陶浆旋转粘定仪

仪器信息网陶浆旋转粘定仪专题为您提供2024年最新陶浆旋转粘定仪价格报价、厂家品牌的相关信息, 包括陶浆旋转粘定仪参数、型号等,不管是国产,还是进口品牌的陶浆旋转粘定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合陶浆旋转粘定仪相关的耗材配件、试剂标物,还有陶浆旋转粘定仪相关的最新资讯、资料,以及陶浆旋转粘定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

陶浆旋转粘定仪相关的厂商

  • 斯陶科技有限公司主营样品前处理实验设备及耗材,生物实验室(细胞实验室)用设备及耗材。设备:精密天平,分析天平,生化培养箱,细胞培养箱,灭菌锅,旋转蒸发仪,氮吹仪,搅拌器等。细胞实验设备:程序降温盒,无冰工作站,低温样本转运箱。耗材:样品前处理耗材,试管,微波消解管,蓝盖瓶,培养皿等。
    留言咨询
  • 滕州市江晟机械制造有限公司是国内著名的旋转接头制造商,是一家集科研、开发与制造为一体的专业流体密封产品的生产企业,多年来,一直致力于流体动静传输装置和流体疏导绕行连接管件的配套研制开发。主要产品有:旋转接头、高压旋转接头、高速旋转接头、高温旋转接头、回转接头、多通路旋转接头、液压旋转接头、泥浆旋转接头、环保设备旋转接头、密封叠环、金属软管等密封类配套产品,广泛应用于钢铁、军工、航天产品、造纸、包装、化工、橡胶、塑料、纺织印染、玻璃、石油、医药、烟草、干燥、电力、食品等行业。
    留言咨询
  • 宜兴精刚陶瓷科技有限公司成立于2012年,座落于中国江苏宜兴。我们拥有国外先进高科技技术和进口设备,是一家集研发、设计、生产特种陶瓷材料产品的专业性高科技企业。主要产品有:99氧化铝、氧化锆、碳化硅、氮化硅、ZTA特种陶瓷的结构件、高温耐火陶瓷管、棒、密封件、研磨件、基板、刀具以及各种异形件。产品具有高强度、高硬度、耐高温、耐磨损、耐腐蚀及绝缘等特性,是逐渐代替金属材料的新一代环保材料。 公司主专业生产95~99.9氧化铝结构陶瓷以及氧化锆陶瓷、氮化硅特种精密陶瓷,ZTA、堇青石等陶瓷材料产品 电热电器行业用各种规格材质的耐热、耐磨、耐电压、酸碱性陶瓷件。高铝质、刚玉质、碳化硅质,莫来石质耐高温陶瓷。普瓷、钛瓷,、高频瓷,75,85,95,99氧化铝陶瓷(管、棒、条、板、片、等陶瓷件),氧化铝刚玉管、电炉管.高温特种瓷件、耐火材料制品。  本公司拥有先进的生产加工设备,以及科研人员和技术人员,可根据客户图纸生产、加工、研发各类陶瓷异形件。产品尺寸精度高,性能稳定。
    留言咨询

