当前位置: 仪器信息网 > 行业主题 > >

隧道激描检测仪

仪器信息网隧道激描检测仪专题为您提供2024年最新隧道激描检测仪价格报价、厂家品牌的相关信息, 包括隧道激描检测仪参数、型号等,不管是国产,还是进口品牌的隧道激描检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合隧道激描检测仪相关的耗材配件、试剂标物,还有隧道激描检测仪相关的最新资讯、资料,以及隧道激描检测仪相关的解决方案。

隧道激描检测仪相关的资讯

  • 隧道检测仪器保障地铁安全运营
    “从1969年10月1日北京地铁一号线试运行至今已经历50多年,我国地铁里程不断攀升。据中国城市轨道交通协会最新统计,2020年我国地铁运营总里程6200多公里,在建5000多公里,总历程达到超过一万公里。当前,我国北、上、广、深等特大城市,轨道交通里程处于世界前五的水平。”近日,北京交通大学副教授王耀东接受采访时说。  而地铁隧道病害与表面状态检测则是保障安全运营的重要内容之一。“否则,地铁隧道一旦发生事故,将会给生命财产带来巨大损失。”在4月22日举行的聚焦2021年北京地区广受关注学术成果报告会上,王耀东说。随着隧道病害检测技术的快速发展,他和团队正在尝试将机器视觉、先进传感等技术引入相关检测,让这一过程变得更加高效、智能。  隧道“体检”,从人工巡检到机器检视  地铁交通极大方便了城市居民的出行,但是地铁隧道中出现的各种“病害”,如隧道裂缝、渗漏水、沉降、衬砌剥落、掉块等,给电客车安全运营带来挑战。  以隧道裂缝为例,王耀东表示,其形成原因比较复杂,岩层性质、岩土压力、混凝土收缩、结构移位变形、侵蚀破坏、施工遗留等都是潜在诱因。别是南方的过江过河隧道或地下水较丰富区域的隧道,如果产生裂缝产生就会产生渗漏水,影响地铁运行的安全。因此需要定期巡检,及时养护、维修。  王耀东还记得2012年回国之初跟随地铁巡检人员做现场数据采集的情形。“凌晨1点到4点,夜深人静,地铁停运,才会开始人工巡检,要用肉眼观察、手写记录。”  他表示,尽管传统的超声波检测法、声发检测法、电磁波检测技术等不断提高检测精度,但速度低、效率慢,难以满足现代轨道交通快速发展的需求。而信息技术的发展,多维传感、机器视觉检测技术的使用则为这项检测工作的提速、高效提供了新的契机。  “机器视觉的特点是效率高、可移动、非接触,特别是信息处理自动化、智能化、数字化,也是隧道巡检的发展方向。”王耀东说。他和同事在不断尝试把机器视觉技术、图像处理技术、多维感知、人工智能等技术,应用在隧道病害检测当中,这些智能巡检技术可以逐步代替人工,完成隧道基础设施的自动检测。  裂缝识别,让机器拥有“人眼”和“大脑”  “裂缝检测智能巡检技术主要分两个步骤,第一步是图像裂缝采集,利用高速相机和特制的辅助光源,保证采集到高质量的隧道图像 第二步是裂缝病害图像处理,对所有原始图像进行预处理,包括:匀光处理、连通区域分块化、噪声滤波等,提取纹理目标进行特征判断,最后识别裂缝区域,为后续速调维护提供技术支持。”王耀东介绍。  这些听起来似乎很简单,但如何让机器像人眼一样,全面、精细采集图像,并像人脑一样准确地识别裂缝种类呢?每一步做起来都不简单,都需要精细化的算法研究和关键技术的攻克。  例如,他们研发了图像采集系统样机引入了线阵相机(进行连续拍摄形成二维图像,避免图像重叠和数据冗余)、面阵相机(针对隧道中照明不佳,进行大面积强光源补光)、定向运动设备(对隧道进行扫描式图像采集降低漏检率),来获得高质量的图像。他们还开发出一套表面裂缝图像的批量识别软件,设计出核心算法进行图像处理。  经过近十年的“磨剑”,王耀东及团队成员克服各种挑战,2018年在发表于《铁道学报》的论文研究中,首次报告了基于局部图像纹理计算的隧道裂缝视觉检测技术。他们研发的一套图像采集系统实验样机,将线状激光光源、高速线阵相机、激光发生器、图像采集卡,安装在可调节移动式视觉检测平台上,可在隧道中进行巡检。然后将高分辨率裂缝图像分成子区域,针对性地进行算法研究,完成最后的检测。  “这种智能巡检技术有助于解放人力,服务地铁运维。”王耀东说。他坦言,从综合指标看,目前这种技术对于背景简单的普通隧道裂缝识别率比较高,可以达到84%以上。但对于比较复杂环境下的裂缝,识别率还有待提高。”。  2018年至今,随着深度学习卷积神经网络深入发展,对海量隧道图像的计算性能有了数十倍的提升,识别率也有较大提高。然而,王耀东表示,对于复杂恶劣环境下,肉眼难以观察的微小缺陷仍然很难检测到。  增强自主创新,助力交通强国建设  王耀东希望,在未来检测算法上,加强对不同类型纹理噪声的识别,提高图像处理的计算效率,进一步提高隧道病害检测效率。  为此,他们建立了隧道病害样本库,基于深度学习,对隧道表面病害图像多分类智能识别。为了更好地采集图像,他们还对采集系统进行了模块化研发,并研制了隧道巡检机器人,对隧道裂缝、三维形变、沉降进行检测。  