当前位置: 仪器信息网 > 行业主题 > >

颗粒燃料热定仪

仪器信息网颗粒燃料热定仪专题为您提供2024年最新颗粒燃料热定仪价格报价、厂家品牌的相关信息, 包括颗粒燃料热定仪参数、型号等,不管是国产,还是进口品牌的颗粒燃料热定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合颗粒燃料热定仪相关的耗材配件、试剂标物,还有颗粒燃料热定仪相关的最新资讯、资料,以及颗粒燃料热定仪相关的解决方案。

颗粒燃料热定仪相关的资讯

  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值 3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)1%,具有高度的重复性。 激光衍射法通常测量的是催化剂浆料中碳载催化剂团聚物的粒度分布。分散良好的催化剂浆料中,碳载催化剂团聚物典型的粒度范围在 100 nm 至 1 µm 之间。但是图 5 中可以观察到100nm 以下的颗粒,表明在分散过程中能量输入过高导致铂催化剂颗粒从载体上脱落,使浆料过度分散。众所周知,催化剂颗粒的粒度对电池性能影响很大。如果催化浆料分散不好,会导致催化剂利用率和传质效率下降,降低电池性能。适当的分散能够改善催化浆料的分散状态(进而改善电池的整体性能),但过度分散也会导致催化剂颗粒从碳载体上脱落,最终影响电池性能。 激光衍射法也可以研究颗粒的易碎性,优化分散过程。将铂担载量40%的Vulcan XC72R 碳载催化剂粉末加入到异丙醇中,在剪切条件下进行分散,使用Mastersizer 3000监测浆料粒度随剪切时间的的变化。如图 6 所示,随着剪切时间的延长,10-100 µm 团聚体颗粒的数量减少,而 10µm 以下的颗粒数量增加。2 小时后,仍有大量团聚物 (10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al, J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 德国RETSCH(莱驰)参加全国颗粒学术会议
    德国RETSCH(莱驰)参加全国颗粒学术会议报道 2008年6月18日,第七届全国颗粒测试学术会议暨2008年上海市颗粒学会年会在风景秀丽的湖南张家界隆重召开,来自全国各高校、质检机构、石化、研究所、标准协会、粒度仪制造厂家等一百多位专家、学者出席了此次盛会,德国RETSCH(莱驰)公司作为会员单位,也很荣幸地参与此次大会。 大会由珠海欧美克科技有限公司张福根博士和济南微纳颗粒技术有限公司任中京教授两位国内粒度分析资深专家主持,钢铁研究总院胡荣泽教授和上海市颗粒学会理事长蔡小舒教授分别致辞,他们指出,举办此学会会议的目的在于加强行业内和行业间的横向交流,推动粒度测试技术的发展和标准化,加强仪器制造厂家(尤其是进口仪器)和国内用户的沟通,加强科研院校与企事业单位的沟通,加快分析方法的研究和标准化的制定。随后,来自上海理工大学、华东理工大学、中山大学、同济大学、中南大学等十几位学者分别做了精彩的报告,会议的学术气氛非常浓厚。 会议期间,许多粒度仪供应商均借此机会宣传了其最新的产品和技术,RETSCH也和一些专家学者进行了交流,大家对RETSCH的粉碎研磨筛分设备表示了肯定和极大的兴趣,比如行星式球磨仪PM系列、混合球磨仪MM400、筛分仪AS200、击打式筛分仪AS200tap、自动分样仪PT100等。在谈到粒度分析技术时,专家们都肯定了激光粒度仪作为粒度测量的主流技术,应该还能在中国保持持续的增长,但是未来几年,用户对颗粒形态方面的研究也会越来越多,尤其是动态的粒径形态分析以及对非规则颗粒的形态表征。此外,粒度分析的取样代表性和测试重现性也会更多的引起关注和重视。 此次会议对RETSCH公司而言,是一次非常好的体验和交流,RETSCH公司的多功能粒径分析仪Camsizer正是一台以粒形分析为主的测试仪器,它采用了双镜头的专利设计,测量范围广,对于大颗粒也能进行测量,进样量大,具有代表性,可分析粒度大小、个数、分布、球形度、对称性、密度、表面积等综合信息,并实时保存图像,对非规则颗粒,有着更为正确的粒径表征。不同于激光粒度仪,它无需输入折射率;不同于筛分仪,它更省时省力;不同于显微图像法,它表征的是颗粒各个方向上的动态数据,因此Camsizer特别适用于催化剂、聚合物、玻璃准、标准物、食品、饲料、岩矿、地质等行业的应用。 如需详细资料,请联系:021-61506046 德国莱驰―――精于工,卓于质!
  • 赛默飞电镜Apreo2在质子交换膜燃料电池中的应用
    燃料电池作为一种利用氢气或醇类的发电设备,通过电化学反应将氢气或醇类的化学能直接转化为电能,不受卡诺循环(Carnot cycle)的限制,具有高效和清洁的特点,在新能源领域受到广泛的关注,并在航空航天、运载交通和便携移动设备中具有良好的应用前景。 燃料电池按照电解质和工作温度的不同,可以分为:质子交换膜燃料电池(Proton exchange membrane fuel cells,PEMFC)、固体氧化物燃料电池(Solid oxide fuel cell,SOFC)、熔融碳酸盐燃料电池(Molten carbonate fuel cell,MCFC)、磷酸盐燃料电池(Phosphoric fuel cell,PAFC)和碱性燃料电池(Alkaline fuel cell,AFC)等。其中,PEMFC被看作是新能源车辆领域中具有发展前景的动力源。图1 燃料电池的分类及技术状态 PEMFC的发展可以追溯到20世纪60年代,美国国家航空航天局(NASA)委托美国通用电器公司(GE)研制载人航天器的电池系统。但受当时技术的限制,PEMFC采用的聚苯乙烯磺酸膜在服役时易于降解,导致电池寿命很短。GE随后将电池的电解质膜更换为杜邦公司(Du Pont)的全氟磺酸膜(Nafion)部分解决了上述问题,但是阿波罗(Appollo)登月飞船却搭载了另一类燃料电池——AFC。受此挫折之后,PEMFC技术的研发一直处于停滞状态。 直到 1983年,加拿大巴拉德动力公司(Ballard Power System)在加拿大国防部资助下重启 PEMFC的研发。随着材料科学和催化技术的发展,PEMFC技术取得了重大突破。铂/碳催化剂取代纯铂黑,并且实现了电极的立体化,即阴极、阳极和膜三合一组成膜电极组件(Membrane electrode assembly,MEA),降低了电极电阻,增加了铂的利用率。20世纪90年代以后,电化学催化还原法和溅射法等薄膜电极的制备技术进一步发展,使膜电极铂载量大幅降低。性能的提升和成本的下降也促使 PEMFC逐渐从军用转为民用图2 燃料电池汽车历史 质子交换膜燃料电池(PEMFC)由阳极、质子交换膜、阴极组成,利用水电解的逆反应,连续地将氢气和氧气通过化学反应直接转化为电力,并且可以通过多个串联来满足电压需求。 PEMFC发电的基本原理:氢气进入燃料电池的阳极流道,氢分子在阳极催化剂的作用下达到 60℃左右后开始被离解成为氢质子和电子,氢质子穿过燃料电池的质子交换膜向阴极方向运动,因电子无法穿过质子交换膜,所以通过另一种电导体流向阴极;在燃料电池的阴极流道中通入氧气(空气),氧气在阴极催化剂作用下离解成氧原子,与通过外部电导体流向阴极的电子和穿过质子交换膜的氢质子结合生成纯净水,完成电化学反应。图3 质子交换膜燃料电池(PEMFC)工作原理 膜电极(Membrane Electrode Assembly, MEA)是燃料电池发电的关键核心部件。膜电极由质子交换膜(PEM)、膜两侧的催化层(CL)和气体扩散层(GDL)组成,燃料电池的电化学反应发生在膜电极中。质子交换膜的功能是传递质子,同时隔离燃料与氧化剂。目前常见的膜材料是全氟磺酸质子交换膜,代表厂家Gore公司的Gore Select增强型质子交换膜、杜邦公司的Nafion系列。 催化剂主要控制电极上氢和氧的反应过程,是影响电池活化极化的主要因素。目前氢燃料电池的催化剂主要为三个大类:铂(Pt)催化剂、低铂催化剂和非铂催化剂。Pt作为催化剂可以吸附氢气分子促成离解,是目前需要商用的;但Pt稀缺性强,我国储量也不丰富,减少铂基催化剂用量是降低燃料电池系统商用成本的重要途径。 气体扩散层的主要作用是支撑催化层,传递反应气体与产物,并传导电流。基材通常为多孔导电的材质,如炭纸、炭布,且用PTFE等进行憎水处理构成气体通道。目前市场上商业化的气体扩散层基材供应商主要包括日本Toray、德国SGL与Freudenberg、加拿大Ballard等。 三位一体检测系统是 Apreo 2 扫描电镜独特的镜筒内检测系统。它由三个探测器组成:两个极靴内探测器(T1、T2)和一个 镜筒内探测器(T3)。这一独特的系统可提供燃料电池膜电极MEA成分、形貌和表面特征等不同层次的详细信息。 图4 赛默飞电镜及三位一体检测系统示意图图5 膜电极MEA示意图对其对应的显微结构 MEA的结构设计和制备工艺技术是燃料电池研究的关键技术,它决定了燃料电池的工作性能。 另外,质子交换膜PEM是燃料电池的核心部件。它的性能高度依赖于燃料电池电堆的堆叠和系统设计,尤其是PEM所经受的工作条件。这项看似微小的技术却是关键所在。燃料电池在实际应用环境中的耐久性是另一个关键性能因素。根据美国能源部的规定,在实际环境中行驶的条件下,燃料电池使用寿命应达到约5,000小时。为了达到这些目标,PEM设计必须考虑两种类型的耐久性,机械耐久性和化学耐久性。 机械耐久性:工作过程中的相对湿度循环会导致PEM的机械性能衰减。相对湿度的升高和降低会引起PEM膨胀和收缩,从而导致MEA中出现裂纹和孔洞。久而久之,这会造成气体渗透增加以及效率损失,并导致燃料电池电堆发生灾难性故障。通常,未经增强的PEM会通过增加厚度来提升耐久性,导致电导率降低,因此功率密度也更低。业内已广泛认可,化学稳定性优异的ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂,三明治结构)可显著减少这种面内膨胀,提高RH循环耐久性,并延长电池电堆的使用寿命。图6 膜电极的横截面显微结构图,ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂) 化学耐久性: 燃料电池需要在恶劣的化学环境中工作。燃料电池工作过程中产生的有害自由基会与离子聚合物 (全氟磺酸树脂是一种离子聚合物)发生反应,造成离子聚合物性能下降,这种性能衰减会造成燃料电池性能的持续下降,增加气体渗透,并导致PEM和燃料电池失效。PEM的化学耐久性不仅受PEM的自身属性影响,还受PEM的工作环境影响。减少PEM厚度有助于改善高温下的性能。因此,对不同结构层厚度的准确测量,就非常重要。 催化层中的催化组分为催化剂,目前Pt/C载体型催化剂是PEMFC常用的催化剂,由纳米级的Pt颗粒(3-5nm)和支撑这些Pt 颗粒的大比表面积活性炭(20-30nm)构成。质子交换膜燃料电池商业化进程中的主要阻碍之一是价格高昂的贵金属催化剂,从而大量的研究工作集中于开发新型催化剂以降低铂载量和增强催化剂的耐久性。催化剂的合成方法决定催化剂的结构、表面形貌和粒径分布等,这也将直接影响催化剂的性能。图7 膜电极组催化层的纳米pt催化剂,3-5nm:(左图)T1探测器检测,(右图)T3探测器检测图8 膜电极组催化层的纳米pt催化剂,3-5nm:VeriosTLD 探测器检测 50万倍和150万倍(底片显示) PEMFC的催化层是由各种不同尺度的颗粒和孔组成的,其内部的物理化学过程十分复杂,包括电化学反应、电子的迁移、氢气和氧气的扩散、质子的迁移和扩散,还有水的迁移、扩散、渗透、蒸发和液化,这一切的实现都离不开催化层的微孔结构。 催化层是由黏结剂( 如Nafion 或PTFE) 黏结起来的 Pt /C 颗粒的团聚体组成的,各颗粒之间有许多的微孔。Watanabe 等将催化层内的孔分为两大类: 一类是颗粒团聚体内部各颗粒之间较小的空隙,被称为主孔(孔径小于100nm的孔属于主孔) 另一类则是各颗粒团聚体之间的空隙,被称为次孔(大于100nm 的孔属于次孔)1。催化层内的电催化反应主要发生在主孔内,而作为黏结剂的PTFE更容易进入次孔,次孔是气体和水传输的主要通道。 备注1:Shin 等实验发现,催化层中只有孔径在70nm 以下的孔才不会被聚合物阻塞住,表明其主、次孔的分界为 70nm;Uchida 等认为主、次孔孔径分界为 40nm,由于全氟磺酸树脂和PTFE-C只会存在于次孔中。 催化层的结构,主要指的就是其微孔结构,由于主孔和次孔的不同作用,不同的微孔总容量和主、次孔容量比将导致迥异的电池性能。根据主、次孔理论,主孔较多时,可增加活化反应位,有利于减少催化层内的活化损失 次孔较多时,有利于质量传输,可减少质量传输损失。因此,维持足够数量的孔隙率和较好的主、次孔比例成为了研究催化层结构优化所要关注的重点。赛默飞电镜的孔径分布软件可满足此需求。图9 催化层结构孔隙率检测 目前,大多数 MEA 的催化层都是由一定比例的电催化剂( 如 Pt /C) 和 Nafion 组成。在常用 MEA中Nafion 在催化层中的作用有以下 3点: ( 1) 将电化学反应活性区扩大延伸至催化层内部,并有效传导质子 ( 2)黏结作用,保持催化层的机械稳定性 ( 3) Nafion上的亲水基团有保湿作用,防止膜脱水。 尽管在催化层中加入一定量的 Nafion 能有效提高催化剂的利用率,但是催化层中 Nafion含量若过多,不仅会大量覆盖 Pt /C 颗粒,阻碍电子传导,还可能阻塞催化层内部的微型孔,导致内部水和反应气体的传输通道受阻,这样会大大减弱电池的性能,尤其是在高电流密度时的性能。因此关于催化层中 Nafion 与催化剂的比例问题,以及如何识别三相1,一直受到研究者们的广泛关注。 备注1:在PEMFC中,位于三相区(3-phase region)的Pt颗粒会参与反应,通常三相区表示载体C、催化剂Pt、离聚物(Ionomer,如全氟磺酸)图10 催化层离聚物与三相反应区。 Apreo 2可以快速识别离聚物/C、Pt/C及三相区 PEMFC的普及和商业化目前还受电池性能和价格的影响,MEA催化层结构的不断改善也是PEMFC 实现商业化的有效途径之一。参考资料1.Warshay M, Prokopius PR. The fuel cell in space: yesterday, today and tomorrow [J]. Journal of Power Sources, 1990, 29: 193-200.2.Steele BCH, Heinzel A. Materials for fuel-cell technologies [J]. Nature, 2001, 414(6861):3.Sharaf OZ, Orhan MF. An overview of fuel cell technology: fundamentals and applications [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853.4.苏凯华. 新型质子交换膜燃料电池催化层结构及其性能研究 [D]. 上海: 上海交通大学, 2015.5. 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件 [J]. 化学进展, 20156. 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构 [J]. 化学进展, 2012, 24(10): 1906-19137. Kim K H, Lee K Y, Kim H J, et al. The effects of Nafion ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method[J]. International Journal of Hydrogen Energy, 2010, 35(5): 2119-2126.8. Uchida M, Aoyama Y, Eda N, et al. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE‐loaded carbon on the catalyst layer of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 1995, 142(12): 4143.9. Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of power Sources, 2004, 131(1-2): 41-48.10. Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—A review[J]. Journal of Power Sources, 2012, 208: 96-119.11. Proton exchange membrane fuel cells: materials properties and performance[M]. CRC press, 2009.
  • 关于举办第十二届中国颗粒大会的通知 (第五轮)
    关于举办第十二届中国颗粒大会的通知(第五轮)各有关单位和科技工作者:为促进颗粒与粉体相关领域学术交流、推动学科发展和技术创新及助力人才成长,由中国科学技术协会指导,中国颗粒学会主办,中国颗粒学会能源颗粒材料专业委员会、海南大学承办,由广州大学、华南理工大学、北京海岸鸿蒙标准物质技术有限责任公司等共同协办的第十二届中国颗粒大会(The 12th China Congress on Particle Technology(CCPT12))将于2023年4月21-24日在海南省海口市举办。第十二届中国颗粒大会会议主题为“创新助力双碳,绿色赋能发展”。本届大会是应我会发展需要、继承我会历届学术年会的全国性高层次的颗粒学领域大型综合性学术会议。大会围绕颗粒学相关领域的科研进展、产业发展和人才成长等展开交流,面向广大颗粒学与粉体行业及其化工、能源、材料、医药和环境等相关领域科技工作者征集科技论文(摘要)。2022年度中国颗粒学会奖励将在大会上组织颁奖。大会还将评选青年报告奖及优秀墙报奖,欢迎投稿参会。中国颗粒大会同期将举办颗粒/粉体仪器、设备、产品和应用展,包括颗粒/粉体测试分析仪器、制备设备、产品及其在化工、能源、材料、医药和环境等中的应用等内容,欢迎相关单位积极报名参展。中国颗粒学会颗粒学奖的相关信息也将在大会期间展出,敬请关注。一、学术委员会(*为中国台湾代表)(1)学术委员会主席:李静海(2)学术委员会执行主席:朱庆山 陈运法 林鴻明* 彭 峰 (3)学术委员会顾问:李 灿 孙世刚 马光辉 陈建峰 陈晓东 郭 雷 郭烈锦 何鸣元 胡 英 李洪钟 刘中民 彭 峰 王静康 谢在库 徐春明 余艾冰 袁 权 张锁江 Jesse Zhu(4)学术委员会委员(按音序排列)艾德生 安太成 安希忠 白博峰 蔡 挺 蔡小舒 曹军骥 曹少文 曹学武 常 津 陈 诚 陈嘉媚 陈建峰 陈建新 陈 岚 陈明君 陈 鹏 陈前进 陈巧艳 陈胜利 陈填烽 陈晓东 陈学元 陈永奇 陈 煜 陈运法 程国安 程义云 程振民 楚锡华 褚良银 崔福德 邓德会 邓茂华* 董青云 费广涛 冯 春 冯立纲 冯 胜 付信涛 付 艳 傅晓伟 傅彦培* 高思田 高 峡 高 原 戈 钧 葛宝臻 葛广路 葛 蔚 宫厚军 龚湘君 谷海峰 顾卫国 顾兆林 顾 臻 桂 南 郭 雷 郭烈锦 郭庆杰 郭少军 韩 鹏 韩永生 韩 召 郝红勋 郝新友 何鸣元 何 勤 何羽薇 何玉荣 侯曙光 胡富强 胡 钧 胡小晔 胡晓林 胡 英 胡宇光* 胡子平 胡宗定 皇凡生 黄 挺 黄肇瑞* 纪红兵 季顺迎 季松涛 贾春满 江燕斌 姜晓斌 金一政 靳海波 康毅力 库晓珂 李朝升 李 春 李春忠 李 泓 李江涛 李 力 李 攀 李 旗 李顺诚 李铁军 李 霞 李相臣 李星国 李亚平 李亚伟 李映伟 李永旺 李增和 李兆军 梁海伟 廖永红 林 冲 林鸿明 林中魁* 刘宝丹 刘道银 刘福胜 刘 刚 刘俊杰 刘明言 刘潜峰 刘如熹* 刘 涛 刘 伟 刘亚男 刘 宇 刘岳峰 刘兆清 刘 铮 刘中民 刘忠文 刘钟馨 卢春喜 卢寿慈 陆 杰 陆 明 罗 坤 罗 勇 罗正鸿 骆广生 吕且妮 吕万良 吕友军 马光辉 马建民 马学虎 毛世瑞 梅其良 倪木一 聂广军 潘良明 潘勤鹤 彭 峰 彭 威 平 渊 秦和义 秦明礼 邱郁菁* 任 飞 任国宾 邵刚勤 佘继平 沈建琪 沈少华 沈义俊 沈志刚 宋宏伟 宋少先 宋锡滨 宋兴福 蘇程裕* 苏 敏 苏明旭 孙世刚 孙学军 孙 逊 孙 彦 孙中宁 谈玲华 谭援强 陶东平 陶绪堂 田庆国 佟立丽 王 丹 王德忠 王等明 王海龙 王 昊 王 辉 王静康 王利民 王 亮 王勤辉 王铁峰 王 伟 王孝平 王辛龙 王新明 王兴亚 王学重 王彦飞 王燕民 王 勇 王玉金 王玉军 王远航 王兆霖 王震宇 韦文诚* 魏 飞 魏进家 魏 炜 魏严凇 魏永杰 文利雄 吴传斌 吴汉平 吴立敏 吴 伟 毋 伟 伍志鲲 席广成 夏宝玉 向中华 解荣军 谢在库 谢志鹏 徐春明 徐 林 徐 强 徐维林 徐文杰 徐锡金 徐喜庆 许成元 许传龙 许人良 许文祥 薛冬峰 薛 琨 颜富士 杨 柏 杨 斌 杨 超 杨多兴 杨 芳 杨 军 杨 宁 杨世亮 杨为佑 杨 文 杨晓钢 杨艳辉 杨 毅 杨正红 杨志义 杨治华 杨组金 要茂盛 叶 茂 尹大川 尹秋响 尹诗斌 游利军 于明州 于秋硕 于溯源 于新民 余 方 余 皓 元一单 袁 权 袁友珠 臧双全 曾海波 曾宇平 占昌友 张炳森 张 灿 张春桃 张福根 张国诚 张国军 张 浩 张 洁 张立娟 张 强 张仁健 张铁锐 张伟儒 张文阁 张香平 张现仁 张幸红 张亚培 张永民 张振杰 张志炳 赵吉东 赵晓宁 赵永志 郑耿锋 郑水林 郑宪清* 钟 超 周 强 周素红 周 涛 周文刚 周已欣 周长灵 周志伟 朱华旭 朱 亮 朱庆山 朱晓阳 朱子新 邹晓新 Cheng Lixin Zhao Qi二、 组织委员会(1)组织委员会主席:朱庆山 彭 峰(2)组织委员会执行主席:王体壮(3)组织委员会委员(按音序排列)安太成 白红存 蔡楚江 蔡 建 曹永海 陈常祝 陈 诚 陈 磊 陈鲁海 陈 琦 陈 杨 程新兵 程 源 褚良银 邓培林 邓意达 丁良鑫 董 顺 杜 斌 杜 磊 段洁雯 冯广波 高 原 古霖蛟 管小平 郭 昆 韩秀芝 韩 召 洪长青 黄 巧 黄 玮 黄 欣 贾春满 贾菲菲 江宏亮 经浩然 康振烨 兰清泉 雷小文 李 琛 李 华 李嘉诚 李江涛 李 杰 李 静 李京红 李 攀 李晓明 李鑫磊 李宇航 李兆军 刘宝丹 刘丹彤 刘吉轩 刘俊杰 刘潜峰 刘瑞祥 刘 涛 刘晓雯 刘永卓 刘雨昊 刘兆清 刘钟馨 楼宏铭 卢思宇 罗俊明 吕岩霖 吕页清 马晶晶 马永丽 毛世瑞 穆华仑 聂保杰 欧阳婷 潘勤鹤 彭 峰 彭新文 朴洪宇 乔明曦 任小平 邵 奇 申芳霞 沈丹蕾 石 凯 史晓磊 苏明旭 孙 臣 孙 婧 孙 伟 孙晓晖 唐 星 田红景 田庆国 田新龙 汪 伟 王 标 王春明 王崇太 王东凯 王浩帆 王 欢 王 辉 王军武 王利民 王林桂 王 娜 王 双 王 霆 王晓飞 王兴亚 王艺钧 魏严凇 魏永杰 武云飞 夏芸洁 夏志国 向茂乔 谢智超 熊德华 熊勤钢 徐 骥 徐锡金 徐 政 许传龙 杨光星 杨 丽 杨 柳 杨 宁 杨增朝 要茂盛 叶 茂 尹俊连 余 皓 于明锐 于明州 喻 鹏 岳 华 张 浩 张慧如 张立娟 张 巧 张晓静 张 宇 钟胜奎 周 兰 周丽娜 周 玲 周素红 周 骛 朱晓阳 三、 学术分会场第1分会场:颗粒计算组织单位:大连理工大学、中国科学院过程工程研究所、浙江大学、东北大学、东南大学、华南理工大学分会主席:季顺迎、王利民、罗坤、安希忠、刘道银学术秘书:刘晓雯,华南理工大学,liuxw2021@scut.edu.cn会场简介:聚焦颗粒力学理论及模型、计算分析方法、软件开发和工程应用中的关键问题和难点问题,开展广泛的学术交流和讨论。分会场为力学、化工、能源、冶金、海洋、岩土及土木工程等领域中从事颗粒计算方面专家学者提供一个开放的交流平台,促进多学科的交叉融合,推动颗粒计算在基础理论、数值方法和工程应用中的发展。征文范围:(1)颗粒计算基本理论及数值方法; (2)颗粒计算软件开发及算例验证; (3)颗粒计算在化工、能源、冶金等领域的应用。第2分会场:氢能与燃料电池组织单位:海南大学分会主席:孙世刚学术秘书:田新龙,海南大学,tianxl@hainanu.edu.cn,康振烨,海南大学,zkang@hainanu.edu.cn会场简介:氢能和燃料电池是我国清洁能源发展和研究的重要方向,实现我国“碳减排”和“碳中和”的宏大目标,氢能和燃料电池将发挥着举足轻重的作用。今年初,我国又把氢能技术列为国家未来六大产业之一,氢能和燃料电池都将迎来更好的发展机遇。本次会议将邀请协会(学会)领导、院士、行业知名专家学者及企业代表,就国家相关政策和技术发展、行业科技发展目标和任务进行全面深入的探讨,总结国内外近期开发的氢能与燃料电池先进生产工艺和关键技术,指导我国氢能与燃料电池产业升级,推动我国能源结构调整和可持续发展,期待专家老师和技术人员踊跃参加。征文范围:电催化、电解水、质子交换膜燃料电池、固体氧化物燃料电池、氢能制备及产业化装置等关键科学与技术。第3分会场:工业结晶与粒子过程组织单位:天津大学国家工业结晶工程技术研究中心、中国科学院过程工程研究所、海南大学化学工程与技术学院、大连理工大学分会主席:郝红勋、杨超、姜晓滨、潘勤鹤学术秘书:黄欣,天津大学,022-27403200,x_huang@tju.edu.cn会场简介:分会场聚焦医药、食品、精细化工品、新材料等领域的工业结晶基础理论、结晶过程模型与模拟、结晶工艺开发与放大、工业结晶过程强化与连续化等方向最新研究进展,旨在完善我国工业结晶领域整体理论基础,提升相关方向原始创新能力,促进产学研的合作创新,加速相关行业企业的转型升级。分论坛拟邀请高等院校、科研院所、企业研发部门等领域内知名专家学者,围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与经验。征文范围:(1)工业结晶基础理论; (2)晶体产品形态调控、多晶型预测、筛选与精准制备; (3)结晶工艺开发与放大; (4)工业结晶过程强化及连续化; (5)结晶过程计算流体力学及多相混合过程研究等。第4分会场:多相反应过程中的介科学组织单位:中国科学院过程工程研究所、中国科学院大连化学物理研究所、四川大学分会主席:杨宁、叶茂、褚良银学术秘书:管小平,中国科学院过程工程研究所,xpguan@ipe.ac.cn;汪伟,四川大学,wangwei512@scu.edu.cn;李华,中国科学院大连化学物理研究所,lihua@dicp.ac.cn会场简介:介尺度行为是由大量单元组成的系统在全局与个体之间的尺度上形成的复杂时空结构。介科学是研究介于时空“微尺度”和“宏尺度”之间的介尺度非均匀结构演化规律的科学,在自然、工程和社会科学中具有普遍的理论研究价值和广阔的应用前景,有望开辟新的科学研究范式,探索认识传统学科的共性规律,孕育新的科学前沿;有助于综合整体论和还原论,探索不同知识体系中的共性原理,变革科研范式,揭示科学问题复杂性的根源,解决一系列从基础研究到工程应用的关键科学和技术问题。国际期刊《科学》指出,介科学是科学上的无人区,是科学史上的一个重大事件。多相反应过程的介尺度主要表现在分子到颗粒(包括气泡、液滴等)间的材料表界面时空尺度、以及颗粒到反应器整体间的颗粒聚团时空尺度。征文范围:能源、材料、化工、生物等涉及多相反应过程中材料表界面和反应器/设备等不同层次上的介尺度问题。第5分会场:双碳背景下的流态化技术及应用组织单位:中国颗粒学会流态化专业委员会分会主席:葛蔚、王勤辉学术秘书:王军武,中国科学院过程工程研究所,jwwang@ipe.ac.cn;熊勤钢,华南理工大学,qingangxiong@scut.edu.cn会场简介:流态化技术广泛应用于石油化工、循环流化床锅炉、煤化工、矿物加工等工业过程,在我国工业生产中占有极其重要的地位。国家“双碳”重大战略不但要求我国能源结构的重大调整,而且要求实现产业结构和工业过程的转型升级,这为流态化技术提供历史性发展机遇的同时也提出了重大挑战。本分会场将探讨“双碳”背景下流态化技术的新发展、新应用,为国内外高校、科研院所、企事业单位的同行提供交流平台,共同推动流态化技术的跨越式发展,为国家“双碳”目标的实现做出重要贡献。征文范围:(1)流化床中的流动、传热、传质和化学反应; (2)计算机数值模拟与放大; (3)流化床过程强化技术; (4)流态化及相关技术的工业应用。第6分会场:颗粒助力“双碳”:CO2捕集与催化转化新途径组织单位:宁夏大学、青岛科技大学分会主席:郭庆杰学术秘书:刘永卓,青岛科技大学,0532-84022506,yzliu@qust.edu.cn;马晶晶,宁夏大学,mjj_1022@163.com会场简介:“碳达峰、碳中和”是我国应对全球变暖提出的重大战略目标,而二氧化碳的捕集和利用是实现双碳目标的最直接方式。作为二氧化碳最大排放源,煤炭等化石能源燃烧CO2捕集技术有燃烧前捕集、燃烧中捕集和燃烧后捕集,它们的应用前景主要受制于其捕集成本,化学链、CO2吸附、膜分离等技术具有潜在优势。捕集的二氧化碳主要有封存和利用两种形式,而催化转化制备大宗化学品更具有应用前景。本分会场聚焦面向烟气源、工业源、空气源等不同来源二氧化碳的捕集和催化转化技术,追踪CO2吸附颗粒、催化颗粒、载体颗粒等捕集和转化颗粒最新进展,为我国双碳目标的实现贡献新技术、新思想和新模式。征文范围:(1)CO2吸附材料; (2)化学链技术; (3)CO2其他分离方法; (4)CO2活化技术; (5)CO2-FT合成; (6)CO2捕集-转化耦合技术; (7)多污染物联合脱除技术。第7分会场:微纳气泡特性及其应用组织单位:中国科学院过程工程研究所、中国科学院上海高等研究院、同济大学、北京化工大学、东南大学分会主席:胡钧、李兆军、李攀、张立娟学术秘书:张立娟,中国科学院上海高等研究院,zhanglijuan@sari.ac.cn会议秘书:王兴亚,中国科学院上海高等研究院,wangxingya@zjlab.org.cn;周兰,中国科学院过程工程研究所,010-62521688,lzhou19@ipe.ac.cn会场简介:微纳气泡基础研究和应用是近二十年来发展非常迅速的新兴领域。微纳米气泡技术在环境治理、农业生产、水产养殖、清洗、化工矿产业、消毒杀菌、医学成像以及医疗健康等领域的应用独树一帜、效果出色。微纳气泡专业委员会于2018年10月18日在苏州成立,旨在加强微纳气泡基础研究和应用的科学家和企业家的深入交流和合作,推动相关技术的高效研发和推广。专委会目前会员已经近300人,在国内汇集了一批兴趣浓厚、勇于钻研、乐于分享的科学家、工程师和企业家,共同为微纳气泡技术更好造福人类不懈奋斗!本次分会拟邀请相关领域专家、学者、技术人员、企业界代表围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与成功经验。征文范围:(1)微纳气泡基本性质; (2)微纳米气泡产生技术; (3)微纳气泡检测技术; (4)微纳气泡在各个领域的重要应用; (5)企业家论坛。第8分会场:生物气溶胶组织单位:北京大学、广东工业大学分会主席:要茂盛、安太成学术秘书:申芳霞,北京航空航天大学,fxshen@buaa.edu.cn会场简介:新冠肺炎疫情爆发以来,新冠病毒经气溶胶传播的作用在国内外已形成共识,对其进行持续有效的快速监测和控制对于当前疫情防控有重要意义。空气中除了可能有新冠病毒,还悬浮着大量的其他类型的微生物和生物来源的物质,统称为生物气溶胶,在室外和室内环境空气中无处不在,对人体和环境健康的重要性也逐渐受到关注。对生物气溶胶开展全面深入的基础研究和应用研究,对于改善室内外环境空气质量和保护人体健康至关重要。征文范围:生物气溶胶(包括新冠病毒)采集、检测、灭活、分析及其在大气科学、室内环境和环境健康等方面的基础和应用研究。第9分会场:绿色低碳过程中的气液固多相流科学及应用组织单位:天津大学、中国科学院过程工程研究所、University of Nottingham Ningbo、清华大学分会主席:刘明言、杨宁、杨晓钢、王铁峰学术秘书:马永丽,天津大学,022-27404614,mayl@tju.edu.cn会场简介:气-液、液-固和气-液-固流动系统具有重要的工业应用。例如,气-液鼓泡塔、气-液(固)浆态床、液-固和气-液-固多相流反应装置系统等,可用作多相反应器;汽-液沸腾、汽-液冷凝、泥状颗粒污垢沉积和微纳材料功能表面等涉及到化工等过程工业;对于软物质颗粒,例如:乳状液、泡沫、液滴流等涉及食品、生物和医药等行业领域等。这些多相流的共同特征之一是都存在连续或离散的液相以及真实的相界面,从而形成了易变形、易聚并和易破碎的真实气泡和液滴等软物质颗粒流,使其在流动、混合、传递以及反应等方面表现出特有的规律性,涉及的科学及应用问题可加以详细探讨。征文范围:包括以绿色低碳过程工业为目标的气液固多相流基础及应用内容。具体涉及: (1)气液鼓泡流及浆态床; (2)液固和气液固多相流; (3)池沸腾和流动沸腾; (4)蒸汽冷凝; (5)泥状颗粒污垢表面上的沉积及微纳功能表面抑制; (6)乳状液、泡沫、液滴流等软物质颗粒流; (7)其他含液多相颗粒流。第10分会场:药物制剂与粒子设计组织单位:中国颗粒学会药物制剂与粒子设计专业委员会分会主席:崔福德学术秘书:石凯,pharmparticle@126.com会场简介:本会场交流主题以工业药剂学及高端制剂的研究为中心,广泛征集相关领域的国内外专家学者、企业技术工作者以及在校学生的学术论文,展示其研究成果及新进展、新动态和新成果等。非常欢迎粉体加工技术及设备、药用辅料、以及粉体表征仪器(晶形、粒子形状大小、流动性、压缩成形性等)方面的专家们及企业针对粉体技术在药物制剂中的应用进行广泛交流,以期提高药物制剂技术的科学性、实用性及可生产性。本次分会将是药物制剂领域与粉体技术沟通的盛会,企业与高校、科研院所广泛交流的盛会,理论联系实际的盛会,中国工业药剂学产业化交流的盛会。征文范围:(1)粉体技术在固体药物制剂中的应用; (2)粉体性质的测试技术与研究进展; (3)药用辅料的粉体性质对产品质量的影响; (4)新型制剂设备的应用与研究进展; (5)制剂颗粒质量表征与控制; (6)在固体制剂生产过程中粉体性质的在线测定与控制策略; (7)从实验室研究到产业化过渡的难点与关键问题; (8)药物制剂的新剂型与新技术的产业化前景与难点; (9)基于功能性粒子设计的高端制剂。第11分会场:能源存储颗粒创造美好未来组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:魏飞、张强学术秘书:程新兵,东南大学,chengxb@seu.edu.cn会场简介:能源存储颗粒分会场结合颗粒与能源存储领域中急需解决的关键科学问题和难点技术问题,开展广泛的学术交流和讨论。通过对当前颗粒与能源存储研究现状和发展趋势的交流,凝练颗粒与能源存储的前沿研究方向,确定相应的关键科学问题,推动颗粒与能源存储领域在基础理论、研究方法和工业应用中的发展。征文范围:(1)能源材料(如锂离子电池、电容器、锂硫电池、金属电池、空气电池、燃料电池相关材料); (2)能源颗粒的表征技术; (3)能源颗粒的应用及产业化。第12分会场:面向未来的能源催化颗粒组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:彭峰、余皓、刘兆清学术秘书:王浩帆,华南理工大学,whf@scut.edu.cn;杜磊,广州大学,lei.du@gzhu.edu.cn会场简介:面向未来的能源催化颗粒分会场聚焦双碳目标下的催化关键科学问题,围绕光、电、热催化的前沿理念和创新技术开展广泛的学术交流和讨论,凝练能源催化的前沿研究方向,推动基于颗粒材料的能源催化技术在能源高效利用、CO2催化转化、电化学合成等领域的科学研究和工业应用,通过学术思想的碰撞催生面向未来的能源催化新理念与新技术。征文范围:与能源转化、利用相关的: (1)光催化; (2)电催化; (3)热催化; (4)光电催化。第13分会场:发光颗粒照亮未来组织单位:中国颗粒学会发光颗粒专业委员会、南京理工大学、华南理工大学、郑州大学、海南大学分会主席:曾海波学术秘书:李晓明,南京理工大学,lixiaoming@njust.edu.cn会场简介:发光材料的应用在生活中已经随处可见,从照明显示到医疗诊断再到防伪探测等等,可以说和我们的生活息息相关。在大规模应用的基础上,新型发光颗粒的开发与完善依然是国际研究领域及应用行业的前沿热点,获得了全世界的广泛关注。近年来,以钙钛矿量子点、碳纳米颗粒和荧光金属团簇为代表的纳米发光颗粒取得了飞速的发展,稀土荧光粉在材料体系、波长范围、发光特性等的发展也有目共睹,此外,有机发光颗粒和无机金属卤化物及其在生物医学等领域的研究也获得了较大的关注。经过两年的发展,相关领域更是取得了较大的突破,本分会场将为这些领域提供一个良好的学术交流平台,分享最新研究成果的同时促进交叉合作,为领域的进一步发展提供动力。征文范围:(1)半导体发光颗粒(镉基、铟基、钙钛矿等量子点,及其他微纳米发光材料); (2)稀土发光颗粒(照明、显示用稀土发光颗粒、长余辉发光颗粒、特种功能发光颗粒等); (3)碳及有机发光材料(碳荧光纳米颗粒、聚合物纳米颗粒、有机发光材料等); (4)团簇发光颗粒; (5)发光光谱、发光器件、发光应用及产业化。第14分会场:超微颗粒材料及应用(能源、环保、生物医学等)组织单位:中国颗粒学会超微颗粒专业委员会分会主席:费广涛、林鴻明*、艾德生学术秘书:刘潜峰,清华大学,liuqianfeng@tsinghua.edu.cn;徐锡金,济南大学,sps_xuxj@ujn.edu.cn会场简介:超微颗粒材料及应用分会是海峡两岸超微颗粒学界及产业界一直致力于超微颗粒的制备、表征及其应用方面的研究工作。为定期系统性地总结学界和企业界在超微颗粒方面的最新研究成果,尤其是超微颗粒学科在能量转换与存储、环境修复、生物医学等领域中的应用,同时促进海峡两岸本领域同行之间的学术交流,以及增强产业界与学术界的产学研合作,超微颗粒材料及应用分会为2023年4月21-24日在海南省海口市举办的“第十二届中国颗粒大会”的分会场之一。我们竭诚欢迎海峡两岸从事超微颗粒制备、表征及应用开发研究的科技人员及企业界朋友们踊跃与会,交流研究成果,为本学科的发展集思广益,建言献策,共同持续促进海峡两岸相关领域学者的友谊,为提升海峡两岸的科技水平和经济繁荣做出贡献。征文范围:(1)超微纳颗粒的制备理论、工艺及改性技术(尤其是分散技术); (2)超微颗粒在能量转换与存储、环境修复、生物医学等领域中的应用; (3)超微颗粒测试、标准分析中的基础问题; (4)超微粉体产业化技术中的技术问题。第15分会场:氮化物粉体、制品及应用——制造业升级背景下的新机遇组织单位:中国科学院理化技术研究所、中材高新材料股份有限公司、中国科学院上海硅酸盐研究所、哈尔滨工业大学、安徽工业大学分会主席:李江涛、张伟儒学术秘书:韩召,安徽工业大学,authan@163.com;向茂乔,中国科学院过程工程研究所,mqxiang@ipe.ac.cn;陈常祝,山东工业陶瓷研究设计院有限公司,chzhchen@126.com会场简介:氮化物材料种类丰富,性能多样,在高端装备、集成电路、新能源、生物医学等诸多领域发挥着不可替代的关键作用。