陶浆旋转粘定仪相关的仪器

  • 磁控溅射是制备薄膜材料的主要技术之一,因其高致密度、优良附着性等优点,在电子薄膜、光学薄膜、光电薄膜、磁性薄膜和超导薄膜等技术领域得到广泛的应用。随着上述领域的高速发展,溅射靶材的需求量急剧增加。溅射靶材通常有两种:平面靶材和旋转靶材。平面靶材利用率一般只有20%~30%;随着技术的进步,逐渐开始向旋转靶过渡,旋转靶在使用过程中能够围绕在固定的磁控溅射设备上旋转,可360度均匀刻蚀靶面,这样均匀的使用可使镀膜均匀、稳定性高、成品率高,靶材利用率可高达80%以上,在使用过程中不会出现靶材“结瘤”现象。绑定焊接率----靶材溅射质量的关键采用绑定贴合的手段是旋转靶材制造行业最重要的一类旋转靶材制备手段,把靶材分节绑定在金属衬管(通常为不锈钢或者钛材料制备)上,以提高导热性能和强度。目前旋转靶材的绑定基本工艺为:将内表面金属化的靶管套在经过处理的衬管外表面,靶管和金属衬管之间通过金属焊料(通常为金属铟)粘结。在绑定的过程中,需要对金属衬管和靶管进行加热,然后把熔化的金属焊料填充到靶管和金属衬管的缝隙里,随后冷却、焊料固化,将靶管牢牢地固定在衬管上。绑定焊接率(贴合率)的质量直接关系到靶材溅射过程中的导热效果,如果绑定后靶管、背管和铟层贴合效果不够,在溅射过程中会出现导电不良,散热效果不好,导致局部受热不均匀,当温度超过焊料的熔点,金属焊料就会熔化流出滴落在膜面上,或者导致靶材受热不均匀开裂(陶瓷靶),开裂的靶材碎片损伤薄膜表面的质量。因此对旋转靶材进行高质量的绑定贴合,提升焊接率(贴合率)可以有效提升后续磁控溅射镀膜的质量。德国析塔SITA表面清洁度仪---提高旋转靶材绑定焊接率的关键德国析塔SITA清洁度仪可以量化靶管表面清洁度情况,通过德国析塔SITA清洁度仪实时测量靶管表面清洁度情况,确保后续金属化及绑定贴合工序时靶管表面无油污,提高焊接率。RFU:relative fluorescence units (相对荧光单位),常被用于做表面残留污染物检测,数值越大,则表明测试点的各类有机污染物(拉伸油、切削油、清洗剂、脱模蜡、胶黏剂、助焊剂等)残留量越大。德国析塔SITA表面清洁度仪采用共焦法原理,通过光源发射出最佳波长的UV光检测金属表面的污染物,内置的传感器精准探测污染物引起的荧光强度,该荧光强度的大小取决于基材表面有机物残留情况,从而能精准量化检测金属表面清洁度。旋转靶材在绑定贴合前的清洁度量化管控客户实例某国内靶材制造商,在旋转靶材进行研磨、切割清洗后会对靶管进行清洁度量化管控,确保靶管内表面无肉眼可见油污或清洗剂残留后才允许进行后续的金属化及绑定贴合工序,以确保绑定焊接率(贴合率)。测量过程样品:5个样品测量仪器:德国析塔SITA表面清洁度检测仪CleanoSpector测量模式:RFU值(相对荧光单位,RFU值越高,污染程度越大)测量值:在靶管上随机选取10个测试点,测试结果取平均值;以下为使用德国析塔SITA清洁度仪测试靶管不同位置清洁度的测试结果,由于油污分布不均匀,因此不同位置的清洁度也不一样:测试点(单位:RFU)平均值(单位:RFU)测试样品P1P2P3P4P5P6P7P8P9P10刚烧结完(无油污)0.30.30.20.10.10.10.10.30.70.10.22烧结完(仓库放置几个月)27.725.527.684.157.315.491.69.9145.360.859.48开裂残靶(残次品)68.521.5128.67368.7/////72.06未清洗(研磨、切割后肉眼可见污染区)22.530.683.397.522.415.712.22439.354.341.98清洗后(肉眼不可见污染物)4.466.46.85.39.79.48.36.64.66.58测量数据分析如上图所示,可以得出以下结论:①刚烧结完的靶管工件,RFU值低,说明靶材表面很干净,无油污②靶管烧结完后在仓库放置期间,受到污染, RFU值升高③开裂残靶次品RFU值高,清洁度很差④研磨、切割后的靶管未清洗前RFU值高,说明表面不干净,存在污染⑤清洗后的靶管RFU值低,说明靶管清洗效果较理想德国析塔SITA表面清洁度仪能量化测出靶管清洗前后的清洁度差异。在旋转靶材的绑定工艺前,使用德国析塔SITA表面清洁度仪可以更好帮助企业判断靶管表面清洗情况,以提供足够干净的靶管进行后续绑定工艺,从而保证磁控溅射镀膜的质量。翁开尔是德国析塔SITA中国独家代理,欢迎致电【400-6808-138】咨询更多关于德国析塔SITA表面清洁度检测仪产品信息、技术应用和客户案例等。
    留言咨询