目前,他们还在研制多种类、移动式隧道检测平台,如低速便携手推式(0-10公里/小时)检测平台,到中速紧凑自主行走式检测平台(0-30公里/小时),再到高速车载式综合检测平台(0-100公里/小时)的,以及路轨两栖式综合平台(0-60公里/小时)。对隧道、轨道多维数据进行采集,并进行智能分析和大数据处理,最后生成区间报表提供给专业人员使用,用于隧道和轨道维护。  “目前,我国轨道交通运营里程已经位居世界第一位,智能运维也处于世界前列。”王耀东说,但仍然亟需加强自主创新。他举例说,我国轨道交通智能数据采集设备、高精尖传感器还需要从国外进口,这些设备有的一套系统单一功能,但因为技术被国外垄断,报价却达到数百万元,甚至上千万元。  “我们科技工作者还要继续努力,推动基础研究创新,将主动权掌握在自己手中。”他说,2035年我们国家要基本建成交通强国,这将推动我国城市轨道交通进一步向大数据、智能化、精准化方向去发展,让老百姓出行更安全、更便利,乘坐舒适性更高。
  • 先进检测仪器助力隧道“体检” 获隧道界“奥斯卡”奖
    昝月稳在颁奖礼上  西南交通大学教授昝月稳团队凭借“高效快速检测隧道衬砌结构状态车载探地雷达新技术”,获得国际隧道与地下空间协会(ITA)颁发的2015年度技术创新奖。  这一被誉为隧道界“奥斯卡”的奖项今年吸引了全球103个项目参评,最终8个项目获奖。昝月稳团队的参评项目是中国今年获得的唯一奖项,也是ITA颁发的首个年度技术创新奖。这项检测技术,被ITA赞为“解决了国家铁路网隧道安全检查的重大问题,具有显著的社会效益”。  历时14年,研制出隧道新型“体检设备”  随着交通日益发达,地铁、公路隧道、穿山铁路隧道等地下交通在我们的生活中占有越来越大的比重。  不过,这些隧道开始运营之后,就像人体一样,会产生生老病死等各种问题,随之出现的落石、漏水、开裂等等,会对交通和安全产生不可估量的危险。因此,需要经常对这些隧道进行“体检”。但是,目前的体检方式还依赖于人工,检测人员操纵笨重的机器一步步的检测,有时仅仅一公里的隧道,一天都检测不完。  11月19日,国际隧道与地下空间协会在瑞士举行了一场颁奖典礼,由西南交通大学教授昝月稳、李志林等申报的“高效快速检测隧道衬砌结构状态车载探地雷达新技术”项目获得了年度技术创新大奖。这也是我国获得的唯一奖项。  这种车载探地雷达系统大大颠覆了现在的隧道检测技术,不仅解放了人力,还将检测成本至少降低了一半。而今年10月,这种检车方法已经在成都铁路局所属的达成铁路上应用了。  对比  老方法  检测人员手举天线一公里隧道一天都检测不完  “目前,隧道的运行周期是一百年,它会不断地老化,会产生各种问题。”12月18日上午,在西南交大,昝月稳教授介绍起了他的这项研究。  他说,隧道老化很正常,但列车在隧道运行的时候,最害怕的就是隧道掉块、漏水,掉块砸到列车,被迫停车,封锁线路十几个小时的事情都是有的。为了减少这种状况的发生,就需要经常对隧道进行体检。  而现在平常检查隧道的方法比较“原始”,主要依靠人工,拿着手电筒在隧道走上一遍,照一下重点方位,靠人判断是否有状况发生。  每隔一段时间,还会进行全面“体检”,通常用的是“探地雷达”,趁着列车行进的间歇,把机器开进隧道,由人工压着天线紧贴隧道墙壁,探头通过天线发射电磁波,检测人员再通过回波探测出墙下结构,分析墙面状况。这种人工检测的方法约莫需要七八个工作人员同时工作,检测时速在5公里左右,需要来回五次才能把整个隧道检测完毕。“因为检测必须在列车行进间歇进行,有时候一公里的隧道,一天都检测不完,”昝月稳说道。  新成果  6个探头安在列车尾部成都到西安一晚就能完成检测  同传统人工检测使用一个探头不同,昝月稳研究的“车载探地雷达设备”是安装在一节列车车厢的尾部,上方和左右两侧共有6个探头同时探测,与此同时,它的最高时速可以高达175km,只需要两名工作人员监控系统,就可以在正常的列车运行条件下完成整条线的检测。  “以前人工检测必须紧贴着墙壁,你看这个,安装在列车上的探头,距离墙壁的最远距离多达2.25米。”昝月稳指着图示解释说,以前的人工探测就像是照相机,而他的“车载探地雷达设备”就像是摄像机,列车一路行走,探头就能完成记录整个过程中的地质状况。“而为了保证质量,目前我们检测时列车运行时速为80公里。从成都到西安,坐在车上不用动,一晚上就可以完成整条线的检测。”  从间歇式的5公里/时到目前的80公里/时,从原来的紧贴墙壁到现在可透过空气检测,从原来的单线检测到现在的6个探头同时检测,不仅减少了人力,还把检测费用降低到了原有的一半,昝月稳的“车载探地雷达设备”彻底地改变了国家铁路网隧道病害不能普查和定期体检的现状。这项技术不仅节省了人力成本,还降低了检测费用。2015年,这项技术在西安铁路局全面推广并在成都铁路局达成铁路上应用。  应用  2002年开始测试今年已应用在成都线路上  这项技术是以昝月稳为主的科研团队从2002年开始研制,2012年,西南交通大学以此项技术申报国家发明专利,2014年4月获得国家发明专利权。  2013年1月,这项科研项目通过铁道部科技司课题验收,2015年,这项检测技术开始在西安铁路局所管辖的线路上进行全面推广,并进行了所有线路的检测。