在我国“碳达峰”和“碳中和”战略目标驱动下,在制造业升级、不断向高端领域迈进的背景下,以氮化硅、氮化铝、氮化硼为代表的氮化物系列材料的研究和应用,面临众多新的挑战和新的机遇。本次会议邀请国内知名高校、科研院所以及相关企业的专家学者和企业家,共同探讨制造业升级背景下氮化物材料研究和应用的现状、挑战和机遇。征文范围:(1)氮化物粉体的制备、后处理与检测分析; (2)氮化物陶瓷的制备、应用与评价; (3)氮化物涂层和薄膜的制备、应用与评价; (4)氮化物领域的其他研究和应用。第16分会场:核电厂气溶胶行为研究组织单位:清华大学、中国核电工程有限公司、中国原子能科学研究院、东南大学核科学与技术系分会主席:于溯源、周涛、魏严凇、王辉学术秘书:孙婧,中国核电工程有限公司,010-88022429,sunjing@cnpe.cc会场简介:在“碳中和”和“碳达峰”背景下,核电作为一种清洁、低碳、安全和高效的基础性现代能源,具有广阔的发展前景。与一般工业设施相比,核电最主要的特征是具有放射性。在核电厂事故期间,放射性物质以气体、蒸汽、气溶胶的形式释放,其中气溶胶是放射性物质的主要载体。为实现核电“安全与高效”发展,需要对核电厂事故状态下的气溶胶行为进行深入研究。为此,“核电厂气溶胶行为研究”分会场邀请相关科研院所、设计单位及监管审评部门的专家学者及技术人员就核电厂的气溶胶行为进行研讨交流,推动核安全研究,促进核电厂持续发展。征文范围:(1)反应堆冷却剂系统内气溶胶的生成、生长及输运的实验与理论研究; (2)反应堆冷却剂系统内气溶胶的再悬浮和再汽化的实验与理论研究; (3)安全壳内气溶胶生长、输运及沉积的实验与理论研究; (4)放射性气溶胶去除措施研究; (5)气溶胶与安全系统的相互作用研究; (6)核电厂气溶胶行为计算分析程序开发与验证; (7)核电厂气溶胶行为先进数值算法研究。第17分会场:陶瓷粉体及其复合材料设计、评价与应用组织单位:哈尔滨工业大学、东华大学、山东工业陶瓷研究设计院有限公司分会主席:张幸红、张国军、王玉金、周长灵学术秘书:董顺,哈尔滨工业大学,0451-86412259,dongshun@hit.edu.cn;程源,哈尔滨工业大学,cy6810@hit.edu.cn会场简介:先进陶瓷基复合材料具有高比强度、高比模量、耐高温、耐腐蚀、抗疲劳等一系列优异的综合性能,在航空、航天以及发电、核能、化工等民用领域具有重要的应用价值和前景。近年来,国内外在陶瓷粉体及其复合材料的科学理论、技术开发以及产业应用等方面均取得了长足的进步与发展。为进一步提升陶瓷粉体及其复合材料的科学和战略地位,在未来陶瓷基复合材料研究和产业发展中抢占先机,本分会场将从陶瓷粉体、陶瓷基复合材料、超高温陶瓷基复合材料以及极端环境复合材料的设计、制备、评价与应用等技术角度出发,开展全方位、多角度的深入研讨,探索陶瓷粉体及其复合材料技术的未来发展趋势,稳步推动我国陶瓷基复合材料的创新发展。征文范围:(1)陶瓷粉体设计、评价与应用; (2)陶瓷基复合材料设计、评价与应用; (3)超高温陶瓷基复合材料设计、评价与应用; (4)极端环境复合材料设计、评价与应用。第18分会场:颗粒特性与测试组织单位:中国颗粒学会颗粒测试专业委员会、北京粉体技术协会分会主席:葛宝臻、董青云、沈建琪、张福根、周素红、张文阁、韩鹏学术秘书:魏永杰,河北工业大学机械工程学院,yj.wei@163.com;周骛,上海理工大学能源与动力工程学院,usst_wzhou@163.com会场简介:分会场面向颗粒测试方法研究、测试仪器开发与生产、测试技术与仪器应用、测试标准制定等领域,邀请和组织专家、技术人员针对我国粉体、液态和气态颗粒测试研究与应用开展研讨,促进科技创新与创业,实现成果转化,深化颗粒测试在工程实践中的应用,推动我国颗粒测试技术及相关领域标准化等工作。通过学术交流促进专业培训、科技咨询、产学研合作等活动,扶持以激光粒度测试仪器等为主导产品的国内颗粒测试品牌企业。征文范围:(1)微米、纳米颗粒测试理论及新进展; (2)颗粒测试新技术、新方法及创新成果; (3)颗粒关键参数的测试理论与验证; (4)颗粒测试在交叉学科中的应用; (5)颗粒在线测试技术及应用; (6)颗粒测试技术标准化; (7)颗粒标准物质的研制与开发; (8)其它颗粒测试技术与应用。第19分会场:石油与天然气工程颗粒物质力学组织单位:西南石油大学分会主席:康毅力、许成元、林冲学术秘书:郭昆,西南石油大学,02883032118,1459069176@qq.com会场简介:石油和天然气仍是未来经济社会发展必须依赖的主要能源,保证油气安全供给是国家重大战略需求,天然气作为最清洁低碳、灵活高效的化石能源,更是中国能源体系由高碳向低碳、零碳转型的重要抓手。石油与天然气勘探开发过程中,与颗粒物质相关的科学与技术问题普遍存在。颗粒物质力学与颗粒多相流理论是油气井工作液调控、钻井防漏堵漏、天然气水合物开采、水力铺砂压裂、暂堵转向压裂/酸化、地层出砂、煤粉运移、微粒运移等的理论基础之一。本会场围绕油气勘探开发中涉及的颗粒材料力学、颗粒体系结构与强度、颗粒多相流相关最新研究进展开展讨论交流,以期建立石油与天然气工程颗粒物质力学学科新方向,并石油与天然气高效开发提供理论支撑。征文范围:(1)油气井防漏堵漏颗粒材料; (2)水力压裂颗粒材料; (3)钻井岩屑床; (4)油气井工作液与储层保护颗粒材料; (5)油气井出砂与防砂; (6)油气层微粒与煤粉运移堵塞。第20分会场:碳中和目标下的气溶胶科学发展和未来趋势组织单位:中国颗粒学会气溶胶专业委员会、中国科学院大气物理研究所、中国科学院地球环境研究所分会主席:曹军骥、李顺诚、王新明、顾兆林、张仁健学术秘书:武云飞,中国科学院大气物理研究所,wuyf@mail.iap.ac.cn;夏芸洁,北京市气象探测中心,xiayunjie1992@163.com会场简介:国家领导人在第七十五届联合国大会向全世界郑重承诺:中国力争于2030年前实现二氧化碳排放量达到峰值,争取在2060年前实现碳中和,以主动承担应对气候变化的国际责任、推动构建人类命运共同体。实现碳中和必将给我国带来一场广泛而深刻的经济社会变革,也势必对气溶胶性质、气溶胶与天气气候相互作用产生重要影响。本分会场将聚焦碳中和目标下的气溶胶科学问题,展示最新科学研究成果与关键技术进展,探讨碳中和目标驱动下我国大气气溶胶工作面临的新机遇和新挑战,同时服务于我国减污降碳协同增效重大战略。征文范围:(1)碳气溶胶探测技术和新方法; (2)黑碳和棕碳气溶胶的环境影响及气候效应; (3)气溶胶理化特性、采样/监测/分析、源解析; (4)气溶胶生成机理、健康影响和污染控制技术等。第21分会场:吸入递送与疾病治疗组织单位:中国颗粒学会吸入颗粒专业委员会分会主席:王震宇、李旗、陈永奇、李铁军学术秘书:邵奇,上海上药信谊药厂有限公司;王晓飞,上海欧米尼医药科技有限公司,iddchina@126.com会场简介:中国颗粒学会吸入颗粒专业委员会成立于2018年,前身为2013年11月在中国南京成立的民间公益组织“全国吸入给药联盟”。吸入颗粒专委会成员主要包括吸入药物基础研究、药品研发、质量控制、制剂生产、安全性评价、临床药理、临床应用等领域的生产企业、高校院所、医疗机构的专业人士。吸入颗粒专委会以国家政府机关制定的相关药品法律法规政策为导向,以推进中国吸入给药行业的发展,提高国内吸入药物的研发,产品技术标准和临床应用,加快与国际同行业接轨作为创建目标。征文范围:(1)吸入疫苗; (2)大分子吸入颗粒技术; (3)干粉吸入颗粒新工艺; (4)吸入产品中颗粒的表征与质量; (5)吸入装置的开发及应用研究; (6)鼻用颗粒技术的研究; (7)吸入药物的临床研究; (8)吸入颗粒的安全性评价。第22分会场:颗粒制备、处理与应用前沿问题研讨——第十五届全国颗粒制备与处理学术研讨会组织单位:中国颗粒学会颗粒制备与处理专业委员会分会主席:沈志刚、骆广生、郑水林、王燕民、毋伟学术秘书:张晓静,北京航空航天大学,010-82317916,zhangxiaojing@buaa.edu.cn;蔡楚江,北京航空航天大学,010-82316642,ccj@buaa.edu.cn会场简介:为总结和交流近两年来我国颗粒制备与处理领域的最新研究进展,探讨颗粒制备、处理与应用前沿热点问题,促进同行之间的成果交流,同期举办第十五届全国颗粒制备与处理学术研讨会。本分会场主要涉及颗粒制备、处理与应用等方面(包括但不限于二维纳米颗粒、化工颗粒、矿物颗粒、功能性颗粒等各种颗粒的制备与后处理,以及颗粒在二维材料、能源、化工、环保等领域中的应用)。征文范围:(1)颗粒制备方法或理论的新进展(包括但不限于二维纳米颗粒、化工颗粒、矿物颗粒、功能性颗粒等各种颗粒的制备); (2)颗粒后处理方法或技术的新进展(包括但不限于采用物理或化学方式进行颗粒的表面改性、分散、球形化、分级等后处理工序); (3)颗粒在各领域应用的新进展(包括但不限于在能源、化工、环保等领域)。第23分会场:医药颗粒及标准化组织单位:江苏省颗粒学会、南京中医药大学分会主席:朱华旭学术秘书:王欢,江苏省颗粒学会,025-85509178,jskl_org@163.com会场简介:通过主题演讲、展位展示和交流等形式,解答医药颗粒制备工艺及实际生产难点,剖析医药时政热点及发展方向,展示最新医药颗粒艺设备,搭建以颗粒为契机的创新交流、项目对接、人才聚集平台,促进行业的创新发展。征文范围:(1)医药颗粒制备、表征及应用; (2)中医药颗粒研究新技术、新方法; (3)新型药物制剂的研究与应用; (4)制药工艺与设备智能化研究与应用; (5)颗粒标准化研究与应用。第24分会场:第二届天然和仿生颗粒论坛——向自然学习,造智能颗粒组织单位:中国科学院过程工程研究所生化工程国家重点实验室、清华大学、浙江大学分会主席:魏炜、戈钧、平渊、马光辉学术秘书:岳华,中国科学院过程工程研究所,hyue@ipe.ac.cn;吕岩霖,中国科学院过程工程研究所,lvyanlin@ipe.ac.cn;王双,中国科学院过程工程研究所,wangshuang@ipe.ac.cn会场简介:天然颗粒在催化、靶向递送和感染等方面具有独特的性能。而通过向天然学习,利用合成、组装等手段获得可以模拟自然界巧妙结构或者功能的仿生颗粒,也成为生物医药、能源化工等领域的前沿热点。然而,如何实现天然颗粒的高值化利用以及人造颗粒的高性能优化设计/功能模拟,离不开颗粒学与仿生学等基础学科巧妙融合以及高精尖技术手段的开发/应用,这也是本会场聚焦的关键问题。征文范围:天然和仿生颗粒的提取、合成、改造、表征和应用,包括但不限于固定化酶、病毒样颗粒等生物大分子基颗粒,细菌、酵母等微生物颗粒,囊泡、外泌体等细胞型颗粒,以及人工合成的各种理化性质仿生、合成过程仿生以及功能仿生颗粒。第25分会场:“双碳”目标下的未来颗粒技术组织单位:中国颗粒学会颗粒制备与处理专业委员会分会主席:李春忠、宋少先学术秘书:江宏亮,华东理工大学,jhlworld@ecust.edu.cn;李宇航,华东理工大学,yuhangli@ecust.edu.cn;贾菲菲,武汉理工大学,feifeijia@whut.edu.cn会场简介:实现双碳目标的关键是化石资源清洁高效利用与耦合替代以及可再生能源多能互补与规模应用,构建绿色低碳循环能源化工新体系。相关颗粒技术的发展对提高能源化工过程效率具有重要地位。面向双碳目标,对未来颗粒制备、表征及应用技术提出了更高的要求。本分会场面向“双碳”目标的未来颗粒技术中的关键挑战,开展广泛的学术交流和讨论。凝练基础前沿的关键科学问题以及产业中急需解决的技术难题,推动未来颗粒技术在基础理论、研究方法和产业应用中的发展。征文范围:(1)颗粒制备、表征及应用过程科学基础; (2)能源化工过程中颗粒技术新进展; (3)电化学能量存储与转化颗粒技术; (4)颗粒原位表征技术;颗粒应用过程强化; (5)清洁能源颗粒技术;碳储存颗粒技术; (6)环境矿物材料;二氧化碳矿化颗粒技术; (7)选矿和冶金过程中颗粒技术新进展。四、同期论坛及研讨会The International Multiphase Flow Technology ForumOrganization: China University of Petroleum-Beijing, Chinese Society of ParticuologyGeneral Chair: Raffaella Ocone IMFTF focus: The International Multiphase Flow Technology Forum (IMFTF) aims at facilitating the academic exchange and experience sharing worldwide. Its main objectives are promoting scientific and technical communication as well as fostering collaborations among researchers. IMFTF is dedicated to multiphase technologies that can be extended to wide scale knowledges and methodologies for fundamental research reference. It is known that there still are many potential contents hidden in multiphase flow. Meanwhile,with great progress of computation technology and experimental facilities, present problems of multiphase flow should be well addressed by computational and experimental method. IMFTF hopes to stimulate communication and make efforts in the future development directions of such an important scientific area. IMFTF welcomes discussion and aims at expanding the boundaries of knowledge that needed to solve challenging problems.Call for papers: IMFTF2023 will focus on the following topics (including but not limited to):Fundamental research in Computational and Experimental Methods for Multiphase Flows, Bubbly and Droplet Flows, Particle-laden Flows, Turbulence in Multiphase Flows.Industrial applications in Reactive Multiphase Flows, Granular Media, Fluidization, Cavitation, Nucleation, Mixing, Collision, Agglomeration and Breakup and Flow Instabilities. New version of multiphase flow in process engineeringAbstract Submission: https://imftf2022.scimeeting.cn/en/web/index/Secretariat: Jun Yao, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Tel. +86-17710098569 E-mail: yaojun@cup.edu.cn中国颗粒学会团体标准工作委员会2022年度会议及标准审查会组织单位:中国颗粒学会团体标准工作委员会主席:李兆军、周素红会议内容:(1)年度工作报告;(2)团体标准审查;(3)讨论预立项标准;(4)会议总结及下一年度规划。学术秘书:朱晓阳,国家纳米科学中心,010-82545517,zhuxy@nanoctr.cn五、 会议征文中国颗粒大会各分会场同时征文,具体要求如下:1. 征文地址:https://www.csp.org.cn/meeting/CCPT12/2. 征文要求为详细摘要,稿件请采用Word排版并上传,格式见附件1。3. 征文截止日期为:2023年3月3日。投稿过程中有任何问题请随时联系会务组(黄巧,010-82544962,13718757572,klxh_meeting@ipe.ac.cn)。六、 会议日程时间/日期4月21日(星期五)4月22日(星期六)4月23日(星期日)4月24日(星期一)08:30-10:30会议注册(全天)开幕式大会报告分会场报告大会报告10:30-11:00茶歇茶歇茶歇11:00-12:30大会报告分会场报告闭幕式颁奖仪式12:30-13:30午餐午餐午餐13:30-15:30分会场报告分会场报告圆满离会15:30-16:00茶歇茶歇16:00-18:30分会场报告分会场报告18:30-21:30晚餐欢迎晚宴晚餐七、 注册费用请通过会议网站完成会议注册和缴费:https://www.csp.org.cn/meeting/CCPT12/会议注册费:学生会员1900元,普通会员2300元,非会员用户2400元会议代表可通过线上支付(微信、支付宝)、银行转账或者现场刷卡的形式付款。开户行及账号:中国工商银行北京海淀西区支行,中国颗粒学会,0200004509014413416团体参会(同一单位5人及以上)注册学会会员,每人可享有200元优惠!注:(1)烦请在网上注册并填写发票抬头及单位税号;(2)团队参会需要在会议网站逐一报名,优惠费用由会务组手动修改,详情咨询韩秀芝老师(xzhan@ipe.ac.cn,13269656065,010-62647647);(3)注册费支付若选择“银行转账”,请务必在会议网站登陆后上传缴费凭证照片或截图,缴费状态会在5~10个工作日内人工核对确认后更新,如长时间未更新,请直接联系韩秀芝老师。(4)请前往“中国颗粒学会”公众号或官网(www.csp.org.cn)查询或注册学会会员。八、 同期展览和赞助中国颗粒大会同期将举办颗粒/粉体仪器、设备、产品和应用展览,包括颗粒/粉体测试分析仪器、制备设备、产品及其在化工、能源、材料、医药和环境等中的应用等内容,欢迎相关单位积极报名参展。本届会议期间还设置钻石赞助、白金赞助、分会场独家赞助、金牌单项赞助(欢迎晚宴、青年报告奖和优秀墙报奖冠名、会议袋、代表证挂绳、会议用本和笔、茶歇、防疫物品等)和标准展位等赞助形式,欢迎各相关单位合作洽谈。中国颗粒学会颗粒学奖的相关信息也将在大会期间展出,敬请关注。详细赞助方案和更多信息请前往会议网站:https://www.csp.org.cn/meeting/CCPT12/a2136.html?sourceid=79联系人:李京红(010-62647647,13801242411,klxh@ipe.ac.cn)九、 大会奖项2022年度中国颗粒学会奖励将在大会上组织颁奖。大会期间还将评选出第十二届中国颗粒大会青年报告奖、优秀墙报奖,会后将推荐优秀摘要至如下期刊:《Particuology》(英文,SCI-E,EI,IF=3.067),联系人:姚金雨(010-82629146,particuology@ipe.ac.cn)《Frontiers in Energy》(英文,SCI-E,IF=2.709),联系人:刘瑞芹(021-62932006,rqliu@sjtu.edu.cn)《Journal of Energy Chemistry》(英文,SCI-E,EI,IF=9.676),联系人:张丽娟(13795136804,lijuanzh@dicp.ac.cn)《化工学报》(中文,EI),联系人:张丽芳(010-64519362,zhanglifang@cip.com.cn)《化工进展》(中文,EI,IF=1.403),联系人:奚志刚(010-64519500,hgjz@263.net)《Green Energy & Environment》(英文,SCI-E,EI,CSCD,IF=8.207,Q1),联系人:何宏艳(010-82627075,gee@ipe.ac.cn)《Green Chemical Engineering》(英文,中国科技期刊卓越行动计划高起点新刊),联系人:王薪薪(010-82544856,gce@ipe.ac.cn)《储能科学与技术》(中文核心),联系人:郗向丽(010-64519601,esst2012@cip.com.cn)《中国粉体技术》(中文,CSCD核心,IF=0.591),联系人:吴敬涛(0531-82765659,zgft@ujn.edu.cn)《过程工程学报》(中文,北大核心),联系人:齐超(010-62554658,gcgc@ipe.ac.cn)《现代技术陶瓷》(中文,山东省优秀期刊,IF=1.00),联系人:张萌(0533-3597423,xdjstc@126.com)《大气与环境光学学报》(中文,CSCD核心,IF=0.458),联系人:胡长进(0551-65591563,gk@aiofm.ac.cn)《原子能科学技术》(中文,EI),联系人:骆淑莉(010-69358586,yznkxjs7285@163.com)《Industrial Chemistry & Materials》(英文,RSC出版),联系人:编辑部(010-82612330,icm@rsc.org)十、 重要时间节点2023年2月会议第五轮通知2023年3月3日会议论文(摘要)接收截止2023年3月会议第六轮通知2023年4月21日会议注册2023年4月21-24日学术会议2023年4月24日圆满离会更多详情请关注 “中国颗粒学会”公众号或登陆学会官网(www.csp.org.cn)查阅。十一、 酒店预订请前往大会网站预订酒店:https://www.csp.org.cn/meeting/CCPT12/预定指南:https://www.csp.org.cn/meeting/CCPT12/a2190.html?sourceid=93请仔细阅读酒店预订指南,住宿费发票由北京合赢展业国际会议服务有限公司或酒店开具。若需刷公务卡支付房费,请先在预订系统中全额支付作为押金以便保留房间。在现场刷卡后,服务方将于会后统一安排退还相应押金。退订或变更请联系工作人员。会议注册费不包含酒店房间费。预订截止时间:2023年4月14日17:00酒店预订联系人:李佳,电话:010-86229050,13161675386;邮箱:csp_ccpt@163.com十二、 会议交通会议酒店:海南省海口市海口鲁能希尔顿酒店酒店地址:海南省海口市美兰区琼山大道2号交通枢纽距离(km)车程(min)海口美兰国际机场1831海口站3242海口东站1630十三、 联系我们中国颗粒学会地址:北京海淀区中关村北二街1号中国颗粒学会(100190)电话/传真:010-82544962会议网站:https://www.csp.org.cn/meeting/CCPT12/学会官网:https://www.csp.org.cn/微信公众平台:中国颗粒学会会议会场:黄 巧(010-82544962,13718757572,klxh_meeting@ipe.ac.cn)赞助展览:李京红(010-62647647,13801242411,klxh@ipe.ac.cn)财务发票:韩秀芝(010-62647647,13269656065,xzhan@ipe.ac.cn)第十二届中国颗粒大会组委会2023年2月
  • 关于举办第十二届中国颗粒大会的通知(第二轮)
    各有关单位和科技工作者:为促进颗粒与粉体相关领域学术交流、推动学科发展和技术创新及助力人才成长,由中国颗粒学会主办,中国颗粒学会能源颗粒材料专业委员会、海南大学承办,由广州大学、华南理工大学共同协办的第十二届中国颗粒大会将于2022年8月19-22日在海南省海口市举办。大会围绕颗粒学相关领域的科研进展、产业发展和人才成长等展开交流,面向广大颗粒学与粉体行业及其化工、能源、材料、医药和环境等相关领域科技工作者征集科技论文(摘要),大会还将评选青年报告奖及优秀墙报奖,欢迎投稿参会。中国颗粒大会是应我会发展需要、继承我会历届学术年会的全国性高层次的颗粒学领域大型综合性学术会议。大会同期将举办颗粒/粉体仪器、设备、产品和应用展,包括颗粒/粉体测试分析仪器、制备设备、产品及其在化工、能源、材料、医药和环境等中的应用等内容,欢迎相关单位积极报名参展。一、学术委员会(1)学术委员会主席:李静海(2)学术委员会执行主席:朱庆山 陈运法 林鴻明*(3)学术委员会顾问:李 灿 孙世刚 马光辉 陈建峰 陈晓东 郭 雷 何鸣元 胡 英 李洪钟 李永旺 刘中民 彭 峰 王静康 谢在库 徐春明 余艾冰 袁 权 张锁江(4)学术委员会委员(按音序排列,*为台湾代表)安希忠 蔡 挺 蔡小舒 曹达鹏 曹军骥 曹少文 曹学武 常 津 陈 诚 陈建峰 陈建新 陈 岚 陈 鹏 陈前进 陈巧艳 陈胜利 陈晓东 陈学元陈永奇 陈 煜 陈运法 程国安 楚锡华 邓德会 邓茂华* 冯 春 冯立纲 冯 胜 付信涛 付 艳 傅晓伟 傅彦培* 高思田 高 峡 高 原 葛广路 宫厚军 龚湘君 谷海峰 顾卫国 顾兆林 桂 南 郭 雷 郭庆杰 郭少军 韩永生 韩 召 郝红勋 郝新友 何鸣元 何 勤 何羽薇 何玉荣 侯曙光 胡富强 胡 钧 胡小烨 胡晓林 胡 英 胡宇光* 胡子平 黄 挺 黄肇瑞* 季顺迎 季松涛 贾春满 江燕斌 姜晓斌 金一政 库晓珂 李 春 李朝升 李春忠 李 泓 李江涛 李 力 李 攀 李 旗 李顺诚 李铁军 李 霞 李星国 李亚伟 李映伟 李永旺 李增和 李兆军 梁海伟 廖永红 林中魁* 刘宝丹 刘道银 刘福胜 刘俊杰 刘潜峰 刘如熹* 刘 伟 刘亚男 刘 宇 刘岳峰 刘兆清 刘中民 刘钟馨 刘忠文 陆 杰 陆 明 罗 坤 吕且妮 吕万良 吕友军 马建民 毛世瑞 梅其良 倪木一 牛风雷 潘良明 彭 峰 彭 威 秦和义 秦明礼 邱郁菁* 任 飞 邵刚勤 沈少华 沈义俊 宋锡滨 宋兴福 蘇程裕* 苏 敏 苏明旭 孙世刚 孙学军 孙中宁 谈玲华 谭援强 陶东平 陶绪堂 田庆国 佟立丽 王德忠 王等明 王海龙 王 昊 王 辉 王静康 王利民 王 亮 王 伟 王孝平 王辛龙 王新明 王学重 王彦飞 王玉金 王远航 王 勇 王兆霖 王震宇 韦文诚* 魏 飞 魏严淞 魏永杰 吴传斌 吴汉平 吴立敏 吴 伟 伍志鲲 席广成 夏宝玉 向中华 解荣军 谢在库 谢志鹏 徐春明 徐 林 徐 强 徐维林 徐文杰 徐锡金 徐喜庆 许传龙 许人良 许文祥 薛 琨 杨 柏 杨 超 杨 芳 杨 军 杨世亮 杨为佑 杨 文 杨艳辉 杨 毅 杨正红 杨志义 杨治华 尹大川 尹秋响 尹诗斌 于明州 于溯源 于新民 余 方 余 皓 元一单 袁 权 袁友珠 臧双全 曾海波 曾宇平 张炳森 张春桃 张国诚 张国军 张 洁 张立娟 张 强 张仁健 张铁锐 张伟儒 张现仁 张幸红 张亚培 张振杰 赵吉东 赵晓宁 赵永志 郑耿锋 郑宪清* 周 强 周 涛 周文刚 周已欣 周长灵 周志伟 朱庆山 朱晓阳 朱子新 邹晓新二、组织委员会(1)组织委员会主席:朱庆山 彭 峰(2)组织委员会执行主席:王体壮(3)组织委员会委员白红存 蔡 建 曹永海 陈常祝 陈 诚 陈 磊 陈鲁海 陈 琦 程新兵 褚良银 丁良鑫 邓培林 邓意达 杜 斌 冯广波 高 原 管小平 韩 召 洪长青 黄 玮 黄 欣 贾春满 康振烨 兰清泉 李 华 李嘉诚 李江涛 李 杰 李 静 李 攀 李晓明 李兆军 刘宝丹 刘丹彤 刘吉轩 刘俊杰 刘潜峰 刘瑞祥 刘晓雯 刘永卓 刘雨昊 刘兆清 刘钟馨 楼宏铭 卢思宇 罗俊明 吕页清 马晶晶 毛世瑞 穆华仑 聂保杰 欧阳婷 潘勤鹤 彭 峰 彭新文 朴洪宇 乔明曦 邵 奇 沈丹蕾 史晓磊 苏明旭 孙 臣 孙 婧 孙 伟 孙晓晖 唐 星 田红景 田庆国 田新龙 汪 伟 王 标 王春明 王东凯 王 辉 王利民 王林桂 王 娜 王 霆 王晓飞 王兴亚 魏严淞 武云飞 夏芸洁 夏志国 向茂乔 熊德华 徐 骥 徐锡金 许传龙 杨光星 杨 丽 杨 宁 杨增朝 叶 茂 尹俊连 余 皓 于明锐 于明州 喻 鹏 张 浩 张立娟 张 巧 张 宇 周 兰 周丽娜 周 玲 周素红 朱晓阳 三、学术分会场第1分会场:颗粒计算组织单位:大连理工大学、中国科学院过程工程研究所、浙江大学、东北大学、东南大学、华南理工大学分会主席:季顺迎、王利民、罗坤、安希忠、刘道银学术秘书:刘晓雯,华南理工大学,liuxw2021@scut.edu.cn会场简介:聚焦颗粒力学理论及模型、计算分析方法、软件开发和工程应用中的关键问题和难点问题,开展广泛的学术交流和讨论。分会场为力学、化工、能源、冶金、海洋、岩土及土木工程等领域中从事颗粒计算方面专家学者提供一个开放的交流平台,促进多学科的交叉融合,推动颗粒计算在基础理论、数值方法和工程应用中的发展。征文范围:(1)颗粒计算基本理论及数值方法;(2)颗粒计算软件开发及算例验证;(3)颗粒计算在化工、能源、冶金等领域的应用。第2分会场:氢能与燃料电池组织单位:海南大学分会主席:孙世刚学术秘书:田新龙,海南大学,tianxl@hainanu.edu.cn,康振烨,海南大学,zkang@hainanu.edu.cn会场简介:氢能和燃料电池是我国清洁能源发展和研究的重要方向,实现我国“碳减排”和“碳中和”的宏大目标,氢能和燃料电池将发挥着举足轻重的作用。今年初,我国又把氢能技术列为国家未来六大产业之一,氢能和燃料电池都将迎来更好的发展机遇。本次会议将邀请协会(学会)领导、院士、行业知名专家学者及企业代表,就国家相关政策和技术发展、行业科技发展目标和任务进行全面深入的探讨,总结国内外近期开发的氢能与燃料电池先进生产工艺和关键技术,指导我国氢能与燃料电池产业升级,推动我国能源结构调整和可持续发展,期待专家老师和技术人员踊跃参加。征文范围:电催化、电解水、质子交换膜燃料电池、固体氧化物燃料电池、氢能制备及产业化装置等关键科学与技术。第3分会场:工业结晶与粒子过程组织单位:天津大学国家工业结晶工程技术研究中心、 海南大学化学工程与技术学院分会主席:郝红勋学术秘书:黄欣,天津大学,022-27403200,x_huang@tju.edu.cn会场简介:分会场聚焦医药、食品、精细化工品、新材料等领域的工业结晶基础理论、结晶过程模型与模拟、结晶工艺开发与放大、工业结晶过程强化与连续化等方向最新研究进展,旨在完善我国工业结晶领域整体理论基础,提升相关方向原始创新能力,促进产学研的合作创新,加速相关行业企业的转型升级。分论坛拟邀请高等院校、科研院所、企业研发部门等领域内知名专家学者,围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与经验。征文范围:(1)工业结晶基础理论;(2)晶体产品形态调控、多晶型预测、筛选与精准制备;(3)结晶工艺开发与放大;(4)工业结晶过程强化及连续化;(5)结晶过程计算流体力学及多相混合过程研究等。第4分会场:多相反应过程中的介科学组织单位:中国科学院过程工程研究所、中国科学院大连化学物理研究所、四川大学分会主席:杨宁、叶茂、褚良银学术秘书:管小平,中国科学院过程工程研究所,xpguan@ipe.ac.cn会场简介:介尺度行为是由大量单元组成的系统在全局与个体之间的尺度上形成的复杂时空结构。介科学是研究介于时空“微尺度”和“宏尺度”之间的介尺度非均匀结构演化规律的科学,在自然、工程和社会科学中具有普遍的理论研究价值和广阔的应用前景,有望开辟新的科学研究范式,探索认识传统学科的共性规律,孕育新的科学前沿;有助于综合整体论和还原论,探索不同知识体系中的共性原理,变革科研范式,揭示科学问题复杂性的根源,解决一系列从基础研究到工程应用的关键科学和技术问题。国际期刊《科学》指出,介科学是科学上的无人区,是科学史上的一个重大事件。多相反应过程的介尺度主要表现在分子到颗粒(包括气泡、液滴等)间的材料表界面时空尺度、以及颗粒到反应器整体间的颗粒聚团时空尺度。征文范围:能源、材料、化工、生物等涉及多相反应过程中材料表界面和反应器/设备等不同层次上的介尺度问题。会议专刊:化工学报, Chemical Engineering Journal, Current Opinion of Chemical Engineering第5分会场:双碳背景下的流态化技术及应用组织单位:中国颗粒学会流态化专业委员会分会主席:葛蔚、王勤辉学术秘书:王军武,中国科学院过程工程研究所,jwwang@ipe.ac.cn;熊勤刚,华南理工大学,qingangxiong@scut.edu.cn会场简介:流态化技术广泛应用于石油化工、循环流化床锅炉、煤化工、矿物加工等工业过程,在我国工业生产中占有极其重要的地位。国家“双碳”重大战略不但要求我国能源结构的重大调整,而且要求实现产业结构和工业过程的转型升级,这为流态化技术提供历史性发展机遇的同时也提出了重大挑战。本分会场将探讨“双碳”背景下流态化技术的新发展、新应用,为国内外高校、科研院所、企事业单位的同行提供交流平台,共同推动流态化技术的跨越式发展,为国家“双碳”目标的实现做出重要贡献。征文范围:(1)流化床中的流动、传热、传质和化学反应;(2)计算机数值模拟与放大;(3)流化床过程强化技术;(4)流态化及相关技术的工业应用。第6分会场:颗粒助力“双碳”:CO2捕集与催化转化新途径组织单位:宁夏大学、青岛科技大学分会主席:郭庆杰学术秘书:刘永卓,青岛科技大学,0532-84022506,yzliu@qust.edu.cn;马晶晶,宁夏大学,mjj_1022@163.com会场简介:“碳达峰、碳中和”是我国应对全球变暖提出的重大战略目标,而二氧化碳的捕集和利用是实现双碳目标的最直接方式。作为二氧化碳最大排放源,煤炭等化石能源燃烧CO2捕集技术有燃烧前捕集、燃烧中捕集和燃烧后捕集,它们的应用前景主要受制于其捕集成本,化学链、CO2吸附、膜分离等技术具有潜在优势。捕集的二氧化碳主要有封存和利用两种形式,而催化转化制备大宗化学品更具有应用前景。本分会场聚焦面向烟气源、工业源、空气源等不同来源二氧化碳的捕集和催化转化技术,追踪CO2吸附颗粒、催化颗粒、载体颗粒等捕集和转化颗粒最新进展,为我国双碳目标的实现贡献新技术、新思想和新模式。征文范围:(1)CO2吸附材料;(2)化学链技术;(3)CO2其他分离方法;(4)CO2活化技术;(5)CO2-FT合成;(6)CO2捕集-转化耦合技术;(7)多污染物联合脱除技术。第7分会场:微纳气泡特性及其应用组织单位:中国科学院过程工程研究所、中国科学院上海高等研究院、同济大学、北京化工大学、东南大学分会主席:胡钧、李兆军、李攀、张立娟学术秘书:张立娟,中国科学院上海高等研究院,zhanglijuan@sari.ac.cn会议秘书:王兴亚,中国科学院上海高等研究院,wangxingya@zjlab.org.cn;周兰,中国科学院过程工程研究所,01062521688,lzhou19@ipe.ac.cn会场简介:专委会于2018年10月18日在苏州成立,目前会员已经近300人。微纳米气泡基础研究和应用在近二十年来发展非常迅速,已成为一新兴领域。在我国微纳米气泡技术已经在环境治理、农业生产、水产养殖、工业清洗、消毒杀菌、医学成像以及医疗健康等领域的应用独树一帜、效果出色。专委会的成立旨在加强微纳气泡基础研究和应用的科学家和企业家的深入交流和合作,推动相关技术的高效研发和推广。目前专委会已批准成立7个示范性基地,在国内汇集了一批兴趣浓厚、勇于钻研、乐于分享的科学家、工程师和企业家,为微纳米气泡事业更好的造福人类不懈奋斗!本次分会拟邀请相关领域专家、学者、技术人员、企业界代表围绕分会场主题从理论、方法、技术、产品等方面分享研究成果与成功经验。征文范围:(1)微纳气泡基本性质;(2)微纳米气泡产生技术;(3)微纳气泡检测技术;(4)微纳气泡在各个领域的重要应用;(5)企业家论坛。第8分会场:生物气溶胶组织单位:北京大学、广东工业大学分会主席:要茂盛、安太成学术秘书:申芳霞,北京航空航天大学,fxshen@buaa.edu.cn会场简介:新冠肺炎疫情爆发以来,新冠病毒经气溶胶传播的作用在国内外已形成共识,对其进行持续有效的快速监测和控制对于当前疫情防控有重要意义。空气中除了可能有新冠病毒,还悬浮着大量的其他类型的微生物和生物来源的物质,统称为生物气溶胶,在室外和室内环境空气中无处不在,对人体和环境健康的重要性也逐渐受到关注。对生物气溶胶开展全面深入的基础研究和应用研究,对于改善室内外环境空气质量和保护人体健康至关重要。征文范围:生物气溶胶(包括新冠病毒)采集、检测、灭活、分析及其在大气科学、室内环境和环境健康等方面的基础和应用研究。第9分会场:绿色低碳过程中的气液固多相流科学及应用组织单位:天津大学、中国科学院过程工程研究所、宁波诺丁汉大学、清华大学分会主席:刘明言、杨宁、杨晓钢、王铁峰学术秘书:马永丽,天津大学,022-27404614,mayl@tju.edu.cn会场简介:气-液、液-固和气-液-固流动系统具有重要的工业应用。例如,气-液鼓泡塔、气-液(固)浆态床、液-固和气-液-固多相流反应装置系统等,可用作多相反应器;汽-液沸腾、汽-液冷凝、泥状颗粒污垢沉积和微纳材料功能表面等涉及到化工等过程工业;对于软物质颗粒,例如:乳状液、泡沫、液滴流等涉及食品、生物和医药等行业领域等。这些多相流的共同特征之一是都存在连续或离散的液相以及真实的相界面,从而形成了易变形、易聚并和易破碎的真实气泡和液滴等软物质颗粒流,使其在流动、混合、传递以及反应等方面表现出特有的规律性,涉及的科学及应用问题可加以详细探讨。征文范围:包括以绿色低碳过程工业为目标的气液固多相流基础及应用内容。具体涉及:(1)气液鼓泡流及浆态床;(2)液固和气液固多相流;(3)池沸腾和流动沸腾;(4)蒸汽冷凝;(5)泥状颗粒污垢表面上的沉积及微纳功能表面抑制;(6)乳状液、泡沫、液滴流等软物质颗粒流;(7)其他含液多相颗粒流。第10分会场:药物制剂与粒子设计组织单位:中国颗粒学会药物制剂与粒子设计专业委员会分会主席:崔福德学术秘书:石凯,南开大学,pharmparticle@126.com会场简介:本会场交流主题以工业药剂学及高端制剂的研究为中心,广泛征集相关领域的国内外专家学者、企业技术工作者以及在校学生的学术论文,展示其研究成果及新进展、新动态和新成果等。非常欢迎粉体加工技术及设备、药用辅料、以及粉体表征仪器(晶形、粒子形状大小、流动性、压缩成形性等)方面的专家们及企业针对粉体技术在药物制剂中的应用进行广泛交流,以期提高药物制剂技术的科学性、实用性及可生产性。