发人员多年来一直努力的目标, 随着电子技术和自动化技术的发展,这些性能指标还有进一步提升的空问。1.5.2 扩展仪器功能对于任何一种商品化的分析仪器而言,在实际的应用过程中应结合实际的需求来对仪器的功能进行拓展。对于绝大多数热分析仪器而言,主要从以下几个方面来拓展其功能:(1)在不影响灵敏度的前提下拓宽温度范围;(2)可实现超快的加热/降温速率、温度调制、热惯性小的快速等温实验:(3)配置自动进样装置来提高仪器的利用率;(4)开发适用于仪器的光照装置、温度控制装置、高压实验装置、真空实验装置、电磁场装置等特殊用途的实验附件。1.5.3加强并推广与其他分析方法的联用目前,热分析仪已经实现了与红外光谱、质谱、气相色谱、气相色谱/质谱联用仪、拉曼光谱、显微镜、X射线衍射仪等技术的联用。由于联用时连接部件的不完善以及成本和应用领域等多方面的限制,联用技术自20世纪五六十年代出现以来,直到近二十年才开始快速发展。由于这类方法的功能较常规仪器强大,因此其有着十分远大的发展前景。1.5.4 拓展软件功能随着计算机的硬件和软件的飞速发展,实验数据的记录和分析显得越来越方便。随着热分析技术在不同领域的应用不断深入,人们对热分析的数据处埋的要求尤其是动力学方法对软件的要求越来越高。日前虽然存在一些商品化的动力学分析软件,但由于动力学方法本身的复杂性和快速发展,一款成型的商品软件很难满足大多数的要求,这就要求商品化的动力学软件具有较为强大的功能并且可以及时地反映出动力学的最新发展情况。1.5.5 开发可以满足特殊领域需求的新型热分析仪为了满足一些特殊的测试需求,近年来不断出现新型的热分析仪,如Mettler Toledo 公司推出的一种可以实现每分钟几百万摄氏度加热速率的闪速差示扫描量热仪。这些仪器有的已经实现商品化, 有的仅限于实验室使用, 使用这些新型仪器完成的科研论文在一些学术期刊中经常可以见到。1.5.6 在不影响仪器性能的前提下减小仪器的体积、节约成本、提升产品的竞争力美国 TA 仪器公司于2010年推出了Discovery系列热分析仪器,仪器的电路部分适用于热重分析仪、热重-差热分析仪、差示扫描量热仪、静态热机械分析仪和动态力学热分析仪,可以实现几台仪器共用一种控制单元,这样对于需要购买多台仪器的用户降低了成本,提升了仪器的竞争力。TA公司的这种方法代表了今后分析仪器的一种发展趋势。随着科学研究的进一步发展,热分析技术有望在一些较新的领域中发挥其独特的作用。我们有充分的理由相信,在全球热分析工作者的共同努力下,热分析技术将继续保持现有的高速发展势头,其在各领域中将得到更加广泛和深入的应用。
    留言咨询
  • 差热分析仪 400-801-8116
    仪器介绍:DZ3320A差热分析是南京大展检测仪器自主生产的,在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温度(△T)随温度或时间的变化关系。仪器的工作原理:DZ3320A差热分析仪在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其他化学反应。性能优势:1.仪器主控芯片采用ARM控制器,运算处理速度更快,温度控制更稳定。2.采用USB双向通讯,操作更便捷。3.采用7寸全彩LCD触摸屏,界面更友好。4.采用镍铬合金传感器,更耐高温、抗腐蚀、抗氧化。技术参数:温度范围室温~1150℃ 量程范围0~±2000μV(可以拓展)DTA灵敏度0.01μVDTA精度0.1升温速率0.1~100℃/min温度分辨率0.01℃温度准确度±0.1℃ 温度重复性±0.1℃温度控制升温:程序控制 可根据需要进行参数的调整恒温:程序控制 恒温时间任意设定炉体结构炉体采用上开盖式结构,代替了传统的升降炉体,精度高,易于操作气氛控制内部程序自动切换数据接口标准USB接口 配套数据线和操作软件显示方式24bit色 7寸 LCD触摸屏显示参数标准配有标准物,带有一键校准功能,用户可自行对温度进行校正基线调整用户可通过基线的斜率和截距来调整基线工作电源AC 220V 50Hz(可定制其它规格)
    留言咨询
  • 产品介绍:同步热分析将热重分析TG与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。测试范围:DSC:熔融、结晶、相变、反应温度与反应热;TG:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等。性能优势:1.炉体加热采用贵金属合金丝双排绕制,减少干扰,更耐高温。2.托盘传感器,采用陶瓷杆作为连接杆,具有耐高温,抗氧化,耐腐蚀等优点。3.供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。4.采用上开盖式结构,操作方便。5.主机采用隔热装置隔绝加热炉体对机箱及微热天平的热影响。6.可根据客户要求更换炉体。技术参数:温度范围室温~1200℃ 温度分辨率0.01℃温度波动±0.1℃升温速率0.1~100℃/min温控方式升温、恒温恒温时间0~300min 任意设定(可拓展72h)冷却时间≤15min(1000℃~100℃)天平测量范围0.1mg~2g 可扩展至5gTG的精度0.01mgTG的解析度0.1ugDSC量程0~±1000mWDSC解析度0.1uW精度0.01mW显示方式24bit色,7寸 LCD触摸屏显示气氛装置内置气体流量计,包含两路气体切换和流量大小控制气氛: 惰性、氧化性、还原性,静态、动态软件智能软件,可对TG、DTG、TG-DSC等曲线进行数据处理、导出EXECL,生成PDF报告,打印实验报表数据接口标准USB接口电源AC 220V 50Hz坩埚类型陶瓷坩埚、铝坩埚软件温度、热焓多点校正,满足不同温度段样品测试我们的服务:南京大展检测仪器作为同步热分析仪的生产厂家,主营产品:差示扫描量热仪、热重分析仪、同步热分析仪、差热分析仪、炭黑含量检测仪器、炭黑分散度测试仪和导热系数测试仪等热分析仪器。
    留言咨询