今年10月,在成都铁路局所管辖的达成线上完成检测。  “其实,这项技术不仅仅可以用在铁路隧道上的检测,在地铁隧道和公路隧道上,也具有广阔的应用前景。”这不,今年10月,这个项目还在广州地铁上进行了检测,测试效果也非常好。  背后故事  14年潜心研究  曾背着主机显示屏徒步10公里去测试  一个科研项目的成功,背后当然凝聚着研究人员的心血,而这项“车载探地雷达设备与技术”的成功,昝月稳整整用了14年的时间。  2002年,作为某单位里的唯一一名博士,他辞掉安稳的科长职务,开始专心研究车载探地雷达技术。当时,研究人员少、资金短缺,他就和几个科研人员背着显示器、计算机主机、探头、天线等一整套的探测雷达系统,走上10多公里的小路,到大山中的隧道中去探测。科研经费短缺,他就自己边赚钱边研究。  昝月稳说,因为需要跟着列车走,几天几夜吃住在车上的事情都是常有的。冬天内蒙古冷到零下28℃,那时候他就知道了手摸到铁皮要粘起来的感受。新隧道检测,里面全部是粉尘,他们就用被单把列车的车门、窗户全部蒙起来。  不过,这些苦还不是最大的挑战。最让他们焦心的是,研究过程中机器设备的耗损,一不小心就会坏掉,三更半夜到了车站,来不及休息,就到处敲门找人去修,“没办法呀,不修好所有数据都没了,这一趟真的是白跑了,那时候半夜去敲门的状况还是很多的。”最让昝月稳印象深刻的是一次事故,列车到了陕南的一小站,山间容易起雾,设备都是放在露天的车站,早上五六点发车,一启动,接收器全部都烧了,没有办法,只能白跑一趟,回去再全部重新定做机器。  昝月稳说,隧道的一般病态有漏水、断裂、腐蚀老化、掉块等,为保证运输隧道安全,需要对其进行病害普查,特别要对老龄隧道进行定期检查。该项目就是为铁路隧道提供“体检”的新设备与技术。
  • 井下隧道互联互通,逸云天气体检测仪巧破数据难题
    随着科技的不断发展,隧道互联互通和井下工作的重要性日益凸显。然而,在实际应用中,我们面临着诸多困难和挑战。面对这一需求,逸云天的MS600仪器发挥了关键作用。  MS600从机仪器包含了丰富而强大的功能,如常规四气检测、温湿度检测、以及 SOS一键呼救和LORA互联。当部署在隧道和井下环境中时,它能够实时且精确地监测各种关键参数。SOS功能确保了在紧急情况下能够及时呼救,为人员安全增添保障;温湿度的准确检测有助于作业人员了解工作环境的舒适度和潜在风险;而对常规四气的监测更是直接关系到作业现场的安全状况。  通过LORA传输功能,井下人员可以轻松地将数据实时传到井上的主机,实现了隧道的互联互通。这种高效的数据传输方式,让井上人员能够随时查看井下的各种数据信息,无论是气体浓度的变化、温度湿度的波动,还是其他重要参数的动态。  与之配套的MS600主机则负责接收从机数据,确保了数据的稳定传输和有效整合。它就像是一个数据枢纽,将井下传来的信息汇总并呈现给井上的监控人员,为决策和管理提供了坚实的依据。并通过4G无线传输功能将数据上传到云平台服务器,可实现远距离监控现场情况。  通过MS600主从机互联,解决了井下数据难以实时获取的问题,打破了信息壁垒,让井上和井下的沟通更加顺畅和及时。同时,也极大地提高了安全管理的水平,能够提前预警潜在的危险,保障人员的生命安全。此外,对于作业过程的优化和效率提升也有着显著的促进作用,管理人员可以根据实时数据进行合理的资源调配和工作安排。  总体而言,逸云天的MS600仪器在隧道与井下作业中展现出了卓越的性能和无可替代的价值,为行业的发展和安全保障立下了汗马功劳,成为了推动隧道工程和井下作业不断向前的强大助力。相信在未来,逸云天的产品将在更多的领域得到应用,为人们的生命安全和工作效率做出更大的贡献。
  • 第十一届扫描隧道显微学学术会议举办
    仪器信息网讯 2010年11月3日-5日,由中国科学院武汉物理与数学研究所承办的第十一届扫描隧道显微学学术会议在武汉举行。130余名来自全国高等院校、科研机构、企业的从事扫描探针显微学的专家学者参加了此次会议。仪器信息网作为独家支持媒体也应邀参会。会议现场  扫描隧道显微学学术会议是由白春礼院士发起的全国性会议,每两年一届。会议开幕式由中国科学院武汉物理与数学研究所曹更玉研究员主持,中国科学院武汉物理与数学研究所党委书记詹明生研究员致开幕词。  中国科学院武汉物理与数学研究所 曹更玉研究员  中国科学院武汉物理与数学研究所党委书记 詹明生研究员  本次会议内容主要包括:扫描隧道显微学(STM)与物理、扫描隧道显微学与化学和材料科学、扫描探针显微学(SPM)在生命科学中的应用、扫描探针显微学技术进展。会议展示了最近两年来我国高校与科学研究机构在扫描探针显微术及其应用领域所取得的研究成果。  扫描隧道显微学与物理学  报告人:中国科技大学 杨金龙教授  报告题目:Theoretical studies of inelastic electron tunneling phenomena in STM  杨金龙教授介绍了课题组近几年在STM非弹性扫描隧道谱方面的理论研究工作:1. 非弹性电子在扫描隧道显微镜的应用中产生的许多现象;2.