本次分会将是药物制剂领域与粉体技术沟通的盛会,企业与高校、科研院所广泛交流的盛会,理论联系实际的盛会,中国工业药剂学产业化交流的盛会。征文范围:(1)粉体技术在固体药物制剂中的应用;(2)粉体性质的测试技术与研究进展;(3)药用辅料的粉体性质对产品质量的影响;(4)新型制剂设备的应用与研究进展;(5)制剂颗粒质量表征与控制;(6)在固体制剂生产过程中粉体性质的在线测定与控制策略;(7)从实验室研究到产业化过渡的难点与关键问题;(8)药物制剂的新剂型与新技术的产业化前景与难点;(9)基于功能性粒子设计的高端制剂。第11分会场:能源存储颗粒创造美好未来组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:魏飞、张强学术秘书:程新兵,东南大学,chengxb@seu.edu.cn会场简介:能源存储颗粒分会场结合颗粒与能源存储领域中急需解决的关键科学问题和难点技术问题,开展广泛的学术交流和讨论。通过对当前颗粒与能源存储研究现状和发展趋势的交流,凝练颗粒与能源存储的前沿研究方向,确定相应的关键科学问题,推动颗粒与能源存储领域在基础理论、研究方法和工业应用中的发展。征文范围:(1)能源材料(如锂离子电池、电容器、锂硫电池、金属电池、空气电池、燃料电池相关材料);(2)能源颗粒的表征技术;(3)能源颗粒的应用及产业化。第12分会场:面向未来的能源催化颗粒组织单位:中国颗粒学会能源颗粒材料专业委员会分会主席:彭峰、余皓、刘兆清学术秘书:王浩帆,华南理工大学,whf@scut.edu.cn;杜磊,广州大学,lei.du@gzhu.edu.cn会场简介:面向未来的能源催化颗粒分会场聚焦双碳目标下的催化关键科学问题,围绕光、电、热催化的前沿理念和创新技术开展广泛的学术交流和讨论,凝练能源催化的前沿研究方向,推动基于颗粒材料的能源催化技术在能源高效利用、CO2催化转化、电化学合成等领域的科学研究和工业应用,通过学术思想的碰撞催生面向未来的能源催化新理念与新技术。征文范围:与能源转化、利用相关的:(1)光催化;(2)电催化;(3)热催化;(4)光电催化。第13分会场:发光颗粒照亮未来组织单位:南京理工大学、华南理工大学、郑州大学、海南大学分会主席:曾海波学术秘书:李晓明,南京理工大学,lixiaoming@njust.edu.cn会场简介:发光材料的应用在生活中已经随处可见,从照明显示到医疗诊断再到防伪探测等等,可以说和我们的生活息息相关。在大规模应用的基础上,新型发光颗粒的开发与完善依然是国际研究领域及应用行业的前沿热点,获得了全世界的广泛关注。近年来,以钙钛矿量子点、碳纳米颗粒和荧光金属团簇为代表的纳米发光颗粒取得了飞速的发展,稀土荧光粉在材料体系、波长范围、发光特性等的发展也有目共睹,此外,有机发光颗粒和无机金属卤化物及其在生物医学等领域的研究也获得了较大的关注。经过两年的发展,相关领域更是取得了较大的突破,本分会场将为这些领域提供一个良好的学术交流平台,分享最新研究成果的同时促进交叉合作,为领域的进一步发展提供动力。征文范围:(1)半导体发光颗粒(镉基、铟基、钙钛矿等量子点,及其他微纳米发光材料);(2)稀土发光颗粒(照明、显示用稀土发光颗粒、长余辉发光颗粒、特种功能发光颗粒等);(3)碳及有机发光材料(碳荧光纳米颗粒、聚合物纳米颗粒、有机发光材料等);(4)团簇发光颗粒;(5)发光光谱、发光器件、发光应用及产业化。第14分会场:超微颗粒材料及应用(能源、环保、生物医学等)组织单位:中国颗粒学会超微颗粒专业委员会分会主席:费广涛、林鸿明(台湾)、艾德生学术秘书:刘潜峰,清华大学,liuqianfeng@tsinghua.edu.cn;徐锡金,济南大学,sps_xuxj@ujn.edu.cn会场简介:超微颗粒材料及应用分会是海峡两岸超微颗粒学界及产业界一直致力于超微颗粒的制备、表征及其应用方面的研究工作。为定期系统性地总结学界和企业界在超微颗粒方面的最新研究成果,尤其是超微颗粒学科在能量转换与存储、环境修复、生物医学等领域中的应用,同时促进海峡两岸本领域同行之间的学术交流,以及增强产业界与学术界的产学研合作,超微颗粒材料及应用分会为2022年8月19-22日在海南省海口市举办的“第十二届中国颗粒大会”的分会场之一。我们竭诚欢迎海峡两岸从事超微颗粒制备、表征及应用开发研究的科技人员及企业界朋友们踊跃与会,交流研究成果,为本学科的发展集思广益,建言献策,共同持续促进海峡两岸相关领域学者的友谊,为提升海峡两岸的科技水平和经济繁荣做出贡献。征文范围:(1)超微纳颗粒的制备理论、工艺及改性技术(尤其是分散技术);(2)超微颗粒在能量转换与存储、环境修复、生物医学等领域中的应用;(3)超微颗粒测试、标准分析中的基础问题;(4)超微粉体产业化技术中的技术问题。第15分会场:氮化物粉体、制品及应用——制造业升级背景下的新机遇组织单位:中国科学院理化技术研究所、中材高新材料股份有限公司、中国科学院上海硅酸盐研究所、哈尔滨工业大学、安徽工业大学分会主席:李江涛、张伟儒学术秘书:韩召,安徽工业大学,authan@163.com;向茂乔,中国科学院过程工程研究所,mqxiang@ipe.ac.cn;陈常祝,山东工陶院,chzhchen@126.com会场简介:氮化物材料种类丰富,性能多样,在高端装备、集成电路、新能源、生物医学等诸多领域发挥着不可替代的关键作用。在我国“碳达峰”和“碳中和”战略目标驱动下,在制造业升级、不断向高端领域迈进的背景下,以氮化硅、氮化铝、氮化硼为代表的氮化物系列材料的研究和应用,面临众多新的挑战和新的机遇。本次会议邀请国内知名高校、科研院所以及相关企业的专家学者和企业家,共同探讨制造业升级背景下氮化物材料研究和应用的现状、挑战和机遇。征文范围:(1)氮化物粉体的制备、后处理与检测分析;(2)氮化物陶瓷的制备、应用与评价;(3)氮化物涂层和薄膜的制备、应用与评价;(4)氮化物领域的其他研究和应用。第16分会场:核电厂气溶胶行为研究组织单位:清华大学、中国核电工程有限公司、中国原子能科学研究院、东南大学核科学与技术系分会主席:于溯源、周涛、牛风雷、魏严淞、王辉学术秘书:孙婧,中国核电工程有限公司,010-88022429,sunjing@cnpe.cc会场简介:在“碳中和”和“碳达峰”背景下,核电作为一种清洁、低碳、安全和高效的基础性现代能源,具有广阔的发展前景。与一般工业设施相比,核电最主要的特征是具有放射性。在核电厂事故期间,放射性物质以气体、蒸汽、气溶胶的形式释放,其中气溶胶是放射性物质的主要载体。为实现核电“安全与高效”发展,需要对核电厂事故状态下的气溶胶行为进行深入研究。为此,“核电厂气溶胶行为研究”分会场邀请相关科研院所、设计单位及监管审评部门的专家学者及技术人员就核电厂的气溶胶行为进行研讨交流,推动核安全研究,促进核电厂持续发展。征文范围:(1)反应堆冷却剂系统内气溶胶的生成、生长及输运的实验与理论研究;(2)反应堆冷却剂系统内气溶胶的再悬浮和再汽化的实验与理论研究;(3)安全壳内气溶胶生长、输运及沉积的实验与理论研究;(4)放射性气溶胶去除措施研究;(5)气溶胶与安全系统的相互作用研究;(6)核电厂气溶胶行为计算分析程序开发与验证;(7)核电厂气溶胶行为先进数值算法研究。第17分会场:陶瓷粉体及其复合材料设计、评价与应用组织单位:哈尔滨工业大学、东华大学、山东工陶院分会主席:张幸红、张国军、王玉金、周长灵学术秘书:董顺,哈尔滨工业大学,0451-86412259,dongshun@hit.edu.cn;程源,哈尔滨工业大学,cy6810@hit.edu.cn会场简介:先进陶瓷基复合材料具有高比强度、高比模量、耐高温、耐腐蚀、抗疲劳等一系列优异的综合性能,在航空、航天以及发电、核能、化工等民用领域具有重要的应用价值和前景。近年来,国内外在陶瓷粉体及其复合材料的科学理论、技术开发以及产业应用等方面均取得了长足的进步与发展。为进一步提升陶瓷粉体及其复合材料的科学和战略地位,在未来陶瓷基复合材料研究和产业发展中抢占先机,本分会场将从陶瓷粉体、陶瓷基复合材料、超高温陶瓷基复合材料以及极端环境复合材料的设计、制备、评价与应用等技术角度出发,开展全方位、多角度的深入研讨,探索陶瓷粉体及其复合材料技术的未来发展趋势,稳步推动我国陶瓷基复合材料的创新发展。征文范围:(1)陶瓷粉体设计、评价与应用;(2)陶瓷基复合材料设计、评价与应用;(3)超高温陶瓷基复合材料设计、评价与应用;(4)极端环境复合材料设计、评价与应用。第18分会场:颗粒特性与测试组织单位:中国颗粒学会颗粒测试专业委员会、北京粉体技术协会分会主席:葛宝臻、董青云、沈建琪、张福根、周素红、张文阁、韩鹏学术秘书:魏永杰,河北业大学机械工程学院,yj.wei@163.com;周骛,上海理工大学能源与动力工程学院,usst_wzhou@163.com会场简介:分会场面向颗粒测试方法研究、测试仪器开发与生产、测试技术与仪器应用、测试标准制定等领域,邀请和组织专家、技术人员针对我国粉体、液态和气态颗粒测试研究与应用开展研讨,促进科技创新与创业,实现成果转化,深化颗粒测试在工程实践中的应用,推动我国颗粒测试技术及相关领域标准化等工作。通过学术交流促进专业培训、科技咨询、产学研合作等活动,扶持以激光粒度测试仪器等为主导产品的国内颗粒测试品牌企业。征文范围:(1)微米、纳米颗粒测试理论及新进展;(2)颗粒测试新技术、新方法及创新成果;(3)颗粒关键参数的测试理论与验证;(4)颗粒测试在交叉学科中的应用;(5)颗粒在线测试技术及应用;(6)颗粒测试技术标准化;(7)颗粒标准物质的研制与开发;(8)其它颗粒测试技术与应用。第19分会场:石油与天然气工程颗粒物质力学组织单位:西南石油大学分会主席:康毅力、许成元、林冲学术秘书:郭昆,西南石油大学,02883032118,1459069176@qq.com会场简介:石油和天然气仍是未来经济社会发展必须依赖的主要能源,保证油气安全供给是国家重大战略需求,天然气作为最清洁低碳、灵活高效的化石能源,更是中国能源体系由高碳向低碳、零碳转型的重要抓手。石油与天然气勘探开发过程中,与颗粒物质相关的科学与技术问题普遍存在。颗粒物质力学与颗粒多相流理论是油气井工作液调控、钻井防漏堵漏、天然气水合物开采、水力铺砂压裂、暂堵转向压裂/酸化、地层出砂、煤粉运移、微粒运移等的理论基础之一。本会场围绕油气勘探开发中涉及的颗粒材料力学、颗粒体系结构与强度、颗粒多相流相关最新研究进展开展讨论交流,以期建立石油与天然气工程颗粒物质力学学科新方向,并石油与天然气高效开发提供理论支撑。征文范围:(1)油气井防漏堵漏颗粒材料;(2)水力压裂颗粒材料;(3)钻井岩屑床;(4)油气井工作液与储层保护颗粒材料;(5)油气井出砂与防砂;(6)油气层微粒与煤粉运移堵塞。第20分会场:碳中和目标下的气溶胶科学发展和未来趋势组织单位:中国颗粒学会气溶胶专业委员会、中国科学院大气物理研究所、中国科学院地球环境研究所分会主席:曹军骥、李顺诚、王新明、顾兆林、张仁健学术秘书:武云飞,中国科学院大气物理研究所,wuyf@mail.iap.ac.cn;夏芸洁,北京市气象探测中心,xiayunjie1992@163.com会场简介:习近平主席在第七十五届联合国大会向全世界郑重承诺:中国力争于2030年前实现二氧化碳排放量达到峰值,争取在2060年前实现碳中和,以主动承担应对气候变化的国际责任、推动构建人类命运共同体。实现碳中和必将给我国带来一场广泛而深刻的经济社会变革,也势必对气溶胶性质、气溶胶与天气气候相互作用产生重要影响。本分会场将聚焦碳中和目标下的气溶胶科学问题,展示最新科学研究成果与关键技术进展,探讨碳中和目标驱动下我国大气气溶胶工作面临的新机遇和新挑战,同时服务于我国减污降碳协同增效重大战略。征文范围:包括但不限于以下内容(1)气溶胶基本特性(物理、化学、光学、辐射)及来源解析;(2)气溶胶的发生、采样、监测、分析技术;(3)气溶胶动力学;(4)气溶胶对气候、环境和人体健康的影响;(5)气溶胶污染与控制;(6)大气颗粒物污染形成机制及协同控制。第21分会场:吸入递送与疾病治疗组织单位:中国颗粒学会吸入颗粒专业委员会分会主席:王震宇、李旗、陈永奇、李铁军学术秘书:邵奇,上海上药信谊药厂有限公司,王晓飞 ,上海欧米尼医药科技有限公司,iddchina@126.com会场简介:中国颗粒学会吸入颗粒专业委员会成立于2018年,前身为2013年11月在中国南京成立的民间公益组织“全国吸入给药联盟”。吸入颗粒专委会成员主要包括吸入药物基础研究、药品研发、质量控制、制剂生产、安全性评价、临床药理、临床应用等领域的生产企业、高校院所、医疗机构的专业人士。吸入颗粒专委会以国家政府机关制定的相关药品法律法规政策为导向,以推进中国吸入给药行业的发展,提高国内吸入药物的研发,产品技术标准和临床应用,加快与国际同行业接轨作为创建目标。征文范围:(1)吸入疫苗;(2)大分子吸入颗粒技术;(3)干粉吸入颗粒新工艺;(4)吸入产品中颗粒的表征与质量;(5)吸入装置的开发及应用研究;(6)鼻用颗粒技术的研究;(7)吸入药物的临床研究;(8)吸入颗粒的安全性评价。第22分会场:颗粒制备、处理与应用前沿问题研讨——第十五届全国颗粒制备与处理学术研讨会组织单位:中国颗粒学会颗粒制备与处理专业委员会分会主席:沈志刚、骆广生、郑水林、王燕民学术秘书:张晓静,北京航空航天大学,010-82317916,zhangxiaojing@buaa.edu.cn;蔡楚江,北京航空航天大学,010-82316642,ccj@buaa.edu.cn会场简介:为总结和交流近两年来我国颗粒制备与处理领域的最新研究进展,探讨颗粒制备、处理与应用前沿热点问题,促进同行之间的成果交流,同期举办第十五届全国颗粒制备与处理学术研讨会。本分会场主要涉及颗粒制备、处理与应用等方面(包括但不限于二维纳米颗粒、化工颗粒、矿物颗粒、功能性颗粒等各种颗粒的制备与后处理,以及颗粒在二维材料、能源、化工、环保等领域中的应用)。征文范围:(1)颗粒制备方法或理论的新进展(包括但不限于二维纳米颗粒、化工颗粒、矿物颗粒、功能性颗粒等各种颗粒的制备);(2)颗粒后处理方法或技术的新进展(包括但不限于采用物理或化学方式进行颗粒的表面改性、分散、球形化、分级等后处理工序);(3)颗粒在各领域应用的新进展(包括但不限于在能源、化工、环保等领域)。第23分会场:医药颗粒及标准化组织单位:江苏省颗粒学会、南京中医药大学分会主席:朱华旭学术秘书:王欢,江苏省颗粒学会,025-85509178,jskl_org@163.com会场简介:通过主题演讲、展位展示和交流等形式,解答医药颗粒制备工艺及实际生产难点,剖析医药时政热点及发展方向,展示最新医药颗粒艺设备,搭建以颗粒为契机的创新交流、项目对接、人才聚集平台,促进行业的创新发展。征文范围:(1)医药颗粒制备、表征及应用;(2)中医药中间体及精细化工;(3)生物制药;(4)制药机械及包装设备;(5)颗粒标准化宣贯。第24分会场:第二届天然和仿生颗粒论坛——向自然学习,造智能颗粒组织单位:中国科学院过程工程研究所 生化工程国家重点实验室分会主席:魏炜、戈钧 、平渊、马光辉学术秘书:岳华,中国科学院过程工程研究所,hyue@ipe.ac.cn;吕岩霖,中国科学院过程工程研究所,lvyanlin@ipe.ac.cn;王双,中国科学院过程工程研究所, wangshuang@ipe.ac.cn会场简介:天然颗粒在催化、靶向递送和感染等方面具有独特的性能。而通过向天然学习,利用合成、组装等手段获得可以模拟自然界巧妙结构或者功能的仿生颗粒,也成为生物医药、能源化工等领域的前沿热点。然而,如何实现天然颗粒的高值化利用以及人造颗粒的高性能优化设计/功能模拟,离不开颗粒学与仿生学等基础学科巧妙融合以及高精尖技术手段的开发/应用,这也是本会场聚焦的关键问题。征文范围:天然和仿生颗粒的提取、合成、改造、表征和应用,包括但不限于固定化酶、病毒样颗粒等生物大分子基颗粒,细菌、酵母等微生物颗粒,囊泡、外泌体等细胞型颗粒,以及人工合成的各种理化性质仿生、合成过程仿生以及功能仿生颗粒。第25分会场:“双碳”目标下的未来颗粒技术组织单位:中国颗粒学会颗粒制备与处理专业委员会分会主席:李春忠,宋少先学术秘书:江宏亮,华东理工大学,jhlworld@ecust.edu.cn 李宇航,华东理工大学,yuhangli@ecust.edu.cn;贾菲菲,武汉理工大学,feifeijia@whut.edu.cn会场简介:实现双碳目标的关键是化石资源清洁高效利用与耦合替代以及可再生能源多能互补与规模应用,构建绿色低碳循环能源化工新体系。相关颗粒技术的发展对提高能源化工过程效率具有重要地位。面向双碳目标,对未来颗粒制备、表征及应用技术提出了更高的要求。本分会场面向“双碳”目标的未来颗粒技术中的关键挑战,开展广泛的学术交流和讨论。凝练基础前沿的关键科学问题以及产业中急需解决的技术难题,推动未来颗粒技术在基础理论、研究方法和产业应用中的发展。征文范围:(1)颗粒制备、表征及应用过程科学基础;(2)能源化工过程中颗粒技术新进展;(3)电化学能量存储与转化颗粒技术;(4)颗粒原位表征技术;颗粒应用过程强化;(5)清洁能源颗粒技术;碳储存颗粒技术;(6)环境矿物材料;二氧化碳矿化颗粒技术;(7)选矿和冶金过程中颗粒技术新进展。四、同期论坛及研讨会The International Symposium on Plasma & Fine Bubbles (ISPFB2022)Organization: Chinese Society of Particuology, Tongji University, Shanghai Advanced Research Institute of CAS, Donghua University, Southeast University and Hainan UniversityGeneral Chair: Jun Hu, Yoshikawa Kiyoshi It is our honor to announce that The International Symposium on Plasma & Fine Bubbles (ISPFB2022 former ISHPMNB renamed) will be held both online and offline (Haikou, China), August 22-23, 2022. This event is hosted by Chinese Society of Particuology, Tongji University, Shanghai Advanced Research Institute of CAS, Donghua University, Southeast University and Hainan University together. This symposium is initiated further to provide an open forum for the introduction and discussion of the most current status of innovative scientific and technological achievements in the interdisciplinary versatile fields of plasma and fine bubbles applied to agriculture, aquaculture and food safety etc. Since 2017, the symposium has been successfully held in Chieng Mai (twice, Thailand), Iwate (Japan), Ayutthay (Thailand) and online for the fifth and is becoming an influential academic event in East Asia. In 2022, The symposium will bring the world’s leading interdisciplinary researchers and technologists together to share the latest research achievements in the fields related to plasma and fine bubble R&D.Topics will cover the latest theoretical and experimental developments related to plasma and fine bubbles and their potential applications in biological, environmental, agriculture, aquaculture, food safety, medical fields and a host of other fields.Call for papers: Basic Science on Plasma & Fine Bubbles Technologies of Plasma & Fine Bubbles The Applications of Plasma & Fine Bubbles.Website: https://ispfb2022.scimeeting.cn/en/web/index/Secretariat: Dr Pan Li, Tongji University, E-mail: lipan@tongji.edu.cn. Dr Lijuan Zhang, Shanghai Advanced Research Institute of CAS, E-mail: zhanglijuan@sari.ac.cnThe International Multiphase Flow Technology ForumOrganization: China University of Petroleum-Beijing, Chinese Society of ParticuologyGeneral Chair: Raffaella Ocone IMFTF focus: The International Multiphase Flow Technology Forum (IMFTF) aims at facilitating the academic exchange and experience sharing worldwide. Its main objectives are promoting scientific and technical communication as well as fostering collaborations among researchers. IMFTF is dedicated to multiphase technologies that can be extended to wide scale knowledges and methodologies for fundamental research reference. It is known that there still are many potential contents hidden in multiphase flow. Meanwhile,with great progress of computation technology and experimental facilities, present problems of multiphase flow should be well addressed by computational and experimental method. IMFTF hopes to stimulate communication and make efforts in the future development directions of such an important scientific area. IMFTF welcomes discussion and aims at expanding the boundaries of knowledge that needed to solve challenging problems.Call for papers: IMFTF2022 will focus on the following topics (including but not limited to):Fundamental research in Computational and Experimental Methods for Multiphase Flows, Bubbly and Droplet Flows, Particle-laden Flows, Turbulence in Multiphase Flows. Industrial applications in Reactive Multiphase Flows, Granular Media, Fluidization, Cavitation, Nucleation, Mixing, Collision, Agglomeration and Breakup and Flow Instabilities. New version of multiphase flow in process engineeringAbstract Submission: https://www.csp.org.cn/meeting/CCPT12/divisions.php#topic125Secretariat: Jun Yao, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Tel. +86-17710098569 E-mail: yaojun@cup.edu.cn中国颗粒学会团体标准工作委员会2022年度会议及标准审查会组织单位:中国颗粒学会团体标准工作委员会主席:李兆军、周素红会议内容:(1)秘书处年度工作报告;(2)审查团体标准《颗粒技术 锂离子电池用磷酸锰铁锂》;(3)会议总结及下一年度工作规划。学术秘书:朱晓阳,国家纳米科学中心,010-82545517,zhuxy@nanoctr.cn 五、会议征文中国颗粒学术年会各分会场同时征文,具体要求如下:1. 征文地址:https://www.csp.org.cn/meeting/CCPT12/,注册过程中有任何问题请随时联系会务组(黄巧,010-82544962,13718757572,klxh_meeting@ipe.ac.cn)。2. 论文要求为详细摘要,稿件请采用Word排版,详见格式见附件1。3. 论文截止日期为:2022年7月4日。六、注册费用:代表类型提前缴费(2022年7月04日及以前)正常缴费(2022年7月04日后,包含会议现场)非会员用户2200元2400元普通会员2100元2300元学生会员1700元1900元请通过会议网站完成会议注册和缴费:https://www.csp.org.cn/meeting/CCPT12/会议代表可通过线上支付(微信、支付宝)、银行转账或者现场刷卡的形式付款。开户行及账号:中国工商银行北京海淀西区支行,中国颗粒学会,0200004509014413416团队成员满5人或以上可享受:会议注册费每人减200元优惠!注:(1)烦请在网上注册并填写发票抬头及单位税号;(2)团队参会优惠费用由会务组韩老师手动修改,请直接联系韩老师(xzhan@ipe.ac.cn,13269656065,010-62647647);(3)注册费支付若选择银行转账,请务必在会议网站登陆后上传缴费凭证,缴费状态会在5~10个工作日内人工核对确认后更新,如长时间未更新,请直接联系韩老师。七、会议赞助和同期展览(8月19日布展,20-21日全天展览)大会同期将举办颗粒/粉体仪器、设备、产品和应用展,包括颗粒/粉体测试分析仪器、制备设备、产品及其在化工、能源、材料、医药和环境等中的应用等内容,欢迎相关单位积极报名参展。联系人:李京红(010-62647647,13801242411,klxh@ipe.ac.cn)更多信息请前往会议网站:https://www.csp.org.cn/meeting/CCPT12/a2136.html?sourceid=79八、大会青年报告奖和优秀墙报奖学会奖励包括科技奖、人才奖和专项奖将在大会上组织颁奖,并且在年会期间将评选出“第十二届中国颗粒大会青年报告奖、优秀墙报奖”。会后将推荐优秀摘要至《能源前沿》、《颗粒学报》、《能源化学》、《化工学报》、《化工进展》、《绿色能源与环境》、《绿色化学工程》、《储能科学与技术》、《中国粉体技术》、《过程工程学报》、《现代技术陶瓷》、《大气与环境光学学报》等。九、重要时间节点2022年3月28日会议第一轮通知,注册投稿开放2022年5月11日会议第二轮通知2022年6月06日会议第三轮通知2022年7月04日会议论文(摘要)接收截止,早鸟价截止2022年7月11日审稿截止2022年8月19日会议报到、讲习班、换届会2022年8月20-21日学术会议2022年8月22日圆满离会(部分分会场、产学研对接)更多详情请关注学会公众号“中国颗粒学会”或登陆学会官网(www.csp.org.cn)查阅。大会网站:https://www.csp.org.cn/meeting/CCPT12/十、联系我们中国颗粒学会地址:北京海淀区中关村北二街1号中国颗粒学会(100190)电话/传真:010-82544962会议网站:https://www.csp.org.cn/meeting/CCPT12/微信公众平台:中国颗粒学会会场协调:黄 巧(010-82544962,13718757572,klxh_meeting@ipe.ac.cn)赞助展览:李京红(010-62647647,13801242411,klxh@ipe.ac.cn)财务发票:韩秀芝(010-62647647,13521432868,xzhan@ipe.ac.cn)附件1 论文摘要撰写说明及模板(1).docx
  • 【技术指导】油品颗粒度检测标准和内容(便携式颗粒度检测仪)
    得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。油品颗粒度检测范围和方法油品颗粒度检测,其实就是对油品的磨损性能进行评价。油品颗粒度也是油品污染物的重要检测指标。检测油品的颗粒含量,不仅可以帮助提高使用油品机组的可靠性,还可以延长其使用寿命,减少生产事故的发生,提高生产效率。由此可见油品颗粒度检测的重要性。油品颗粒度检测范围:汽油、柴油、煤油、刹车油等。油品颗粒度检测方法:油品颗粒度分析的方法主要有光学法、电磁法、电容法和显微图像分析法。其中,光学检测法因其检测速度快、灵敏度高和颗粒形状分析能力强,被广泛应用于微小颗粒的计数检测。光阻法是光学检测方法中广泛检测和发展的一种颗粒计数测量方法。油品颗粒度检测标准DL/T 432-2018电力用油中颗粒度测定方法GB/T 30507-2014船舶和海上技术润滑油系统和液压油系统颗粒污染物取样和清洁度判定导则QC/T 29105.3-2013专用汽车液压系统液压油固体颗粒污染度测试方法取样QC/T 29105.4-1992专用汽车液压系统液压油固体污染度测试方法显微镜颗粒计数法JB/T 10560-2017滚动轴承防锈油、清洗剂清洁度及评定方法JB/T 9591.3-2015燃气轮机油系统清洁度测试用显微镜计数法测定油液中固体颗粒污染度SH/T 0573-1993在用润滑油磨损颗粒试验法(分析式铁谱法)QC/T 29104-2013专用汽车液压系统液压油固体颗粒污染度的限值JB/T 9737-2013流动式起重机液压油固体颗粒污染等级、测量和选用JB/T 12895-2016内燃机润滑油污染物颗粒分级和检测方法相关仪器A1030便携式油液污染度检测仪使用方便,用于液压油、润滑油及水乙二醇抗燃液清洁度的现场检测,检测清洁度直观易读,并能帮助维护工程师判断油品污染物的性质,判断污染物的来源,是现代工厂维护的常用检测设备。适应标准:DL432(显微镜对比法) NAS1638(美国航空航天工业联合会制定),ISO 4406(国际标准化组织制定)仪器特点1、可目测5~150μm颗粒污染情况2、颗粒成份一目了然,快速分析污染级3、操作方便,快捷实用技术参数• 显微镜:100倍• 检测颗粒:5μm~150μm• 检测等级:NAS等级00-12,ISO等级1-24• 滤膜:1.2μm、5μm• 精 准 度:±0.5个污染度等级• 小进样量:12.5ml• 环境温度 15℃~55℃• 尺寸:540mm*400mm*340• 重量:10.2kgA1031油液颗粒污染度检测仪是依据GB/T 18854-2002、ISO11171-1999、DL/T432-2007、GJB 420B、NAS1638、ISO4406等标准研制的用于油液中污染粒子的分布大小尺寸及等级检测的仪器。油液颗粒计数器采用光阻法(遮光法)原理研制,适用于液压油、润滑油、抗燃油、绝缘油和透平油等颗粒污染度的检测。可提供快速、准确、可靠、可重复的检测结果及完整的污染监测分析报告。广泛应用于航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域。仪器特点1.采用国际液压标准光阻(遮光)法计数原理。2.高精度激光传感器,测试范围宽,性能稳定,噪声低,分辨率高。3.采用精密注射泵取样方式,可自行设定取样体积,进样速度稳定,取样精度高。4.采用了正负压结合的进样系统,可实现样品脱气,适合不同粘稠度的检品测试。5.内置空气净化系统,保证测试不受污染。6.内置多重校准曲线,可兼容国内外常用标准进行校准。7.内置GJB-420B、NAS1638、ISO4406和ГOCT17216-71等8种常用标准,支持自定义标准测试,并可根据客户需求设置所需标准。8.可采用标准取样瓶或取样杯等多种取样容器,满足不同行业的检测要求。9.彩色触摸屏操作,内置打印机,结构简洁大方,操作简单方便。10.全功能自动操作,中文输入,具有数据存储、打印功能。11.内置数据分析系统,可根据标准自动判定样品等级。12.具有RS232接口,可连接电脑或实验室平台进行数据处理。13.可有偿提供颗粒度计量测试站“中国航空工业颗粒度计量测试站”校验报告。技术参数• 光源:半导体激光器• 粒径范围:0.8um~500um• 检测通道:8通道任意设置粒径尺寸• 分辨力:优于10%• 重复性:RSD2% • 粘度范围:大350mm2/s(cSt)• 取样体积:0.2~1000ml • 取样精度:优于±1%• 取样速度:5mL/min ~80mL/min• 气压舱真空:0.08MPa• 气压舱正压:0.8MPa • 极限重合误差:10000粒/mL• 工作电源:AC220V±10%,50Hz
  • 美国博纯参加2016中国颗粒学会学术年会暨海峡两岸颗粒技术研讨会
    - Nafion膜式管湿度控制技术助力气溶胶科研全球医疗、科研和环境监测应用气体预处理解决方案优质供应商美国博纯(Perma Pure),于2016年8月12日至14日出席由中国颗粒学会在成都举办的第九届学术年会暨海峡两岸颗粒技术研讨会。本次大会旨在交流国内外颗粒学研究与技术,探讨和分享科研最新进展和应用,展示业内先进产品。在为期三天的研讨会期间,美国博纯中国区销售经理张力钧先生就大气气溶胶分析中湿度控制为主要内容展开演讲,为与会嘉宾带来了最先进前沿的大气监测预处理技术。2016中国颗粒学会学术年会开幕式大气监测实际情况中,湿度的影响会对颗粒物监测造成不同程度的偏差。当相对湿度大于60%以上时,小颗粒溶胶例如PM2.5颗粒会吸湿而增大,所以没有控制相对湿度的分析仪测出的数值就会虚高。因为所测的颗粒物重量不完全是PM2.5的,还包括了吸附在上面的那层水。而在使用传统气溶胶干燥方法中,处理后的样气会有颗粒物损失高及数据测不准的问题。目前,已有许多科研机构对如何严格控制大气样品气湿度进而获得精确监测数据一问题引起重视。 针对上述问题,拥有三十多年样气水分管理经验的美国博纯已研发出MD700-大管径Nafion干燥管,其低颗粒物损失率、无需加热及低维护成本等特点可以完美解决气溶胶湿度控制的问题。在会议期间的气溶胶专场中,张力钧先生为现场的专家、学者及行业同仁分享了主题为“大气气溶胶分析---样气干燥过程中有效降低粒子损失的方法”的演讲,演讲内容涉及了大气采样样气预处理过程及用户所存在困惑,以多角度、详实的科研院校测试案例分析吸引了在座嘉宾的强烈关注。在研讨会后,张力钧先生与专家、学者及企业代表进行了深入的沟通和交流。美国博纯OEM销售经理张力钧先生做大会报告 美国博纯在气体湿度控制应用中积累了大量的实践经验,产品涉及医疗、科研、环境监测及燃料电池领域。博纯拥有中美专业的研发团队,始终以“保护生命(Protect Life)”的理念,不断为全球用户提供最前沿的技术和经验,并为博纯用户及时解决样气湿度问题,帮助提升其分析设备的稳定性和准确性! 关于博纯:美国博纯(Perma Pure)是英国豪迈旗下公司,是一家提供创新的高性能气体预处理解决方案生产厂商,产品包含干燥管、加湿器、过滤器、凝聚过滤器、专业洗涤器和完整的样气预处理系统。总部位于新泽西州莱克伍德,在中国和印度设有服务支持中心。作为使用Nafion™ (由杜邦公司研发的离子交换共聚物)管解决方案的指定生产商,我们提供高性能、品质和可靠性产品,是医疗、科研和环境监测用户的信赖之选。博纯通过ISO 9001:2015,13485:2016认证,并获得FDA注册。
  • 德国RETSCH参加全国颗粒制备研讨会
    10月22日德国RETSCH(莱驰)参加了两年一度的中国颗粒学前沿研讨会―――暨第九届全国颗粒制备与处理研讨会,为期3天的学术研讨会在美丽的海滨城市山东威海举办。本次研讨会共吸引了74位代表,其中企业界18位,科研院所56位,共发表了83篇论文。讲座由中国颗粒学会颗粒制备与处理专业委员会主办,由组委会委员沈志刚、邢玉山、蔡楚江等主持,各大院校的专家学者先后做了关于颗粒研究分析的报告。德国RETSCH(莱驰)有幸参加了此次会议,了解了颗粒学相关的前沿信息,并向与会人员推荐了有关产品。 RETSCH(莱驰)的CAMSIZER多功能粒径及形态分析仪作为粒度分析的前沿技术,引起了部分用户的兴趣,它可以对干燥的、可倾注的粉末进行粒径及形态分析,由于采用了动态数字成像技术,在10um至30mm的宽广范围内一次进样即可得出粒径大小、粒度分布、颗粒个数、颗粒形态、球形度、透明度、表面积等多个相关参数和样品的综合信息,并可比对筛分结果,起到了一台仪器等于几台仪器的测量功能。 此外,RETSCH以其在筛分和筛分仪设计领域内独一无二的技术为客户提供了优异的筛分解决方案,带给客户精确并可重复的分析结果,相应的分析处理软件分样仪多样化的附件,极大的完善了分析筛分领域的解决方案,2009年“筛风暴”活动的推出,也是很广大使用者提供了最大的优惠。行星式球磨仪PM系列也在超细粉体、合金制备等领域得到了用户的关注。 优质的产品,完善的售后服务系统是RETSCH品质始终如一的宗旨,2010年RETSCH 将会带着更新更高效的产品促进颗粒制备与处理的研究! 关注RETSCH,关注2010!