  • 仪器介绍:DZ-STA200同步热分析仪是一款同步热分析将热重分析TG与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。仪器性能优势:1.炉体加热采用贵金属合金丝双排绕制,减少干扰,更耐高温。2.托盘传感器,采用陶瓷杆作为连接杆,具有耐高温,抗氧化,耐腐蚀等优点。3.供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。4.采用上开盖式结构,操作方便。5.主机采用隔热装置隔绝加热炉体对机箱及微热天平的热影响。6.可根据客户要求更换炉体。仪器技术参数:温度范围室温~1200℃ 温度分辨率0.01℃温度波动±0.1℃升温速率0.1~100℃/min温控方式升温、恒温恒温时间0~300min 任意设定(可拓展72h)冷却时间≤15min(1000℃~100℃)天平测量范围0.1mg~2g 可扩展至5gTG的精度0.01mgTG的解析度0.1ugDSC量程0~±1000mWDSC解析度0.1uW精度0.01mW显示方式24bit色,7寸 LCD触摸屏显示气氛装置内置气体流量计,包含两路气体切换和流量大小控制气氛: 惰性、氧化性、还原性,静态、动态软件智能软件,可对TG、DTG、TG-DSC等曲线进行数据处理、导出EXECL,生成PDF报告,打印实验报表数据接口标准USB接口电源AC 220V 50Hz坩埚类型陶瓷坩埚、铝坩埚软件温度、热焓多点校正,满足不同温度段样品测试
    留言咨询
  • 汇诚仪器 同步热分析仪 STA-1250产品简介:同步热分析仪将热重分析TGA与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。仪器用途:测量与研究材料的如下特性:DSC:熔融、结晶、相变、反应温度与反应热、燃烧热、比热等。TGA:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等。同步热分析仪主要特点:1. 天平自带内部校准功能,具有更好的准确性和重复性。 2. 采用进口合金传感器,更抗腐蚀,抗氧化,传感器灵敏度高。3. 炉体加热采用贵金属合金丝绕制,减少干扰,更耐高温。4. 完善的气氛控制系统,软件设置自动切换,数据直接记录在数据库中。5. 采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更精确。6. 采用USB双向通讯,完全实现智能操作。7. 采用7寸24bit色全彩LCD触摸屏,实时显示仪器的状态和数据。8. 采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。9.自动生成测试报告并打印。软件内置试验记录、数据处理和报告格式,自动出具实验报告同步热分析仪技术参数: 1. 温度范围: 室温~1250℃2. 温度分辨率: 0.01℃3. 温度波动: ±0.1℃4. 升温速率: 0.1~100℃/min 5. 温控方式: 升温、恒温6. 天平测量范围: 0.01mg~2g 7. 解析度: 0.01mg8. DSC量程: 0~±500mW9. DSC解析度: 0.01mW10. 恒温时间: 0~300min 任意设定11. 显示方式: 汉字大屏液晶显示12. 气氛:惰性、氧化性、还原性、静态、动态13. 气氛装置: 内置气体流量计,包含两路气体切换和流量大小控制14. 软件: 智能软件可自动记录TG曲线进行数据处理、打印实验报表15. 数据接口: 标准USB接口,专用软件(软件不定期免费升级)16. 电源: AC220V 50Hz
    留言咨询
  • 差热分析仪 400-801-8116
    产品介绍:差热分析仪是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温度(△T)随温度或时间的变化关系。产品的工作原理:在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其他化学反应。产品的性能优势:1.仪器主控芯片采用ARM控制器,运算处理速度更快,温度控制更稳定。2.采用USB双向通讯,操作更便捷。3.采用7寸全彩LCD触摸屏,界面更友好。4.采用镍铬合金传感器,更耐高温、抗腐蚀、抗氧化。产品的技术参数:温度范围室温~1150℃ 量程范围0~±2000μV(可以拓展)DTA灵敏度0.01μVDTA精度0.1升温速率0.1~100℃/min温度分辨率0.01℃温度准确度±0.1℃ 温度重复性±0.1℃温度控制升温:程序控制 可根据需要进行参数的调整恒温:程序控制 恒温时间任意设定炉体结构炉体采用上开盖式结构,代替了传统的升降炉体,精度高,易于操作气氛控制内部程序自动切换数据接口标准USB接口 配套数据线和操作软件显示方式24bit色 7寸 LCD触摸屏显示参数标准配有标准物,带有一键校准功能,用户可自行对温度进行校正基线调整用户可通过基线的斜率和截距来调整基线工作电源AC 220V 50Hz(可定制其它规格)
    留言咨询
  • 高温综合同步热分析仪STA-1550产品简介:同步热分析仪将热重分析TGA与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。仪器用途:测量与研究材料的如下特性:DSC:熔融、结晶、相变、反应温度与反应热、燃烧热、比热等。TGA:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等。同步热分析仪主要特点:1. 天平自带内部校准功能,具有更好的准确性和重复性。 2. 采用进口合金传感器,更抗腐蚀,抗氧化,传感器灵敏度高。3. 炉体加热采用贵金属合金丝绕制,减少干扰,更耐高温。4. 完善的气氛控制系统,软件设置自动切换,数据直接记录在数据库中。5. 采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更精确。6. 采用USB双向通讯,完全实现智能操作。7. 采用7寸24bit色全彩LCD触摸屏,实时显示仪器的状态和数据。8. 采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。9.自动生成测试报告并打印。软件内置试验记录、数据处理和报告格式,自动出具实验报告同步热分析仪技术参数: 1. 温度范围: 室温~1250℃2. 温度分辨率: 0.01℃3. 温度波动: ±0.1℃4. 升温速率: 0.1~100℃/min 5. 温控方式: 升温、恒温6. 天平测量范围: 0.01mg~2g 7. 解析度: 0.01mg8. DSC量程: 0~±500mW9. DSC解析度: 0.01mW10. 恒温时间: 0~300min 任意设定11. 显示方式: 汉字大屏液晶显示12. 气氛:惰性、氧化性、还原性、静态、动态13. 气氛装置: 内置气体流量计,包含两路气体切换和流量大小控制14. 软件: 智能软件可自动记录TG曲线进行数据处理、打印实验报表15. 数据接口: 标准USB接口,专用软件(软件不定期免费升级)16. 电源: AC220V 50Hz
    留言咨询