  • R-3001旋转蒸发仪适用于蒸发、蒸馏及分离化学品实验,密封性能显著,电动升降,可与循环水式多用真空泵、循环冷却器等组成配套系统,满足生产和实验条件。台式电动升降旋转蒸发仪产品技术特点 ● 玻璃组件均为高硼硅玻璃3.3,具有优良的物理、化学性能。 ● 温度控制采用PID方式,控制精度高。 ● 双回流冷凝器,冷凝面积大,配备浴槽防护罩,防止浴液溅洒、旋转瓶受热 均匀,提高了回收率。 ● 采用“特氟隆+FV橡胶、氟化橡胶双重密封圈",保证密封性。 ● 合理的结构设计保证旋转瓶运转平稳。 ● 电动升降操作方便,平滑的上下移动。 ● 转速和浴槽温度均采用液晶显示。 ● 浴槽与主机分离,便于灵活配置。 ● 浴槽采用底部加热,内壁方便清洗,并具有干烧保护功能,使用 安全。 ● 旋转瓶侵入角度采用旋钮式调节,操作 方便。 ● 退瓶结构采用按钮使旋转轴止动,不需要辅助工具。台式电动升降旋转蒸发仪技术参数项目技术参数转速调整范围(rpm)10~280转速调节无级调速真空系统升压速率≤ 0.33kPa /min旋转电机功率(W)40显示器液晶数显升降行程(mm)150冷凝器形式 双回流冷凝器冷凝面积(㎡)0.126旋转瓶容积(mL)500 或 1000收集瓶容积(mL)1000真空密封特氟隆+特氟隆-氟化橡胶双重密封蒸发能力*(mL/min)水23乙醇25保护功能过电流、接地故障及短路使用环境温度(℃)5~35环境相对湿度 (%)≤ 70电源110V~,60Hz或220-240V~,50/60Hz外形尺寸(mm)620W×400D×700(850)H重量(kg)10* 用纯净水作实验对象,浴液温度与沸点之间的温差(蒸汽温度)为50℃,并且使用浴槽防护罩。 长城科工贸持续不断地推动中国教育及科研事业的发展,不仅为客户提供优质的产品和服务,还建立了联合实验室,研究生教学基地和本科生实习基地。多年来的不懈付出,使长城成为一家广受认可和好评的企业。
    留言咨询
  • 浙江旋转活塞泵,华佑转子泵与螺杆泵的比较1.华佑转子泵的安装空间更小,约螺杆泵1/3,更节约用地2.华佑转子泵自吸强度更高,相较于螺杆泵4m的自吸高度,转子泵高度大于等于9m,摆放位置更自由。3.华佑转子泵效率更高,比普通螺杆泵普遍高30%以上,配用功率低1~2个档位,更节能。配套设施方面如变频器、控制柜都降低了成本。4.相较于螺杆泵,华佑转子泵无堵塞,直进直出,开口大,对杂质不敏感。5.螺杆泵常因抽空断流空转损坏机封,而华佑转子泵允许60min以上断流空转不损坏泵。6.螺杆泵检修要从生产线上拆下检修,华佑转子泵可实现在线检修。无需拆卸泵、电机、管线。7.华佑转子泵的售后维修成本更低,螺杆占整台泵成本60%,而转子占整台泵成本15%。8.故障率更低转子泵转速≤460r/min。允许空转,气液混输。而螺杆泵常因空转损坏机封,故障率相对较高浙江旋转活塞泵,螺杆泵更换转子泵客户使用案例:客户名称:绍兴柯桥江滨水处理有限公司该公司在建设时气浮池的污泥泵选用了华佑转子泵,在离心机泵房的含泥污水和加药系统的药剂泵则选择了进口的螺杆泵。运行到 2016 年,国产污泥转子泵运行正常,而离心机泵房的含泥污水泵和加药泵开始出现故障,特别是离心机泵房的16 台进口螺杆泵,几乎每两周出现故障,严重影响了正常生产。于是,2017 年初该公司找到原转子泵供应商——浙江华佑机械科技有限公司,开始逐步更换进口螺杆泵,从一开始只使用 4 台华佑污泥转子泵,至今通过改造,已有近 70 台华佑转子泵在该公司的污泥、含泥污水、加药上应用。故障率下降到 1/50。在保障安全生产的同时,也节约了大量维修资金和人工成本。根据柯桥江滨污水处理公司设备部和维护人员反映。华佑转子泵在运行稳定性上明显高于进口螺杆泵,故障率明显降低,性价比十分显著。二期项目改造时,27 台活性碳、PAC、PAM、乙酸钠泵全部选用了华佑转子泵。浙江华佑机械产品优势① 超强的自吸能力,垂直自吸高度9m② 输送介质粘度范围广,高可达200万CP能完美胜任输送高粘度和固体含量高的介质③ 输送范围宽,泵的流量随转速正比例线性可调④ 超高的转化效率70%-85%节约能源⑤ 独特的结构设计,可实现在线维修⑥ 易损件更换简单,成本低⑦ 允许空转运行时间≥60min⑧ 运行平稳,脉冲很小,适于输送剪切敏感性流体⑨ 可固、液、气三相混输⑩ 结构紧凑、体积较小? 转速低(10~600r/min),波动小,寿命长? 特殊处理的内衬板,可延长泵的使用寿命? 在线维修,所有易损件可通过拆卸泵的端盖进行更换,而无需拆卸动力与管路,极为快速方便。
    留言咨询