  • 德国RETSCH公司加入上海颗粒学会理事会
    2009年4月23日RETSCH公司参加上海颗粒学会换届选举会员代表大会,并成为第六届理事会成员! 上海颗粒学会理事长、上海理工大学动力工程学院颗粒与两相流测量技术研究所所长蔡小舒教授在会上宣读并通过了上海市颗粒学会第五届理事会工作报告,并组织所有会员投票产生了新一届理事会成员。德国莱驰公司凭借高品质的仪器和多年对上海颗粒学会的贡献,荣幸的评为了理事会成员。 上海颗粒学会换届选举会员代表大会现场 德国RETSCH(莱驰)公司致力于实验室样品前处理的研究,主要生产研磨、粉碎、筛分及粒度分析的设备,与上海颗粒学会的研究对象不谋而合。数年来两者一直保持着良好的合作关系,2008年6月RETSCH公司在上海举办样品前处理技术交流会还特邀蔡小舒教授做了关于“颗粒粒度表征和测量”的精彩报告。 上海颗粒学会理事长蔡小舒教授作报告 围绕对颗粒学的研究,德国RETSCH(莱驰)的多功能粒径分析仪Camsizer能帮助用户实现一次进样,同时得到粒度大小、个数、分布、球形度、对称性、密度、表面积等综合信息,提高分析效率。这台Camsizer采用了双镜头的专利设计,测量范围广,对于大颗粒也能进行测量,进样量大,具有代表性, 并实时保存图像,对非规则颗粒,有着更为正确的粒径表征。不同于激光粒度仪,它无需输入折射率;不同于筛分仪,它更省时省力;不同于显微图像法,它表征的是颗粒各个方向上的动态数据,因此Camsizer特别适用于催化剂、聚合物、玻璃准、标准物、食品、饲料、岩矿、地质等行业的应用。 多功能粒径分析仪Camsizer 最后,来自上海大学的施利毅教授、华东理工大学顾峰教授分别做了关于纳米材料等研究及应用的精彩报告,会议在浓厚的学术气氛中结束。 上海颗粒学会作为一个专业的平台,让莱驰与国内用户及科研院校、企事业单位能够更好的交流,让RETSCH仪器能够为分析方法的研究做更大的贡献!
  • 中药配方颗粒省级标准制定关注要点
    2月10日,国家药品监督管理局、国家中医药管理局等四部门联合发布《关于结束中药配方颗粒试点工作的公告》(以下简称《公告》),结束中药配方颗粒试点工作。《公告》的发布标志着中药配方颗粒的生产和监管进入新的阶段。  根据《公告》要求,符合条件的生产企业可报所在地省级药品监督管理部门备案后进行中药配方颗粒的生产。作为中药配方颗粒生产和质量监管的重要依据,中药配方颗粒质量标准成为备案资料中最关键的技术文件。《公告》要求,中药配方颗粒应执行国家标准,国家标准没有规定的,允许省级药品监督管理部门自行制定标准。目前国家药品监督管理局已经公示了160个品种的中药配方颗粒质量标准,即将转为中药配方颗粒国家标准,将为各生产企业配方颗粒的备案提供依据。但是160个品种之外的中药配方颗粒品种目前尚无国家标准,中药配方颗粒省级标准制定工作迫在眉睫。  《公告》要求中药配方颗粒省级标准的制定应严格按照《中药配方颗粒质量控制与标准制定技术要求》执行。中药配方颗粒省级标准制定应重点关注以下几点:  一是研究用样品的代表性。应在充分产地调研基础上收集含道地产地、主产地等不同产地的15批以上符合药品标准规定的同一基原药材样品,并依据药品标准或中药饮片炮制规范炮制成供研究用中药饮片样品。  二是标准汤剂研究的标准性。标准汤剂是衡量中药配方颗粒与中药饮片汤剂“一致性”的物质基准。标准汤剂的标准性涵盖了投料饮片(药材)的道地性、煎煮工艺的一致性、质量控制的严谨性。因此,标准汤剂的制备应参照《医疗机构中药煎药室管理规范》采用传统汤剂的获得模式。标准汤剂是中药饮片经水煎煮提取、过滤固液分离、低温浓缩、冷冻干燥制得。通过15批标准汤剂的出膏率、有效成份(或指标成份)含量及含量转移率、特征图谱等数据,分析得出标准汤剂的三个基本质量指标,为中药配方颗粒的工艺研究和质量标准制定提供依据。  三是工艺研究的合理性。中药配方颗粒制备工艺合理性的主要评价标准是上述标准汤剂的三个质量指标。因此,工艺研究中提取时间、提取次数、浓缩、干燥、制粒等工艺参数的确定均应以标准汤剂的质量指标为依据。处方量、制成总量及规格等也应与标准汤剂的质量指标相对应。中药材、中药饮片、标准汤剂、中间体、成品之间关键质量属性的量质传递应具有相关性。  四是质量标准研究的科学性、严谨性。中药配方颗粒质量标准的制定应针对中药配方颗粒的特点,由于中药饮片经水煎煮制成颗粒后已失去了中药饮片的鉴别特征,因此应采用特征图谱或指纹图谱等专属性、整体性控制方法进行鉴别;含量测定应选择水溶性有效成份或专属指标成份作为测定指标并根据标准汤剂的含量及含量转移率范围制定合理含量上下限度。此外,为有效控制中药配方颗粒的安全性,应参照中药材、中药饮片质量标准中规定的重金属、农药残留、真菌毒素限量制定相应的检查项目,对于中药材、中药饮片标准中未规定上述安全性检查项目的品种应进行相应考察,根据考察结果确定是否有必要进行控制。  五是质量标准复核的重要性。质量标准复核工作是考察标准重现性和可行性的重要环节,质量标准草案上升为正式标准之前均应进行质量标准复核,应组织省级药检部门或其他有资质的检验机构对制定的质量标准草案进行复核,以确保标准的可行性。  中药配方颗粒省级标准制定工作是一项关系中药配方颗粒行业健康发展的重要工作,期待各省能群策群力,充分发挥中药配方颗粒原试点企业的经验和科研院校的科研优势,尽快制定出能有效控制中药配方颗粒质量的省级标准。(作者:河北省药品医疗器械检验研究院 冯丽
  • 德国RETSCH(莱驰)参加西安颗粒学年会
    一年一度的中国颗粒学年会于2010年8月15日至18日在西安举办,与往年不同的是,同期还举办中国颗粒学会第五次会员代表大会及理事会换届工作会议、上海颗粒学会年会及北京粉体技术协会年会,还安排企业交流专场、仪器设备展示会。 如此盛大的会议,作为样品前处理行业领头羊的德国RETSCH(莱驰)自然必不可少。RETSCH中国区总经理董亮先生在颗粒测试与应用分会场为在场嘉宾介绍了动态数字成像技术在现代粒度分析中的应用,带领大家走进粒径粒形分析的新领域。 莱驰专注于实验室样品前处理,有全套的筛分仪和颗粒粒径分析设备。您在仪器设备展示区也能见到莱驰的身影。根据不同的颗粒性质、单次处理量,莱驰都有相应的筛分仪适用。例如一般性的干性颗粒,可使用振动筛分仪AS200进行颗粒大小测试;如果颗粒很大处理量也很大,例如建筑行业,可使用强力筛分仪AS450筛分。2010年莱驰还推出新款空气动力筛分仪AS200jet,能够有效防止微小颗粒团聚现象的产生。 除此之外,令来宾赞不绝口的就是莱驰多功能粒径粒形分析仪camsizer,这是全球第一台利用动态数字成像技术的粒度分析仪。测量范围宽,并且只需一次进样,就可得到颗粒大小、分布、球形度、对称性、凹凸度等颗粒综合信息,大大提高了实验室工作者的效率。 如果您想进一步了解莱驰仪器,可于2010年9月15日-17日至上海龙阳路新国际博览中心,莱驰将携所有2010年新品现身Analytica 2010慕尼黑生化展,期待您的光临。 德国莱驰展位号 W1 1210
  • 英国豪迈旗下博纯助力PM2.5颗粒物监测
    ——美国博纯发布颗粒物分析专用MD-700大直径Nafion干燥管 MD700系列是美国博纯专为颗粒物及气溶胶分析应用中控制湿度而研发的一款大直径Nafion干燥管。 在实际情况中,湿度会对颗粒物监测造成不同程度的偏差。当相对湿度大于60%以上时,小颗粒溶胶例如PM2.5颗粒会吸湿而增大,所以没有控制相对湿度的分析仪测出的数值就会虚高。因为所测的颗粒物重量不完全是PM2.5的,还包括了吸附在上面的那层水。所以在分析前,如何控制大气样气中的湿度显得尤为重要。 博纯MD700具有特殊的17mm直径Nafion管,使得产品有较低的颗粒物损失率。同时,无需加热样气以控制相对湿度,可完全保留样气中的挥发性微粒。其不锈钢结构设计可排除管内的潜在静电荷干扰。博纯公司所生产的Nafion干燥管都可以持续重复使用,无需反复更换干燥剂,从而有效地帮助用户降低维护成本。 MD700有四种型号,范围覆盖1-1.5 lpm,1.5-4 lpm,4‐8 lpm和8‐16.7 lpm,可满足不同分析需求。如想了解更多MD700系列产品,请访问www.permapure.com.cn,也欢迎发电子邮件到vlu@permapure.com 或拨打电话86-21-60167678。 关于博纯(Perma Pure)和豪迈(HALMA):美国博纯(Perma Pure)是气体采样处理领域的领先创新者,公司通过运用Nafion?技术,连同其他多样的技术和专业知识,帮助客户安全、准确地分析气流采样。博纯的技术和产品广泛应用于医疗、科学、氢燃料电池和环境监测,客户遍及全世界。美国博纯是英国豪迈(HALMA plc– www.halma.cn)的子公司。创立于1894年的豪迈是世界领先的安全、健康及环境技术集团,伦敦证券交易所的上市公司,在全球拥有 5000 多名员工,40 多家子公司。豪迈是伦敦证券交易所上市公司中唯一一家在过去30多年股息增长保持5%以上年增长的企业。 豪迈目前在上海、北京、广州、成都和沈阳设有区域代表处,并且已在上海、北京、保定和深圳开设多家工厂和生产基地。如需了解最新豪迈中国新闻并订阅RSS,请访问下面的新闻页面: http://halma.cn/news/express。业务联络:陆明敏美国博纯中国区市场经理电话:021—6016 7678 ,电邮:vlu@permapure.com 媒体联络:徐靓英国豪迈公司中国区市场经理电话:021 - 6016 7610,电邮:kevin.xu@halma.cn 网址:www.halma.cn
  • 微颗粒的电磁在线监测技术与仪器装备
    table width="614" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="482" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"微颗粒的电磁在线监测技术与仪器装备/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中国科学院大学/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"王晓东/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="153" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Xiaodong.wang@ucas.ac.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="482" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:113px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="113"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"微颗粒(金属非金属氧化物颗粒、夹杂物、裂纹、气泡、缺陷、溶质、催化剂、大气污染物等等)在固相、液相和气相中的动态监测问题相当广泛地存在于不同的科学技术和工业领域里。中国科学院大学王晓东教授课题组提出基于电磁场理论的新原理,并根据监测体系和应用场合的不同,开发了一系列的系统解决方案(如下图)。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/3809cd5b-c3be-4592-9b68-234e6eadb6b2.jpg" title="4.png"//pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"/spanbr//pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"本项目新方法,主要有以下四方面的优势:1)原理上,测量量我们以矢量(如测力、第2磁场等代替标量(如阻抗),在测量精度上我们的新方法较传统涡流方法提高了1到2个数量级 2)并且由于测量量为矢量的原因,基本上消除了传统方法难以克服的“提离”效应,使检测精度大幅提高 3)检测速度大幅提高;4)可实现在线监测(传统方法为“线上”检测方式);5)检测信号易于解析。/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"相较已有技术,本项目具备实时、在线、连续、原位、定量、高速等六大特点;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"测量精度高:探测对象为微米、亚微米级颗粒物;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"适用范围广:从低温的弱导电溶液到高温的金属液(电导率:100-106S/m;温度:常温—1600/spanspan style=" font-family:宋体"℃/spanspan style=" font-family:宋体");/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"在化学化工、医药、环境领域,本技术大幅提高生产效率和质量、降低生产成本;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"突破了高温金属液洁净度的在线测量技术(世界性难题,目前尚无竞争技术);/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"在无损检测领域,突破了传统标量测量量的极限,测量精度提高了1—2个数量级;/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"仪器特点:精度高、信号易于解析、微小型化(便携)、适应恶劣工业环境、可远程通讯监控。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"1/spanspan style=" line-height:150% font-family:宋体"、应用于无损检测领域——基于矢量测量的新涡流监测法/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"作为朝阳行业的无损检测在我国有着广阔的发展空间。按原理分可分为五大类,而无损检测设备器材可分为26类。应用无损检测技术的企业超过3万家,而且还在不断增长,检测与服务机构超过2000家,涉及到的无损检测器材制造商800多家。从业人员超过35万(铁路系统5万人以上,石油化工、油田、天然气、锅炉压力容器四个行业12万人以上,航空系统2万以上, 此外,航天、汽车、机械行业、电力、核电、军队、电子工业、食品医药卫生、轻工及其他行业领域未计算在内)。市场总容量超过100亿。国外某知名度和权威性很高的检测公司估计中国的第三方市场是一个超过500亿美元的巨大市场。 /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"涡流检测方法是五大类(超声波、涡流、磁粉、渗透和射线)无损检测方法应用最广泛方法之二(另一个为超声),涡流检测设备涵盖数字化涡流探伤仪、脉冲涡流检测系统、阵列涡流检测系统、大型自动化涡流探伤系统、导电率仪、金属探测器等。相关涡流检测制造厂家超过47家(2013年数据)。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2/spanspan style=" line-height:150% font-family:宋体"、应用于弱导电液中的(如电解质溶液、离子液体等)微颗粒监测/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"仪器应用对象:不仅适合于化学化工领域中的催化剂演化过程监测控、结晶工艺中控、化学提纯等领域,而且还可用于其他领域的工艺监控:磨料、墨粉、水质、稀土、化纤、陶瓷、滤材、材料、环境检测、化妆品、晶体、电子材料、食品工业、燃料、微球体、涂料和色素、造纸工业、石化、颜料、水污染检测等。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"3/spanspan style=" line-height:150% font-family:宋体"、应用于高温金属液洁净度的原位、在线、定量测量技术(冶金夹杂物监测)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"冶金过程中的夹杂物在线监控(采用光学等实验室化验方法属于非在线手段,对生产实际意义不大)是世界性难题(类似于空气污染物的监测,难度高于此!)。其价值在于能有效监控由于原材料或工艺工程中带入的非金属夹杂物,是生产洁净钢和超高洁净钢必须的关键技术。目前,基于库尔特原理的LiMCA技术只能应用于低温(熔点温度低于700度)。如能在钢铁工业、铜工业上实现夹杂物的在线监控,将是冶金领域里世界范围内技术革新。而我们的技术完全可以涵盖从低熔点到高熔点的全部范围。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"4/spanspan style=" line-height:150% font-family:宋体"、应用于大气颗粒物的监测/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"大气环境监测是所有的大气环境工作的物质基础,无论是进行大气环境质量监测、大气污染治理,还是进行大气环境科学与工程的研究,都必须是在科学、准确测定大气环境参数的基础上进行。目前,大气中悬浮颗粒物的存在,已对环境产生了严重影响,检测与监测大气颗粒物成为研究热点。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="614" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"申请美、德、中专利20项、其中7项已获授权/span/p/td/tr/tbody/tablepbr//p
  • 中国大气细颗粒物含量已位居全球之首
    大气污染防治暨氮氧化物(NOx)排放管理与控制&mdash 国际高级别咨商会议现场  3月29日,&ldquo 大气污染防治暨氮氧化物(NOx)排放管理与控制&mdash 国际高级别咨商会议&rdquo 在中国大饭店举办,会议由联合国工业发展组织支持并和国际节能环保协会共同主办,由江苏绿源环保科技有限公司发起承办。中国环境科学研究院环境标准研究所所长武雪芳在会议报告中表示,中国大气污染形势非常严峻,二氧化硫排放量世界第一,二氧化碳浓度非常高,细颗粒物位居全球之首。  中国这叁种污染物排放量如此之高和环境质量差的塬因是什么呢?武雪芳解释说,因为中国煤炭消耗第一,其次是机动车,移动源的生产和销售。他说,中国的煤炭消费量,佔了全球的一半 近年来中国的汽车产量和销售量,还有保有量都是世界第一,机动车已经成为空气重要污染源。据最近一两年的研究结果,北京上海大城市机动车,或者移动源对PM2.5的贡献率超过20%。  据记者了解,氮氧化物的持续增加,会加速细微颗粒物和二次气溶胶的形成。氮氧化物(NOx) 包括多种化合物,如一氧化二氢、一氧化氮、二氧化氮、叁氧化二氮等,是是造成大气污染的主要污染源之一,也是直接导致我国各地阴霾天、臭氧破坏、空气污染的重大因素。NOx 以燃料燃烧过程中所产生的数量最多,约佔30%以上,全国氮氧化物的排放量年增长率为5%~8%,按照目前的发展趋势,到2030年我国氮氧化物排放量将达到3540万吨 如果不採取进一步的氮氧化物减排措施,随着国民经济继续发展、人口增长和城市化进程的加快,未来中国氮氧化物排放量将持续增长。因此,氮氧化物(NOx)排放控制问题已经成为我国大气污染控制中一个不可再回避的现实问题。氮氧化物是光化学污染的前体物之一。在阳光照射下,NO2和VOCs(挥发性有机化合物)经由一连串的光化学反应生成O3和甲醛、乙醛等多种二次污染物,导致大气氧化性增强,并形成光化学烟雾,对大气环境和人体健康造成危害。  江苏绿源环保科技有限公司总经理曹定良说,&ldquo 尾气排放对环境污染影响巨大,从船舶和机车内燃机排入大气中的有害成分,主要有氮氧化物、硫氧化物、二氧化碳等气体,而氮氧化物是内燃机排放产生物中对人类和环境危害最大,尤其会严重损害人和动物的唿吸系统和影响植物生长。&rdquo 据记者获悉,自2016年1月1日起,当船舶在由指定的排放控制区内航行时,应符合严格的氮氧化物 3号排放标准。目前排放控制区域包括北海区域、波罗的海区域、北美区域、加勒比海区域。
  • 国五标准:轻型汽车再减排颗粒物82%
    连日来,我国中东部遭“毒霾”笼罩,全国74个监测城市中,有33个城市的部分检测站点检测数据超过300,空气质量达到了严重污染。为呼应空气污染治理的诉求,16日,受到社会各界广泛关注的《轻型汽车污染物排放限值及测量方法(中国第五阶段)》(简称“汽车国五标准”)向全社会第二次公开征求意见。该标准适用于汽油车、柴油车等轻型汽车,将颗粒物粒子数量纳入了污染物控制项目。  据环保部披露,与现行第四阶段标准相比,二次征求意见稿大幅度加重了污染物排放限值,轻型汽车单车将在现有基础上进一步减排氮氧化物25%-28%,减排颗粒物82%。另外,轻型汽车第五阶段排放标准的实施,将促进国内车用汽油和柴油品质的提升,不但对新车污染物减排发挥作用,还将改善大量在用汽车的污染物排放状况。  “十二五”将新增轻型汽车约8000万辆  《轻型汽车污染物排放限值及测量方法(中国第五阶段)》二次征求意见稿将颗粒物粒子数量纳入了污染物控制项目,增加了车载诊断系统的实际监测频率要求,并改进了生产一致性检查判定方法,实施时间改为视满足《轻型车国五标准》的燃油供应情况而定。  随着汽车越来越多地走入普通家庭,我国轻型汽车得到了快速发展,2011年底产销量约1600万辆,连续三年居世界首位,保有量达到8264万辆。汽车在给生活带来便捷的同时,也带来了严重的环境问题。研究表明,2011年轻型汽车排放氮氧化物80.7万吨、颗粒物(PM)6.5万吨、碳氢化合物166.2万吨、一氧化碳1621.7万吨,已成为北京等城市空气污染物的主要来源。未来几年我国汽车保有量仍会快速增长,最新统计数据表明,2012年我国汽车产销量已超过1900万辆(其中轻型汽车约1700万辆),预计“十二五”期间,将新增轻型汽车约8000万辆。  对此,环保部有关负责人表示,去年颁布的《环境空气质量标准》增加了细颗粒物(PM2.5)和臭氧8小时项目,收紧了可吸入颗粒物(PM10)等污染物的浓度限值,要求加强主要行业大气污染防治,因此有必要进一步提高轻型车污染物排放控制水平、降低单车的污染排放量。  与现行的轻型汽车第四阶段污染物排放标准相比,二次征求意见稿加重了污染物排放限值,其中氮氧化物加严25%-28%,颗粒物加重82%,大幅削减了新生产汽车的单车排放量 增加了颗粒物粒子数量这一污染物控制项目,可促使汽车采用更有效的排放控制技术,降低颗粒物尤其是细颗粒物的排放量 车辆达标排放考核里程增加一倍,即由原来的8万公里增加到16万公里 提高车载诊断系统的排放控制要求,更有利于对在用车辆实际排放状况进行监控 增加催化转化器和碳罐等关键排放控制零部件的检查要求,确保车辆实际生产中采用性能好的零部件 改进生产一致性检查判定程序,更符合我国机动车环保管理的实际需要 进一步完善车辆在用符合性检查项目,确保汽车使用过程中的排放达标 考虑到实施《轻型车国五标准》需要供应相应的燃油,标准的实施时间需待燃油供应时间明确后才能确定。与国外汽车排放法规标准相比,二次征求意见稿的排放控制水平和欧洲正在实施的第五阶段轻型车排放法规相当。  1989年来已先后4次提高轻型汽车排放标准  为适应汽车保有量高速增长过程中环境保护的需要,我国从1989年发布《轻型汽车排气污染物排放标准》以来,已先后4次提高轻型汽车排放标准,分别是2001年发布的第一和第二阶段以及2005年发布的第三、四阶段的《轻型汽车污染物排放限值及测量方法》。由于油品供应的问题,目前轻型柴油车执行第三阶段排放标准,轻型汽油车执行第四阶段排放标准。与1989年标准的排放控制水平相比,第三阶段标准排放限值加严了75%—92%,第四阶段标准排放限值加严了91%-96%。由于及时实施了相应汽车排放标准,“十一五”期间,在轻型汽车保有量增长了129%的情况下,氮氧化物排放量仅增加了4.6%。  据悉,《轻型汽车污染物排放限值及测量方法(中国第五阶段)》标准适用最大总质量小于3.5吨的汽车。从燃料类型来看,包括了汽油车、柴油车、气体燃料车(如天然气、液化石油气)、两用燃料车及混合动力车等。。  轻型汽车第五阶段排放标准的实施,将促进国内车用汽油和柴油品质的提升,不但对新车污染物减排发挥作用,还将改善大量在用汽车的污染物排放状况。研究表明,车用燃料从第四阶段升级到第五阶段,国一、国二阶段汽车的氮氧化物排放将降低3%左右,而国三、国四阶段汽车将降低10%左右。从这个意义上说,早日供应满足第五阶段排放标准的燃油,争取尽快实施新标准,对进一步降低氮氧化物、碳氢化合物和颗粒物等一次污染物排放,以及削减PM2.5、臭氧等二次污染物,改善空气质量具有重要意义。
  • 《中药配方颗粒质量控制与标准制定技术》促进配方颗粒标准科学规范
    2月10日,国家药监局、国家中医药局、国家卫生健康委、国家医保局等四部门共同发布了《关于结束中药配方颗粒试点工作的公告》(以下简称《公告》),以规范中药配方颗粒的生产,引导产业健康发展,更好地满足中医临床需求。这是促进中医药传承创新发展的重要举措,对提升人民群众对中药的获得感具有重要意义。  作为国家药典委评审专家,我一直关注中药配方颗粒产业发展,参与了中药配方颗粒国家标准的制定。中药配方颗粒国家标准制定过程充分吸纳了试点经验,充分借鉴了行业、企业的意见和建议。评审专家与企业面对面,在充分总结试点积累的科研和生产数据基础上,进行讨论、规范、提升,一方面真正发挥了企业的主体责任,另一方面也促进了企业对标准研究及理解水平的提高。  这次与《公告》同步发布的还有《中药配方颗粒质量控制与标准制定技术要求》(以下简称:《技术要求》)。《技术要求》是在总结前期标准制定经验的基础上起草的,从基本要求、原辅料、标准汤剂、生产工艺、标准制定、稳定性和标准复核等几个方面规范了标准研究制定的过程。归纳起来有三大特点。  一是考虑到中药配方颗粒经水煎煮失去饮片原形的特点,通过要求采用特征/指纹图谱分析技术,强化了在统一标准中对中药配方颗粒质量真伪优劣的专属性要求。这就要求企业要有配套的中药材种植基地,并且都要制定中药材、中药饮片的企业内控标准,从源头上确保投料中药材的质量可靠性。  二是通过制定标准汤剂的标准,架起中药配方颗粒与汤剂的桥梁,形成中药配方颗粒的物质基准,从而保证了中药配方颗粒临床使用的安全有效,而不是一味地追求某一化学标示物。这次在使用辅料最小化的原则下,规范和统一了生产过程的浸膏得率,进而统一了不同生产企业的制成总量及规格,为临床使用的量化配伍提供了方便。  三是《技术要求》覆盖原料药材、中药饮片、标准汤剂及制备过程、中药配方颗粒成品,体现中药全过程质量控制的特点及方向。尤其是重视了农药残留、重金属、真菌毒素等安全性方面的评价指标,既抓住了中药质量真伪鉴别和足量投料的关键点,亦体现了中药复杂体系质量控制的特点。(作者:国家中药制药工程技术研究中心 沈平孃
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p  湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。/pp  但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中?/pp  我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。/pp  燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。/pp  大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。/pp  一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。/pp  脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。/pp  烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。/pp  中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因!/pp  接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。/pp  这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。/pp  这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。/pp  有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。/pp  烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。/p
  • 科技部某重大专项对SOx、NOx、颗粒物等考核指标提出更高要求