  • 仪器介绍: 高温差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温度(△T)随温度或时间的变化关系。仪器的工作原理: 高温差热分析仪在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其他化学反应。仪器的性能优势:1.仪器主控芯片采用STM32系列控制器,运算处理速度更快,温度控制更。2.采用USB双向通讯,操作更便捷。3.采用7寸24bit色全彩LCD触摸屏,界面更友好。4.采用铂铑合金传感器,更耐高温、抗腐蚀、抗氧化。仪器的技术参数:温度范围室温~1500℃ 量程范围0~±2000μVDTA灵敏度0.01μVDTA精度0.1μV升温速率0.1~100℃/min温度分辨率0.01℃温度准确度±0.1℃温度重复性±0.1℃温度控制升温:程序控制 可根据需要进行参数的调整恒温:程序控制 恒温时间任意设定炉体结构炉体采用上开盖式结构,代替了传统的升降炉体,精度高,易于操作气氛控制内部程序自动切换数据接口标准USB接口 配套数据线和操作软件显示方式24bit色,7寸 LCD触摸屏显示参数标准配有标准物,带有一键校准功能,用户可自行对温度进行校正基线调整带有基线调整功能,扣除基线的影响工作电源AC 220V 50Hz(可定制其它规格)仪器的局部图片:
    留言咨询
  • NDTA-III 差热分析仪技术指标:1.大液晶屏显示2.控温方式:程序控温3.控温范围:室温~1100℃4.分辨率:0.1℃5.升温速度:0~50℃/分钟可调6.DTA分辨率:1uV7.DTA量程:0~20000uV8.温度、控制参数、DTA电势三表显示*9.配套专用实验软件
    留言咨询
  • 高温差热分析仪DTA-1550仪器简介: 差热分析仪是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。差热分析仪用途: 主要测量与热量有关的物理、化学变化,如物质的熔点、熔化热、结晶与结晶热、相变反应热、热稳定性(氧化诱导期)、玻璃化转变温度、氧化或还原反应,晶格结构的破坏和其他化学反应。差热分析仪技术参数: 1. 温度范围: 室温~1550℃ 2. 量程范围: 0~±2000μV 3. 升温速率: 0.1~80℃/min4. 温度分辨率: 0.01℃5. 温度重复性: ±0.1℃6. DTA精度: 0.01μV 7. 控温方式: 升温:程序控制 可根据需要进行参数的调整 恒温:程序控制 恒温时间任意设定8. 曲线扫描: 升温扫描9. 气氛控制: 仪器自动切换10. 气体流量:0-200mL/min 11. 气体压力:0.2MPa12. 显示方式:24bit色 7寸LCD触摸屏显示13. 数据接口: 标准USB接口14. 参数标准: 配有标准物质,带有一键校准功能,用户可自行校正温度和热焓15. 工作电源: AC 220V 50Hz或定制16. 功率:600W差热分析仪主要特点:1. 全新全封闭式高级陶瓷炉体设计结构,大大提升灵敏度和分辨率以及更好的基线稳定性。 2. 采用进口合金传感器,更抗腐蚀,抗氧化,传感器灵敏度高。3. 采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更精确。4. 采用USB双向通讯,完全实现智能化操作。5. 采用7寸24bit色全彩LCD触摸屏,实时显示仪器的状态和数据。6. 智能化软件设计,仪器全程自动绘图,软件可实现各种数据处理,如热焓的计算、玻璃化转变温度、氧化诱导期、物质的熔点及结晶等等。差热分析仪参考标准:GB/T 19466.2 – 2004 / ISO 11357-2: 1999第2部分:玻璃化转变温度的测定;GB/T 19466.3 – 2004 / ISO 11357-3: 1999第3部分:熔融和结晶温度及热焓的测定;GB /T 19466.6- 2009/ISO 11357-3 :1999 第6部分氧化诱导期 氧化诱导时间(等温OIT)和氧化诱导温度(动要态OIT)的测定。
    留言咨询
  • DZ3320A差热分析仪的产品介绍:  差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温度(△T)随温度或时间的变化关系。 DZ3320A差热分析仪测试应用: 在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其他化学反应。  DZ3320A差热分析仪技术参数:温度范围室温~1150℃量程范围0~±2000μVDTA精度0.01μV升温速率1~80℃/min温度分辨率0.1℃温度准确度±0.1℃温度重复性±0.1℃温度控制升温:程序控制可根据需要进行参数的调整恒温程序控制恒温时间任意设定炉体结构炉体采用上开盖式结构,代替了传统的升降炉体,精度高,易于操作气氛控制内部程序自动切换数据接口标准USB接口配套数据线和操作软件主机显示24bit色7寸LCD触摸屏显示参数标准配有标准物,带有一键校准功能,用户可自行对温度进行校正基线调整用户可通过基线的斜率和截距来调整基线工作电源AC220V50Hz
    留言咨询
  • 差热分析仪 400-803-6009
    1、仪器简介差热分析这项技术一直被广泛应用。既是一种例行的质量测试工具,也是一个研究工具。测量的是与材料内部热转变相关的温度、热流之间的关系。我公司的差热分析仪,具有重复性好、准确度高的特点,特别适合用于比热的精确测量。该设备易于校准,使用熔点低,快速可靠,应用范围非常广,特别是在材料的研发、性能检测与质量控制上。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差热分析仪的研究领域,根据实验参数以及实验需求来选择不同的型号。差热分析仪应用范围有: 高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度,管材的抗氧化性能等。将试样放入坩埚中,参比物为空的坩埚,同事置于加热炉中进行程序控制加热来改变试样和参比物的温度。开始参比物和试样之间的热容相同,试样又无热效应时,则二者的温差近乎为“零”,此时得到一条相对平滑的曲线。随着温度的升高,试样发生了热效应,而参比物未产生热效应,二者之间就产生了温差,在DSC曲线中表现为峰,温差越大,峰也越大,温差变化次数越多,峰的数目也越多。峰顶向上的称为放热峰,峰顶向下称为吸热峰。下图为典型的差热曲线,图中表现出四种类型的转变: Ⅰ为二级转变,是水平基线的改变 Ⅱ为吸热峰,是由试样的熔融或熔化转变引起的 Ⅲ为吸热峰,是由试样的分解或裂解反应引起的 Ⅳ为放热峰,这是试样结晶相变的结果 2、仪器原理物质在物理和化学变化过程中往往会伴随着热效应,放热和吸热现象反映了物质热焓的变化。差热分析仪就是测定在同一受热条件下,测量试样与参比物之间温差对温度或时间的函数关系。差热分析仪,是在程序控制温度的情况下,测量被测样品与参比物的功率差与温度关系的一种技术。