陶浆旋转粘定仪相关的资讯

  • IKA旋转蒸发仪获“2009 iF产品设计奖”
    我们欣喜的向广大用户宣布,在德国汉诺威的iF设计大奖评选中,我公司的新产品RV10 数显型旋转蒸发仪荣获“2009 iF产品设计奖”。 IKA新型旋转蒸发仪,科学的设计符合人体工程学。紧凑的设计、创新的设计、创新的功能可有效改善操作结果。 IKA 新型旋转蒸发仪,充分整合了加热锅 HB 10 基本型以及倾斜玻璃组件 RV 10.2 (1 l)。 - 加热锅加热安全回路可调,可根据需求独立操作,根据需要可提供安全防护罩 - 操作面板位于仪器前部,使用方便、操作简单 - 马达升降 (行程 140 mm), 具有安全停止功能,电源中断时,马达将蒸发瓶自动提升至加热锅以上位置 - 可调升降终点识别功能,可有效防止玻璃组件破裂 - 转速范围:20 至 270 rpm - 平稳启动:100 rpm - 蒸馏转速数字显示 - 可间断的左右转动,适用于干燥过程 - 电子定时功能 - 加热锅容积适中,加热速度快 - 蒸发瓶采用机械推手装置,拆卸方便、安全 - 数显水/油浴加热锅,带安全把手 - 微控制器系统精确控制加热锅加热温度 - 温度数字显示 - 红外接口用于加热锅和旋转马达间数据传输 - RS 232 接口用于连接电脑,使用实验室软件labworldsoft 可实现远程控制 - 使用实验室软件 labworldsoft 可实现自动控制iF简介 1953年,扎根于汉诺威展会中心的iF设计大奖在德国设立,它作为一个长久性的、声誉卓著的奖项在设计界被人瞩目。1954年,iF设计大奖赛正式举办,直到今天,iF被公认为世界范围内最重要的设计大奖赛,每年它都吸引30个国家的超过1800个设计作品参加竞赛。iF的评委由世界顶级设计师组成,他们制定参赛标准并从中挑选符合资格的参赛者,确保每届iF设计大赛的特殊性和其高品质的声誉。iF拥有自己的专家核心,他们有着组织竞赛的丰富经验,了解各个公司和设计团体的活动状况和发展趋势。 全球最具权威的工业设计评奖机构德国iF机构已成为衡量世界工业设计水平的指标,和引导趋势发展的平台;对公司的设计团体,或是设计师工作室,都将iF的认可作为自己高水准产品和服务的显著标志进行宣传和推广;在产品买家眼里,iF的认可成为影响市场决策的工具。因此,iF奖项就是一个公司在设计创新为导向,和积极面对挑战方面的显著标志,iF提供给设计的是一个从设计到市场的系统性活动平台。象征优质设计的iF设计奖已成为国际公认的商标,企业与设计公司将iF标志延用到他们的传达活动上,做为彰显产品与服务质量的视觉符号,对于以设计为导向的产品之采购主而言,iF标志为全球市场购买决策之重要依据,iF奖象征企业对于创新的承诺,以及其面对竞争努力攀高的意图。 iF大奖下设产品设计奖、传达设计奖、中国设计大奖、包装奖、材料奖、概念奖等6项,RV10取得的是iF产品设计奖,终身有效。在iF的官方网站www.ifdesign.de 的online exhibition中的2009年802项产品设计奖产品中可寻。
  • IKA隆重推出 RV10旋转蒸发仪“三合一”套装
    2009年IKA集团在RV10旋转蒸发仪取得骄人成绩之后,继续完善RV10系列产品。基本型、数显型、控制型3大系列, FLEX灵活套装,镀膜玻璃件, 任您挑选。