在常规的程序包中增加程序,并用于理论非弹性隧道谱和模拟实验的比较;3.研究非弹性电子在扫描隧道显微镜实验中所产生的表面分子化学运动,如旋转、激发、断键等;4.非弹性电子引起的 “分子开关”效应。  报告人:合肥微尺度物质科学国家实验室 董振超教授  报告题目:STM诱导的分子光电新现象  董振超教授指出扫描隧道显微镜不仅可以用来观察和操纵纳米世界的单个原子和分子,而且其高度局域化的隧穿电流可以激发隧道结发光,他介绍了自己如何通过分子光子态调控来实现分子隧道结的新光电效应。  报告人:中国科学院物理研究所 肖文德研究员  报告题目:Ru(0001)上外延生长单层石墨烯的电子结构和振动模式的STM研究  肖文德研究员介绍说虽然光电子能谱、拉曼光谱、红外光谱等技术可对石墨烯的电子和声子特性进行研究,但是这些技术通常获得的是样品表面较大范围的平均信息。而石墨烯通常都呈现一定的起伏和皱,应用高分辨扫描隧道显微镜的扫描隧道谱和非弹性隧道谱法,实现了对Ru(0001)上外延生长单层石墨烯不同区域的电子结构和振动模式的研究。  此外,来自合肥微尺度物质科学国家实验室的张汇博士介绍了利用扫描隧道显微镜研究Si(111)表面In原子链上的一种孤子,并利用第一性原理的计算得到了这种孤子的精确结构。大连理工大学吴永宽博士利用原子力显微镜对室温沉积的Ge2Sb2Te5薄膜进行实位温控成像研究。上海交通大学分析测试中心的邹志强研究员利用超高真空STM对Mn及其硅化物薄膜在Si(111)衬底上的固相外延和反应外延生长进行了详细研究。  扫描隧道显微学与化学和材料科学  报告人:华南理工大学材料科学与工程学院 邓文礼教授  报告题目:设计合成有机分子的纳米构筑和仿生纳米制造探索  邓文礼教授设计合成了1,3,5-苯三氧十三酸乙酯等化合物分子,并了在大气环境条件下,利用扫描隧道显微镜分别研究了合成化合物分子在固态表面的吸附和自组装行为。  此外,邓文礼教授重点介绍了对于爬山虎吸盘粘附作用的研究,通过探究其表面结构、所含的天然成分、生长过程等实现纳米仿生粘附材料的研制,并期望可以在航空航天、医学、建筑等领域发挥作用。邓文礼教授研究小组是目前国内唯一的从事相关研究的课题组。 报告人:中国科学院武汉物理与数学研究所 于迎辉副研究员  报告题目:Cu-Al(111)合金及其表面氧化铝薄膜的物性研究  于迎辉研究员通过在Cu(111)中引入杂志Al形成α相的Cu-Al合金,进而在合金表面生长有序的氧化铝薄膜做为脱偶层。利用俄歇电子能谱表征Cu-Al合金表面的Al含量、低能电子衍射和低温扫描隧道显微镜检测Cu-Al(111)合金表面原子结构及电子分布。  扫描探针显微学在生命科学中的应用  报告人:吉林大学超分子结构与材料国家重点实验室 张文科教授  报告题目:AFM在核酸-蛋白质相互作用研究中的应用  张文科教授利用原子力显微镜(AFM)成像原位观测核酸与蛋白质之间的相互作用,研究了双螺旋DNA的AFM单分子力学指纹谱,并利用该力学指纹谱研究DNA结合蛋白与DNA的相互作用、外力诱导下DNA构象转变的本质。最后,张文科教授以烟草花叶病毒为例,探索了单分子力谱在研究复杂体系中核酸-蛋白质相互作用中的应用。  报告人:暨南大学 蔡继业教授  报告题目:扫描探针显微学结合量子点标记研究细胞表面分子  蔡继业教授介绍说单分子探测是目前的一个研究热点,但大部分集中在材料和化学研究中,对于细胞中单分子的研究比较少。扫描探针显微镜克服了共聚焦显微镜、扫描电镜在细胞研究中的缺点,量子点标记解决了荧光漂白的缺点。将扫描探针与量子点标记相结合实现了特异性识别细胞表面的抗原和抗体,并探测它们之间的相互作用力。  对于扫描探针显微学在生命科学中的应用,东南大学曹黎黎博士介绍了利用AFM研究小分子药物作用于环状双链DNA分子所引起的DNA结构和构象的变化。武汉大学林毅副教授提出一种基于轻敲模式原子力显微术成像原理的在成像同时测量压缩弹性模量通用方法,并应用于单根双链DNA径向压缩弹性模量的测量。东南大学巴龙教授设计了原子力探针的磁力驱动线圈,用于研究聚电解质多层微囊的动态力学性质及其与结构的关系。  扫描探针显微学技术进展  报告人:北京航空航天大学 钱建强教授  报告题目:原子力显微镜自激振调频检测成像模式的研究  钱建强教授介绍了自行研制的基于自激励振荡音叉探针的调频成像模式原子力显微镜。采用石英音叉探针作为力检测敏感原件,通过对其驱动电极施加正反馈,在自激振荡控制下使其在谐振频率下工作。由于不使用外部的探针振荡检测器和外部的探针激振器,系统结构简单并且易于操作。通过实验表明仪器能够满足频率调制模式成像要求。  此外,将具有高空间分辨率的STM与化学分析能力较强的拉曼光谱结合是一种新型的表征手段。中国科学院苏州纳米技术与纳米仿生研究所钟海舰博士采用自主研发的基于扫描探针显微镜和拉曼光谱仪的扫描近场光电探针测试系统,研究了化学气相沉积方法生长的石墨烯,可在获得样品表面形貌的同时,进行样品原位的局域电学性质研究和光谱测试。