    2月19日,科技部发布“煤炭清洁高效利用和新型节能技术”等10项重点专项2016年度项目申报指南通知。“煤炭清洁高效利用和新型节能技术”项目重点围绕煤炭高效发电、煤炭清洁转化、燃煤污染控制、二氧化碳捕集利用与封存(CCUS)、工业余能回收利用、工业流程及装备节能、数据中心及公共机构节能7个创新链(技术方向)部署23个重点研究任务。 2016年首批在7个技术方向启动16个项目。从各项考核指标中对“烟气中PM排放浓度”、“SOx排放浓度”、“NOx排放浓度”等各项指标有详细规定,与GB18485-2014 烟气排放标准(如:NOx:250mg/Nm3、SOx:80mg/Nm3)进行对比,有较大幅度的提高。为此,对相关仪器设备的SOx、NOx、颗粒物检测能力将会提出更高的要求。全文如下:“煤炭清洁高效利用和新型节能技术”重点专项2016年度项目申报指南 依据《国家中长期科学和技术发展规划纲要(2006—2020年)》,以及国务院《能源发展战略行动计划(2014—2020年)》、《中国制造2025》和《关于加快推进生态文明建设的意见》等,科技部会同有关部门组织开展了《国家重点研发计划煤炭清洁高效利用和新型节能技术专项实施方案》编制工作,在此基础上启动煤炭清洁高效利用和新型节能技术专项2016年度项目,并发布本指南。本专项总体目标是:以控制煤炭消费总量,实施煤炭消费减量替代,降低煤炭消费比重,全面实施节能战略为目标,进一步解决和突破制约我国煤炭清洁高效利用和新型节能技术发展的瓶颈问题,全面提升煤炭清洁高效利用和新型节能领域的工艺、系统、装备、材料、平台的自主研发能力,取得基础理论研究的重大原创性成果,突破重大关键共性技术,并实现工业应用示范。本专项重点围绕煤炭高效发电、煤炭清洁转化、燃煤污染控制、二氧化碳捕集利用与封存(CCUS)、工业余能回收利用、工业流程及装备节能、数据中心及公共机构节能7个创新链(技术方向)部署23个重点研究任务。专项实施周期为5年(2016—2020)。按照分步实施、重点突出原则,2016年首批在7个技术方向启动16个项目。每个项目设1名项目负责人,项目下设课题数原则上不超过5个,每个课题设1名课题负责人,课题承担单位原则上不超过5个。各申报单位统一按指南二级标题(如1.1)的研究方向进行申报,申报内容须涵盖该二级标题下指南所列的全部考核指标。鼓励各申报单位自筹资金配套。对于应用示范类任务,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。1. 煤炭高效发电1.1 新型超临界CO2、CO2/水蒸汽复合工质循环发电基础研究(基础研究类)研究内容:研究煤粉在超临界环境下化学能释放、能量传递及转换机理,揭示燃烧室内压力、温度及成分的时空分布规律;研究超临界CO2及CO2/水蒸汽混合工质的热力学性质、流动特性、传热特性及膨胀做功规律;开展适用于超临界CO2及CO2/水蒸汽复合工质的汽轮机通流结构对热耗的影响研究;开展新型发电系统集成优化、运行特性与控制方法的技术基础研究。考核指标:获得超临界CO2及CO2/水蒸汽复合工质的燃煤高效低污染发电原理和方法;完成概念设计,系统效率超过50%。实施年限:5年拟支持项目数:1—2项1.2 超超临界循环流化床锅炉技术研发与示范(应用示范类)研究内容:开发超超临界循环流化床锅炉炉内气固流动与传热、超超临界水循环安全性、热力系统及水系统交联优化等关键技术;开展锅炉概念设计方案、分离器、换热床等关键部件的研究及整体匹配;开发SO2、NOx、颗粒物等污染物超低排放技术;开展超超临界循环流化床锅炉机组的动态特性、自动控制及仿真研究;完成超超临界循环流化床锅炉本体设计及研制;建设660MW等级超超临界循环流化床锅炉机组示范工程,完成168h连续运行。考核指标:锅炉效率≥ 92%;供电煤耗300gce/kWh;SO2排放≤ 35mg/Nm3,NOx排放≤ 50mg/Nm3,颗粒物排放≤ 10mg/Nm3。实施年限:5年拟支持项目数:1—2项经费配套:其他经费与中央财政经费比例不低于1:12. 煤炭清洁转化2.1 低变质煤直接转化反应和催化基础研究(基础研究类)研究内容:研究低变质煤的有机组成和矿物质特性、特征显微组分分子结构及其对直接转化过程与产物的影响机理;揭示煤直接转化过程反应途径及产物定向调控机制;研究煤炭直接转化制燃料及化学品过程中硫、氮、卤素、碱金属及重金属迁移规律;研发直接转化气液产物提质加工新技术,液体产物制取高品质液体燃料及化学品定向催化转化机理及高效催化剂。考核指标:建立显微结构和分子结构相结合表征低变质煤直接转化特性的方法,形成煤直接转化新型反应器、新工艺、新型催化剂的技术基础。实施年限:5年拟支持项目数:1—2项2.2 煤热解气化分质转化制清洁燃气关键技术(共性关键技术类)研究内容:开发高比例低阶煤高温热解制备气化焦新技术,研究其矿物组成、灰渣特性及气化性能,开发气化焦新型固定床加压气化技术及装备;开发低阶碎煤定向热解生产高品质焦油及富氢热解气的工艺,完成反应器优化与工程放大;开发热解、焦化烟气高效干法脱硫及低温脱硝技术与装备。考核指标:建成百吨/日级新型气化焦加压固定床气化装置,出口煤气低位热值≥ 11MJ/Nm3;建成10万吨/年以上工业规模定向热解装置,焦油收率大于葛金分析收率的80%,焦油含尘≤ 1.0%;烟气脱硫效率≥ 95%、脱硝效率≥ 85%,在百万吨/年级热解、焦化装置中应用。实施年限:3年拟支持项目数:1—2项2.3 煤转化废水处理、回用和资源化关键技术(共性关键技术类)研究内容:研究煤化工过程废水处理与利用的新途径;研发高浓度有机废水制水煤浆技术;研究低损高效酚萃取剂,开发酚氨的协同脱除过程强化方法及脱除工艺;开发生物与化学协同、催化氧化深度处理难降解有机物技术;研发高性能、长寿命适于含盐废水浓缩的膜材料、工艺及装备;研发适于高含盐废水的COD降解及重金属脱除、分质结晶分盐技术与工艺。考核指标:脱酚萃取总酚脱除效率≥ 94%;膜浓缩倍率≥ 10倍,清洗周期3个月以上;结晶盐品质达到工业盐国家标准(GB/T5462)。实施年限:3年拟支持项目数:1—2项3. 燃煤污染控制3.1 燃煤PM2.5及Hg控制技术(共性关键技术类)研究内容:开展PM2.5前驱体多相吸附、反应机理研究,研发改性吸附剂控制PM2.5形成的关键技术;研发基于细颗粒团聚机制的PM2.5控制关键技术和设备;研发基于氧化剂、催化氧化的单质汞高效氧化技术及装备;开发可再生的高效汞吸附剂及其在线活化制备技术、喷射装置与控制系统;开发PM2.5与汞的联合脱除关键技术;在300MW及以上燃煤发电机组实现应用。考核指标:PM2.5排放浓度≤ 5 mg/Nm3;Hg的脱除率≥ 90%。实施年限:4年拟支持项目数:1—2项3.2 燃煤污染物(SO2,NOx,PM)一体化控制技术工程示范(应用示范类)研究内容:研发低氮燃烧与新型SNCR、SCR组合协同脱除NOx技术并进行示范,同时开展SCR脱硝协同脱除PM2.5技术的研究;开展燃煤SO2和NOx前置氧化与协同吸收技术的验证及完善,研发大规模强氧化物质产生装置及配套设备,开发同时脱硫脱硝吸收技术;开发燃煤PM2.5和SO2一体化吸收控制技术并进行工程示范,在深度脱除SO2的同时,提高PM2.5的捕集效率。考核指标:在燃煤工业装置中进行污染物一体化控制工程示范,烟气中PM排放浓度≤ 10mg/Nm3,SOx排放浓度≤ 35mg/Nm3,NOx排放浓度≤ 50mg/Nm3。实施年限:4年拟支持项目数:1—2项申报要求:企业牵头申报经费配套:其他经费与中央财政经费比例不低于1:14. 二氧化碳捕集利用与封存4.1 基于CO2减排与地质封存的关键基础科学问题(基础研究类)研究内容:研究加压富氧燃烧、化学链燃烧反应过程特性,载氧体表界面转化与体相晶格氧传输机理;研究CO2地质封存与驱油、驱气、采热过程中的多尺度多相流动与热质传递机理及热力学性质;研究CO2捕集封存利用系统的能量集成优化方法。考核指标:获得加压富氧燃烧、化学链燃烧过程基础理论;建立CO2在不同封存与地质利用条件下的基础物性数据库。实施年限:5年拟支持项目数:1—2项4.2 基于CO2高效转化利用的关键基础科学问题(基础研究类)研究内容:探索CO2高效转化制备液体燃料与化学品的反应新途径与机制,研究CO2双键活化、表面微观反应、固体催化材料构效关系;研究CO2转化过程中反应/传递强化原理和方法;研究矿化反应机理和动力学、微观离子迁移规律、矿化反应强化机制。考核指标:获得CO2制液体燃料和化学品的新工艺、新方法;CO2矿化效率≥ 80kg/t非碱性矿。实施年限:5年拟支持项目数:1—2项4.3 二氧化碳烟气微藻减排技术(共性关键技术类)研究内容:筛选耐受烟气的高效固碳藻株,利用代谢组学等手段解析相关耐受与高产机理;降低微藻固碳养殖系统成本;研究微藻固碳系统与环境因子的交互作用机制,优化养殖工艺,实现病虫害的动态防控和连续稳定养殖;开发微藻废水养殖技术。考核指标:培育耐受高浓度CO2的高效固碳藻株3株;户外连续1个月微藻(干基)产能达到25g/(m2 ?d);建立微藻年固碳能力万吨级示范。实施年限:4年拟支持项目数:1—2项5. 工业余能回收利用5.1 工业含尘废气余热回收技术(共性关键技术类)研究内容:研究含多相、多尺度尘粒的烟气在高温复杂流动工况下的分离、团聚、附壁及传热特性,研发含凝结性尘粒烟气自滤净化与余热回收工艺和方法;研发高含尘烟气的防积灰、防磨损、防腐蚀连续余热回收利用新技术与新装置,形成超大拓展表面净化与换热部件的制造能力;研发含低浓度、亚微米级尘粒烟气的深度净化和高效换热耦合工艺,实现高温烟气净化与换热一体化的技术与集成装备,对集成技术系统进行工业示范。考核指标:净化后气体尘粒排放浓度:含凝结性尘粒烟气≤ 50 mg/Nm3,高含尘烟气≤ 30mg/Nm3,低浓度亚微米级尘粒烟气≤ 10 mg/Nm3,余能回收率≥ 70%,工业示范装置考核运行时间≥ 200h。实施年限:3年拟支持项目数:1—2项5.2 低品位余能回收技术与装备研发(应用示范类)研究内容:研发工业余热用压缩式高效超级热泵,在典型工业流程中获得热输出应用;开发适合于流程工业以及煤电行业余热综合利用的高效吸收式热泵,并形成低温高效余热吸收式制热典型示范;研发低温热能品位提升的化学热泵,实现余热品位的提升与高效利用,并形成热输出示范系统;形成低温位余能网络化利用的整体技术解决方案。考核指标:压缩式热泵的COP≥ 6.0,形成100 kW级热输出的应用示范;吸收式热泵COP≥ 1.75,形成≥ 500kW热输出的工程示范;化学热泵的系统热效率≥ 25%,形成50kW级热输出示范系统。实施年限:3年拟支持项目数:1—2项经费配套:其他经费与中央财政经费比例不低于1:16. 工业流程及装备节能6.1 流程工业系统优化与节能技术(共性关键技术类)研究内容:研究钢铁等冶金过程中连续、半连续和非连续工序之间的匹配技术及优化组合节能工艺;研究化工等高能耗工业过程的能质强化传递规律及低能耗反应/分离工艺;研发流程工业中高效能量传递与转换单元设备;研究冶金、化工、建材等行业多产品、多过程间耦合节能技术、网络化能量调配及排放物协同治理节能技术,开展工业节能支撑技术及潜力评估研究,并实现工业示范应用。考核指标:与现有的先进工艺相比,新型工业用能装备能量利用率提高10%以上;节能型工艺应用于冶金、化工、建材等行业,较传统工艺系统节能10%以上,污染排放物减少15%以上。实施年限:4年拟支持项目数:1—2项6.2 工业炉窑的节能减排技术(应用示范类)研究内容:研究满足多工艺目标、大负荷调节比要求的工业炉窑热过程与工艺优化技术,形成物质流与能量流匹配的节能管控平台;研究满足宽阈度负荷变化、多品种交叉生产等复杂工艺要求的工业窑炉燃烧控制与NOx、SOx及粉尘控制和脱除技术,形成高能效低排放炉窑的工业示范;研究工业炉窑的气、固排放物质的净化分离与利用技术,实现排放物资源化利用的工业示范。考核指标:示范炉窑比目前国内同类先进炉窑的用能效率提高15%以上,NOx、SOx及粉尘等排放优于国家相关排放标准,连续考核运行时间≥ 2000h;排放物资源化利用率≥ 95%。实施年限:4年拟支持项目数:1—2项经费配套:其他经费与中央财政经费比例不低于1:17. 数据中心及公共机构节能7.1 数据中心节能关键技术研究(共性关键技术类)研究内容:研究数据中心高功率密度信息设备的新型高效冷却技术,开发标准化、模块化的冷却设备,完成规模化应用示范;研发用于高功率密度电源的新型高效液体冷却技术,完成应用示范;研发高效可靠直流供电与分布式储能技术和设备,实现应用示范;建立数据中心节能标准及评价准则,研究绿色数据中心建设标准和运维规范。考核指标:全年平均PUE≤ 1.25;不间断供电系统效率≥ 98%。实施年限:4年拟支持项目数:1—2项7.2 公共机构高效用能系统及智能调控技术研发与示范(共性关键技术类)研究内容:开发公共机构低品位热能高效回收与利用技术及装置;开展公共机构高效围护结构系统集成研究;研发不同类型公共机构照明调控模式、方法和控制系统,开发新型高效采光装置;研究基于能耗监测数据的公共机构用能设备智能管理与能源调度技术,开发协调各种用能设备的集成控制系统;研究公共机构超低能耗建筑技术标准,建立公共机构节能评价标准和评价体系。考核指标:用能系统集成低品位余热利用率(以环境温度25℃为基准)≥ 40%;建筑能耗在GB 50189基础上降低25%;照明系统单位建筑面积功耗在GB 50034基础上降低40%以上;公共机构用能设备系统智能管理与控制技术应用10家以上;建设节约型公共机构示范项目30家以上。实施年限:5年拟支持项目数:1—2项
  • 能源颗粒材料专业课程培训班日程安排
    能源颗粒材料不仅可作为催化材料催化能源转化过程,也可作为储能材料参与能源存储与转化。能源颗粒材料在二次电池、超级电容器、光伏转化、燃料电池、可再生能源等领域具有广泛应用前景。  时值中国颗粒学会2012年学术年会举办之际,中国颗粒学会能源颗粒专业委员会拟于2012年9月5日在杭州花港海航度假酒店组织“能源颗粒材料专业课程培训班”。培训班日程安排如下:时 间授课内容授课人08:00 –13:20培训班报到13:20 – 13:30培训班开幕苏党生 研究员13:30 – 14:00能源颗粒魏 飞 教授14:00 – 15:00能源颗粒的制备和加工陈晓东 教授15: 00 – 15: 30能源颗粒的表征丁玉龙 研究员15:30 – 16: 30能源颗粒的表征丁玉龙 研究员16.30 – 17: 30能源颗粒在储能中的应用李 鸿 研究员17.30 – 18: 00学员提问,讨论  有关本次培训及“中国颗粒学会第八届学术年会”的更多信息,敬请登陆中国颗粒学会网站(www.csp.org.cn) ,或请直接与会务组联系。  会务组联系方式:  地 址:北京海淀区中关村北二条1号(100190) 中国颗粒学会秘书处  电 话:010-62647647/62647657 传真:010-82629146 E-mail: klxh@home.ipe.ac.cn  联系人:郭峰(15110169497)  中国颗粒学会  2012年8月  中国颗粒学会第八届学术年会回执  (因9月已进入杭州旅游高峰期,需提前向酒店确认会议用房,所以敬请于7月31日之前返回此回执) 姓 名 性别 电话 工作单位 E-mail 通信地址 邮编 您计划参加: 学会年会□ 大气PM2.5专业课程培训□ 能源颗粒材料专业课程培训□您希望以哪种方式交流参会论文? 大会报告□ 分会邀请报告□ 分会报告□ 墙报□是否是在读研究生? 是/否是否是青年学者(40岁以下)? 是/否房间预定(450元/标准间)计划入住日期: 9月 日 计划离店日期:9月 日房间需求: 包房□ 拼房□
  • 油耗上升,怠速抖动?您的爱车需要关注GPF(汽油车尾气颗粒捕捉器)了!
    导读您的爱车上是否安装了GPF(汽油车尾气颗粒捕捉器)?可以去翻翻随车配备的使用说明书,如果在目录页发现了GPF警报、GPF再生等字样,那么恭喜您,您需要认真和GPF打交道了:)众所周知,悬浮在空中的细小颗粒污染物对环境和人类健康有着极大的危害。随着中国汽车保有量突飞猛进,汽油车排放的细小颗粒物也在增加。《GB18352.6-2016轻型汽车污染物排放限值及测量方法(中国第六阶段)》(以下简称国六)b阶段的推进,对汽车尾气中颗粒物的排放限值做出了严格要求。真正的国六标准2020年7月1日起,国六标准a阶段已在全国全面实施,国六b阶段预计2023年开始正式实施。为什么要实施两步走的路线,主要原因当然是一步到国六的技术难度较大,给汽车厂商、零部件供应商等提出了严峻的现实挑战。 国六a相比国五,气体排放污染物(CO、CH、NOx等)仅取国五最严值。而国六b相对国六a:1、气体排放限值又严格了50%左右,2、增加了细小颗粒物排放的要求。3、技术中性,即轻型车不分燃料种类和发动机技术路线,都需要满足相同的气态污染物和颗粒物排放要求。4、实际驾驶排放(RDE),对车辆污染物在实际工况下的排放水平也进行了监管和限值要求。可以说国六b阶段才是真正意义的国六新标准。 国六汽车中为什么要装这个GPF柴油车上早已部署尾气颗粒捕捉器(DPF)。虽然汽油车的颗粒物排放不如柴油车显著,但近年的研究发现,之前为了降低燃油消耗和CO2排放而从进气道喷射(PFI)改进为缸内直喷(GDI)技术,汽油发动机缸内油气混合时间变短,容易形成局部浓区,导致细小颗粒物的排放量增大。 汽油车颗粒捕捉器(GPF)是当前有效地控制汽油车颗粒排放的技术手段,已经在满足国六b排放标准的汽车上得到广泛应用。 GPF的结构特点GPF(汽油车尾气颗粒捕捉器)技术过滤机理与DPF(柴油车尾气颗粒捕捉器)基本相同,由蜂窝状陶瓷组成,通过交替封堵蜂窝状多孔陶瓷过滤体,使排气气流从孔道壁面穿过,通过扩散、碰撞和拦截等方式过滤和减缓颗粒物排放,使之有时间能够在高温GPF中进一步燃烧分解。 在国五车辆升级国六过程中,仅升级GPF可能会引起其他污染物排放的恶化,在设置上,需搭配改进的三元尾气催化剂(TWC)同时使用。采用壁面涂覆的GPF产生部分的三元催化效果是一个很好的设计。 什么是再生,怎么再生长时间市区低速行驶,可能会使GPF壁面上沉积大量颗粒物,导致车辆出现“怠速抖动,油耗上升,动力下降”等问题,这就是被国六车主吐槽的GPF老化报警问题。 再生过程也不复杂,只需要高速行驶并滑行交替,使GPF核心温度高于650℃,有了足够的氧气,就会燃烧沉积的颗粒物,自动再生。一般推荐的做法,把车开上高速,油门踩到底加速,让车辆高速运转起来,随后松开油门滑行,减少燃料供应,保证排气中有足够的氧气以燃烧沉积颗粒,如此循环几次,就可达到GPF再生的能力。 岛津电子探针测试GPF使用岛津电子探针分析了某GPF试样,电子图像观察显示,此GPF载体为蜂窝型空隙状陶瓷,壁面两侧有明显涂覆层(图1)。图1 GPF背散射电子像 随后对GPF外表面的涂覆层进行了微区成分定性测试(图2),发现了Rh、Pd等贵金属活性催化成分,以及作为储氧剂、分散剂、稳定剂等作用的金属和稀土氧化物成分。 图2 GPF涂层微区成分定性分析结果 对主要元素进行了面分布特征测试,结果(图3)显示Mg、Al、Si、Fe等硅铝酸盐成分主要分布于陶瓷载体基体,载体有一定的孔隙度,这是GPF的主体结构。在壁面两侧的涂覆层中,Al、Zr(一般是其氧化物)作为热稳定剂和分散剂,Rh、Pd等是有效的活性催化贵金属,La、Ce等稀土(一般是其氧化物)作为储氧剂使用。一般来说,Rh可对汽油车尾气中的NOx进行还原催化,尾气气体中的HC和CO可通过Pd催化氧化反应,改善尾气排放污染。可见,采用涂覆的GPF可产生类似三元催化剂的效果,是一个很好的设计。 图3 元素面分析结果 具有涂覆层GPF的测试特点出于成本考虑,贵金属活性成分一般含量很低,所以在测试时对仪器的灵敏度要求较高,同时由于添加的稀土元素特征X射线峰位之间非常接近,一般的能谱仪(EDS)也不足以满足能量分辨率的需求,岛津电子探针对此类样品的测试有着足够的优势,同时满足灵敏度和分辨率的测试要求。 岛津电子探针(EPMA-1720& EPMA-8050G) 岛津电子探针EPMA通过配置统一四英寸罗兰圆半径的、兼具灵敏度和分辨率的全聚焦分光晶体,以及52.5°的特征X射线高取出角,使之对于微量贵金属元素如Pd、Rh等以及稀土元素如Ce、La等都能够轻松地测试和表征。 如果您对汽车尾气催化剂TWC感兴趣,或者对电子探针测试微量元素、稀土元素对比扫描电镜上的能谱仪测试效果感兴趣,可参考扩展阅读。 结语使用岛津电子探针对汽车尾气颗粒捕捉器GPF试样进行了观察和解析,确认了其具有涂覆层的结构。结果显示GPF载体为有一定孔隙度的硅铝酸盐陶瓷材料,而涂覆层含有La、Ce等稀土和Rh、Pd等贵金属活性成分,具有三元催化效用。岛津电子探针兼具高灵敏度、高分辨率特性,可对GPF微观结构进行有效表征。 本文内容非商业广告,仅供专业人士参考。
  • 中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会 (第三轮通知)
    p style="text-indent: 2em "每两年一届的“中国颗粒学会学术年会暨海峡两岸颗粒技术研讨会”将于 2018 年 8 月 9-12 日span style="text-indent: 2em "(8 月 9 日报到)在辽宁省沈阳市举办,会期 3 天。本届会议由中国颗粒学会、中国科学院金属所、/spanspan style="text-indent: 2em "清华大学、大同大学(台北)共同主办,中国颗粒学会能源颗粒材料专委会、东北大学、沈阳化工/spanspan style="text-indent: 2em "大学协办,会议同时得到中国科学技术协会和沈阳市科学技术协会,以及美国麦克仪器公司、丹东/spanspan style="text-indent: 2em "百特仪器有限公司、马尔文帕纳科等单位的大力支持。/span/pp style="text-indent: 2em "本届年会学术交流形式包括大会特邀报告、分会邀请报告、口头报告以及墙报交流。年会面向span style="text-indent: 2em "广大颗粒学工作者征集学术论文摘要。衷心欢迎海峡两岸广大从事颗粒技术研究的学者、工程技术/spanspan style="text-indent: 2em "人员、企业界代表及研究生踊跃投稿,积极参会。/spanspan style="text-indent: 2em "年会同期还将安排企业交流专场、仪器设备展览、新技术新产品与新设备推介会,欢迎相关企/spanspan style="text-indent: 2em "业、高校、科研院所积极参与。/span/pp style="text-indent: 2em "中国颗粒学会第七次全国会员代表大会暨理事会、青年理事会会议、中国颗粒学会期刊(《颗粒span style="text-indent: 2em "学报》、《中国粉体技术》)编委会会议将同期举行。会议闭幕式上还将颁发学会各项奖励奖项。/span/pp style="text-indent: 2em "一、学术分会场/pp style="text-indent: 2em "第1分会场:颗粒的测试与表征 分会主席:葛宝臻、蔡小舒、张福根、董青云/pp style="text-indent: 2em "组织单位:中国颗粒学会颗粒测试专业委员会/pp style="text-indent: 2em "征文范围:(1) 颗粒性能表征和测试技术:几何性能、物理性能、表面性能、力学性能;(2) 在线测量与控制;(3) 颗粒特性对粉体产品性能的影响;(4) 颗粒形貌与材料性能关系、原位检测。/pp style="text-indent: 2em "学术秘书:魏永杰(工作单位:河北工业大学机械工程学院;联系电话:13012262260;电子邮箱:yj.wei@163.com)、span style="text-indent: 2em "高 原(工作单位:北京市理化分析测试中心;联系电话:13910812410;电子邮箱:robin_gy@126.com)/span/pp style="text-indent: 2em "第2分会场:气溶胶 分会主席:曹军骥、李顺诚、张仁健/pp style="text-indent: 2em "组织单位:中国颗粒学会气溶胶专业委员会/pp style="text-indent: 2em "征文范围:(1) 气溶胶基本特性、监测与分析;(2) 气溶胶环境气候健康效应;(3) 气溶胶污染与控制。/pp style="text-indent: 2em "学术秘书:武云飞(工作单位:中国科学院大气物理研究所;联系电话:18600167678;电子邮件:wuyf@mail.iap.ac.cn)、span style="text-indent: 2em "刘卉昆(工作单位:中国科学院地球环境研究所;联系电话:18629434582;电子邮件:liuhk@ieecas.cn)/span/pp style="text-indent: 2em "第3分会场:流态化基础研究及应用 分会主席:朱庆山、卢春喜、葛 蔚、骞伟中/pp style="text-indent: 2em "组织单位:中国颗粒学会流态化专业委员会/pp style="text-indent: 2em "征文范围:(1) 流化床中的流动、传热、传质和化学反应,特殊流化床(磁场、声场、超重力、振动等);(2) 计算机数值模拟与放大;(3) 多相流与旋风分离器、流化床的工业应用。/pp style="text-indent: 2em "学术秘书:王军武(工作单位:中国科学院过程工程研究所;联系电话:010-82544838;电子邮件:jwwang@ipe.ac.cn)/pp style="text-indent: 2em "第4分会场:颗粒制备与应用技术 分会主席:沈志刚、郑水林、王燕民、李春忠/pp style="text-indent: 2em "组织单位:中国颗粒学会颗粒制备与处理专业委员会/pp style="text-indent: 2em "主  题:粉体制备与处理的前沿问题研讨/pp style="text-indent: 2em "征文范围:(1) 粉碎制备、合成制备、表面改性处理、分散处理等;(2) 粉体技术在能源、环境保护、信息、生物、医药、食品、农业等领域中的应用;(3) 粉体制备与处理中辅助过程的最新进展:包括给料、分级、分散、输送、贮存、包装、计量等;(4) 新理论、新技术与新材料在颗粒制备与处理中的应用等。/pp style="text-indent: 2em "学术秘书:蔡楚江(工作单位:北京航空航天大学;联系电话:13671124196;电子邮箱:ccj@buaa.edu.cn)/pp style="text-indent: 2em "第5分会场:超微颗粒材料 分会主席:林鸿明、费广涛、艾德生/pp style="text-indent: 2em "组织单位:中国颗粒学会超微颗粒专业委员会/pp style="text-indent: 2em "主  题:超微颗粒基础理论及应用/pp style="text-indent: 2em "征文范围:(1) 超微、纳米颗粒的制备理论、工艺及改性技术(尤其是分散技术);(2) 超微颗粒在能源、环境、医学生物等领域中的应用;(3) 超微颗粒测试、标准分析中的基础问题;(4) 超微粉体产业化技术中的技术问题。/pp style="text-indent: 2em "学术秘书:徐锡金(工作单位:济南大学;联系电话:15965770166;电子邮箱:sps_xuxj@ujn.edu.cn)、span style="text-indent: 2em "刘潜锋(工作单位:清华大学;联系电话:13466783948;电子邮件:liuqianfeng@tsinghua.edu.cn)/span/pp style="text-indent: 2em "第6分会场:生物颗粒制备技术 分会主席:崔福德、唐 星、吕万良、常 津/pp style="text-indent: 2em "组织单位:中国颗粒学会生物颗粒专业委员会/pp style="text-indent: 2em "征文范围:(1) 粉体(颗粒)学与药剂学的相关科学问题;(2) 粉体(颗粒)科学在固体药物制剂中的应用与相关技术问题;(3) 药物新剂型与制剂新技术的产业化转化的关键问题与难点;(4) 固体制剂生产过程中粉体性质的控制策略与相关科学问题;(5) 固体制剂的制备过程中所需药用辅料与制剂设备介绍;(6) 固体药物口服制剂的一致性评价的相关技术问题;(7) 药物的粉体性质(粒径,形态,混合均匀性,流动性,压缩成形性等)对制剂质量的影响。/pp style="text-indent: 2em "学术秘书:唐 星(工作单位:沈阳药科大学;联系电话:13604029243;电子邮件:tangpharm@126.com)、span style="text-indent: 2em "毛世瑞(工作单位:沈阳药科大学;联系电话:13909823169;电子邮件:maoshirui@vip.sina.com)、/spanspan style="text-indent: 2em "崔福德(工作单位:沈阳药科大学;联系电话:15998860203;电子邮件:cuifude@163.com)/span/pp style="text-indent: 2em "第7分会场:能源颗粒材料 分会主席:魏 飞、苏党生、李 峰、张 强/pp style="text-indent: 2em "组织单位:中国颗粒学会能源颗粒材料专业委员会/pp style="text-indent: 2em "主  题:构建能源颗粒材料新时代/pp style="text-indent: 2em "征文范围:(1) 能源材料(如锂电池、电容器、金属空气电池、燃料电池相关材料);(2) 能源催化转化材料(如煤、石油、天然气、生物质能源高效转化材料);(3) 能源颗粒的表征及产业化。/pp style="text-indent: 2em "学术秘书:孔 龙(工作单位:清华大学;联系电话:15910937323;电子邮件:konglongwork@mail.tsinghua.edu.cn)、span style="text-indent: 2em "孙振华(工作单位:中科院金属所;联系电话:15940168700;电子邮件:zhsun@imr.ac.cn)、/spanspan style="text-indent: 2em "黄佳琦(工作单位:北京理工大学;联系电话:13810893955;电子邮件:jqhuang@bit.edu.cn)/span/pp style="text-indent: 2em "第8分会场:学会团体标准—颗粒与标准化 分会主席:李兆军、周素红/pp style="text-indent: 2em "组织单位:中国颗粒学会团体标准工作委员会/pp style="text-indent: 2em "征文范围:(1) 团体标准介绍;(2) 学会团体标准项目运行;(3) 颗粒标准立项建议;(4) 颗粒团体标准发展与探索。/pp style="text-indent: 2em "学术秘书:高原(工作单位:北京市理化分析测试中心;联系电话:13910812410;电子邮箱:robin_gy@126.com)/pp style="text-indent: 2em "第9分会场:地方学会联合论坛 分会主席:蔡小舒、王连军、于志军、刘宗明、高思田/pp style="text-indent: 2em "组织单位:上海/江苏/辽宁/山东颗粒学会、北京粉体技术协会/pp style="text-indent: 2em "主  题:地方颗粒学会发展/pp style="text-indent: 2em "学术秘书:李增和(工作单位:北京化工大学;联系电话:13511052617;电子邮件:lee_zenghe@sina.com)/pp style="text-indent: 2em "第10分会场:纳米颗粒结构表面及复合材料 分会主席:张 忠、张幸红/pp style="text-indent: 2em "组织单位:国家纳米科学技术中心、哈尔滨工业大学/pp style="text-indent: 2em "征文范围:(1) 颗粒及纤维表面纳米结构的构筑方法、形成机理及其对颗粒和纤维及其对复合材料宏观性能的影响;(2) 颗粒及纤维填充纳米复合材料的制备新方法、新工艺、多功能及其应用;(3) 其它新型纳米复合材料。/pp style="text-indent: 2em "学术秘书:赵军(工作单位:国家纳米科学技术中心;联系电话:15810548893;电子邮件:zhaoj@nanoctr.cn)/pp style="text-indent: 2em "第11分会场:颗粒形貌调控 分会主席:俞书宏、褚良银、王 丹/pp style="text-indent: 2em "组织单位:中国科学院过程工程研究所/pp style="text-indent: 2em "主  题:颗粒形貌调控与应用/pp style="text-indent: 2em "征文范围:(1) 颗粒形貌调控的热力学和动力学基础;(2) 多级复杂形貌颗粒的制备与应用;(3) 颗粒形貌与材料性能关系;(4) 颗粒形貌演变过程的原位检测。/pp style="text-indent: 2em "学术秘书:韩永生(工作单位:中国科学院过程工程研究所;联系电话:13466366530;电子邮件:yshan@ipe.ac.cn)/pp style="text-indent: 2em "第12分会场:吸入给药颗粒技术 分会主席:沈丹蕾/pp style="text-indent: 2em "组织单位:中国颗粒学会吸入颗粒专业委员会(筹),全国吸入给药联盟/pp style="text-indent: 2em "主  题:吸入给药的现状、发展、关键技术、产品开发和中国市场临床应用/pp style="text-indent: 2em "征文范围:(1) 吸入给药的发展、现状和临床应用需求;(2) 吸入药物颗粒的制造和吸入动力学研究;(3) 吸入给药递送技术和产品开发。/pp style="text-indent: 2em "学术秘书:邵奇(联系电话:电子邮件:shaoqi@sinepharm.com)/pp style="text-indent: 2em "第13分会场: 颗粒热化学与热转化 分会主席:许光文、王勤辉、孙绍增、沈来宏/pp style="text-indent: 2em "组织单位:沈阳化工大学、浙江大学、哈尔滨工业大学、东南大学/pp style="text-indent: 2em "主  题:先进能源与高端材料中的颗粒热化学转化科学与技术/pp style="text-indent: 2em "征文范围:(1) 燃料、原料颗粒的热化学动态行为及其监测表征,元素迁移及产物生成规律,转化过程动力学等;(2) 颗粒热化学转化的新方法、新手段的科学原理与技术,包括非常规介质及环境的颗粒热转化,颗粒热转化中的催化科学与催化剂等;(3) 高灰、高湿、超细、高能(爆炸)、高活性、含特殊元素(如卤素、放射)等的非常规燃料及原料颗粒的热加工、热转化、热表征、及定量评价等的科学与技术;(4) 颗粒热化学转化的过程工程技术,包括转化的工艺过程研究,预处理、反应、分离、后处理的技术与装备研发,过程与装备的放大集成研究,以及工业应用案例及其分析等;(5) 颗粒热化学转化过程、大规模流程与装备的模型化与定量预测;(6) 颗粒热化学转化过程的低碳与清洁化科学与技术。/pp style="text-indent: 2em "学术秘书:李盼盼(工作单位:沈阳化工大学,联系电话:18899598929;电子邮件:ppl_19910109@163.com)、span style="text-indent: 2em "解桂林(工作单位:浙江大学,联系电话:15869199194;电子邮件:xgl2500@zju.edu.cn)/span/pp style="text-indent: 2em "第14分会场:3D打印材料及技术 分会主席:杨亚锋/pp style="text-indent: 2em "组织单位:中国科学院过程工程研究所/pp style="text-indent: 2em "征文范围:(1) 3D打印粉体材料的制备技术(钢、医用材料、轻金属及高温合金);(2) 金属的3D打印:材料、加工、组织性能及产品评价;(3) 3D打印过程中加工模拟、缺陷检测及控制;(4) 3D打印相关软件的开发及应用。/pp style="text-indent: 2em "学术秘书:李少夫(中国科学院过程工程研究所,联系电话:13426137071;电子邮件:sfli@ipe.ac.cn)/pp style="text-indent: 2em "span style="text-indent: 2em "第15分会场:1st China-Japan Particuology Forum(第一届中日颗粒学会议)/span/pp style="text-indent: 2em "组织单位:中国科学院过程工程 分会主席:马光辉、Hidehiro Kamiya(神谷秀博)、刘祥/pp style="text-indent: 2em "征文范围:(1) 流化床;(2) 粉体加工;(3) 颗粒制剂;(4) 纳微材料和纳微加工技术;(5) 其他/pp style="text-indent: 2em "学术秘书:魏炜、span style="text-indent: 2em "岳华(工作单位:中科院过程工程研究所;联系电话:15101037210;电子邮箱:hyue@ipe.ac.cn)/span/pp style="text-indent: 2em "Session topics: (1) Fluidized bed (2) Powder processing (3) Particle formulation (4) Micro/nano material and manufacture technology (5) other/pp style="text-indent: 2em "Secretaries: Wei Wei (Affiliation: Institute of Process Engineering, CAS Mobile: 13581522959 Email: weiwei@ipe.ac.cn) Hua Yue (Affiliation: Institute of Process Engineering, CAS Mobile: 15101037210 Email: hyue@ipe.ac.cn)/pp style="text-indent: 2em "第16分会场:碳气溶胶 分会主席:黄汝锦,李 江/pp style="text-indent: 2em "组织单位:中国科学院地球环境研究所,中国科学院大气物理研究所/pp style="text-indent: 2em "征文范围:(1) 碳气溶胶探测技术和新方法;(2) 金有机气溶胶的成分、来源和生成机理;(3) 黑碳和棕碳气溶胶及气溶胶光学性质。