2010年5月, 又隆重推出另一&rdquo 三合一&rdquo 组合套装, 为您的实验提供良方, 并以最优惠价格回馈客户: RV 10 控制型V + MPC 105 T 隔膜真空泵 + KV 600 数显型循环冷凝器 免费送:RV 10.4002 真空系统电池阀 产品基本资料: RV 10 控制型 V &bull 内置真空控制器,集中显示自动蒸馏及曲线 &bull 内置溶剂数据库,用户可自行增加数据 &bull 一键即可自动传输测量及蒸馏类型等数据,操作方便 &bull 蒸馏容量可编程控制 &bull 大屏幕彩色图表显示,控制安全舒适 &bull 可显示蒸馏曲线 &bull 加热锅安全控制:自动监控加热锅,温度出错时自动停止蒸馏 &bull USB 接口,方便与电脑连接 &bull 配置玻璃组件 MPC 105 T 隔膜真空泵 &bull 干式运行的真空泵,特别适用于需要抗化学腐蚀或需要长时间不 间断运行的场合 &bull 所有与气体接触的部位都做特氟龙 (聚四氟乙烯PTFE) 处理并用碳 纤维加固,完全保证了泵的抗化学腐蚀性能 &bull 隔膜采用三明治结构 (即多层结构),以增加隔膜的韧性和强度 &bull 隔膜泵体积小,重量轻,而且环保节能,是真空泵发展的最新潮流 KV 600 数显型循环冷凝器 &bull 冷凝器、循环水泵以及外壳等所有与蒸汽 接触部分均由不锈钢精制而成 &bull 加压泵和抽气泵由工程塑料精制而成 &bull 温度稳定性良好,温度偏差为 1 K &bull 先进的微处理控制系统 &bull LED 显示冷凝和加热温度 &bull 3 个按键即可完成操作,使用简便 另外RV10基本型、数显型亦都推出了相应的套装供您选择,详情请点击: www.ikaasia.com
  • KNF旋转蒸发仪RC900将首次亮相Analytica China 2014
    KNF 实验室旋转蒸发仪 RC900首次亮相Analytica 2014,展位号:N2,No.2702凝聚专业智慧,让蒸馏更简单、更安全新品发布时间:9月24日 11:18-11:48, 地点:KNF展位 RC900旋转蒸发仪是德国KNF集团于2014年发布的全新产品。秉持了KNF一贯的专业创新以及为客户着想的理念,在研发的过程中,我们着眼于实验室日常实践,不断征询实验技术人员的需求,聘请专家进行测试并采纳他们的建议。一切的目标都为了能减轻实验人员繁琐的日常工作,让蒸馏变得更简单、更安全。这款RC900旋转蒸发仪具有出众的操作优势、灵活的功能细节以及完善的安全特性。造型设计荣获了2014年德国红点设计大奖。与真空系统SC920、循环冷却器C900组合成完整的实验室蒸馏成套解决方案。产品特点:■ 所有功能均可通过远程遥控器来控制■ 蒸发瓶的更换方便又快速■ 当发生断电时,蒸发瓶会自动升起■ 无线加热锅配有倒口,保障了倾倒时的安全性■ 可轻松调节蒸发瓶的浸入角度■ 运行噪音低,令您的工作环境完全不受干扰 KNF旋转蒸发仪新品RC900 旋转蒸发仪RC900与真空系统SC920、循环冷却器C900组合成完整的实验室蒸馏成套解决方案。============================ Analytica China 2014慕尼黑上海分析生化展第七届中国国际分析、生化技术、诊断和实验室博览会暨 Analytica China 国际研讨会时间:2014年9月24日- 26日地点:上海新国际博览中心KNF展位号:N2馆, No.2702 展会第一天,将由来自KNF集团总部负责KNF全球实验室产品的Gunter Bostelmann先生,在展位现场为大家介绍全新系列的旋转蒸发仪RC 900。欢迎大家光临KNF展台,丰富礼品等着你哦! 展会时间安排:9月24日 周三 9:00--17:00 (11:18~11.48 KNF旋转蒸发仪新品发布会, 地点:KNF展位)9月25日 周四 9:00--17:009月26日 周五 9:00--16:00 更多详情请关注KNF中国官网 www.knf.com.cn

陶浆旋转粘定仪相关的方案

陶浆旋转粘定仪相关的资料

陶浆旋转粘定仪相关的试剂

陶浆旋转粘定仪相关的论坛

  • 什么是旋转变压器?旋转变压器发展历史介绍!