中国科学技术大学张瑞博士介绍了实验室组建的结合STM的具有超高真空、低温环境的TERS(针尖增强拉曼光谱)实验设备,利用该设备实现了Au(111)上分子薄膜、单个分子的TERS检测,并在Au(111)台阶处几个分子上得到了约4nm的TERS空间分辨率。  会议同期还设置了论文墙报展及小型仪器展览会。布鲁克、安捷伦、天美科技、岛津、SPECS、NT-MDT、汇德信科技等仪器厂商和仪器代理商参加了展会。论文墙报展   本届大会还评选了“青年科技奖”,用于表彰在扫描探针显微镜研究领域取得突出成就的青年学子,中国科学技术大学张汇博士、暨南大学李盛璞同学获此殊荣。中国科学院物理研究所徐文炎博士、厦门大学李纪军博士获得了本届大会的“优秀墙报奖”。据了解,第十二届扫描隧道显微学学术会议初步确定将由陕西师范大学承办。颁奖现场参会人员合影
  • 一文看懂扫描隧道显微镜STM/AFM
    p  strong扫描隧道显微镜/strong(scanning tunneling microscope,缩写为STM),亦称为扫描穿隧式显微镜,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德· 宾宁及海因里希· 罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特· 鲁斯卡分享了1986年诺贝尔物理学奖。/pp  它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。/pp  它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持稳定的电流,依此来观测物体表面的形貌。/pp  换句话说,扫描隧道显微镜的工作原理简单得出乎意料。就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓。在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网格结构的单个原子的美丽图片。/pp  strong原子力显微镜/strong(atomic force microscope,简称AFM),也称扫描力显微镜(scanning force microscopy,SFM))是一种纳米级高分辨的扫描探针显微镜,是由IBM苏黎士研究实验室的比宁(Gerd Binning)、魁特(Calvin Quate)和格勃(Christoph Gerber)于1986年发明的。AFM测量的是探针顶端原子与样品原子间的相互作用力——即当两个原子离得很近使电子云发生重叠时产生的泡利(Pauli)排斥力。工作时计算机控制探针在样品表面进行扫描,根据探针与样品表面物质的原子间的作用力强弱成像。/pcenterimg alt="" src="http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100352076.jpg" height="210" width="459"//centerp style="text-align: center "strong世界上第一台原子力显微镜和发明人之一比宁/strong/pp  以一种简单的方式进行类比,如同一个人利用一艘小船和一根竹竿绘制河床的地形图。人可以站在小船上将竹竿伸到河底,以此判断该点的位置河床的深度,当在一条线上测量多个点后就可以知道河床在这条线上的深度。同样道理绘制多条深度线进行组合,一张河床的地形图就诞生了。与此类似,在AFM工作时的,原子力传感器相当于人和他手中的竹竿,探针顶端原子与样品原子间作用力的大小就相当于竹竿触及河底时水面下的长度。这样,在一艘小船(控制系统)的控制下进行逐点逐行的扫描,AFM就可以绘制出一张显微图像啦。/pp  /pcenterimg alt="" src="http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100358209.jpg" height="283" width="388"//centerp style="text-align: center "strong普通原子力显微镜的原理示意图/strong/pp  原理解释起来并不算十分复杂,但是AFM的发明、使用与改进汇聚了大批科学家们的辛劳努力和创造性思维。特别是拍摄到氢键实空间图像所使用的非接触式原子力显微镜,经过分子沉积、温度控制、防振、探针、真空、控制系统等多方面的摸索与改造才最终具有如此强大的分辨能力。/pp strong1 基本原理/strongbr//pp  原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。/pp  strong2 /strongstrong成像模式/strong/pp  原子力显微镜的主要工作模式有静态模式和动态模式两种。在静态模式中,悬臂从样品表面划过,从悬臂的偏转可以直接得知表面的高度图。在动态模式中,悬臂在其基频或谐波或附近振动,而其振幅、相位和共振与探针和样品间的作用力相关,这些参数相对外部参考的振动的改变可得出样品的性质。