/pp style="text-indent: 2em "学术秘书:刘卉昆(工作单位:中国科学院地球环境研究所;联系电话:18629434582;电子邮件:liuhk@ieecas.cn)、span style="text-indent: 2em "夏芸洁(工作单位:中科院大气物理研究所;联系电话:18510970720;电子邮件:xiayunjie@mail.iap.ac.cn)/span/pp style="text-indent: 2em "span style="text-indent: 2em "br//span/pp style="text-indent: 2em "会场信息持续更新中??/pp style="text-indent: 2em "br//pp style="text-indent: 2em "二、同期展览、企业交流会(8月9日布展,10-11日全天展览)/pp style="text-indent: 2em "为了便于企业宣传、展示最新的产品,促进科研成果的转化,推动产、学、研的结合,将在会议同期举办颗粒/粉体技术及设备展,展览内容包括:测试分析仪器、颗粒/粉体制备技术及设备、颗粒/粉体材料及产品、颗粒/粉体应用技术等。展期与会期同步,烦请计划参展者尽快与学会秘书处郭峰联系(电话:010-62647647,E-mail: fguo@ipe.ac.cn),并沟通具体事宜。/pp style="text-indent: 2em "此外,本次会议将专门安排 “新技术、新产品、新设备推介及展示” 区域,希望参与会上展示的企业,烦请于会前与学会秘书处郭峰联系,以便提前协调。热忱欢迎相关企业及单位积极参与。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "三、学会奖励奖项的评选与颁发/pp style="text-indent: 2em "学会各项奖项的申报评选工作已经启动,并将在年会闭幕式上组织颁奖:/pp style="text-indent: 2em "1.中国颗粒学会“自然科学奖”、“技术发明奖”、“科技进步奖”/pp style="text-indent: 2em "● “中国颗粒学会自然科学奖”,旨在奖励在颗粒学基础研究和工程技术领域的应用基础研究中做出重要科学发现的研究人员,每次设立一等奖1?3项、二等奖5?10项。/pp style="text-indent: 2em "● “中国颗粒学会技术发明奖”,旨在奖励在颗粒学研究及创新创业活动中做出突出贡献的团体或个人,每次设立一等奖1?3项、二等奖5?10项。/pp style="text-indent: 2em "● “中国颗粒学会科技进步奖”,旨在奖励在颗粒学研究及创新创业活动中做出突出贡献的团体或个人,每次设立一等奖1?3项、二等奖5?10项。/pp style="text-indent: 2em "2.中国颗粒学会“青年颗粒学奖”/pp style="text-indent: 2em "● “中国颗粒学会青年颗粒学奖”,为国家承认的社会力量设立的科学技术奖,欢迎青年科技工作者积极申请(申请者年龄不得超过42周岁)。/pp style="text-indent: 2em "3.中国颗粒学会“优秀博士生论文奖”/pp style="text-indent: 2em "● 学会自2018年起设立“中国颗粒学会优秀博士学位论文奖”,旨在促进青年人才成长,每次奖励“优秀博士论文奖”不超过10篇,另有不超过5篇论文获提名奖。/pp style="text-indent: 2em "注:以上奖项的申请截止日期为2018年6月9日。奖项详情及填报奖项申请表请登陆中国颗粒学会网站: http://adward.csp.org.cn/award/login。/pp style="text-indent: 2em "4.中国颗粒学会“麦克仪器优秀论文奖”/pp style="text-indent: 2em "● “麦克仪器优秀论文奖”,奖励在颗粒学基础研究或应用基础研究工作中取得成果、并在PARTICUOLOGY(颗粒学报)上正式发表的论文,每次奖励2篇论文。本奖项由美国麦克仪器公司赞助。/pp style="text-indent: 2em "5.中国颗粒学会年会优秀论文奖/pp style="text-indent: 2em "● 年会将面向参会并参加论文宣读或墙报交流的在读学生/pp style="text-indent: 2em "● 设立“年会优秀论文/墙报奖”。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "四、会议征文/pp style="text-indent: 2em "1.会议论文详细摘要将收入会议论文U盘。/pp style="text-indent: 2em "2.论文要求为详细摘要,稿件请采用Word排版,并直接投稿至会议网站(http://csp2018.csp.org.cn/)。投稿截止日期为2018年6月15日。/pp style="text-indent: 2em "3.投稿时务请指定论文希望交流的分会场及交流形式 (口头报告 或/及 墙报交流),同时请附上计划的论文宣读人(或墙报交流人)的简单个人信息(是否为在读学生)。/pp style="text-indent: 2em "4.会后将推荐部分优秀的论文至《中国粉体技术》(核心期刊),或《颗粒学报》(英文)(SCI与EI收录,IF=2.621)。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "五、参会指南/pp style="text-indent: 2em "1.广告服务:会议文集热诚为国内外企、事业单位提供各种宣传专页(刊登单位自行设计)、LOGO及全称的宣传(手提袋、签字笔、U盘和纸质笔记本)、单页印刷品等,请有意企业或单位于2018年6月15日之前与会务组联系。/pp style="text-indent: 2em "2.会议重要时间节点/pp style="text-indent: 2em "  2018年4月 会议第二轮通知 /pp style="text-indent: 2em "  2018年4~5月 会议网站注册、提交论文 /pp style="text-indent: 2em "  2018年6月9日 奖项申请材料截止 /pp style="text-indent: 2em "  2018年6月 会议第三轮通知 /pp style="text-indent: 2em "  2018年6月15日 会议论文接收截止 /pp style="text-indent: 2em "  2018年7月5日 酒店住宿预定截止 /pp style="text-indent: 2em "  2018年8月10日 会议报到 /pp style="text-indent: 2em "3.会议注册费(不含代表住宿费)/pp style="text-indent: 2em "学生 学会会员 非会员参会代表 /pp style="text-indent: 2em "7月20日之前缴费 1300 1900 2100 /pp style="text-indent: 2em "7月20日之后缴费(含现场注册) 1500 2100 2300 /pp style="text-indent: 2em "开户行及账号:中国工商银行北京海淀西区支行;中国颗粒学会 0200004509014413416/pp style="text-indent: 2em "(注:(1)烦请在网上注册时填写希望开具的发票抬头及相应的单位税号;(2)注册费支付若选择银行转账或汇款,务请通过邮件通知会务组;(3)需要办理会员证的代表,请在学会网站下载会员申请表。)/pp style="text-indent: 2em "4.会议注册说明/pp style="text-indent: 2em "本次活动使用网上系统进行报名,敬请各位参会代表通过会议网站完成注册、投稿、缴费及酒店住宿预订等工作。会议网址为http://csp2018.csp.org.cn/。/pp style="text-indent: 2em "5.会议地点及住宿:/pp style="text-indent: 2em "会议地点:沈阳新都绿城喜来登酒店(沈阳浑南新区沈中大街101-1号,电话:024-31619999)/pp style="text-indent: 2em "会议住宿:沈阳新都绿城喜来登酒店(400元/标准间)/沈阳锦联豪生酒店(350元/标准间)。住宿费用自理。/pp style="text-indent: 2em "住宿预订:因与酒店的合同约定,请需要预订住宿的参会代表务必于7月5日前通过会议网站进行预订,此后酒店将不再为本次会议预留房间。/pp style="text-indent: 2em "交 通:/pp style="text-indent: 2em "● 至沈阳新都绿城喜来登酒店/pp style="text-indent: 2em "从桃仙国际机场/pp style="text-indent: 2em "(1)公交车:乘坐有轨电车2号线,经过7站到达国际软件园站,转乘108路,经过4站,到达绿城全运村站下车。/pp style="text-indent: 2em "(2)出租车:全程约9.8公里,出租车费约21元。/pp style="text-indent: 2em "从沈阳火车站/pp style="text-indent: 2em "(1)公交车:乘坐152路,经过10站到达五里河茂业中心站,转乘130路,经过9站到达沈中大街全运三路站下车。/pp style="text-indent: 2em "(2)地 铁:乘坐地铁1号线,在青年大街站转乘2号线地铁,至在世纪大厦站下车(C出口出),前行300米步行至世纪大厦站换乘有轨电车3号线至和鸿广场站下车,(左侧)前行150米至酒店。或/pp style="text-indent: 2em "乘1号线地铁,在青年大街站转乘2号线地铁,在白塔河站下车D口出站,乘坐绿城全运村业主巴士去酒店(每半点发车)。/pp style="text-indent: 2em "(3)出租车:全程约18.7公里,出租车费约50元。/pp style="text-indent: 2em "从沈阳火车南站/pp style="text-indent: 2em "(1)公交车:乘坐100复线至智慧四街全运三路站,转乘公交108路至绿城全运村站下车。/pp style="text-indent: 2em "(2)出租车:全程约7.2公里,出租车费约17元。/pp style="text-indent: 2em "从沈阳火车北站/pp style="text-indent: 2em "(1)地 铁:乘地铁2号线至在世纪大厦站下车(C出口出),前行300米步行至世纪大厦站换乘有轨电车3号线至和鸿广场站下车,(左侧)前行150米至酒店。或/pp style="text-indent: 2em "乘2号线地铁,在白塔河站下车D口出站,乘坐绿城全运村业主巴士去酒店(每半点发车)。/pp style="text-indent: 2em "(2)出租车:全程约18.2公里,出租车费约47元。/pp style="text-indent: 2em "● 至沈阳锦联豪生酒店/pp style="text-indent: 2em "从桃仙国际机场/pp style="text-indent: 2em "(1)出租车:全程约9.8公里,出租车费约21元。/pp style="text-indent: 2em "从沈阳火车站/pp style="text-indent: 2em "(1)出租车:全程约20.2公里,出租车费约44元。/pp style="text-indent: 2em "(2)地 铁:乘1号线地铁,在青年大街站转乘2号线地铁,在二十一世纪大厦站下车出站;而后,在二十一世纪大厦附近,乘坐酒店的免费摆渡车(沃尔沃55座大巴车)去酒店。或/pp style="text-indent: 2em "乘2号线地铁,在世纪大厦站C出口出站,前行300米换乘轻轨3号线至沈阳国家科技大学城下车,而后再西行300米到锦联豪生酒店。/pp style="text-indent: 2em "从沈阳火车南站/pp style="text-indent: 2em "(1)出租车:全程约5.1公里,出租车费约12元。/pp style="text-indent: 2em "从沈阳火车北站/pp style="text-indent: 2em "(1)出租车:全程约24.1公里,出租车费约55元。/pp style="text-indent: 2em "(2)地 铁:乘2号线地铁,在二十一世纪大厦站下车出站;而后,在二十一世纪大厦附近,乘坐酒店的免费摆渡车(沃尔沃55座大巴车)去酒店。/pp style="text-indent: 2em "更多详情请见会议后续通知或请登陆会议网站(http://csp2018.csp.org.cn/)了解。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "六、会务组联系方式/pp style="text-indent: 2em "学会秘书处/pp style="text-indent: 2em "地 址:北京海淀区中关村北二街1号(100190) /pp style="text-indent: 2em "电 话:010-62647647/62647657;传真:010-82629146;E-mail: klxh@ipe.ac.cn/pp style="text-indent: 2em "联系人:郭峰(15110169497)、邢璐(17801023915)、韩秀芝(13521432868)、赵晓力(13041126007)/pp style="text-indent: 2em text-align: right "中国颗粒学会/pp style="text-indent: 2em text-align: right "2018年5月/pp style="text-indent: 2em "附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="line-height: 16px "/a href="http://img1.17img.cn/17img/files/201805/ueattachment/acae7364-1879-4191-8bf8-9c9c9a94e952.pdf" style="line-height: 16px "中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会 (第三轮通知).pdf/a/p
  • 彼奥德制定颗粒真密度测试标准提案
    2013年北京彼奥德电子技术有限公司联合中国颗粒学会会员单位制定关于颗粒真密度测试标准提案,根据真密度测试方法--真空气态置换法,根据其方法制定相关的仪器测试标准,初步方案已经制定完成,已经提交相关部门进行审议,希望我们可以为该行业做出更多贡献! 彼奥德电子2014年3月14日
  • 颗粒学者齐聚一堂!第十二届中国颗粒大会在海口顺利举办
    由中国科学技术协会指导,中国颗粒学会主办,海南省科学技术协会、中国颗粒学会能源颗粒材料专业委员会、海南大学承办,由广州大学、华南理工大学、北京海岸鸿蒙标准物质技术有限责任公司等共同协办的第十二届中国颗粒大会于2023年4月21-24日在海南省海口市顺利举办。第十二届中国颗粒大会会议主题为“创新助力双碳,绿色赋能发展”,旨在促进颗粒与粉体相关领域学术交流、推动学科发展和技术创新及助力人才成长。大会围绕颗粒学相关领域的科研进展、产业发展和人才成长等展开交流。仪器信息网本次作为大会的合作媒体以及参展商亮相第十二届中国颗粒大会。观众签到展商签到中国颗粒学会常务理事、广州大学教授彭峰主持大会开幕式开幕式现场中国颗粒学会理事长、中国科学院过程工程研究所党委书记、副所长朱庆山作开幕致辞海南省科学技术协会党组成员、副主席徐伟致辞开幕式上举行了2022年度中国颗粒学会颗粒学奖颁奖典礼,先后颁发中国颗粒学会自然科学奖、中国颗粒学会技术发明奖、中国颗粒学会科技进步奖、中国颗粒学会青年颗粒学奖、中国颗粒学会优秀博士论文学位论文奖、中国颗粒学会第八届气溶胶青年科学家奖、中国颗粒学会第四届气溶胶科技创新奖、中国颗粒学会颗粒测试奖、2022年度百特-《颗粒学报》优秀论文奖等奖项。中国颗粒学会自然科学奖二等奖颁奖现场中国颗粒学会自然科学奖一等奖颁奖现场中国颗粒学会技术发明奖二等奖颁奖现场中国颗粒学会技术发明奖一等奖颁奖现场中国颗粒学会科技进步奖二等奖颁奖现场中国颗粒学会科技进步奖一等奖颁奖现场中国颗粒学会青年颗粒学奖颁奖现场中国颗粒学会优秀博士论文学位论文奖颁奖现场中国颗粒学会第八届气溶胶青年科学家奖颁奖现场中国颗粒学会第四届气溶胶科技创新奖颁奖现场中国颗粒学会颗粒测试奖二等奖颁奖现场中国颗粒学会颗粒测试奖一等奖颁奖现场2022年度百特-《颗粒学报》优秀论文奖颁奖现场中国颗粒学会副理事长、华东理工大学教授李春忠主持大会报告颁发大会主席证书中国科学院院士、中国颗粒学会副理事长、中国科学院过程工程研究所研究员 马光辉《生物颗粒的制备和应用:从人工颗粒到仿生和天然颗粒》生物颗粒(微球和微囊)变革了生物制药工程技术,传统的微球制备技术难以做到尺寸统一,导致蛋白质药物等分离精度降低以及靶向性变差。马光辉院士团队创新的微孔膜乳化法采用微孔膜为介质,建立了系统的均一微球制备理论和技术体系,实现了均一颗粒的可控制造,还研制出了全自动系列膜乳化设备,推动了科学研究和新过程、新产品的转化成功。此外,马光辉院士团队提出了柔性仿生颗粒地底盘的新策略,并在新冠疫苗等领域取得了应用。马光辉院士表示,仿生和天然颗粒是未来重要的发展方向,利用生物学和化学法实现多功能设计,可以遵循体内固有过程,保留原特性,实现高效药物递送和免疫治疗。中国科学院院士、西安交通大学教授 郭烈锦《超临界流体中颗粒运动力学及化学反应动力学行为》郭烈锦院士团队开展了跨/超临界流体中颗粒运动力学行为研究,揭示了史蒂芬流对热质传递过程的影响规律、近壁区颗粒的热质传递行为以及颗粒间相互作用机制,为颗粒群行为的定向调控指明了方向;开展了超临界水颗粒气化反应动力学规律研究,揭示了超临界水-颗粒气化反应机理,建立了基于孔结构演变信息建立跨尺度模型,获得了反应受控步骤及破除机制,实现了颗粒气化反应的过程强化;针对反应条件下的复杂颗粒动力学特性,发展了基于第一性原理的颗粒解析直接数值模拟方法,通过直接数值模拟研究揭示了反应引发的边界层流动,反应热传递、组分变化及颗粒形态演化等界面现象对超准界水-颗粒相间的影响机制作用,填补了超临界流体-反应颗粒多相流热化学热质传递理论的空白;基于上述基础,开展了超临界水煤炭气化反应器的工程化设计、优化与放大,实现了煤炭在温和条件下高效气化,为我国构建完全符合碳中和目标的新型清洁、低碳(零碳)、安全、高效的现代能源体系提供了可靠的技术保障。中国工程院外籍院士、澳大利亚蒙纳士大学教授 余艾冰《计算颗粒技术及其工业应用》余艾冰院士表示,近几十年来中国流程工业虽然有了长足发展和进步,但总体生产制造效能与国际先进水平相比还有一定差距,资源、能源和环境约束下的创新水平亟待提升。与发达国家相比我国制造业“大而不强、全而不优”的问题比较突出,主要表现在自主创新能力不强、信息化水平不高、工业技术比较薄弱、高端产业的优势地位不明显等。《中国制造2025》提出要推进制造过程智能化。过程智能化实现的主要途径是过程模拟与优化。过程工程装备一旦获得质的智能化飞跃,将为转型发展奠定重要的物质基础。通过建设智能工厂,全面提升生产经营效率,大幅度提升生产品质和安全水平,并展示了颗粒计算在冶金等代表性领域的应用。大会参展商梅特勒托利多科技(中国)有限公司、大昌华嘉科学仪器部、安捷伦科技(中国)有限公司、安东帕中国、马尔文帕纳科、丹东百特仪器有限公司、国仪量子(合肥)技术有限公司、苏州艾特森制药设备有限公司、德国新帕泰克有限公司、安徽科幂仪器有限公司、沃特世科技(上海)有限公司-TA仪器部门、晶格码(青岛)智能科技有限公司、卡尔蔡司(上海)管理有限公司、珠海真理光学仪器有限公司、济南微纳颗粒仪器股份有限公司、荷兰IVIUM艾维电化学(天津德尚科技)、HORIBA集团科学仪器事业部、珠海欧美克仪器有限公司、贝士德仪器科技(北京)有限公司、复纳科学仪器(上海)有限公司、东京理化器械株式会社、苏州纽迈分析仪器股份有限公司、北京艾若泰克科技有限公司、帕剌斯仪器(上海)有限公司、诺泽流体科技(上海)有限公司、必能信超声(上海)有限公司、北京海菲尔格科技有限公司、北京赛克玛环保仪器有限公司、南京九章化工科技有限公司、苏州胤煌精密仪器科技有限公司、上海积鼎信息科技有限公司、深圳市新威尔电子有限公司、南京白令信息科技有限公司、上海傲轩测量科技有限公司、提塞环科仪器贸易(北京)有限公司、上海儒佳机电科技有限公司、普萃超临界(广东)高新技术有限公司、孚洛泰(重庆)科技有限公司、深圳市科晶智达科技有限公司、英国SMS仪器公司、合肥费舍罗热工装备有限公司、广州群翌能源有限公司、澳谱特科技(上海)有限公司等仪器公司均作为参展商出席了本届颗粒大会。仪器信息网展位此次颗粒大会除大会报告外,还设置了25个主题分会场,仪器信息网也将进一步跟踪报道。
  • 赛默飞推出全新颗粒物排放连续监测系统
    上海,2014年3月3日— 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)宣布推出新的颗粒物排放连续监测系统 (PM CEMS),使工业污染排放的颗粒物连续监测成为可能,为节能减排和PM2.5来源分析提供了又一有利工具。 Thermo ScientificTM颗粒物排放连续监测系统综合了光散射法和质量微天平方法的优点,测量结果是可溯源至NIST标准的真正质量浓度,可以满足日益严格的精度要求,是一套在动态湿烟气条件下真正的质量浓度测量系统。 赛默飞世尔科技中国总裁兼全球环境和过程监测业务总裁迈世福先生表示:“近期,中国频频遭受雾霾天气,PM2.5再次成为全国乃至全世界关注的焦点。专家指出,在PM2.5的贡献中,工业排放占据了重大比例。赛默飞此次推出的颗粒物排放连续监测系统可以连续测量可过滤颗粒物,提供精确的测量结果,为节能减排和PM2.5分析提供有力武器。未来,赛默飞将继续为中国和全球市场提供有助于改善环境的技术和产品,帮助解决在经济发展过程中带来的环境问题。”Thermo ScientificTM颗粒物排放连续监测系统不受颗粒物大小、化学组成变化的影响,通过重量参比法进行线性修正。受电厂燃料、工艺过程、控制参数的影响,烟气颗粒物的变化性和动态特性变化非常强,该系统可以辨别质量浓度变化和其他特性变化。锥形微量振荡天平是质量传感器,对连续测量的光散射设备进行内部参比校正。系统采用稀释抽取法,允许更低的传输温度,可以减少维护量,提高系统使用寿命和运行时间。它由稀释抽取探头、Model 3880i探头控制器和气动电气管束组成。烟道流速可以通过模拟量、数字化通讯方式输入进入系统,仪表气清洁系统和机箱空调都是可选项。该系统的设计满足美国EPA性能规范PS 11和质量保证程序Procedure 2的要求,并通过了审核程序Method 5或17的验证。欲了解更多详情关于颗粒物排放连续监测系统(PM CEMS),请浏览:?http://www.thermo.com.cn/Product7030.html 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3,800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2,000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录 www.thermofisher.cn
  • 江苏省颗粒学会批准立项《氧化石墨烯粉体失重率测定 热重分析法》等11项团体标准
    各会员单位及相关企业、各有关单位:为认真贯彻落实《中华人民共和国标准化法》、《团体标准管理规定》等有关文件的精神,根据《江苏省颗粒学会标准制定程序》的相关规定,江苏省颗粒学会于2024年5月23日至6月7日组织专家分别对江苏省特种设备安全监督检验研究院、生态环境部南京环境科学研究所等单位牵头申报的团体标准进行了立项评审。经专家评审会评定,《氧化石墨烯粉体失重率测定 热重分析法》等11项团体标准(见附件)满足立项条件,现批准立项。请各申报单位严格按照江苏省颗粒学会团体标准工作要求,抓紧组织建标工作的实施,严把标准质量关,切实提高标准制定的质量和水平,增强标准的适用性和有效性。按时完成标准制定任务。为使立项标准的制定更加科学合理,欢迎有参与该团体标准编制工作意向的个人或单位与学会标准化工作委员会联系。联系人:王欢联系电话:025-85509178,13770321259邮箱:jskl_org@163.com附件:江苏省颗粒学会2024年度立项团体标准序号标准名称申请(牵头)单位计划完成时间1氧化石墨烯粉体失重率测定 热重分析法江苏省特种设备安全监督检验研究院2025年3月2石墨烯粉体中金属元素含量的测定 电感耦合等离子体原子发射光谱法江苏省特种设备安全监督检验研究院2025年3月3钢铁腐蚀产物 水溶性阴离子的测定 离子色谱法江苏省特种设备安全监督检验研究院2025年3月4冷喷烯锌涂料中石墨烯材料的定性检测无锡华东锌盾科技有限公司2024年10月5起重机械钢结构冷喷锌防护涂装技术指南无锡华东锌盾科技有限公司2024年10月6再生N-甲基哌啶生态环境部南京环境科学研究所2024年8月7再生二乙二醇甲醚生态环境部南京环境科学研究所2024年8月8大气颗粒物中铅含量测定 双硫腙比色法南京理工大学2025年3月9移动式γ射线探伤放射源远程监测监控技术规范南京理工大学2025年3月10水质 碘化物的测定 高效液相色谱法淮阴工学院2024年12月11再生石墨电极江苏嘉明碳素新材料有限公司2025年3月
  • 促进颗粒性能最优化的“康塔”——访美国康塔仪器公司高层
    前言美国康塔仪器公司(Quantachrome Instruments),作为国际知名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质的测量技术革新、并设计制造相应仪器,包括:比表面测量、吸附/脱附等温线、孔隙度、孔径分布、化学吸附研究、粒度分析、真实粉体密度、压汞法孔隙度测量、汞接触角等。美国康塔仪器公司国际销售和支持部总监Jeffrey S.Dixon先生自1997年,康塔(Quantachrome)公司开始关注中国市场,截至2008年底,中国市场已经成为其全球第一大出口市场;并且,2008全球同步上市的6款康塔新品中已有3款新仪器拥有中国用户。美国康塔仪器公司中国代表处首席代表杨正红先生2009年2月9日,美国康塔仪器公司(Quantachrome Instruments)国际销售总监Jeffrey S.Dixon先生、中国代表处首席代表杨正红先生接受了仪器信息网的专访,就康塔公司的基本情况、产品架构与技术特点、以及在中国市场发展概况等方面进行了介绍。 四十余年:始终专注于表征粉末和多孔材料特性仪器研制Jeffrey S.Dixon先生首先介绍到:“康塔公司,是1968年由Dr. S. Lowell教授创建的。当时,Lowell教授在纽约长岛大学(Long Island University)从事氧化锌粉末涂料的研究,需要进行比表面的测定;而那个时代几乎没有可用的商品化比表面分析仪器供应,这促使Lowell教授研究总结了可能的快速和简便的比表面分析方法,并且花费了无数精力建立和完善动态流动法气体吸附技术,这推动了商品化Quantasorb比表面分析仪的诞生;这款第一代仪器已经停产十多年了,但据我所知,去年仍有一台在北京良好运行。”“Quantasorb的成功催生了康塔公司,并促进了康塔产品迅速扩展进入其他新的颗粒特性表征领域。在科学家和工程师团队的合作下,Lowell教授发明了许多革命性的测量方法,包括压汞仪当中的连续扫描法,针对工业质量控制实验室的全自动单点比表面测定,以及用于孔径分布测定的多站高通量气体吸附分析仪和快速水吸附实验仪器等。”美国康塔仪器公司总裁Dr. S. Lowell先生康塔公司,主要制造各种用于表征粉末和多孔材料的实验室仪器,具有很宽的产品线,截止目前共有35款仪器;这些产品在全球范围内的研究领域和工业领域拥有众多用户,应用范围包括催化、制药、陶瓷、水泥和建筑材料、电池和燃料电池、聚合物和膜,以及用于航天、汽车、电子、纳米技术和环境科学的最前沿材料研究。“哈佛、耶鲁、清华等世界著名大学都使用着康塔仪器,我们的仪器不仅受到科学界的青睐,而且已经向全世界的工业实验室发展,以满足那里开发和改进新产品的研究与工艺需求。”“公司始终坚持以满足科研需要为出发点,紧紧依托于大学,将可以实现的技术迅速商品化,并增加到升级仪器之中。与其它公司做法不同的是,康塔公司不因仪器升级而改变仪器型号,这样做可以不增加用户的负担,也可以保证一个品牌长盛不衰。当然,我们也不排斥更符合市场规律的做法。”美国康塔仪器公司(Quantachrome Instruments) 康塔(Quantachrome)仪器,最主要一类是“气体吸附法”仪器,包括Autosorb系列、NOVA系列、Quadrasorb系列;另一类就是“压汞法”孔径测量仪器,包括PorMaster系列,以及“气体膨胀法”测量真密度的仪器,包括Ultrapyc 系列和 Pentapyc系列,和用于泡沫材料测定闭孔率的Ultrafoam系列和Pentafoam系列。 关键技术:气体吸附法测量比表面、孔径和孔体积Jeffrey S. Dixon先生说:“确实,我们的关键技术在于气体吸附法测量比表面、孔径和孔体积,尤其是独有的微孔孔径范围的气体吸附测量技术。”“康塔公司一直密切关注材料科学的最新发展,并及时将最新方法和技术融入升级产品之中,例如,我们的Autosorb-1系列(全自动比表面和孔径分布分析仪)自问世以来,几乎每年都在升级,使其成为Gold Grade研究型仪器,包括了国际标准ISO15901中建议的所有孔分析方法,可进行各种样品的比表面、微孔和介孔分布及化学吸附的全自动分析,成为微孔分析的最有利的‘武器’。”Autosorb-1MP 微孔型全自动比表面和孔隙度分析仪与牛津仪器OXFORD合作,康塔公司于2008年开发了一种取代冷阱杜瓦的新低温恒温器Optistat DN。该装置专用于Autosorb-1系列仪器,它使Autosorb-1MP 微孔型全自动比表面和孔隙度分析仪可以做到在77K到200K之间进行无限制气体吸附实验。杨正红先生进一步谈到:“作为最新一代物理吸附和化学吸附分析仪的代表——Autosorb-1C系列具有能够进行高灵敏度的压力测试,自动气体控制,程序升温和多种气体探测的增强型真空技术。在一台仪器上可以分析材料的物理吸附和化学吸附性能,可以结合高灵敏热导检测器(TCD)和质谱检测器进行全自动动态或静态化学吸附、表面积及微孔分析。”这些混合分析技术的开发动力来源于材料科学新兴领域,例如,碳纳米管和金属有机结构的新型材料正在挑战传统的纳米结构材料和现有实验室技术,因此用于表征纳米颗粒和纳米多孔材料的成熟技术也同样需要与之相适应。据了解,目前该仪器在中国许多尖端材料研究小组中有了越来越多的用户,为纳米表征研究提供支撑。另外,多站分析技术始于1982年康塔公司发明的世界第一台具有6个分析站和12个脱气站的全自动比表面和孔隙度分析仪Autosorb-6,由于静态物理吸附法孔分析技术决定了一个样品分析周期需要12个小时至两天,提高分析效率,降低分析成本就成了业内科学家关心的话题;同时,它不仅体积大,而且价格高,不能满足一般科研的需求。NOVAe 系列多站快速全自动比表面和孔径分析仪(2007版)“随着我们的专利产品NOVA系列(多站快速全自动比表面和孔隙度分析仪)的问世,这种状况就彻底改变了。它不仅可根据用户需求提供1到4站的选择,而且可以不用昂贵的氦气,仅用吸附气(常用氮气);完成多样品BET比表面分析平均仅需几分钟,多样品孔径分析平均仅需几小时。目前,该系列仪器在中国市场上有近300个用户。”世界第一台分立式四站全自动比表面和孔隙度分析仪Quadrasorb SI(2005)结合Autosorb和NOVA系列的特点,康塔公司于2005年发布了Quadrasorb SI系列,不仅可以运行时不要氦气,还可以升级至微孔型,极大地满足了绝大多数客户的需求。“目前,该仪器的用户仅北京地区就超过10台,包括清华大学、石油大学、中石化北京化工研究院、中国水电科学研究院等。Quadrasorb系列也已经有了2007版。” 代表性技术:压汞法孔隙度测量、真密度分析、化学吸附研究…“通过高压注汞分析较大孔径(即压汞法),气体置换原理测量固体材料的真密度(即气体膨胀法),以反应气体吸附作为探针表征具有催化特性的活性部位,以及蒸汽吸附(特别是水吸附)研究亲水和疏水表面的方法都是康塔公司的代表性技术。”PoreMaster GT 系列全自动压汞仪Jeffrey S. Dixon先生说:“目前最流行的连续扫描注汞技术(连续扫描法),也是由康塔公司最早开发的。虽然其它公司试图模仿该技术,但使用最流畅的还是我们的PoreMaster系列;另外,我们十分重视汞的安全性问题,在汞蒸汽防护方面是走在前列的。