    旋转变压器(resolver/transformer)是电磁传感器,也称为同步分解器。数字信号处理器(DSP/DSC)用于测量角度的小型交流电动机,用于测量由定子和转子组成的旋转体的轴角度位移和角速度。其中定子绕组是变压器的原边,接受女子电压,女子频率一般为400、3000、5000HZ等。转子绕组作为变压器的辅助角,通过电磁耦合获得感应电压。  旋转变压器的工作原理与普通变压器基本相似,只是输出电压和输入电压的比率是恒定的,因为普通变压器的原始角、辅助角绕组相对固定。旋转变压器的原始角,辅助绕组相对位置随转子的角度位移而变化,因此输出电压的大小随转子角度位移而发生,输出绕组的电压振幅与正弦转子 转角成正弦、余弦函数相关,或保持比例关系,或在特定角范围内转角成旋转变压器可用于在同步和数字后续系统中传递角或电信号。在解算器中可以用作函数解算,因此也称为解算器。  旋转变压器一般有阳极绕组和四极绕组两种结构形式。阳极绕组旋转变压器的定子和转子各有一对极,四极绕组各有两对极,主要用于高精度检测系统。此外,还有用于高精度绝对检测系统的多极旋转。  旋转变压器适用于使用旋转编码器的所有情况,特别是高温、寒冷、潮湿、高速、创芯为电子高振动等旋转编码器不能正常工作的情况。由于旋转变压器以上的特点,光电编码器完全可以替代,广泛应用于伺服控制系统、机器人系统、机械工具、汽车、电力、冶金、纺织、印刷、航空航天、船舶、武器、电子、冶金、矿山、油田、水利、化学。  二、旋转变压器的历史和发展  旋转变压器是目前国内的专业名称,被称为“旋转变化”。有人称它为解算器或分解器。  旋转变压器在运动伺服控制系统中用于角度位置的检测和测量。单片机(MCU/MPU/SOC)早期旋转变压器是模拟计算机的主要组成部分之一,用于计算分析设备。输出是根据转子角变化函数的电信号(通常为正弦、余弦、线性等)。这些函数是最常用的,最容易实现。特别设计绕组时,还可以生成某些特殊函数的电气输出。但是,这些函数仅在特殊情况下使用,并且不一般化。  从60年始,旋转变压器逐渐用于伺服系统,作为角度信号的生成和检测因素。三线的三相自饮水机、四线之前的两相旋转变压器适用于系统。  因此,作为角度信号传输的旋转变压器也称为斜线磁角器。随着电子技术和数字计算技术的发展,数字计算机已经取代了模拟计算机。因此,实际上,旋转变压器目前主要用于角度位置伺服控制系统。  两相旋转变压器比自觉机精度更高,因此旋转变压器的应用更广泛。特别是,在高精度双通道、双速系统中广泛使用的多极电气部件,最初使用多极自觉机器,现在基本上使用多极旋转变压器。  早期旋转变压器由于信号处理电路比较复杂,价格比较贵,应用受到限制。但是,旋转变压器具有无可比拟的可靠性和精度,因此在军事、航天、航空、航海等领域具有不可替代的地位。  随着电子工业的发展,电子零部件的集成度提高,零部件的价格大幅下降。另外,随着信号处理技术的发展,旋转变压器的信号处理电路简单、稳定、价格也大幅下降。此外,软件解码信号处理再次出现,使信号处理问题更加灵活和方便。这样,旋转变压器的应用取得了更大的发展,其优点得到了更大的体现。[url=https://www.szcxwdz.com]创芯为电?[/url]主要从事各类[url=https://www.szcxwdz.com]电?元器件[/url]的销售。提供[url=https://www.szcxwdz.com]BOM采购[/url]服务,减少采购物料的时间成本,在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,免费供样!

  • 旋转蒸发仪的防爆安装步骤

    旋转蒸发仪的防爆安装步骤我们使用旋转蒸发仪的每一步都需要谨慎,而对于这些实验仪器的使用最不能缺少的就是对其防爆装置的安装步骤,今天就让小编来告诉你关于旋转蒸发仪的防爆安装步骤都有什么吧。安装旋转蒸发仪防爆步骤的时候,首先一定要选择一个距离水源近的地方,并且同时还要安放在平坦的台面上,如果遇到不平坦的就要用橡皮胶等东西对其垫一下;调整好旋转蒸发仪的机头部位,让其机头中心的位置距离地盘的高度为48cm倾斜度为25° 左右然后再将其各螺母锁紧;固定好旋转蒸发仪的电控性装置后再将插头插上;让旋转蒸发仪的冷凝器插在机头的接口上,然后再对各个可以活动的环节进行调整使 冷凝器可以出于垂直的状态,最后再将其用固定夹进行固定;将旋转蒸发仪加料的管子插入到冷凝管上面,当收集瓶与冷凝管对接以及将旋转时用到的瓶子套放在旋 转轴的有段,进行完后将其用瓶口夹夹好;出气口的管接头与真空泵的开关连接更是不能缺少的。