/pp  1)strong接触模式/strong/pp  在静态模式中,静态探针偏转用做反馈信号。因为静态信号的测试与噪音和偏移成正比,低硬度探针用来增强外偏转信号。然而,因为探针非常接近于样品的表面,吸引力非常强导致探针切入样品表面。因此静态原子力显微镜几乎都用在总使用力为排斥力的情况。结果,这种技术经常被叫做“接触模式”。在接触模式中,扫描过程时保持探针偏转不变来使其探针和样品表面的作用力保持恒定。/pp  2)strong非接触模式/strong/pp  /pcenterimg alt="" src="http://upload.wikimedia.org/wikipedia/commons/5/5d/AFM_noncontactmode.jpg" height="291" width="350"//centerp style="text-align: center "strong原子力显微镜非接触模式/strong/pp  在这种模式下,悬臂上的探针并不接触样品表面,而是以比其共振频率略高的频率振动,振幅通常小于几纳米。范德华力在探针距离表面样品1~3纳米时最强,它与其他在表面上的长程力会降低悬臂的振动频率。/pp  通过调整探针与样品间的平均距离,频率的降低与反馈回路一起保持不变的振动频率或振幅。测量(x,y)每个数据点上的探针与样品间的距离即可让扫描软件构建出样品表面的形貌。/pp  在接触模式下扫描数次通常会伤害样品和探针,但非接触模式则不会,这个特点使得非接触模式通常用来测试柔软的样品,如生物组织和有机薄膜 而对于坚硬样品,两个模式得到的图像几乎一样。然而,如果在坚硬样品上裹有一层薄膜或吸附有流体,两者的成像则差别很大。接触模式下探针会穿过液体层从而成像其下的表面,非接触模式下则探针只在吸附的液体层上振动,成像信息是液体和下表面之和。/pp  动态模式下的成像包括频率调制和更广泛使用的振幅调制。频率调制中,振动频率的变化提供探针和样品间距的信息。频率可以被非常灵敏地测量,因此频率调制使用非常坚硬的悬臂,因其在非常靠近表面时仍然保持很稳定 因此这种技术是第一种在超高真空条件下获得原子级分辨率的原子力显微镜技术。振幅调制中,悬臂振幅和相位的变化提供了图像的反馈信号,而且相位的变化可用来检测表面的不同材料。 振幅调制可用在非接触模式和间歇接触领情况。在动态接触模式中,悬臂是振动的,以至悬臂振动悬臂探针和样品表面的间距是调制的。[来源请求]振幅调制也用于非接触模式中,用来在超高真空条件下使用非常坚硬的悬臂和很小的振幅来得到原子级分辨率。/pp  strong3)轻敲模式/strong/pp  /pcenterimg alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg/285px-Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg" height="215" width="190"//centerp style="text-align: center "strong在不同的pH的溶液环境中使用轻敲模式得到的高分子单链的原子力显微镜图(0.4 nm 厚)/strong/pp  通常情况下,绝大部分样品表面都有一层弯曲液面,为此非接触模式下使探针足够靠近样品表面从而可以测试短程力,但是此时探针又容易粘贴到样品表面,这是经常发生的大问题 动态模式就是为了避免此问题而发明的,又叫做间歇接触模式(intermittent contact)、轻敲模式(tapping mode)或AC模式(AC Mode)。在轻敲模式中,悬臂通过类似于非接触下的装载在探针上的微小的压电元件做来上下振动,频率在其共振频率附近,然而振幅则远大于10纳米,大概在100~200纳米间。当探针越靠近样品表面时,探针和样品表面间的范德华力、偶极偶极作用和静电力等作用力会导致振幅越来越小。电子自动伺服机通过压电制动器来控制悬臂和探针间的距离,当悬臂扫描样品表面时,伺服机会调整探针和样品间距来保持悬臂的预设的振幅,而成像相互作用力则得到原子力显微镜轻敲模式图像。轻敲模式减少了接触模式中对样品和探针和损伤,它是如此的温和以致于可以成像固定的磷脂双分子层和吸附的单个高分子链。比如液相的0.4纳米厚的合成聚合物电解质,在合适的扫描条件下,单分子实验可以在几小时内保持稳定。/pp  strong3 优点与缺点/strong/pp  相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。他就像盲人摸象一样,在物体的表面慢慢抚摸,原子的形状很直观的表现。/pp  和扫描电子显微镜相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。/p
  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 杨泽超:6年时间,研发高时空分辨变温扫描隧道显微镜