用户在选择压汞仪时最主要考虑的是:测量精度高;测量速度快;操作简便;汞蒸汽和汞安全防护性能好;运行成本低,废物(废油、废汞)排出少,可循环使用。而在这些方面,PoreMaster系列无疑是目前世界上最出色的全自动压汞仪。”康塔公司1997年以前的压汞仪产品是Autoscan系列,最早1992年进入中国,至今仍有部分仪器在运转。杨正红先生说:“在精心维护的前提下,十年以上的应用是可以实现的。同济大学的用户曾经对我讲,他们每年要完成500个样品的测试,两年的测试费收入即收回了对仪器的投资。应该承认,我们对中国市场的认识和重视较晚,宣传力度也不够,但我们在混凝土应用领域有绝对的市场优势,并成功地进入了中石油市场。去年,我们压汞仪在中国的销售实现了100%的增长。”2008年上市的PentaPyc 5200e 和 UltraPYC1200e最新一代全自动真密度分析仪另外,第一台商用气体膨胀法真密度分析仪是由康塔公司开发的,包括了手动和全自动的不同系列,具有测量速度快、重复性好、不破坏样品等非常明显的优势;在以此为基础开发的泡沫材料专用开孔/闭孔率测定仪方面,更是处于世界领先水平。2008年上市的最新一代全自动化学吸附分析仪ChemBET Pulsar“化学吸附分析仪是我们近期研发的重点。在传统技术基础上,结合Autosorb-1C-TCD的全自动优势,以方便实用为原则,2008年3月推出了全自动程序升温化学吸附分析仪 ChemBET Pulsar,由于其融入全自动定量注射技术和强制风冷炉温设计,得到了市场的热烈反响,目前在中国也已经成功安装。” 特别优势:不仅仅制造、销售仪器,而且参与学术和应用研究Jeffrey S. Dixon先生表示:“所有这些技术和产品被广泛地应用于各种材料的研究和测试,包括中国生产的所有功能性材料,正如目前已经看到的对这些仪器的需求一样。大多数这样的技术是通用性的,像红外、紫外和质谱一样,不是某种技术一定针对某种特殊材料和应用,因此,这些仪器可以马上用于近期或远期的新型材料的发现和开发中。所以现在投资这类仪器将在数年内产生可预期的或不可预期的连续回报。”由于经济因素和环境因素的改变导致的全球商业战略的改变,工业界如石化行业和汽车行业必须采用与以往不同的原料,因此他们特别依赖于来自实验室的配套研究手段。“我们的产品特点恰恰满足了这种需求。我们仅依靠最高的真空系统和最好的压力传感器,考虑所有合理的安全因素以及连续扩充功能的新软件,即可实现对新材料的无损表征。”“康塔仪器产品的开发和增长,是与材料科学的蓬勃发展同步的。所以,我们的最新型产品可以完美表征最新型多孔材料,它们已经能与最热门的研究进展并驾齐驱,例如,储氢研究,燃料电池研究,石化工业中的新型催化剂,和空间领域的极端工程。追踪这些轨迹,我们非常容易地接受材料科学家抛给我们的任何挑战,并与他们并驾齐驱。”“康塔公司的特别优势在于,我们不仅仅是制造和销售仪器,而且积极参与相关的科研,通过我们的科学家对世界孔结构分析领域贡献自己的力量。科学之路,而不是全盘商业化之路强烈地体现我们的产品特点之中。是的,我们产品是极具魅力并且非常容易使用的,但是,康塔公司从来不会以牺牲科学原理和科学精神为代价误导消费者而换取市场的。”美国康塔仪器公司(Quantachrome Instruments)应用实验室美国康塔仪器公司-大连化学物理研究所高级应用实验室另外,已经成立二十多年的康塔(Quantachrome)应用实验室,颗粒技术设施配备齐全,能提供了一个非常广泛的测试服务,服务内容包括测量表面积、孔径、孔体积、密度、活性金属面积及分散、程序升温分析催化剂、水吸附研究等,以支持催化剂、陶瓷、医药、磨料磨具、干燥剂、水泥、粉末冶金、炭黑、铁氧体、碳粉等多孔材料和粉末的应用研究,目前已经服务几千例的客户。 市场拓展:组建新国际销售和支持部,重视与关注中国市场为积极应对美国国内经济形势的变化,同时为了更好的服务于全球各地用户,康塔公司于2008年12月1日正式成立新的国际销售和支持部,进一步扩展销售和服务力量。Jeffrey S. Dixon先生表示:“新的部门宗旨是实现信息的无缝流动,对用户的反馈和支持要求进行最快速的反应,以满足用户对了解产品和服务应用的各种需求。”除美国本土之外,全球50多个国家和地区都有康塔仪器的经销商和分销商,欧洲、亚洲都是其重要的市场,康塔公司分别在英国、德国、中国设有分支机构。杨正红先生说:“康塔公司进入中国应该追溯到1992年,主要一些中国留学生回国后通过美国黄河公司的零星直接购买;直到1997年,才通过代理公司开始做市场,一年也只有几台的销量;发展到2002年,每年已有四、五十台销量;随着在中国的业务迅速拓展,2008年开始康塔公司自己做市场推广,截至2008年底,中国市场已经超过日本市场,其年营业额已占康塔公司全球市场的近10%,成为亚洲第一大出口市场。”“多孔材料的孔分析技术”系列巡回培训讲座现场“目前,我们在北京、上海和广州设有办事处,为了更好地为用户提供全面服务,正式启用国内800客户服务电话,若确认仪器故障,我们的工程师会72小时内赶到现场。同时,我们也加大市场推广力度,仅2008年第四季度分别在北京、浙江和上海举行了‘多孔材料的孔分析技术’系列巡回培训讲座,与会者反响热烈。”最后,Jeffrey S. Dixon先生谈到:“康塔公司的全球战略,围绕气体吸附法、压汞法、化学吸附和密度测量技术的国际领先地位展开,在相关技术领域与世界级专家进行广泛的合作,持续关注材料领域最新技术进展,通过继续提供让用户满意的商业仪器而进行全球化发展。” 编者手记一封主题为“康塔的仪器是一流的产品”的用户电子邮件中这样写到:“近几个月,查阅了世界著名化学期刊出版集团ACS(American Chemistry Society)下的全部期刊,发现使用康塔仪器发表的文章相当多,特别是化学界影响力最高的JACS(Journal of America Chemistry Society)期刊,最近几年,使用康塔仪器发表的文章达50多篇…”或许,用户的赞誉是对康塔产品的最好“注解”,美国康塔仪器公司(Quantachrome Instruments),作为表征粉末及多孔材料特性仪器的优秀供应商,不仅通过了ISO9001及欧洲CE认证,也取得了美国FDA IQ/OQ认证,并且所有的康塔产品都适合中国市场,期待康塔的产品与技术能为中国市场用户提供更全面的服务。 采访编辑:王海 附录1:美国康塔仪器公司(Quantachrome Instruments) 本网展位:http://quanta.instrument.com.cn 中文网站:http://www.quantachrome.com.cn 英文网站:http://www.quantachrome.com 附录2:Jeffrey S.Dixon先生、杨正红先生简介.doc
  • 技术干货 | 如何同时快速检测每个纳米颗粒的元素和粒径信息
    纳米材料,由于尺寸在1~100纳米范围,其微观尺度赋予其独特的光、电、磁、机械和光学等特性。纳米技术是一个快速发展的新兴领域,其发展和前景也给科学家和工程师们带来了许多巨大的挑战。纳米颗粒正在被应用于众多材料和产品之中,如涂料(用于塑料、玻璃和布料等)、遮光剂、抗菌绷带和服装、MRI 造影剂、生物医学元素标签和燃料添加剂等等。然而,纳米颗粒的元素组成、颗粒数量、粒径和粒径分布的同步快速表征同样也是难题。对于无机纳米颗粒,最为满足上述特点的技术就是在单颗粒模式下应用电感耦合等离子体质谱分析法,即单颗粒ICP-MS。ICP-MS 测量溶解样品和单纳米颗粒分析的响应信号如图1 所示。在分析溶解态元素时,产生的信号基本上属于稳态信号,测量单纳米颗粒时,产生的信号是非连续信号。四极杆作为检测器,工作时在各质荷比(m/z)停留一段时间,然后移动到下一质荷比(m/z);各质荷比(m/z)的分析时间被称作“驻留时间”,即工作时间。在各驻留时间的测量完成之后,执行下一次测量之前,通过一定时间进行电子器件的稳定。该时间段被称作“稳定时间”,即暂停和处理时间。当单颗粒的离子云进入四级杆后,如果单颗粒(“信号”峰)的离子云落在驻留时间窗口之外,则可能无法被检测到,如图3a 所示。当单颗粒的离子云落入驻留时间窗口内时,可以检测到该离子云,如图3b 所示。当快速连续检测到多个颗粒时,所得到的信号是一系列峰,各个峰都来自于某一颗粒,具体如图3c 所示。在单颗粒ICP-MS 中,瞬态数据的采集速度由两个参数组成:驻留时间和稳定时间。十分重要的是,ICP-MS 采集信号所需的驻留时间少于颗粒瞬态时间,从而避免因部分颗粒合并、颗粒重合和团聚/ 聚集产生的错误信号。稳定时间越短,颗粒遗漏的可能性就越小。最理想的情况是一秒钟内可进行10,000 次测量,不存在稳定时间,所有时间皆用于寻找纳米颗粒(图5c)。快速连续数据采集的另一个好处是可以从单个颗粒获得多个数据点,从而消除颗粒遗漏,或仅检测到颗粒部分离子云的情况。驻留时间越短,对单颗粒离子云采集的数据点越多,获得的峰型更加准确。珀金埃尔默公司NexION系列ICP-MS,最短驻留时间可达10 μs,单质量数据采集能力可达100000点每秒。配合专业的 Syngistix™ 软件,无需更多数据处理即可获得样品的颗粒浓度,尺寸及分布等信息,是进行单颗粒ICP-MS实验的首选。想要了解更多详情,请扫描二维码下载完整的资料和仪器信息。
  • 关于举办第十三届中国颗粒大会的通知(第二轮)
    各有关单位和相关科技工作者:为促进颗粒与粉体相关领域学术交流,夯实学科发展基础,推进技术融合创新,助力人才成长和推动行业可持续发展,由中国颗粒学会主办、由中国科学院过程工程研究所和中国颗粒学会微纳气泡专委会等承办的第十三届中国颗粒大会(The 13th China Congress on Particle Technology (CCPT13))将于2024年10月25-28日在苏州市举办。在全国广大科技工作者大力支持和积极参与下,中国颗粒大会规模不断扩大,形式持续拓展,功能持续完善,已成为业界高层次大型综合性交流平台。大会涵盖学术交流、继续教育、产学研合作、展览展示和成果发布等交流活动。本届大会以“汇聚颗粒大智慧,增强新质生产力”为主题,采用大会特邀报告、分会主题报告、分会邀请报告、口头报告和墙报等形式展开交流,面向广大颗粒和粉体及其与化工、能源、材料、医药和环境等交叉领域的科技工作者征集科技论文。各个分会场还将评选优秀报告及优秀墙报,欢迎投稿参会。本届大会还将举颗粒计算软件、多相流反应器介尺度模拟与智能化、气固流化床的模拟和应用、臭氧微纳米气泡在工业废水深度处理上的应用、颗粒物理化生物及毒性表征技术、大气颗粒物分析及动物暴露毒理学技术和工程哲学、工程创新与工程教育等培训班,对于CCPT13的参会代表,各个培训班均可免费参加,欢迎各相关单位和个人积极报名参加培训。本届大会将举办颗粒/粉体仪器、设备、产品、技术及其应用和成果展,包括颗粒/粉体测试分析仪器、制备设备、产品、技术及其在化工、能源、材料、医药和环境等领域的应用和成果等内容。我们还将特设展区,全方位、多角度展示颗粒学奖的章程规定、申报细节、评选机制及历年获奖成果,诚挚邀请相关单位与个人踊跃参与,共同见证此次盛会。一、会议征文中国颗粒大会各分会场同时征文,具体要求如下:1. 征文地址:https://www.csp.org.cn/meeting/CCPT13/2. 征文要求为详细摘要,稿件请采用Word排版并上传,格式见附件1(请前往会议网站下载)。3. 征文截止日期为:2024年7月30日。投稿过程中有任何问题请随时联系会务组(黄巧,010-82544962,13718757572,klxh_meeting@ipe.ac.cn)。二、学术分会场第1分会场:颗粒计算组织单位:中国颗粒学会颗粒计算专业委员会(筹)召集人:季顺迎、王利民学术秘书:刘传奇,中国科学院力学研究所,18810189071,chuanqil@imech.ac.cn。会场简介:聚焦颗粒力学理论及模型、计算分析方法、软件开发和工程应用中的关键问题和难点问题,开展广泛的学术交流和讨论。分会场为力学、化工、能源、冶金、海洋、岩土及土木工程等领域中从事颗粒计算方面专家学者提供一个开放的交流平台,促进多学科的交叉融合,推动颗粒计算在基础理论、数值方法和工程应用中的发展。征文范围:(1)颗粒计算基本理论及数值方法;(2)颗粒计算软件开发及算例验证;(3)颗粒计算在化工、能源、冶金等领域的应用。第2分会场:多相反应流理论及建模组织单位:浙江大学、东北大学、广东以色列理工学院召集人:罗坤、安希忠、王帅、高希学术秘书:林俊杰,浙江大学,13777872366,linjunjie@zju.edu.cn。会场简介:复杂多相反应流动广泛存在于能源、动力、化工、冶金、增材等领域,涉及燃料相界面、湍流涡面、火焰锋面等各种能质传输界面相互作用,以及多相流动、传热传质及化学反应等多物理过程耦合作用,呈现从微观颗粒/液滴运动到宏观反应器性能的多尺度特征。这些界面相互作用、多物理过程耦合、多尺度特征交互对整个系统的高效、低排放和安全稳定运行具有决定性的影响。如何准确解析多相反应流界面、建立多物理过程耦合模型、形成多尺度工程应用平台是发展多相反应流动理论与模型的挑战。本分会场结合该领域的难点和热点问题,旨在探讨当前多相反应流理论及建模技术的研究现状和发展趋势,促进广泛的学术交流和讨论。征文范围:(1)气固/液两相反应流理论及模型研究;(2)气-液-固三相反应流理论及模型研究;(3)AI赋能的多相反应流理论及模型研究;(4)多相反应流建模在能源动力、化工冶金、增材制造等领域的应用研究。第3分会场:流态化技术助力新质生产力组织单位:中国颗粒学会流态化专业委员会、中国石油大学(北京)召集人:刘梦溪、王军武、吴学成学术秘书:闫子涵,中国石油大学(北京),13701359560, yanzihan2007@163.com。会场简介:流态化技术已经在石油化工、化工、电力、冶金、医药等许多领域得到广泛应用。未来新质生产力的发展将更多地依赖于科技创新、知识更新和智能化生产,新能源、新材料、先进制造等新型产业将得到快速发展。流态化技术如何与信息数字技术深度融合并获得新的增长,如何将流态化技术引入新兴产业中并助力其快速发展?这都为我国流态化技术的发展带来了新的发展机遇和挑战。本分会以“流态化技术助力新质生产力”为主题,采用分会主题报告、分会邀请报告、口头报告和墙报等形式展开交流,面向广大从事流态化和颗粒技术研究及应用的学者、工程技术人员、企业代表及研究生征集科技论文。征文范围:(1)流化床中的流动、传热、传质和化学反应;(2)计算机数值模拟与放大;(3)流态化过程强化及工业应用;(4)信息数字技术助力下的流态化技术(如AI、机器学习助力流态化技术)。第4分会场:过程工程中的介科学与人工智能组织单位:中国科学院过程工程研究所介科学与工程全国重点实验室、中国科学院大连化学物理研究所低碳催化技术国家工程研究中心召集人:杨宁、叶茂学术秘书:郭强,中国科学院过程工程研究所,15901043524,guoqiang@ipe.ac.cn;周吉彬,中国科学院大连化学物理研究所,18642893606,zhoujibin@dicp.ac.cn。会场简介:本分会场围绕过程工程中的介科学与人工智能展开研讨。过程工程是研究物质的化学、物理和生物转化过程中物质的运动、传递和反应及其相互关系的一门工程科学,服务于为社会发展提供物质基础的过程工业,包括能源、资源、环境、材料、制药、石油、化工、冶金等支柱产业。过程工程广泛存在介尺度行为,并具体包括两个层次的介尺度问题,其一,分子尺度到颗粒尺度间的材料结构或表界面时空尺度;其二,颗粒尺度到反应器尺度间形成的非均匀结构的时空尺度。同时,近些年,采用人工智能研究过程工程中的核心问题正逐步成为领域热点和前沿,在操作条件优化、过程诊断、流程设计等方面均展示出巨大优势;随着ChatGPT、Sora等文本和视频大模型的发展,人工智能将对包括过程工程在内的行业带来新的机遇。本分会场拟邀请及征集学术界及企业界等领域内相关专家学者,围绕以上主题分享最新的研究成果。征文范围:能源、资源、环境、材料、制药、石油、化工、冶金等过程工程领域材料表界面和反应器/设备等不同层次上的介尺度问题;人工智能在能源、资源、环境、材料、制药、石油、化工、冶金等过程工程领域研究中的应用;ChatGPT、Sora等文本和视频大模型对过程工程研究的启示。第5分会场:面向绿色低碳过程的气液固多相流科学及应用组织单位:天津大学、清华大学、中国科学院过程工程研究所、University of Nottingham Ningbo、化学工程联合国家重点实验室(天津大学)召集人:刘明言、王铁峰、杨宁、杨晓钢学术秘书:蓝晓程,清华大学,15201519641,邮箱:lanxc@tsinghua.edu.cn;马永丽,天津大学,15900397694,邮箱:mayl@tju.edu.cn。会场简介:气液、液固和气液固多相流,沸腾和冷凝多相流,以及软颗粒流等系统在高效绿色低碳过程工程具有重要应用。气-液鼓泡塔、气液固浆态床、液固和气液固流化床反应系统等可用作高效绿色低碳工业反应器;汽液(固)多相流沸腾和冷凝传热及微纳表面传热强化和污垢控制、光热蒸发制淡水和废水处理等,涉及传统能源和可再生能源的高效利用和节能降碳;乳状液、泡沫、液滴流等软物质颗粒,涉及食品、生物和医药等领域等。这些多相流系统都有液相和真实的相界面,气泡和液滴易变形、易聚并和易破裂,使多相流动、混合、传热传质和反应等复杂化,并呈现特殊规律性等。涉及这些含液多相流的科学技术研究及应用问题都可以交流探讨。征文范围:包括面向传统化工等过程工业的节能降耗与过程强化,绿色低碳过程中的气液固多相流动及反应的实验及测试、理论分析、机理建模及数值模拟、过程优化和控制等研究以及工业应用等。第6分会场:油气资源颗粒及技术组织单位:西南石油大学召集人:刘平礼、康毅力学术秘书:李骏,西南石油大学,18328363279,lijunswpu@163.com。会场简介:石油和天然气仍是未来经济社会发展必须依赖的主要能源,保证油气安全供给是国家重大战略需求,天然气作为最清洁低碳、灵活高效的化石能源,更是中国能源体系由高碳向低碳、零碳转型的重要抓手。石油与天然气勘探开发过程中,与颗粒物质相关的科学与技术问题普遍存在。颗粒物质力学与颗粒多相流理论是油气井工作液调控、钻井防漏堵漏、天然气水合物开采、水力铺砂压裂、暂堵转向压裂/酸化、地层出砂、煤粉运移、微粒运移等的理论基础之一。本会场围绕油气勘探开发中涉及的颗粒材料力学、颗粒体系结构与强度、颗粒多相流相关最新研究进展开展讨论交流,以期建立石油与天然气工程颗粒物质力学学科新方向,并对石油与天然气高效开发提供理论支撑。征文范围:(1)水力压裂技术、储层保护技术、钻井、采油、储运过程中中涉及的颗粒新材料研制、制备工艺、处理技术、相关基础理论、设备仪器及相关的工业应用研究;(2)储能、封存过程中(CCUS等)、水合物开采、地热能开采、氢能制备过程中涉及的颗粒新材料研制、制备工艺、处理技术、相关基础理论、设备仪器及相关的工业应用研究;(3)常规、非常规油气开采、深海、深地油气开采过程中涉及的颗粒新材料研制、制备工艺、处理技术、相关基础理论、设备仪器及相关的工业应用研究及基于人工智能(AI)技术的油气颗粒学研究。第7分会场:能源转化分会场组织单位:中国颗粒学会能源颗粒材料专业委员会、清华大学、浙江大学、北京工业大学召集人:骞伟中、王宁学术秘书:王宁,北京工业大学,18810492568,ning.wang.1@bjut.edu.cn。会场简介:面向国家“碳达峰、碳中和”重大需求和世界科技前沿,围绕“双碳背景下的能源转化”主题,聚焦碳基能源的催化转化、储能及生物质转化与利用等前沿研究方向,展示能源化学领域所取得的最新研究进展和成果,探索新时代下能源转化的新内涵和研究新范式。通过资源整合与通力协作,推动颗粒材料在能源高效利用领域的科学研究和工业应用。征文范围:(1)化石能源转化与利用:石油、天然气、煤和新型碳等资源转化与利用(碳一化学、催化剂设计等),二氧化碳转化,能源化学与碳中和等;(2)能源转化与储能:太阳能电池、燃料电池等能量转换,超级电容器、微型储能器件能量储存等;(3)生物质转化与利用:生物质的定向转化,生物质化学转化过程调控,生物质气化合成和催化热解,生物质废弃物资源化利用等。第8分会场:面向未来的能源催化颗粒组织单位:中国颗粒学会能源颗粒材料专业委员会、广州大学、华南理工大学、广东工业大学召集人:彭峰、张山青、余皓学术秘书:杨光星,广州大学,18565055335,yanggx@gzhu.edu.cn;王浩帆,华南理工大学,15210580993,whf@scut.edu.cn。会场简介:面向未来的能源催化颗粒分会场聚焦双碳目标下的催化关键科学问题,围绕光、电、热催化的前沿理念和创新技术开展广泛的学术交流和讨论,凝炼能源催化的前沿研究方向,推动基于颗粒材料的能源催化技术在能源高效转化利用、CO2催化转化、光电化学合成等领域的前沿科学研究和潜在工业应用,通过学术思想的碰撞催生面向未来的能源催化新理念与新技术。征文范围:与能源转化、利用相关的:(1)光催化;(2)电催化;(3)热催化;(4)光电催化。第9分会场:矿物颗粒低碳高效利用组织单位:中国科学院过程工程研究所、中国矿业大学(北京)、北京科技大学、昆明理工大学召集人:孙志明、刘征建、李孔斋学术秘书:杨海涛,中国科学院过程工程研究所,15201363592,yhtao@ipe.ac.cn。会场简介:矿物颗粒涉及煤炭、黑色金属矿、有色金属矿以及无机非金属矿等,是国民经济重要的资源形式,也是颗粒学的重要研究内容之一。在新能源大发展以及双碳的背景下,矿物颗粒低碳高效利用面临新的机遇和挑战,产生许多变革性的技术流程,成为研究的热点。征文范围:矿物加工、低碳冶金、高值化利用、新能源耦合、低碳工艺流程变革、资源循环。第10分会场:创新能源颗粒,培育能源颗粒新质生产力组织单位:中国颗粒学会能源颗粒材料专业委员会、江苏省颗粒学会召集人:魏飞、张强、黄佳琦学术秘书:程新兵,东南大学,17775083663,chengxb@seu.edu.cn。会场简介:能源颗粒分会场结合颗粒与能源领域中急需解决的关键科学问题和难点技术问题,开展广泛的学术交流和讨论。通过对当前颗粒与能源研究现状和发展趋势的交流,凝炼颗粒与能源的前沿研究方向,确定相应的关键科学问题,推动颗粒与能源领域在基础理论、研究方法和工业应用中的发展,锻造新质生产力,建设新型能源体系。征文范围:(1)能源材料(如锂离子电池、电容器、锂硫电池、金属电池、空气电池、燃料电池相关材料);(2)能源颗粒的表征技术;(3)能源颗粒的应用及产业化。第11分会场:钠电池材料与技术组织单位:中国科学院物理研究所、中国科学院过程工程研究所召集人:胡勇胜、赵君梅学术秘书:容晓晖,中国科学院物理研究所,13261555773,13051863167,rong@iphy.ac.cn。会场简介:本次研讨会围绕钠电池材料和技术,将多角度切入、全方位呈现钠电池的现状和未来,着重解析钠电池的正极、负极、电解液等材料和相关技术的研发进展,重点关注科学研究和材料、电池制备过程中的关键科学和技术问题,为钠电池材料和技术的发展带来深入见解。征文范围:钠离子电池正极材料、负极材料、液体电解质材料、固体电解质材料、粘结剂材料、集流体、隔膜、液态/半固态/全固态电芯设计、产业化进展、国家标准解读或建议、国家政策解读或建议、国际国内局势分析等。第12分会场:含能颗粒分会场组织单位:国防科技大学、西北工业大学、北京理工大学、西安近代化学研究所召集人:马立坤、敖文、赵马杰、冯昊学术秘书:张家瑞,国防科技大学,15243611656,zhangjiarui@nudt.edu.cn。会场简介:含能颗粒广泛应用于各种能源动力系统,其制备、表征与能质转化涉及化学、材料学、燃烧学和空气动力学等学科。由于复杂的理化特性,含能颗粒的定向调控与制备、燃烧过程的高精度观测和数值预示都极为困难。本会场汇聚国内外相关领域同行专家,共同研讨含能颗粒相关领域的最新进展,推动含能颗粒技术实现跨越式发展。征文范围:(1)先进含能颗粒创制技术;(2)含能颗粒表征、测量与诊断;(3)含能颗粒燃烧过程仿真;(4)含能颗粒多相流动过程仿真;(5)含能颗粒爆炸、爆震和水反应;(6)先进颗粒动力系统。第13分会场:面向新一轮科技革命的气溶胶研究现状和展望组织单位:中国颗粒学会气溶胶专业委员会、中国科学院大气物理研究所、中国科学院地球环境研究所、西安交通大学召集人:黄宇、邵龙义、王丽娜、王启元、王体健学术秘书:武云飞,中国科学院大气物理研究所,18600167678,wuyf@mail.iap.ac.cn;路艳峰,昆明理工大学,18187058083,luyf@kust.edu.cn;崔龙,中国科学院地球环境研究所,15399474859,cuilong@ieecas.cn;夏芸洁,北京市气象探测中心,18510970720,xiayunjie@bj.cma.gov.cn。会场简介:新一轮科技革命正在如火如荼地进行,与以往不同,新一轮科技革命不再以单一技术主导,而是呈现多点、群发性突破的态势。各学科深度交叉融合,科学界限愈发模糊。科研范式发生改变,大数据研究成为继实验科学、理论分析和计算机模拟之后的“第四范式”。在这样的背景下,气溶胶研究也必然呈现新的范式,并与其他学科深度交叉融合。本会场将围绕气溶胶前沿热点,展示气溶胶相关领域最新的科学理论研究成果与关键技术进展,探讨新一轮科技革命驱动下我国大气气溶胶工作的现状以及面临的新机遇和新挑战,展望气溶胶研究的未来发展。征文范围:包括但不限于以下内容(1)气溶胶基本特性(物理、化学、光学、辐射);(2)气溶胶的发生、采样、监测、分析技术;(3)气溶胶来源解析;(4)气溶胶动力学;(5)气溶胶对气候、环境和人体健康的影响;(6)气溶胶过滤、清洁及除尘技术;(7)AI技术在气溶胶研究中的应用。第14分会场:源排放颗粒物特征及其环境健康效应组织单位:中国颗粒学会气溶胶专业委员会、西安交通大学、北京大学、中国地质大学(武汉)、浙江大学召集人:沈振兴、沈国锋、孔少飞、刘丹彤学术秘书:徐红梅,西安交通大学,13772542708, xuhongmei@mail.xjtu.edu.cn;孙健,西安交通大学,18602975563,sunjian0306@mail.xjtu.edu.cn。会场简介:源排放颗粒物特征研究对于大气污染源精准源解析评估、对区域大气环境和健康影响具有重要的科学和应用价值。研究显示,民用燃烧源由于燃料种类多、燃烧条件差但分布较广等特点,其较高的颗粒物排放因子和较大的排放量对于区域大气环境有重要的贡献;其排放颗粒物中的PAHs等有机物对于农村居民的健康有重要影响,同时,民用燃烧源也是棕碳类有机物的主要来源,其对区域和全球气候变化有着重要的影响。近年来,关于民用燃烧源颗粒物及其化学组分的排放因子和环境演化机制、排放清单、人体暴露和细胞毒性等健康研究、棕碳类物质的光学排放特征及环境演化等研究已成为国际大气化学和大气环境研究的重点和热点领域。征文范围:源排放颗粒物及化学组成的排放因子、排放清单、健康效应等;棕碳类物质排放分子组成和光学特征及环境演化机理;源排放颗粒物的老化过程研究;含氮有机物的排放、老化机制对环境和健康的影响;源排放VOCs特征、老化及其对环境健康的影响等。第15分会场:二次颗粒物生成与老化及其对大气辐射的影响机制组织单位:北京大学,中国科学院化学研究所,中国科学院生态环境研究中心,南京信息工程大学召集人:郭松、胡建林、马庆鑫、尚冬杰学术秘书:曾凌寒,北京大学,18600546164,lhzeng@pku.edu.cn。会场简介:随着我国大气污染防治工作的深入,一次排放显著降低,二次颗粒物贡献升高,但二次颗粒物生成机制仍不清楚,且双碳目标的提出使得颗粒物大气辐射效应研究变得更加急迫。目前在该领域的研究热点和难点包括:多元前体物参与新粒子生成与增长机制;二次颗粒物尤其是二次有机颗粒物气相、非均相、液相生成机制;黑碳等一次颗粒物老化机制及其在老化过程中吸湿性、光学性质等的演变规律;棕色碳来源、组成与大气中演变机制;二次颗粒物的大气辐射效应。征文范围:本分会场征集相关实验室研究、外场测量和模式模拟方向摘要,内容包括但不限于以下研究:(1)新粒子生成与增长机制;(2)二次无机和有机颗粒物气相、非均相、液相生成机制;(3)黑碳等一次颗粒物老化机制及其在老化过程中吸湿性、光学性质等的演变规律;(4)棕色碳来源、组成与大气中演变机制;(5)二次颗粒物的大气辐射效应。第16分会场:核设施气溶胶行为研究组织单位:中国核电工程有限公司、哈尔滨工程大学、西安交通大学、东南大学召集人:王辉、谷海峰、张亚培、黄东篱学术秘书:孙婧,中国核电工程有限公司,15601163377,sunjing@cnpe.cc。会场简介:核能与核技术具有广阔的发展与应用前景,作为核能和核技术应用的主要载体,核设施由于存在潜在的辐射风险而受到广泛关注。气溶胶是核设施产生的放射性物质的主要载体之一,研究核设施不同运行工况、不同事故场景下的气溶胶迁移演化规律对量化核设施辐射风险,进而采取针对性防护或缓解措施具有重要意义。为推动核设施气溶胶行为研究进展,促进业内交流,“核设施气溶胶行为研究分会场”拟邀请相关科研院所、设计单位及监管审评部门的专家学者及技术人员就核设施气溶胶的产生、演化、输运、沉积与去除等技术内容研讨交流,通过学术研讨提升核安全研究水平,促进核能与核技术的健康发展。征文范围:(1)核设施气溶胶产生及演化的实验和理论研究;(2)核设施气溶胶输运与沉积的实验和理论研究;(3)核设施气溶胶去除技术研究;(4)大尺度空间内气溶胶迁移扩散规律研究;(5)核设施气溶胶行为计算分析程序的开发与验证;(6)核设施气溶胶行为先进数值算法研究。第17分会场:颗粒物与儿童健康组织单位:郑州大学、北京大学召集人:邓启红、邓芙蓉学术秘书:薛源,郑州大学公共卫生学院,15837120098,xueyuansnow@zzu.edu.cn。会场简介:近年来流行病学研究已广泛证明了颗粒物对人体健康的危害,环境颗粒物也成为了全球疾病负担排名第二的环境危险因素。特别是在大气环境中超微颗粒对人类的健康、安全产生的危害是全社会关注的重大民生问题。颗粒技术给我们的环境和健康带来挑战的同时,也给了我们机遇,在医药领域为改善人类健康和生命质量提供了前所未有的机会。儿童正处于生长发育的关键阶段,更容易受到颗粒物的侵袭,2020年《柳叶刀》发布了WHO、联合国儿童基金会、柳叶刀联合重大报告呼吁将儿童健康和福祉置于国家和全球可持续发展目标的中心地位。本次分会场将聚焦儿童健康,围绕颗粒与儿童健康开展学术讨论,以有效防范颗粒暴露对下一代健康风险为核心,推动落实“健康中国与人类可持续发展”战略。征文范围:围绕儿童健康开展颗粒物的潜在环境风险,环境颗粒物带来的健康挑战与机遇,颗粒物相关儿童疾病健康风险、毒理学机制、“监测、预警、防控”,纳米颗粒儿童相关疾病治疗等方面的研究。第18分会场:微塑料论坛组织单位:北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)召集人:高峡、席广成、宋茂勇、季荣、高博、安立会学术秘书:刘艳博士,北京市科学技术研究院分析测试研究所(北京市理化分析测试中心),15101190806,liuyan@bcpca.ac.cn。会场简介:本次微塑料论坛旨在汇聚学术界、工业界和政府职能部门的专家学者、生产和管理者等多方人士,共同探讨微塑料的检验检测、环境赋存、生态安全和健康评价,以及相关管控治理措施等,推动微塑料科学问题的研究和塑料污染治理的进步。论坛主要内容包括:微塑料分析测试的光谱、质谱及各种联用技术、标准物质/样品研制、微塑料科学问题的研究现状及最近进展,邀请相关领域科研学者介绍检测技术的标准化进程,探讨全球及中国微塑料赋存现状、特征分布与来源迁移、生态毒性及健康影响、复合污染、管控治理及政策法规等,探讨生物降解与循环再生、回收利用等管控措施,交流目前在塑料污染治理方面的成功经验和创新做法,助力全球塑料污染环境治理。特别值得关注的是,论坛还将探讨高分子材料与微塑料的相关性,分析常见高分子材料在环境中的降解行为及其对微塑料赋存的贡献,探索新型环保高分子材料在减少塑料污染中的潜力。征文范围:(1)微塑料的检测方法及其标准化;(2)微塑料标准物质的研制及应用;(3)微塑料赋存特征、分布来源及迁移;(4)微塑料的生态毒性及其对人类健康的影响;(5)微塑料复合污染物、防控技术及政策法规;(6)高分子材料的环境降解行为与微塑料治理。第19分会场:药物制剂与粒子设计组织单位:中国颗粒学会药物制剂与粒子设计专业委员会召集人:唐星、崔福德学术秘书:石凯,南开大学,13512958909,pharmparticle@126.com。会场简介:本会场交流主题以工业药剂学及高端制剂的研究为中心,广泛征集相关领域的国内外专家学者、企业技术工作者以及在校学生的学术论文,展示其研究成果及新进展、新动态和新成果等。欢迎粉体加工技术及设备、药用辅料及粉体表征仪器(晶形、粒子形状大小、流动性、压缩成形性等)方面的专家们及企业针对粉体技术在药物制剂中的应用进行广泛交流,以期提高药物制剂技术的科学性、实用性及可生产性。本次分会将是药物制剂领域与粉体技术沟通的盛会,企业与高校、科研院所广泛交流的盛会,理论联系实际的盛会,中国工业药剂学产业化交流的盛会。征文范围:(1)粉体技术在固体药物制剂中的应用;(2)粉体性质的测试技术与研究进展;(3)药用辅料的粉体性质对产品质量的影响;(4)新型制剂设备的应用与研究进展;(5)制剂颗粒质量表征与控制;(6)从实验室研究到产业化过渡的难点与关键问题;(7)药物制剂的新剂型与新技术的产业化前景与难点;(8)基于功能性粒子设计的高端制剂。第20分会场:第三届天然和仿生颗粒论坛: 向自然学习,造智能颗粒组织单位:中国科学院过程工程研究所、清华大学分会主席:魏炜、戈钧、陈瑶、马光辉学术秘书:岳华,中国科学院过程工程研究所,hyue@ipe.ac.cn;郑迪威,中国科学院过程工程研究所,dwzheng@ipe.ac.cn;齐国斌,中国科学院过程工程研究所,gbqi@ipe.ac.cn;王双,中国科学院过程工程研究所,wangshuang@ipe.ac.cn;吕岩霖,中国科学院过程工程研究所,lvyanlin@ipe.ac.cn。会场简介:天然颗粒在催化、靶向递送和感染等方面具有独特的性能。