纵坐标是试样与参比物的热流差,单位为mw。横坐标是时间(t)或者温度(T)。试样与参比物放入加热炉后,按设定的速率进行升温,如果参比物和试样热容大致相同,就能得到理想的扫描量热分析图。 图中T是由连接在参比物上的热电偶所反映的温度曲线。AH线反应试样与参比物间的温差曲线。如果试样无热效应发生,那么试样与参比物间△T=0,则出现如曲线上AB、DE、GH那样相对平滑的基线。当有热效应发生而使试样的温度低于参比物,则出现如BCD顶峰向下的吸热峰。反之,则出现顶峰向上的EFG放热峰。图中峰的数目多少、位置、峰面积、方向、高度、宽度、对称性反映了试样在所测温度范围内所发生的物理变化和化学变化的次数、发生转变的温度范围、热效应的大小和正负。峰的高度、宽度、对称性除与测试条件有关外还与样品变化过程中的动学因素有关,所测得的结果比理想曲线复杂得多。3、仪器特点1.全新的炉体结构,更好的解析度和分辨率以及基线稳定性;2.仪器下位机数据实时传输,界面友好,操作简便;3,仪器主要技术参数;项目/型号DSC-2DSC-3DTA量程0~±2000μV温度范围室温~1150℃室温~1450℃升温速率0.1~100℃/min温度分辨率0.01℃温度波动±0.01℃温度重复性±0.1℃精确度0.01μV灵敏度0.01μV控温方式升温、恒温(程序自动控制)曲线扫描升温扫描,恒温扫描气氛控制2路气体自动切换显示方式24bit色7寸LCD触摸屏显示数据接口标准USB接口仪器标准配标准物质(锡),可自行矫准温度和热焓备注所有技术指标可根据用户需求调整4、仪器界面4.1仪器界面4.1.1 “初始状态”键,用来查看实时温度、DSC和气氛等信息。4.1.2 “参数设置”键,用来设置实验参数,一般在软件上设置。4.1.3 “设备信息”键,显示设备信息。管理员通道内部人员校准温度使用。4.1.4 “开始运行”键,在电脑软件上操作开始后,显示当前数据信息。5、软件操作5.1 打开软件,点击“文件”菜单栏下的【新建】,或者【新建】快捷键如下图: 5.2 点击“新建”之后,会调转到新的窗口,在新建窗口内,输入【样品名称】,【样品质量】,【操作员】,【实验参数】,【气氛】等信息,测试类型根据客户需求选择【OIT】或【非OIT】,点击【连接仪器】,会听到一声蜂鸣声。注意两次实验,样品名称不可以一样,否则会覆盖上次数据,导致上次数据的丢失。如下图:实验参数设置如下:“熔点、相变温度实验的参数设置”(根据样品预估参数设置,测试类型选择非OIT。)如下图:5.3 软件设置全部完成之后,点击【连接仪器】,点击软件左上角 “”开始键(如下图),设备会按设置的程序升温,同时软件实时记录数据。到达设置温度,仪器自动停止,出现如下图图谱(该图谱为熔点、相变温度图谱)5.4 首先先保存图谱,防止丢失,也可使用快捷键,选择【保存为样品】。然后再进行分析。如下图:5.4.1熔点,热焓,相变温度分析流程:点击图谱使其变成绿色,即选定图谱,点击任务栏中【分析】—【峰综合分析】—出现左右两根黑线,拖动左侧分析线在变化前端,右侧分析线在变化后端,选取好后,点击【应用】,【确定】,再点击该曲线,使其变成蓝色,分析完毕。分析好的图谱如下图:5.4.2 初熔点,终熔点分析:点击图谱使其变成绿色,即选定图谱,点击任务栏中【分析】—【初熔点】或【终熔点】—出现左右两根黑线,拖动左侧分析线在变化前端,右侧分析线在变化后端,选取好后,点击【应用】,【确定】,再点击该曲线,使其变成蓝色,分析完毕。分析好的图谱如下图:5.5 所有分析后的图谱,点击【文件】-【保存为状态T】,保存分析数据。如下图:5.6 所有图谱可以出报告,点击【打印预览】,如下图:6.标定物的选择和温度校正6.1 标定物的选择不定期的进行温度校正,以保证测试准确度。根据样品的实际测试温度,选择标定物。标定物选择的原则:标定物的外推温度与样品待测项目的温度要比较接近,以保证测试的准确性。下表为常用标定物的熔点及理论热焓数值。标准物质理论熔点℃理论熔融热焓J/g铟In156.628.6锡Xi231.960.5锌Zn419.5107.56.2 温度校准操作步骤:设备信息—管理员通道—456进入—输入理论和测量值—保存—关机重启(测量值为标定物熔点测试所得的起始点温度)7. 仪器应用7.1熔点(热焓)测量熔点是物质从晶相到液相的转变温度,是热分析最常测定的物性数据之一。其测定的精确度与热力学平衡温度的误差可达±1℃左右。目前采用ICTA推荐的方法,测出某一固体物质的熔融吸热蜂。如下图,图中B点对应的B′是起始温度Ti,G点对应的温度是外推起始温度Teo,即峰的前沿最大斜率处的切线与前基线延长线的交点,C点对应的温度是蜂顶温度Tm,D点对应的D′是终止温度了Tf。热焓是表示物质系统能量的一个状态函数,其数值上等于系统的内能U加上压强P和体积V的乘积,即H=U+PV。在一定条件下可以从体系和环境间热量的传递来衡量体系的内能与焓的变化值。在没有其它功的条件下,体系在等容过程中所吸收的热量全部用以增加内能,体系在等压过程中所吸收的热量,全部用于使焓增加,由于一般的化学反应大都是在等压下进行的,所以焓更有实用价值。DSC曲线中我们可以通过计算峰面积得到试样的熔融热焓,即图中的BCD。7.2仪器系数的测定由于仪器系数可能会根据环境的变化而变化,温度、湿度等等对它都会产生或大或小的影响。为确保实验结果的准确性,应时常测仪器的系数。通常选用锡、锌、铟等来校准仪器,测量仪器系数。仪器系数是在校准好温度的前提下测试标定物的热焓,然后根据标定物的理论热焓和仪器系数的计算公式来计算仪器系数。在【数据分析】栏,选择【仪器系数】出现下图对话框,将理论熔融热焓和实测熔融热焓分别填入对应栏中,点击计算按钮即可得到仪器系数。仪器系数在计算结晶度时同样用到,不是连续做实验则需将仪器系数记录下来,以备以后使用。以纯锡样品实验为例,输入锡的理论热焓值为60.5J/g,实测热焓为36.3326J/g,系统计算出的仪器系数K为60.5/36.3326该仪器系数软件界面上自动生成。通常仪器系数的测定可以在仪器校正后测得。在仪器校正时,称量标准物质的质量,填写在实时数据栏中质量栏内,若校正所测得的相变温度接近试样的实际温度,即可在记录此次的热焓值,计算仪器系数,作为该仪器的系数。设置如下图:8、仪器使用注意事项1. 为保证仪器正常使用,样品在测试温度范围内不能发生热分解,与金属铝不起反应,无腐蚀。被测量的试样若在升温过程中能产生大量气体,或能引起爆炸的都不能使用该仪器。因此,测试前应对样品的性质有大概了解。2. 检查仪器所有连接是否正确,所用气体是否充足,工具是否齐全。3. 试验中,若选择铝坩埚为样品皿,试验的最高温度不可超过550℃。4. 实验室室温控制在20℃-30℃,温度较为恒定的情况下实验结果精确度和重复性较高。