    在近日举行的首届“大走廊杯”中国杭州博士后科创精英赛总决赛中,杭州师范大学物理学院杨泽超教授团队带来的项目“高时空分辨变温扫描隧道显微镜的研发与制造”从来自美国、英国、德国等13个海外国家和北上广深等30余个城市的300多个青年博士后团队中脱颖而出,得到不少科研人员和投资者的关注。首届“大走廊杯”中国杭州博士后科创精英赛总决赛现场要实现弯道超车、跨越发展,科学研究就要更具前瞻性一位创投公司高级投资总监表示:“我很看好这个项目,觉得这个产品应用范围很广,而且有较高的技术壁垒,他们把分辨率做到了原子级。同时,此仪器还能对原子的运动过程进行毫秒级的实时捕捉。”物理学院杨泽超教授据悉,扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种空间分辨率可以达到原子量级的微观探测工具,它能使人类直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的物理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。杨泽超介绍,表面纳米结构在不同温度条件下表现出不同的物理化学性质,而扫描隧道显微镜因具有原子分辨率实空间成像能力,尤其适合用来研究这类材料的表面物性。但同时表面结构动力学过程通常发生在毫秒或微秒的时间尺度。因此,在变温条件下工作的同时具有高时间分辨率的扫描隧道显微镜已经成为世界上很多研究小组的研究项目。“目前基于超高真空环境的扫描隧道显微镜已经高度商品化,尤其是德国和日本公司的产品占据市场的统治地位。但是兼具高时空分辨的变温快速扫描隧道显微镜国内外尚未出现成熟商品化产品。”杨泽超瞄准了这个空白, 2016年在德国马普学会弗里茨-哈伯研究所开展博士后研究工作时,将精力和重心放在高时空分辨变温扫描隧道显微镜的研发与制造上。他说,要实现弯道超车、跨越发展,科学研究就要更具前瞻性。“光搭建这个显微镜设备就花了2年时间,如果算上前期研发设计,总共花了6年。我们每周工作70个小时以上,无论酷暑还是严寒,我们都坚守在实验室内,紧盯测试过程,饿了就几顿并作一顿,累了就趴在桌子上休息。”回忆起研发历程,作为团队核心成员的杨泽超非常感慨,“六年磨一剑,不仅要坐得住冷板凳,还要有不惧困难的勇气。下一步我们将继续优化仪器的软硬件设计,提高仪器操作的便捷性。”个人价值和国家需要相结合,是很有成就感的事2021年,在德国求学生活已过十年的杨泽超,做出了一个决定,结束自己的海外生涯,正式归国。他带着“高时空分辨变温扫描隧道显微镜的研发与制造”项目加入物理学院。“我们不仅针对性解决了传统扫描隧道显微镜在快速扫描时图像畸变和快速慢速扫描不易切换等硬件方面的问题,而且自主研发的扫描头和快速扫描控制系统,在保有原子分辨率的前提下可以达到120帧/秒的成像速率。可以系统地研究不同覆盖度下氧原子在 Ru(0001) 表面的扩散运动机制。仪器的工作温度范围也扩展到了(200-1000 K)。这套设备将成为研究纳米材料‘时间-结构-性质’构效关系的理想科研仪器,为表面物理和化学的研究提供更多的实验手段,在原位实时实空间研究表界面原子扩散、薄膜材料生长和化学反应等领域均具有重要意义。” 杨泽超自豪地介绍道,“作为杭师大的老师,我不仅想让这个项目在祖国落地,更想在我工作生活的杭州有所作为,能将个人价值和国家需要相结合,是很有成就感的事。”目前杨泽超已将他研发的高时空分辨变温扫描隧道显微镜放置在学校实验室内。“作为一名教师,除了基础的教学,我也想通过自己研发扫描隧道显微镜的经历引导学生了解前沿的技术动态和趋势,带给学生更多的启发。” 他动情地说,“物理学作为基础学科,对于国家的现代化建设和产业升级具有重要的推动作用,我愿为培养这样的基础学科人才而继续努力。”
  • 扬州大学研制地铁隧道“体检仪”
    来自中国城市轨道交通协会的消息显示,2020年,我国内地累计有41个城市开通城轨交通线路7141.55公里。地铁已经成为城市日常出行必不可少的交通工具,但在地铁隧道中也会出现各种“病害”,威胁着人们的出行安全。  “当前,我国地铁隧道检测主要依赖人工检测和少量进口自动化设备,效率低、成本高,无法满足庞大的里程检测需求。”扬州大学信息工程学院(人工智能学院)副教授徐永安在接受采访时表示。  如何高效、准确、经济地检测出地铁隧道“病害”?在“科创导师”制的“牵线搭桥”下,扬州大学信息工程学院(人工智能学院)学生张雅欣等组建了大学生科技创新团队。由导师徐永安指导,团队研发了地铁隧道三维激光检测系统。“该系统检测速度可达国外同类设备的5倍以上。”张雅欣说。  将宝贝搬出实验室  在初中时期,受家人的影响,张雅欣萌生了创业的想法。2019年,正在上大二的她加入徐永安课题组,并组建了自己的大学生科技创新团队,选择了地铁隧道检测研究。  对张雅欣而言,导师不仅是科研路上的护航人,更是自己创业的榜样。记者获悉,在科技创新和科研成果转化路上,徐永安已经坚持了20多年。  