而通过向天然学习,利用合成、组装等手段获得可以模拟自然界巧妙结构或者功能的仿生颗粒,也成为生物医药、能源化工等领域的前沿热点。然而,如何实现天然颗粒的高值化利用以及人造颗粒的高性能优化设计/功能模拟,离不开颗粒学与仿生学等基础学科巧妙融合以及高精尖技术手段的开发/应用,这也是本会场聚焦的关键问题。征文范围:天然和仿生颗粒的提取、合成、改造、表征和应用,包括但不限于固定化酶、病毒样颗粒等生物大分子基颗粒,细菌、酵母等微生物颗粒,囊泡、外泌体等细胞型颗粒,以及人工合成的各种理化性质仿生、合成过程仿生以及功能仿生颗粒。第21分会场:吸入药物颗粒递送的前沿技术和进展组织单位:中国颗粒学会吸入颗粒专业委员会召集人:廖永红、侯曙光学术秘书:邵奇,上海上药信谊药厂有限公司,13818775817,shaoqi@sphsine.com;王晓飞,亿腾医药,15900679240,fen8129@sina.com。会场简介:本次颗粒学会吸入颗粒专委会汇集了可吸入药物颗粒研究领域的专家,旨在探讨创新的吸入药物递送系统、产业化挑战、新技术应用以及临床研究方法。会议涵盖吸入药物颗粒递送的前沿技术和进展,主要讨论生物医药领域可吸入颗粒相关技术与产业化的动态,以促进该领域可吸入颗粒研发、生产、质控的技术创新和发展,以应对全球空气质量变化和健康挑战。征文范围:创新的吸入药物递送系统设计与优化、吸入药物颗粒递送的产业化挑战与应对策略、吸入药物的体内外评价及质量控制、新技术在吸入工程颗粒中的研发与应用、吸入中药的研究与应用、可吸入生物制剂的研发与应用等。第22分会场:颗粒特性与测试组织单位:中国颗粒学会颗粒测试专业委员会、北京粉体技术协会召集人:韩鹏、沈建琪、张福根、董青云学术秘书:魏永杰,河北工业大学,13012262260,yj.wei@163.com;周骛,上海理工大学,18721306098,usst_wzhou@163.com。会场简介:分会场面向颗粒测试方法、颗粒特性表征技术研究、仪器开发、应用标准制定等领域,邀请和组织专家、技术人员针对我国粉体、液态、气态等颗粒测试研究与应用开展研讨,促进科技创新,实现成果转化,深化颗粒测试在生产实践中的应用。以战略性新兴产业和未来产业为主要载体,推动我国产业技术发展。通过学交流促进专业培训、科技咨询、产学研合作等活动,扶持以激光粒度测试仪器等为主导产品的国内颗粒测试品牌企业。征文范围:(1)颗粒测试新技术、新方法及新成果;(2)颗粒关键参数的测试理论与验证;(3)颗粒测试需求分析;(4)工业过程颗粒测试与计算方法;(5)样品准备及分散技术研究;(6)颗粒测试在交叉学科中的应用;(7)颗粒标准化;(8)颗粒特性与新材料;(9)粒度比对及能力验证;(10)颗粒比表面及孔径的测试;(11)大气与环境颗粒测量及其它。第23分会场:颗粒计量及标准化组织单位:中国计量科学研究院、北京市计量检测科学研究院(华北国家计量测试中心) 、合肥鸿蒙标准技术研究院、上海市计量测试技术研究院(华东国家计量测试中心)召集人:张文阁、张国城、李力、丁臻敏学术秘书:刘佳琪,北京市计量检测科学研究院,18101083692,liujq@bjjl.cn。会场简介:本会场聚焦颗粒物采样及粒径、数浓度、质量浓度等,检测仪器设备的量值溯源、标准物质、计量技术、检验检测能力、规程规范与标准研究,为环保、生物、化工、能源、冶金、海洋、岩土及土木等领域中从事颗粒计量和标准化方面专家学者提供开放交流平台,推动颗粒计量及标准化在颗粒学研究及发展中的应用,为我国颗粒表征、颗粒相关特性量计量溯源性保驾护航。征文范围:(1)颗粒标准物质的研制与应用;(2)颗粒计量标准装置的研制与应用;(3)颗粒采样器的计量与标准化;(4)颗粒粒径与浓度等计量特性检测仪器的计量与标准化;(5)颗粒成分解析检测仪器的计量与标准化;(6)其它与颗粒计量及标准化相关工作。第24分会场:神奇的二维材料组织单位:中国颗粒学会颗粒制备与处理专业委员会、北京化工大学化学工程学院、北京航空航天大学粉体技术研究开发北京市重点实验室、北京航空航天大学航空科学与工程学院召集人:沈志刚、毋伟、骆广生学术秘书:李宇航,北京航空航天大学航空科学与工程学院,15201676405,liyuhang@buaa.edu.cn;张晓静,北京航空航天大学航空科学与工程学院,zhangxiaojing@buaa.edu.cn。会场简介:二维材料作为纳米材料的重要组成部分,具有品种多,性能多变可调等优异性质,在新材料领域占有重要地位,在新能源、环境保护、新型电子产品以及Al 等领域都有广泛的应用和应用前景。该分会场集中研讨二维材料的制备、改性、表征、性质及应用,特别聚焦二维材料规模制备存在的问题及解决方案和新型应用等。征文范围:(1)天然二维材料,如:高岭土、蒙脱土、凹凸棒粘土及石墨等;(2)人工加工合成的二维材料,如:石墨烯、二维二硫化钼纳米片、六方氮化硼纳米片、MXene等;(3)二维功能材料和复合材料,如:各种膜、涂层及柔型器件等。包括但不限于上述材料的制备、合成、加工、表征、模拟、改性、理化特性及应用等。第25分会场:氮化物粉体、制品及应用组织单位:中材高新材料股份有限公司、中国科学院理化技术研究所、中国科学院过程工程研究所、安徽工业大学召集人:李江涛、张伟儒学术秘书:韩召,安徽工业大学,15212396901,authan@163.com;向茂乔,中国科学院过程工程研究所,15652932187,mqxiang@ipe.ac.cn。会场简介:氮化物材料在新能源汽车、集成电路、AI算力设备、电力装备、精密机械、航空航天、生物医学等诸多关键领域发挥着不可替代的重要作用。在我国新旧动能转换,加快培育和发展新质生产力背景下,氮化物粉体材料的研究和应用面临众多新的挑战和新的机遇。本次会议邀请国内知名高校、科研院所以及行业领军企业的专家学者,共同探讨新质生产力背景下氮化物粉体材料制备及应用领域的热点问题。征文范围:(1)氮化物粉体制备新技术、新理论;(2)氮化物粉体后处理深加工技术;(3)氮化物粉体成型与烧结技术;(4)氮化物粉体的检测及应用。第26分会场:AI赋能未来颗粒技术组织单位:中国颗粒学会颗粒制备与处理专业委员会召集人:李春忠、宋少先学术秘书:陈龙,华东理工大学,longchen@ecust.edu.cn 贾菲菲,武汉理工大学,feifeijia@whut.edu.cn。会场简介:以人工智能、大数据等新兴技术为引擎的新质生产力,围绕高端化、智能化、绿色化发展方向,将深入赋能颗粒技术在能源化工制造业的各个领域环节,推进构建绿色低碳能源化工新体系。针对如何强化AI赋能未来颗粒技术攻关,打造新质生产力,本分会场面向其中的关键挑战,开展广泛的学术交流和讨论。凝练基础前沿的关键科学问题以及产业中急需解决的技术难题,推动AI+未来颗粒技术在基础理论、研究方法和产业应用中的发展。征文范围:人工智能;大数据;颗粒制备、表征及应用过程科学基础;能源化工过程中颗粒技术新进展;电化学能量存储与转化颗粒技术;颗粒原位表征技术;颗粒应用过程强化;清洁能源颗粒技术;碳储存颗粒技术;环境矿物材料;二氧化碳矿化颗粒技术;选矿和冶金过程中颗粒技术新进展。第27分会场:亚稳态新材料的极端条件合成与先进表征组织单位:南京理工大学、东南大学、香港城市大学(东莞)召集人:朱贺、贾喆学术秘书:吴桢舵,香港城市大学(东莞),zd.wu@cityu-dg.edu。会场简介:亚稳态材料是指那些在热力学上处于非平衡态的材料,因形成条件的不同呈现多种形式,但通常具有某些无序结构特征。如具有原子无序结构的非晶态材料;具有化学无序结构的高熵合金;以及具有较大结构畸变和高密度缺陷的低维纳米材料等。亚稳态材料的性能可能与平衡态时不同,有时甚至表现出更优越的特性,如高的电化学活性、高强韧性、特殊磁性和光学特性等,因此越来越受到人们广泛的重视。亚稳态材料的实现通常需要极端的合成条件,如超快加热、极冷、高压、微重力、大变形等。同时,这些条件带来的亚稳态结构和非平衡态过程,需要高能高通量的表征手段,因此强烈依赖同步辐射/中子等大科学装置。在第十三届中国颗粒大会组织亚稳态新材料的极端条件合成与先进表征分会场,聚焦亚稳态材料的极端条件合成、无序结构表征、性能测试和功能实现中的科学和工程问题,有利于加深亚稳态材料领域的学术交流,促进相关学科的创新与发展。征文范围:非晶合金、高熵合金等亚稳态新材料体系;超快合成等极端条件合成方法学;同步辐射/中子等大科学装置先进表征。第28分会场:超微颗粒材料及应用分会组织单位:中国颗粒学会超微专业委员会召集人:费广涛、林中魁*学术秘书:刘潜峰,清华大学,liuqianfeng@tsinghua.edu.cn;徐锡金,济南大学,sps_xuxj@ujn.edu.cn。会场简介:超微颗粒材料及应用分会一直致力于超微颗粒的制备、表征及其应用方面的研究工作。为定期系统性地总结学界和企业界在超微颗粒方面的最新研究成果,尤其是超微颗粒学科在能量转换与存储、环境修复、生物医学等领域中的应用,同时促进本领域同行之间的学术交流,以及增强产业界与学术界的产学研合作。我们竭诚欢迎从事超微颗粒制备、表征及应用开发研究的科技人员及企业界朋友们踊跃与会,交流研究成果,为本学科的发展集思广益,建言献策,共同持续促进相关领域学者的友谊,为提升本领域科技水平和经济繁荣做出贡献。征文范围:(1)超微纳颗粒的制备理论、工艺及改性技术(尤其是分散技术);(2)超微颗粒在能量转换与存储、环境修复、生物医学等领域中的应用;(3)超微颗粒测试、标准分析中的基础问题;(4)超微粉体产业化技术中的技术问题。第29分会场:微纳气泡,为中国绿色高质量发展提供新质生产力组织单位:中国科学院上海高等研究院、祥符实验室、同济大学、东南大学、南京大学召集人:张立娟、李攀、杨芳、王伟学术秘书:周兰,国家纳米科学中心,18311283997,zhoul2024@nanoctr.cn;王兴亚,中国科学院上海高等研究院,15121100541,wangxingya@sari.ac.cn。会场简介:微纳米气泡基础研究和应用在近二十年来发展非常迅速,已成为一新兴领域。在我国微纳米气泡技术已经在环境治理、农业种植、水产养殖、工业清洗、消毒杀菌、医学成像以及医疗健康等领域的应用独树一帜、效果出色。该会议将有助于加强微纳气泡基础研究和应用的科学家和企业家的深入交流和合作,推动相关技术的高效研发和推广。目前微纳气泡专委会已批准成立8个示范性基地,在国内汇集了一批兴趣浓厚、勇于钻研、乐于分享的科学家、工程师和企业家。期望微纳米气泡为中国绿色高质量发展提供新质生产力,造福人类!征文范围:本次分会将围绕会议主题:微纳气泡,为中国绿色高质量发展提供新质生产力!拟征集如下内容:(1)微纳米气泡的新理论和新的产生和表征技术;(2)微纳米气泡在环境、农业、生物和养生健康等方面的应用;(3)微纳米气泡技术和其他技术联用的新进展。第30分会场:微纳米结构与功能复合材料分会场组织单位:江苏省颗粒学会、南京工程学院、南京理工大学、江苏省复合材料学会召集人:李庆刚、熊攀、李华冠、杨毅学术秘书:王欢,江苏省颗粒学会,13770321259,jskl_org@163.com。会场简介:纳米复合材料是当前颗粒及材料科学的研究重点。从材料制备和性能表征到特定性能、功能和界面设计的实现,是纳米复合材料研究不断深化的必然趋势。本分会场结合该领域的难点和热点问题,旨在探讨当前纳米复合材料的研究现状和发展趋势,促进广泛的学术交流和讨论。征文范围:(1)纳米颗粒复合材料的设计、制备及其应用;(2)多功能(包括力学、电学、热学、电磁屏蔽等)和智能(如自修复、自监测、自适应、环境响应等)纳米复合材料的设计原理;(3)纳米复合材料在航空航天、柔性电子、能源器件、环境保护等领域的应用。第31分会场:发光颗粒的基础研究与前沿应用组织单位:中国颗粒学会发光颗粒专业委员会,南京理工大学,华南理工大学,郑州大学召集人:夏志国、卢思宇学术秘书:李晓明,南京理工大学,lixiaoming@njust.edu.cn。会场简介:发光材料的应用在生活中已经随处可见,从照明显示到医疗诊断再到防伪探测等等,和我们的生活息息相关。在大规模应用的基础上,新型发光颗粒的分子设计、材料创制与性能调控依然是国际研究及相关应用领域的前沿热点,获得了全世界的广泛关注。近年来,以钙钛矿量子点、碳纳米颗粒和荧光金属团簇为代表的纳米发光颗粒取得了飞速的发展;传统稀土荧光材料在材料体系、波长范围、发光性能等方面的进步也有目共睹;此外,有机发光颗粒和杂化金属卤化物及其在探测传感、生物医学等领域的研究也获得了较大的关注。经过近几年的发展,相关领域取得了一系列原创性成果和应用落地。本分会场将为这些领域提供一个良好的学术交流平台,分享最新研究成果的同时促进交叉合作,为领域的进一步发展提供动力。征文范围:(1)半导体发光颗粒(镉基、铟基、钙钛矿等量子点,及其他微纳米发光材料);(2)稀土发光颗粒(照明、显示用稀土发光颗粒、长余辉发光颗粒、特种功能发光颗粒等);(3)碳及有机发光材料(碳荧光纳米颗粒、聚合物纳米颗粒、有机发光材料等);(4)团簇发光颗粒(金属团簇、铜碘团簇以及其他有机无机杂化金属卤化物等);(5)发光光谱、发光器件、发光应用及产业化。第32分会场:颗粒分离材料与技术分会组织单位:南京工业大学、苏州大学召集人:仲兆祥、靳健学术秘书:冯厦厦,南京工业大学,15895886969,fengss@njtech.edu.cn。会场简介:分会以基于颗粒的分离技术,和以颗粒为分离对象的技术为切入点,广泛交流颗粒分离材料、技术、装备及应用前沿发展情况,重点讨论针对化工、能源与环保等领域颗粒物分离关键科学技术难题,着重深化颗粒分离过程机理机制研究,拓展颗粒分离在高端化学品制备、绿色能源发展、生态环境保护等方面的应用,推进颗粒分离相关领域基础研究与技术创新。征文范围:(1)以颗粒物为对象的分离材料与技术(吸附、絮凝、结晶、磁控分离、膜分离、旋风分离、静电分离等);(2)以颗粒物为基础的分离材料或分离过程(分子筛、MOFs、COFs、二维材料、混合基质膜、其他多孔材料);(3)高附加值分体产品提纯与回收(电子级产品超纯净化、超细粉体捕集等);(4)能源与环境领域颗粒分离过程(气-固、液-固分离,微生物分离与失活等);(5)颗粒分离过程控制与机理分析(颗粒物传质过程与机理、污染控制方法等)。第33分会场:首届晶态多孔颗粒国际前沿交叉论坛The 1st International Frontier Interdisciplinary Forum on Crystalline Porous Particles (IFPOPA1)参会投稿:https://IFPOPA1.csp.org.cn组织单位:中国科学院过程工程研究所介科学与工程全国重点实验室、京都大学、大阪公立大学召集人:Gang Xu,Masahide TAKAHASHI ,Gen Zhang ,Yangyang Guo,Yifan Gu学术秘书:Mingshui Yao, Meso State Key Lab, IPE, CAS. Tel. +86- 18650390225 E-mail: msyao@ipe.ac.cn Kenichi Otake, E-mail: ootake.kenichi.8a@kyoto-u.ac.jp Kenji Okada, E-mail: k_okada@omu.ac.jp会场简介:首届晶态多孔颗粒国际前沿交叉论坛分会场结合多孔颗粒与能源、材料和环境领域中急需解决的关键科学问题和难点技术问题,开展广泛的学术交流和讨论。通过对当前多孔颗粒与能源、材料和环境研究现状和发展趋势的交流,凝炼多孔颗粒与、材料和环境的前沿研究方向,确定相应的关键科学问题,推动多孔颗粒与、材料和环境领域在基础理论、研究方法和工业应用中的发展,锻造新质生产力。征文范围:(1)晶态多孔颗粒可控制备(颗粒调控、复合颗粒、颗粒共生、薄膜) The controllable preparation of crystalline porous particles;(2)多孔颗粒的先进表征技术 The advanced characterizations of crystalline porous particles;(3)多孔颗粒的应用及产业化 The application and industrialization of crystalline porous particles。三、培训班培训班1:颗粒计算软件培训(一)组织单位:中国颗粒学会颗粒计算专业委员会(筹)召集人:季顺迎学术秘书:刘传奇,中国科学院力学研究所,18810189071,chuanqil@imech.ac.cn培训内容:介绍颗粒计算相关软件AgriDEM、DEMms、MatDEM、MultiFracS、SDEM、CoSim的功能、使用方法及其在各领域的典型应用案例。于建群,吉林大学教授,AgriDEM软件特点及应用案例介绍;徐骥,中国科学院过程工程研究所副研究员,多尺度离散模拟软件DEMms的应用;袁冰,南京大学助理工程师,高性能离散元软件MatDEM的研发和应用;严成增,中国地质大学(武汉)教授,FDEM多物理场分析软件MultiFracS技术培训;刘璐,大连理工大学副教授,SDEM软件:多介质离散元计算分析软件;徐文杰,清华大学副教授,耦合模拟器CoSim的模块功能及用户使用培训。培训班2:颗粒计算软件培训(二)组织单位:中国颗粒学会颗粒计算专业委员会(筹)召集人:季顺迎学术秘书:刘传奇,中国科学院力学研究所,18810189071,chuanqil@imech.ac.cn培训内容:介绍颗粒计算相关软件VirtualFlow、DEMSLab的功能、使用方法及其在各领域的典型应用案例。余婷,上海积鼎信息科技有限公司市场经理,通用流体仿真软件VirtualFlow功能及应用; 刘子寒/项学丰,浙江大学博士后/海基科技CAE工程师,DEMSLab软件功能介绍及其相关应用培训班3:多相流反应器介尺度模拟与智能化组织单位:中国科学院过程工程研究所、中国科学院大连化学物理研究所召集人:杨宁学术秘书:郭强,中国科学院过程工程研究所,15901043524,guoqiang@ipe.ac.cn培训内容:多相流反应器介尺度模拟与智能化。刘对平,榆林中科洁净能源创新研究院,多相流反应器颗粒流动测量与智能化反应评价系统开发;郭强,中国科学院过程工程研究所,流化床有序介尺度结构的构建与模拟管小平,中国科学院过程工程研究所,气液介尺度模型及应用李子丰,中国科学院过程工程研究所,深度强化学习下的CFD主动流动控制。培训班4:颗粒在循环管线中的流动问题及解决方案;旋风分离器的设计计算;气固流态化非侵入式测试技术和数据分析;气固流化床内“三传一反”微尺度和介尺度建模探索等组织单位:中国颗粒学会流态化专业委员会召集人:刘梦溪、王军武、吴学成学术秘书:闫子涵,中国石油大学(北京),13701359560,yanzihan2007@163.com培训内容:气固分离、颗粒输送、微尺度介尺度结构等在化工设备中扮演了重要角色,其不仅影响到设备内的气固流动结构,还直接影响了油、剂间的反应效果,从而决定目的产品的收率。为进一步推动颗粒和流态化技术在工业实践中的发展,10月25日(周五)将开展免费技术培训,设置有颗粒在循环管线中的流动、旋风分离器的设计计算、气固流化床中的非侵入式测试技术、和气固流化床内“三传一反”微尺度、介尺度探索等主题,邀请中国石油大学(北京)卢春喜老师、中国科学院工程热物理研究所王海刚老师等担任主讲嘉宾。卢春喜,中国石油大学(北京),颗粒在循环管线中的流动问题及解决方案;王伟,中石化洛阳院,工业场景下催化剂管理典型实例; 王海刚,中国科学院工程热物理研究所,气固流态化非侵入式测试技术和数据分析;孙国刚,中国石油大学(北京),旋风分离器的设计计算;周强,西安交通大学,气固流化床“三传一反”微尺度和介尺度建模探索。培训班5:臭氧微纳米气泡在工业废水深度处理上的应用组织单位:中国颗粒学会微纳气泡专业委员会召集人:李攀学术秘书:王学琳,17865316529,1264682350@qq.com培训内容:工业废水的复杂性使得处理后稳定达标排放成为难题,高效、稳定、经济的深度处理技术是工业废水行业的重大需求之一。臭氧氧化技术被广泛应用于工业废水深度处理,但是现有臭氧曝气技术的利用率低,存在系统不稳定、成本高等技术瓶颈。微纳气泡具有比表面积大、上浮速度慢等特点,可强化臭氧传质,提升臭氧氧化效率,保障出水水质稳定。该技术已经成功应用在印染、制药、钢铁等工业园区的废水深度处理中,保障了出水水质稳定达标。本培训内容包含臭氧微纳气泡技术原理、小/中试试验方法、工艺设计流程、未来技术发展方向等。培训班6:颗粒物理化生物及毒性表征技术培训主题:大气碳气溶胶在线测量和分析技术手段及其科学问题;颗粒物种蛋白质和氨基酸分析方法、特征及来源组织单位:中国颗粒学会气溶胶专业委员会、西安交通大学、北京大学、中国地质大学(武汉)、浙江大学召集人:沈振兴、沈国锋、孔少飞、刘丹彤学术秘书:徐红梅,西安交通大学,xuhongmei@xjtu.edu.cn培训内容:1、碳气溶胶形貌、吸收特性、化学组分影响和来源特征;2、大气颗粒物中蛋白质和氨基酸类物质分析方法、特征及来源。刘丹彤,浙江大学研究员,大气碳气溶胶在线测量和分析技术手段及其科学问题;赖森潮,华南理工大学教授,大气颗粒物中蛋白质和氨基酸类物质分析方法、特征及来源。培训班7:大气颗粒物分析及动物暴露毒理学技术培训主题:大气颗粒物中多组分分析;颗粒物中无机元素的在线分析技术;呼吸暴露动物模型构建;小鼠脑立体定位注射技术等。组织单位:郑州大学公共卫生学院召集人:薛源学术秘书:刘乐,15517132112,le@gs.zzu.edu.cn培训内容:颗粒物污染已成为影响人类健康的重要因素之一。为了深入厘清颗粒物中化学组分及其引起的健康效应,将于10月25日开展免费的技术培训,围绕“颗粒物中多分组分分析和动物暴露技术”为主题。拟推出大气颗粒物中半挥发性新污染物的分析;单颗粒中无机元素及同位素的在线分析技术;呼吸暴露动物模型构建等方面的培训。欢迎广大科研工作者一起探讨交流。培训班8:工程哲学、工程创新与工程教育召集人:王大洲学术秘书:李丽,中国科学院大学,010-88256711,lili@ucas.ac.cn培训内容:工程哲学培训旨在通过系统介绍工程哲学的概念、基本观点以及应用领域,帮助工程师和管理者提升哲学思维能力,更好地应对工程实践中的复杂问题。培训内容包括对工程哲学历史与现状的探讨,以及其在工程建设、产业发展、环境保护等多方面的应用,旨在培养学员具备正确的工程价值观、道德观和审美观,提高解决工程问题的能力,促进工程领域的持续健康发展。李伯聪,中国科学院大学教授,工程哲学的兴起与工程设计哲学;王大洲,中国科学院大学人文学院教授,工程科学与工程创新;范春萍,北京理工大学人文社会科学学院教授,工程哲学与新时代工程教育变革。四、会议日程(拟)五、注册缴费请通过会议网站完成会议注册和缴费:https://www.csp.org.cn/meeting/CCPT13/会议代表可通过线上支付(微信、支付宝)、银行转账或者现场刷卡的形式付款。开户行及账号:中国工商银行北京海淀西区支行,中国颗粒学会,0200004509014413416团体参会(同一单位5人及以上)注册学会会员,每人可享有200元优惠!注:(1)烦请在网上注册并填写发票抬头及单位税号;(2)团队参会需要在会议网站逐一报名,优惠费用由会务组手动修改,详情咨询韩秀芝老师;(3)注册费支付若选择“银行转账”,请务必在会议网站登陆后上传缴费凭证照片或截图,缴费状态会在5~10个工作日内人工核对确认后更新,如长时间未更新,请联系韩秀芝老师。(4)请前往“中国颗粒学会”公众号或官网(www.csp.org.cn)查询或注册学会会员。六、重要时间节点更多详情请关注 “中国颗粒学会”公众号或登陆学会官网(www.csp.org.cn)查阅。七、支撑期刊《中国粉体技术》(中文, CSCD核心,IF=0.591),联系人:吴敬涛(0531-82765659,zgft@ujn.edu.cn);《Nano research》(英文,SCI-E,EI,IF=9.9)联系人:张进(18612968821,zhangjin@tup.tsinghua.edu.cn);《Carbon Future》(英文),联系人:赵丽(010-83470498,zhaoli@tup.tsinghua.edu.cn);《Chinese Journal of Structural Chemistry》(英文,SCI,IF=5.9),联系人:周天华(0591-6317 3769,cjsc@fjirsm.ac.cn);《Particuology》(英文,SCI-E,EI,IF=3.251),联系人:姚金雨(010-82629146,particuology@ipe.ac.cn);《Frontiers in Energy》(英文,SCI-E,IF=2.709),联系人:刘瑞芹(021-62932006,rqliu@sjtu.edu.cn);《Journal of Energy Chemistry》(英文,SCI-E, EI,IF=9.676),联系人:张丽娟(13795136804,lijuanzh@dicp.ac.cn);《化工学报》(中文,EI,核心),联系人:余雪娇(010-64519362,yuxuejiao@cip.com.cn);《化工进展》(中文,EI,IF=1.403),联系人:奚志刚(010-64519500,hgjz@cip.com.cn);《Green Energy & Environment》(英文,SCIE,EI,CSCD,IF=8.207,Q1),联系人:何宏艳(010-82627075, gee@ipe.ac.cn);《Green Chemical Engineering》(英文,ESCI,EI,CSCD,CiteScore=11.6),联系人:王薪薪(010-82544856,gce@ipe.ac.cn);《Industrial Chemistry & Materials》(英文,RSC出版),联系人:孔景(010-82612330,icm@rsc.org);《Chinese Journal of Chemical Engineering》(英文,SCI-E,EI,IF=3.898),联系人:何玉娟(010-64519488,heyujuan@cip.com.cn);《储能科学与技术》(中文核心),联系人:郗向丽(010-64519601,esst2012@cip.com.cn);《过程工程学报》(中文,北大核心),联系人:齐超(010-62554658,gcgc@ipe.ac.cn);《现代技术陶瓷》(中文,山东省优秀期刊,IF=1.00),联系人:张萌(0533-3597423,xdjstc@126.com);《大气与环境光学学报》(中文,CSCD核心,IF=0.5268),联系人:胡长进(0551-65591563,gk@aiofm.ac.cn);《原子能科学技术》(中文,EI),联系人:骆淑莉(010-69358586,yznkxjs7285@163.com);《工程研究—跨学科视野中的工程》(中文),联系人:李丽(010-88256711,lili@ucas.ac.cn);《应用科技》(中文,中国科技核心,IF=1.026)联系人:王娜(0451-82534001 heuyykj@126.com);《哈尔滨工程大学学报》(中文,EI,IF=1.419),联系人:王家暖(0451-82519357,xuebao@heuxb.hrbeu.edu.cn);《Chinese Journal of Chemistry》(英文,SCI,IF=5.5,中国科学院一区),联系人:高南星(021-54925244-25,gaonanxing@sioc.ac.cn);《Nano-Micro Letters》(英文,SCI,EI,IF=31.6, 联系人:张丽英,021-34207624, editor@nmlett.org);《Aerosol Science and Engineering》(英文,ESCI,IF=1.6),联系人:艾莉(aili@ieecas.cn)八、会议交通九、会议住宿本次大会会务组与有关酒店商议了会议期间数量有限的优惠房间,请关注大会网站获取相关信息及进行酒店预订。酒店预订系统即将开放,敬请期待。预订联系人:王硕,电话:010-86229717;010-86229718。十、联系我们会场/征稿:黄 巧(010-82544962,13718757572,klxh_meeting@ipe.ac.cn);展览/赞助:李京红(010-62647647,13801242411,lijinghong@ipe.ac.cn);财务/发票:韩秀芝(010-62647647,13269656065,xzhan@ipe.ac.cn);意见/建议:王体壮(010-62647657,18514789180,tzhwang@ipe.ac.cn)。第十三届中国颗粒大会组委会 2024年7月
  • 普洛帝发布第八代颗粒检测技术
    2018年9月20日,英国普洛帝分析测试集团分析仪器事业部在伦敦和西安两地向液体颗粒检测行业发布其新一代升级技术-第八代颗粒检测技术,其第八代双激光窄光颗粒检测传感器技术结合工业4.0进行了创新性的研究,通过使用物联网、数据分析、机器学习和AI技术,使用户准确得到液体颗粒检测数据,将检测中的参数设定,校准标定,测试信息数据化、智慧化,最后达到快速,有效,个性化的的不同场景的创新应用。PULUODY公司以提供液体颗粒检测技术具有50余年的历史,不断推出各类高精度、高稳定性的分析装置,全面满足各领域的要求。其中,普洛帝液体颗粒监测技术第八代双激光窄光检测器科实现快速、准确以及出众的稳定性,是面向未来的多领域分析技术,是新一代颗粒检测科研成果。PULUODY利用公司自有的物联信息系统(Cyber—Physical SystemV8.0简称CPSV8.0)和液体颗粒监测技术第八代双激光窄光检测器有效结合,具有低能耗、进样重现性优异、分析精度高、准确性好等性能,并且支持多品类、多样品分析。检测通道可达1200个通道,可连续执行680次检测,分度值可达到纳米级别。 PULUODY此次在第八代颗粒检测技术基础上推出第八代双激光窄光颗粒检测器,可对颗粒进行自动测量、计数、分布、质量、百分比分析,可拓展水分、粘度、密度和颗粒形态及成分分析。第八代双激光窄光颗粒检测器由PLDMC伦敦、西安两地研发中心与CALDEE、PULL、PULUODY等公司共同合作开发,主要用于支持液体中颗粒大小与数量分析、粒度分布、污染物形态测试、物理表征等领域的研究。它可以自动定位及鉴别颗粒分子,适合分析诸如航空红油、航空燃料油、航空蓝油、清洁液压油、高纯试剂、齿轮油、痕量物质、液态药品、化学品、高纯水、电子行业清洗溶剂及过滤器上捕获的汽车零部件污染物和大气污染物等颗粒。第八代双激光窄光颗粒检测器(PCF-8A)的操作流程非常简单,首先定位颗粒,其次统计颗粒大小/形状,然后根据大小/形状筛选候选颗粒,最后再按照国际上相关标准采集污染度、清洁度和颗粒度。它可以与PLDMC的LabPC8软件进行完美的结合。后者是一款简单易用、功能强大的软件包,可提供完备的仪器操作、审计追踪、电子记录、电子签名、数据采集、数据处理分析及报告生成等。现在,将双激光窄光颗粒检测器(PCF-8A)入到LabPC8软件包后,系统能自动定位颗粒,自动判定清洁度等级,并统计颗粒的大小/形状及获取颗粒的化学属性等信息,这使得LabPC8的分析功能更为强大,工作效率也得到大幅度提升。第八代双激光窄光颗粒检测器(PCF-8A)和PLDMC全系列的油液颗粒度分析、不溶性微粒检查仪、液体颗粒计数分布仪等结合,将会给使用PLDMC液体颗粒检测设备进行颗粒表征的分析人员带来新的自动化操作体验,将复杂的试验变得简便。此外,第八代双激光窄光颗粒检测器还拓展了PLDMC颗粒检测系统的分析能力。不管是紧凑稳固、“一键点击分析”型的PLD-0203油液污染度监测仪,还是具有多功能全自动、多测量范围、先进的清洁度评判功能的PLD-0201油液颗粒度分析仪,还是携带审计追踪、电子记录、电子签名功能的PLD-601药典不溶性微粒检查仪,还是具有颗粒大小、多少、分布百分比等的PSD-890液体颗粒计数分布仪都可以使用第八代双激光窄光颗粒检测器(PCF-8A)。目前第七代双激光窄光颗粒检测器(PCF-8A)技术已经正式发布,如需了解更多信息,请联系普洛帝服务中心,获取“第八代双激光窄光颗粒检测器(PCF-8A)”最新资讯,或者联系您当地的PLDMC以获取升级资料及软件演示等更多信息。
  • 《环境空气颗粒物来源解析监测技术方法指南》最新修订稿印发
    p  为规范全国环境空气颗粒物来源解析监测工作,2014 年,原环境保护部印发了《环境空气颗粒物来源解析监测技术方法指南(试行)》(环办函〔2014〕1132 号)。/pp  为落实《打赢蓝天保卫战三年行动计划》要求,进一步提高颗粒物源解析结果的可靠性、可比性,2017年以来,中国环境监测总站组织北京市环境保护监测中心、上海市环境监测中心,对《环境空气颗粒物来源解析监测技术方法指南(试行)》进行了修订。/pp  修订后的《环境空气颗粒物来源解析监测技术方法指南》,规定了环境空气颗粒物源解析监测技术方法,主要包括污染源样品采集、环境受体样品采集、样品管理、颗粒物监测项目选择与分析方法,以及颗粒物样品采集、保存、制备和分析等全过程的质量保证与质量控制措施等,适用于环境空气颗粒物来源解析相关的监测工作。/pp  详情如下:/pp  a href="https://www.instrument.com.cn/download/shtml/949960.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "strongspan style="color: rgb(0, 112, 192) "《环境空气颗粒物来源解析监测技术方法指南》/span/strong/aspan style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 32, 96) "/span/strong/span/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制