室温较高的情况下需开空调以保证环境温度在短期内相对恒温。每次实验完,降温到40度以下,才可以第二次5. 坩埚底要平,无锯齿形或弯曲,否则传热不良。6. 制备样品时,不要把样品洒在坩埚边缘,以免污染传感器,破坏仪器。坩埚的底部及所有外表面上均不能沾附样品及杂质,避免影响实验结果。7. 试样用量要适宜,不宜过多,也不宜过少。固体样品一般为10mg左右。液体样品不超过坩埚容量的三分之一。如样品用量另有要求,根据要求确定用量。8. 对于无机试样可以事先进行研磨、过筛;对于高分子试样应尽量做到均匀;纤维可以做成1~2mm的同样长度;粉状试样应压实。9. 坩埚放在支持器中固定位置上,试样用量少时要均匀平铺在坩埚底部,不要堆在一侧;若试样是颗粒,需要放在坩埚中央位置。10. 升温速率一般情况下选择10℃/min。过大会使曲线产生漂移,降低分辨力;过小测定时间长。11. 不得使用硬物清洁样品托及实验区,以免对仪器造成不可逆损害。12. 如果实验区有灰尘或其他粉末状杂物应使用洗耳球吹干净,慎用嘴吹而迷眼。13. 采集数据的过程中应避免仪器周围有明显的震动,严禁打开上盖,轻微的碰及仪器前部就会在曲线上产生明显的峰谷。14. 不要在采集数据的过程中调节净化气体的流量,因为气体流量的轻微改变会对DSC曲线产生影响。15. 实验结束后,千万小心炉盖,等温度降到100℃以下,用镊子轻拿轻放,避免被烫或者炉盖损坏。16. 电源:AC220V,50HZ,功耗≤2000W。17. 断开数据线,关闭仪器之前先关闭软件。以防止联机、通讯失误。解决办法:1.如果遇到联机成功,无数据返回,则需要重启计算机。 2.如果遇到联机失败,则需要在设备管理器中将带感叹号的USB设备卸载,重新加载即可,无需重启计算机。9、装箱清单主机1台U盘1只数据线2根电源线1根铝坩埚200只陶瓷坩埚100只金属盖1个陶瓷盖2个生胶带1卷纯锡粒1袋10A保险丝5只样品勺/样品压杆/镊子各1个吸耳球1个气管2根说明书1份保修单1份合格证1份备注:如需要其它配件另行商议(客户自配氧气、氮气、计算机(USB插头))
    留言咨询
  • DTA-1150差热分析仪:差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温度(△T)随温度或时间的变化关系。在DTA试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其他化学反应。。概况: DTA-1150差热分析仪主要特点:1.全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片2.数字式气体流量计,控制吹扫气体流量,数据直接记录在数据库中3.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便4.采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更5.采用USB双向通讯,操作更便捷6.采用7寸24bit色全彩LCD触摸屏,界面更友好7.采用专业合金传感器,更抗腐蚀,抗氧化 DTA-1150差热分析仪技术参数:1.DSC量程: 0~±2000mW2.温度范围: 室温~1150℃ 3.升温速率: 0.1~80℃/min4.温度分辨率: 0.1℃5.温度波动: ±0.1℃6.温度重复性: ±0.1℃7.DSC噪声: 0.01μW8.DSC解析度: 0.01μW9.DSC度: 0.01mW10.DSC灵敏度: 0.01mW11.控温方式: 全程序自动控制12.曲线扫描: 升温扫描13.气氛控制: 仪器自动切换14.显示方式: 24bit色,7寸 LCD触摸屏显示15.数据接口: 标准USB接口16.参数标准: 配有标准物质,带有一键校准功能,用户可自行校正温度和热焓标准配置:序号内容数量(台)备注一主机1台二光盘1张三数据线1根四电源线1根五铝坩埚100只六陶瓷坩埚100只七纯锡粒1袋八10A保险丝5只九说明书1份十保修单1份十一合格证1份
    留言咨询
  • 汇诚仪器 高温综合同步热分析仪 STA-1550产品简介:同步热分析仪将热重分析TGA与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。仪器用途:测量与研究材料的如下特性:DSC:熔融、结晶、相变、反应温度与反应热、燃烧热、比热等。TGA:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等。同步热分析仪主要特点:1. 天平自带内部校准功能,具有更好的准确性和重复性。 2. 采用进口铂铑合金传感器,更抗腐蚀,抗氧化,传感器灵敏度高。3. 炉体加热采用铂铑合金丝绕制,更耐高温。4. 完善的气氛控制系统,软件设置自动切换,数据直接记录在数据库中。5. 采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更精确。6. 采用USB双向通讯,完全实现智能操作。7. 采用7寸24bit色全彩LCD触摸屏,实时显示仪器的状态和数据。8. 采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。9.自动生成测试报告并打印。软件内置试验记录、数据处理和报告格式,自动出具实验报告同步热分析仪技术参数: 1. 温度范围: 室温~1550℃2. 温度分辨率: 0.01℃3. 温度波动: ±0.1℃4. 升温速率: 0.1~100℃/min 5. 温控方式: 升温、恒温6. 天平测量范围: 0.01mg~2g 7. 解析度: 0.01mg8. DSC量程: 0~±500mW9. DSC解析度: 0.01mW10. 恒温时间: 0~300min 任意设定11. 显示方式: 汉字大屏液晶显示12. 气氛:惰性、氧化性、还原性、静态、动态13. 气氛装置: 内置气体流量计,包含两路气体切换和流量大小控制14. 软件: 智能软件可自动记录TG曲线进行数据处理、打印实验报表15. 数据接口: 标准USB接口,专用软件(软件不定期免费升级)16. 电源: AC220V 50Hz
    留言咨询