陶浆旋转粘定仪相关的耗材

  • 旋转光纤
    旋转光纤特性设计波长:1310 nm或1550 nm针对电流感应应用优化输出偏振对热噪声和振动噪声不敏感应用:光纤电流传感器 (FOCS)光学电流互感器 (OCT)旋转光纤是专用的高度双折射光纤,它通过在拉制过程中先旋转蝴蝶结式的单模保偏光纤来制造,而不是在拉制之后使其扭转。它们经旋转使得蝴蝶结结构沿光纤的轴向方向转动(参见页面上方的图)。我们提供针对1310 nm(产品型号为SHB1250G80和SHB1250)和1550 nm(产品型号为SHB1500)的激光源的光纤。与传统PM光纤不同,它们设计用来保持线性偏振和圆偏振,且输出偏振对热噪声和振动噪声以及由应力双折射所致的漂移不敏感。这些高度双折射旋转光纤的特性使它们非常适用于高灵敏度的光纤电流传感器(FOCS)[也称为光学电流互感器(OCT)]。在这些应用中,它们可用于AC电流传感和DC电流传感。FOCS和OCT依靠测量由法拉第效应所致的光偏振轴的旋转圈数(见图1)。法拉第效应通过所施加的磁场导致偏振态的旋转。对于电流传感应用,磁场由载流导体产生。因为由导体产生的磁场与电流呈线性正比关系,所以偏振旋转也与电流呈正比。可通过将光纤缠绕导体来进一步增加灵敏度(见图2)。在这种情况下, 旋转圈数β与Vx N x I呈正比,其中V、N和I如右边所定义。将这些旋转光纤用作FOCS或OCT具有优于传统方法的几个优点。光纤内部产生偏振旋转,从任何电压线或电压源隔离。这消除了原本可能影响测量的任何电气噪声。光纤对外部场格外敏感,具有非常快的响应时间,并且重量轻,结构紧凑。关于电流传感应用的更多信息,请参见制造商的技术和应用说明。欲订购这些光纤作为连接器式的跳线,请联系技术支持。图1:法拉第效应的图示图2:缠绕导体的旋转光纤,用于电流感应应用β∝Vx N x IV:Verdet常数(参见曲线标签),它是光学材料的一种属性,以rad/A为单位N:光纤缠绕电流导体的圈数。I:流过导体的电流,以A为单位Item #aOperatingWavelengthCladdingDiameterCoatingDiameterMFDbNACut-Off WavelengthAttenuationCircular BeatLengthSHB1250G801310 nm80 ± 1.5 μm170 ± 10 μm6.2 - 8.4 μm@ 1310 nm0.13 - 0.17≤1250 nm≤5 dB/km@ 1310 nm63 - 125 mm@ 1310 nmSHB12501310 nm125 ± 1 μm245 ± 15 μm6.2 - 8.4 μm@ 1310 nm0.13 - 0.17≤1250 nm≤5 dB/km@ 1310 nm63 - 125 mm@ 1310 nmSHB15001550 nm125 ± 1 μm245 ± 15 μm7.9 - 9.9 μm@ 1550 nm0.13 - 0.16≤1500 nm≤3 dB/km@ 1550 nm72 - 144 mm@ 1550 nm完整规格列表参见规格标签。模场直径(MFD)指定为标称值。它是近场中以1/e2功率等级时的直径。更多信息请参见上方MFD定义标签。规格FiberSHB1250G80SHB1250SHB1500Operating Wavelength1310 nm1550 nmCut-Off Wavelength≤ 1250 nm≤ 1500 nmNumerical Aperture0.13 - 0.170.13 - 0.16Mode Field Diameter6.2 - 8.4 μm @ 1310 nm7.9 - 9.9 μm @ 1550 nmAttenuation≤ 5 dB/km @ 1310 nm≤ 3 dB/km @ 1550 nmCircular Beat Length63 - 125 mm @ 1310 nm72 - 144 mm @ 1550 nmNominal Spin Pitcha4.8 mmProof Test100 kpsi (1%)Cladding Diameter80 ± 1.5 μm125 ± 1 μmCore-Cladding Concentricity1.0 μmCoating Diameter170 ± 10 μm245 ± 15 μmCoating Diameter170 ± 10 μm旋转间距指的是光纤中固定的360度旋转的规律性。例如,5 mm旋转间距意思是对成品光纤将以每5 mm来固定光纤的360度旋转。曲线这个曲线图为计算的旋转光纤总灵敏度的值。较小的?80 μm包层光纤在较小的线圈直径时比较大的?125 μm包层光纤灵敏。因此,?80 μm包层光纤可以更紧密地缠绕,并提供更精确的电流测量。