  • 汇诚仪器 综合同步热分析仪 STA-1250产品简介:同步热分析仪将热重分析TGA与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。仪器用途:测量与研究材料的如下特性:DSC:熔融、结晶、相变、反应温度与反应热、燃烧热、比热等。TGA:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等。同步热分析仪主要特点:1. 天平自带内部校准功能,具有更好的准确性和重复性。 2. 采用进口合金传感器,更抗腐蚀,抗氧化,传感器灵敏度高。3. 炉体加热采用贵金属合金丝绕制,减少干扰,更耐高温。4. 完善的气氛控制系统,软件设置自动切换,数据直接记录在数据库中。5. 采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更精确。6. 采用USB双向通讯,完全实现智能操作。7. 采用7寸24bit色全彩LCD触摸屏,实时显示仪器的状态和数据。8. 采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。9.自动生成测试报告并打印。软件内置试验记录、数据处理和报告格式,自动出具实验报告同步热分析仪技术参数: 1. 温度范围: 室温~1250℃2. 温度分辨率: 0.01℃3. 温度波动: ±0.1℃4. 升温速率: 0.1~100℃/min 5. 温控方式: 升温、恒温6. 天平测量范围: 0.01mg~2g 7. 解析度: 0.01mg8. DSC量程: 0~±500mW9. DSC解析度: 0.01mW10. 恒温时间: 0~300min 任意设定11. 显示方式: 汉字大屏液晶显示12. 气氛:惰性、氧化性、还原性、静态、动态13. 气氛装置: 内置气体流量计,包含两路气体切换和流量大小控制14. 软件: 智能软件可自动记录TG曲线进行数据处理、打印实验报表15. 数据接口: 标准USB接口,专用软件(软件不定期免费升级)16. 电源: AC220V 50Hz
    留言咨询
  • 产品描述同步热分析 (STA) 是一种同时测量热重 (TG) 和差热分析 (DTA) 的分析技术。在热重法中,测量样品的重量变化使我们能够分析反应温度和脱水、热分解、蒸发、氧化等反应中的重量变化速率。差热分析 (DTA) 测量吸热或放热反应温度,例如转变、熔融、结晶、脱水、分解、氧化和玻璃化转变温度。也可以通过使用标准金属的熔化峰通过校准将DTA转换为DSC,将其用作TG-DSC。理学的TG-DTA采用水平差速三线圈平衡,消除了引起TG漂移的各种波动,实现了高精度的重量变化测量。此外,还配备了样品控制的TG(SCTG)方法作为标准。这是一种由样品重量变化率控制温度的方法,有两种模式,即恒定反应控制(CRC)和逐步等温分析(SIA)。此外,样品观察TG-DTA可以在使用CCD相机捕获样品的视觉图像的同时进行测量。通过这些图像,我们可以观察到与反应相关的样品中的形状变化或颜色变化。这些图像有助于解释TG-DTA结果。规格产品名称STA8122技术同步热分析科技卧式差热-差热分析仪 (TG-DTA)核心选项智能装载机,样品观察单元计算机外置电脑核心尺寸350(阔) x 310(高) x 669(深)(毫米) 480(阔) x 483(高) x 669(深)(毫米)含智能装载机质量(核心单元)28 千克(43 千克,带智能装载机)电源要求1Ø , AC100-120V/200-240V 50/60Hz 15A特征水平差分三线圈平衡的精确补偿紧凑型炉子大大加快了加热和冷却速度动态TG测量模式逐步等温分析(SIA)方法恒速控制(CRC)方法测量温度范围标准型号:室温至 1100°C高温型号:室温至1500°C样品观察模型:环境温度至1000°C
    留言咨询
  • 同步热分析将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。相比单独的 TG 与/或 DSC 测试,具有如下显著优点: 1、通过一次测量,即可获取质量变化与热效应两种信息,不仅方便而节省时间,同时由于只需要更少的样品,对于样品很昂贵或难以制取的场合非常有利。2、消除称重量、样品均匀性、升温速率一致性、气氛压力与流量差异等因素影响,TG 与 DTA/DSC 曲线对应性更佳。3、根据某一热效应是否对应质量变化,有助于判别该热效应所对应的物化过程(如区分熔融峰、结晶峰、相变峰与分解峰、氧化峰等)。4、实时跟踪样品质量随温度/时间的变化,在计算热焓时可以样品的当前实际质量(而非测量前原始质量)为依据,有利于相变热、反应热等的准确计算。 产品特点 1、炉体加热采用贵金属镍铬合金丝双排绕制,减少干扰,更耐高温。2、托盘传感器,采用贵金属镍铬合金精工打造,具有耐高温,抗氧化,耐腐蚀等优点。3、供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。4、采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。5、主机采用水域恒温装置隔绝加热炉体对机箱及微热天平的热影响。6、采用32bit ARM处理器Cortex-M3内核,采样速度,处理速度更快捷。7、24bit四路采样AD对DSC信号及TG信号和温度T信号进行采集。8、可根据客户要求更换炉体。 技术参数:型号HS-STA-002显示方式24bit色,7寸 LCD触摸屏显示TG量程1mg~2g ,可扩展至30gTG精度10ug温度范围室温~1150℃温度分辨率0.01℃温度波动±0.1℃温度精度±0.1℃温度重复性±0.1℃DSC量程±700mWDSC分辨率0.001mWDSC解析度0.001mW升温速率0.1~80℃/min冷却时间15min (1000℃…100℃)控温方式升温,恒温,降温程序控制可实现四段升温控制,特殊参数可定制曲线扫描升温扫描气氛控制气两路自动切换(仪器自动切换)气体流量0-300mL/min气体压力≤0.5MPa恒温时间0~300min 可任意设定数据接口标准USB接口工作电源AC220V/50Hz外形尺寸470*580*460 (长宽高)单位mm 武汉大学采购我司同步热分析仪 贵州大学对我司HS-STA-002同步热分析仪评价和晟同步热分析仪在部分高校研究所应用实例1、Pickering乳液聚合法制备聚丙烯酸酯及其对WPU的改性研究 武汉理工大学2、生物质活性炭及其复合材料的制备与应用研究天津科技大学3、玉米芯基活性炭的制备及其对亚甲基蓝吸附性能的研究 天津科技大学4、高内相乳液模板法制备聚合物基多孔碳及其电化学性能的研究福州大学5、基于磁分离技术的油页岩原位开采实验长春工程学院勘查与测绘工程学院6、燃烧型催泪弹主装药热解特性及动力学研究武警工程大学7、基于均匀设计法的燃烧型催泪弹主装药配方设计武警工程大学
    留言咨询
  • 差热分析仪 400-860-5168转1840
    技术参数:DSC0901 差热分析仪 仪器严格按照国标GB17391-1998和ISO/CD11357/6设计生产,在程序温度控制(等速升温、降温、恒温和循环)下,测量物质的质量(或重量)随温度变化的一种热分析仪器。用以测定物质的脱水、分解、蒸发、升华等在某特定温度下所发生的质量(或重量)变化,如金属有机物的降解、煤的组分、聚合物的热稳定性、催化剂的筛选、炸药的性能以及反应动力学的研究等。产品主要面向工业用户、科研与教学,广泛应用于各类材料与化学领域的新品研发,工艺优化与质检质控等。主要测量与热量有关的物理和化学的变化,如物质的熔点熔化热、结晶点结晶热、相变反应热、热稳定性(氧化诱导期)、玻璃化转变温度等 主要技术参数: 1:差热量程:± 2000 uV; 2:DSC量程 :± 10、± 20、± 50、± 100、± 160、± 200 mW,可自动切换; 3:温度范围:常用工作温度:室温~450℃,室温 ~ 1150 ℃, ~ 1400 ℃, ~ 1650 ℃多种规格供选择。升温速率:0.1 ~ 30 ℃/min可设定; 4:温控方式:升温、恒温、降温,带PID智能控制系统; 5:显示方式:可通过液晶显示或上位机显示; 6:数据处理:采用智能软件实现各种处理,采用高分辨率A/D(24位bit), 数据采集过程中差热基线可利用软件自动调节,具有差热基线校正功能; 7:气氛控制:气体流量计、气体转换装置,氮气、氧气(气体质量流量计), 8:气体流量:&le 200ml∕min,N2、O2;;9:最大载荷:2g; 10:最小分度值:2ug;11:灵敏度:10ug; 12:热重量程:1 、 2 、 5 、 10 、 20 、 50 、 100 、 200 、 500 、 1000mg; 13:热重微分量程:0.1 、 0.2 、 0.5 、 1 、 2.5 、 10mg/min; 14:输出方式:打印机、记录仪等;15:工作电源:~220V / 50Hz ± 1Hz 。
    留言咨询
  • DZ-STA200同步热分析仪产品介绍:  同步热分析将热重分析TG与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。  测量与研究材料的如下特性:  DSC:熔融、结晶、相变、反应温度与反应热、燃烧热、比热…  TG:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等  DZ-STA200同步热分析仪结构优势:  1.炉体加热采用贵金属镍铬合金丝双排绕制,减少干扰,更耐高温。  2.托盘传感器,采用贵金属镍铬合金精工打造,具有耐高温,抗氧化,耐腐蚀等优点。  3.供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。  4.采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。  5.主机采用隔热装置隔绝加热炉体对机箱及微热天平的热影响。  6.可根据客户要求更换炉体。  控制器、软件优势:  1.采用32bitARM处理器Cortex-M3内核,采样速度,处理速度更快捷。  2.24bit四路采样AD对DSC信号及TG信号和温度T信号进行采集。  3.供电及水域循环部分,单独用8bit单片机进行单独控制,使主机和冷却部分分开,互相不干扰,但两者又紧密连接,冷却部分接受主机的控制。  4.软件与仪器之间采用USB双向通讯,完全实现远程操作,可以通过电脑软件进行仪器的参数设置以及仪器的运行停止。  5.7寸全彩24bit触摸屏,更好的人机界面。TG的校准均在触摸屏上可以实现  技术参数:温度范围室温~1200℃ 温度分辨率0.01℃温度波动±0.1℃升温速率0.1~100℃/min温控方式升温、恒温恒温时间0~300min 任意设定(可拓展72h)冷却时间≤15min(1000℃~100℃)天平测量范围0.1mg~2g 可扩展至5gTG的精度0.01mgTG的解析度0.1ugDSC量程0~±1000mWDSC解析度0.1uW灵敏度0.01mW显示方式24bit色,7寸 LCD触摸屏显示气氛装置内置气体流量计,包含两路气体切换和流量大小控制气氛: 惰性、氧化性、还原性,静态、动态软件智能软件,可对TG、DTG、TG-DSC等曲线进行数据处理、导出EXECL,生成PDF报告,打印实验报表数据接口标准USB接口电源AC 220V 50Hz坩埚类型陶瓷坩埚、铝坩埚软件温度、热焓多点校正,满足不同温度段样品测试
    留言咨询
  • 同步热分析将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。相比单独的 TG 与/或 DSC 测试,具有如下显著优点: 1、通过一次测量,即可获取质量变化与热效应两种信息,不仅方便而节省时间,同时由于只需要更少的样品,对于样品很昂贵或难以制取的场合非常有利。2、消除称重量、样品均匀性、升温速率一致性、气氛压力与流量差异等因素影响,TG 与 DTA/DSC 曲线对应性更佳。3、根据某一热效应是否对应质量变化,有助于判别该热效应所对应的物化过程(如区分熔融峰、结晶峰、相变峰与分解峰、氧化峰等)。4、实时跟踪样品质量随温度/时间的变化,在计算热焓时可以样品的当前实际质量(而非测量前原始质量)为依据,有利于相变热、反应热等的准确计算。 产品特点 1、炉体加热采用贵金属镍铬合金丝双排绕制,减少干扰,更耐高温。2、托盘传感器,采用贵金属镍铬合金精工打造,具有耐高温,抗氧化,耐腐蚀等优点。3、供电,循环散热部分和主机分开,减少热量和振动对微热天平的影响。4、采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。5、主机采用水域恒温装置隔绝加热炉体对机箱及微热天平的热影响。6、采用32bit ARM处理器Cortex-M3内核,采样速度,处理速度更快捷。7、24bit四路采样AD对DSC信号及TG信号和温度T信号进行采集。8、可根据客户要求更换炉体。 技术参数:型号HS-STA-002显示方式24bit色,7寸 LCD触摸屏显示TG量程1mg~2g ,可扩展至30gTG精度10ug温度范围室温~1150℃温度分辨率0.01℃温度波动±0.1℃温度精度±0.1℃温度重复性±0.1℃DSC量程±700mWDSC分辨率0.001mWDSC解析度0.001mW升温速率0.1~80℃/min冷却时间15min (1000℃…100℃)控温方式升温,恒温,降温程序控制可实现四段升温控制,特殊参数可定制曲线扫描升温扫描气氛控制气两路自动切换(仪器自动切换)气体流量0-300mL/min气体压力≤0.5MPa恒温时间0~300min 可任意设定数据接口标准USB接口工作电源AC220V/50Hz外形尺寸470*580*460 (长宽高)单位mm 武汉大学采购我司同步热分析仪 贵州大学对我司HS-STA-002同步热分析仪评价和晟同步热分析仪在部分高校研究所应用实例1、Pickering乳液聚合法制备聚丙烯酸酯及其对WPU的改性研究 武汉理工大学2、生物质活性炭及其复合材料的制备与应用研究天津科技大学3、玉米芯基活性炭的制备及其对亚甲基蓝吸附性能的研究 天津科技大学4、高内相乳液模板法制备聚合物基多孔碳及其电化学性能的研究福州大学5、基于磁分离技术的油页岩原位开采实验长春工程学院勘查与测绘工程学院6、燃烧型催泪弹主装药热解特性及动力学研究武警工程大学7、基于均匀设计法的燃烧型催泪弹主装药配方设计武警工程大学