关于总灵敏度的定义,请参见制造商的技术说明的第三页。上方曲线图为这些旋转光纤的Verdet常数的理论值。模场直径定义模场直径(MFD)是在单模光纤中传播的光的光束宽度的一个度量。它与波长、纤芯半径以及纤芯和包层的折射率呈函数关系。虽然光纤中大部分光都被束缚在纤芯内,但有小部分光在包层中传播。对于高斯功率分布,MFD是光功率从其峰值等级下降到1/e2时的直径。MFD的测量MFD的测量由远场可变孔径法(VAMFF)完成。 将光阑置于光纤输出的远场中,并测量强度。将依次减小的光阑置于光束中,对每种孔径测量强度等级;所得数据可绘图为功率vs.孔径半角(或对于SM光纤是数值孔径)的正弦值的曲线。接着用彼得曼第二定义确定MFD,这个彼得曼第二定义不假设功率分布的特定形状。近场中MFD可从这个远场测量用汉克尔变换来确定。左图是通过光纤传播的光束的强度分布。右图是通过光纤传播的光束的标准强度分布,图中标注了MFD和纤芯直径。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2= Pi x (1.5μm)2= 7.07 μm2= 7.07 x 10-8cm2SMF-28 Ultra Fiber:Area = Pi x (MFD/2)2= Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber:7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71mW(理论损伤阈值)7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18mW(实际安全水平)SMF-28 Ultra Fiber:8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW(理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210mW(实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / GlassInterfaceaTypeTheoretical DamageThresholdbPractical SafeLevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。产品型号公英制通用SHB1250G80旋转保偏光纤,1310 nm,?80 μm的包层SHB1250旋转保偏光纤,1310 nm,?125 μm的包层SHB1500旋转保偏光纤,1550 nm,?125 μm的包层
  • 瑞士万通 旋转圆盘电极的抛光套件 | 6.2802.010
    旋转圆盘电极的抛光套件Polishing set for rotating disk electrodes订货号:6.2802.010抛光套件,含抛光支架,4张抛光布以及氧化铝粉(粒径0.3微米)
  • Elveflow 微流体阀门 多通道旋转阀 分配阀
    一、法国ELVEFLOW 公司介绍法国Elveflow自2012年以来我们一直致力于制造优质的流体处理仪器,至今为止,我们已经科研和工业用户提供超过2,000套系统。我们的产品是围绕畅销的OB1流量控制器构建,包括液体处理的全套部件。我们的仪器可以同时使用我们的软件和软件开发包进行控制,实现您的系统完全自动化。我们仪器具有模块化的,可升级的特点,提供标准和OEM的版本二、MUX DISTRIB 12-通旋转双向阀 微流体分配阀MUX distrib 是用于快速液体切换而设计的旋转阀,一个双向13口/12通的旋转阀,作为选择器可以将一个液体样品顺序注入到12条不同的管线中,或将12个液体样品顺序注入到一条管线中,无交叉污染。微流体双向旋转选择阀,可用于处理多个样品和实验自动化。MUX Distrib具有以下特点;1、顺序微流控液体注射,可快速更换生物介质或化学溶液2、工作流微流控自动化,由于顺序编程,节省了时间3、旋转选择阀,可在12种液体之间切换4、将溶液灌注到微流控芯片中,将1个样本注入12个输出或将12个样本注入1个输出。MUX Distrib的性能: 相邻端口的机械响应时间为 156 ms 轻松设置: 标准的 ?-28 流体接口 低的内部容积: 3.5μL 高化学兼容性(浸湿材料: PCTFE, PTFE) 选择旋转方向三、MUX微流体分配阀的应用 芯片上的细胞培养 培养液改变引起的细胞响应 药物筛选 毒性测试 传感器测试 & 校准 流动化学的溶剂切换
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制