    留言咨询
  • 产品概述: 综合热分析将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。 研究材料的如下特性: 熔融、结晶、相变、反应温度与反应热、燃烧热、比热... 热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成分比例计算... 产品应用: 综合热分析仪应用于大多数材料领域,包括塑料、橡胶、合成树脂、纤维、涂料、油脂陶瓷、水泥、玻璃、耐火材料、燃料、医药、食品、耐火材料等。技术参数:产品型号:ZCT-1型 温度范围:室温-1000度 升温速率:0.1~100℃/min 降温速率:0.1~40℃/min 温度灵敏度:0.1℃ 差热量程±10~±1000uV 差热灵敏度:0.01μV 差热准确度:0.1μV 软件模拟DSC:±1~±100mW DSC灵敏度:0.1uW 热重量程:1-200mg,更换支撑杆可达5g 热重灵敏度:0.1ug 热重准确度:1ug 热重噪声:1ug 热重微分量程:1-100mg/min自动调零范围:0~999mg 真空度:2.66X10-2Pa 气氛控制:双路稳压稳流控制,(可定制各种耐腐蚀性气氛控制系统)坩埚:标配氧化铝0.06ml或0.12ml,选配铝坩埚、铜坩埚、铂金坩埚、石英坩埚、石墨坩埚 恒温水浴(选配):温度准确度±0.1℃ 恒温控制器(选配):质谱连接头、控制器温度范围0~400℃输出方式:品牌计算机、激光打印机 特点:整机一体化,结构合理,机械性能稳定炉体自动升降,简化操作采用高集成化的采集和控制系统,自动化程度高立式结构,顶部装样,操作方便,不易损坏,防止样品炉体。多种加热炉、适用于更多领域,用户可自行更换,简单方便电脑采集信号,软件界面友好,适用于win7、win8、win10系统极好的扩展性,可与红外分析仪(FTIR)、质谱仪(MS)、气相色谱仪(GC)联用
    留言咨询
  • 汇诚仪器 同步热分析仪 HCYQ-STA-1250产品简介:同步热分析仪将热重分析TGA与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。仪器用途:测量与研究材料的如下特性:DSC:熔融、结晶、相变、反应温度与反应热、燃烧热、比热等。TGA:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等。同步热分析仪主要特点:1. 天平自带内部校准功能,具有更好的准确性和重复性。 2. 采用进口合金传感器,更抗腐蚀,抗氧化,传感器灵敏度高。3. 炉体加热采用贵金属合金丝绕制,减少干扰,更耐高温。4. 完善的气氛控制系统,软件设置自动切换,数据直接记录在数据库中。5. 采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更精确。6. 采用USB双向通讯,完全实现智能操作。7. 采用7寸24bit色全彩LCD触摸屏,实时显示仪器的状态和数据。8. 采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。9.自动生成测试报告并打印。软件内置试验记录、数据处理和报告格式,自动出具实验报告同步热分析仪技术参数: 1. 温度范围: 室温~1250℃2. 温度分辨率: 0.01℃3. 温度波动: ±0.1℃4. 升温速率: 0.1~100℃/min 5. 温控方式: 升温、恒温6. 天平测量范围: 0.01mg~2g 7. 解析度: 0.01mg8. DSC量程: 0~±500mW9. DSC解析度: 0.01mW10. 恒温时间: 0~300min 任意设定11. 显示方式: 汉字大屏液晶显示12. 气氛:惰性、氧化性、还原性、静态、动态13. 气氛装置: 内置气体流量计,包含两路气体切换和流量大小控制14. 软件: 智能软件可自动记录TG曲线进行数据处理、打印实验报表15. 数据接口: 标准USB接口,专用软件(软件不定期免费升级)16. 电源: AC220V 50Hz
    留言咨询
  • 美国 TA DSC Q系列差热分析仪TA仪器是全球热分析技术的ling导者,而差示扫描量热仪(DSC)则是TA的核心技术之一。在位于美国Delaware州New Castle的TA仪器拥有国际标准化生产线,TA仪器能够满足任何应用需求或预算的限制,同时TA公司以完善的客户服务和支持回报客户,这些都是TA仪器公司的出众之处。美国 TA DSC Q系列差热分析仪在过去的5年中,我们始终致力于提高DSC的基本测试技术,如今,我们很自豪地为您介绍zui新DSC研发成果——Q2000,Q200和Q20。DSC测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是DSC的研究领域。TA 仪器公司的zui新Tzero零技术,是DSC发展历程中的一项革新性技术,大大提高了基线的稳定性、测量的灵敏度和解析度。Tzero技术可以直接测量热容Cp,并且能大大提高调制DSC实验的速度和精确度。每一款全新的DSC测试系统都空前地提高了DSC的性能水平。- Q2000,zuiding级的DSC产品,高级T零技术和MDSC,温度范围(配低温系统):-180至725℃- Q20,常规DSC和质量控制用DSC,温度范围(配低温系统):-180至725℃- Q20P,压力DSC,zui大压力 7MPa,温度范围(配低温系统):-130至725℃- AQ20, 标准配有自动进样器的DSC,特别适用于多样品检验的质量控制。- 全新的T零技术,更好的解析度和分辨率以及更好的基线稳定性- 调制DSC技术,将总热流分为可逆和不可逆热流,便于解释实验结果- 触摸屏,直观方便;- 数字式气体质量流量计,精确控制吹扫气体流量,数据直接记录在数据库中;- 多种环境控制系统,可以实现快速降温和恒温系统;- zhuan利的“白金软件”允许使用者在仪器非繁忙运作的时隙,安排进行一系列的功能运作,包括自动诊断、自动校准和自动查证。- 全新的Tzero压片机,可适用于多种标准和密封样品盘。多种模块用不同颜色表示,依靠磁性进行安装且不需要工具,便于更换。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制