1997年,在北京举办的中国国际机床展览会上,一个摆放着国外光学测量仪的展台被观众围得水泄不通,正在攻读博士学位的徐永安也是围观者之一。  从展会回来后,研制光学测量仪的想法一直萦绕在徐永安的脑海里。他随之改变了自己的研究方向,历经两年攻关,终于研制出国产光学测量仪。但在当时,他对科研成果转化还没有深刻的意识,便将这一宝贝成果“藏”在自己的实验室里。  “国外的设备那么贵,你有这么好的仪器,为什么不推向市场呢?”这样的声音越来越多,终于说服徐永安将宝贝搬出实验室。2011年,徐永安参与创办了一家公司,并将自主研发的光学测量仪设备推向市场。  当然,教书育人才是徐永安的本职工作。如何让学生在学习课本知识之外,学会创新思考,尝试自主研发技术并推动成果落地转化?20世纪90年代,扬州大学开启了“科创导师”制的探索之路,让学生在导师的指导下参与科技创新工作。  徐永安说:“过去,学生与导师的关系,主要是学生在导师的实验室开展科研,导师对学生的毕业设计进行指导。现在,导师不但要在科研上指导学生,还要带领学生开展科创工作。”  深入隧道后改变方法  谈及为什么选择地铁隧道检测研究,张雅欣告诉记者,目前,国内外地铁隧道自动化检测系统大多采用1个激光点绕隧道旋转的测量技术,检测速度慢。“好比一个电动机带着一个手电筒旋转,手电筒每次照射在物体表面时只能出现一个亮斑。这意味着每次只能采集一个点,效率太低。”  如何实现快速检测呢?经过一年多的攻关,以张雅欣为首的大学生科技创新团队研发出6条激光线扫描技术,360°环形激光线投射在隧道表面,8部每秒500帧高速数码相机实时采集隧道表面的激光线图像,并换算为隧道表面形状坐标。张雅欣解释道:“6条激光线同时工作,地铁隧道检测效率得到显著提高。”  然而,研发过程并非一帆风顺。在徐永安的指导下,张雅欣带领团队先后前往青岛、兰州、佛山等城市的地铁公司,深入地铁隧道,开展实践调研。团队在调研中发现,地铁公司对隧道快速检测系统有着迫切的需求。  在精准了解地铁隧道检测痛点后,张雅欣团队开始了与时间“赛跑”的测量工作。“我们只能在夜间12点到凌晨4点进入现场开展检测工作,因为这段时间地铁处于停运状态。另外,每天进入现场前的安检过程就要耗费半个多小时,实际的测量时间非常有限。”  经过近3个月的测量,张雅欣团队发现进展缓慢,于是做出了改变测量方法的决定,希望提高检测效率。经过徐永安的点拨,团队在实验室里自建了模拟隧道。“在模拟隧道里开展实验,不但提高了实验效率,缩短了研发周期,还解决了后期新冠疫情期间实地检测的困难。”张雅欣介绍说。  在解决了测量环境问题后,团队又遇到了由振动引起的测量误差问题。“测量车在轨道上运行会产生轻微振动,这种振动会带来一些误差。”张雅欣团队成员吴传昊告诉记者。为此,团队采用了基于特征面的方法对隧道测量数据进行纠偏,“这种方法可以大幅降低测量车振动对测量精度的影响,降低动态测量误差。”  “该系统检测速度最高可达每小时17.1公里,是国外同类设备的5倍以上,动态精度为±1.6毫米,检测密度小于2毫米,而价格只有国外设备的70%左右。”张雅欣表示,系统还可以根据用户需求制定检测速度、密度、精度。  徐永安透露,目前,该系统申请发明专利4项、登记软件著作权4项,通过了江苏省产品质量监督检验研究院质检,符合CMA中国计量认证标准。  大学生创业还需多磨砺  来自用户的消息显示,张雅欣团队研发的这套系统已在投入运营的地铁隧道进行了实地检测,在检测速度、精度以及密度方面均满足实际应用要求。目前,已有多家轨道交通公司与团队达成初步合作意向。  张雅欣表示,下一步团队将继续对产品进行优化设计,并计划注册成立公司。“地铁里程数较大的城市,可直接购买检测系统 地铁里程数小的城市,可购买检测服务。”  在张雅欣看来,虽然研发过程非常艰辛,但非常有意义。“一方面培养了我们解决问题的能力,另一方面还培养了我们团队建设、组织和管理的能力,对未来的创业起了铺垫作用。”  她感叹道:“大学生参与科创,要有顽强的毅力和勤奋刻苦的精神,对团队中不同的意见要善于倾听,脚踏实地攻克每一个难关。”  徐永安也指出,对于刚毕业的学生而言,如果没有成熟的技术积累和市场认知,可以先进入企业积累几年经验,对市场形成一定认知后再进行创业。  在他看来,高校“孵化器”应该实现良性循环,当政府和高校投入资金等支持后,若能实现良好的产出,投入的积极性也将越来越大,反之则可能陷入不良循环。“政府和高校还应进一步研究如何解决这一矛盾。”
  • 突破!我国首台太赫兹扫描隧道显微镜系统研制成功
    2022年2月,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,为国内首套自主研制的太赫兹扫描隧道显微镜系统。扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具。通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域具有广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学Frank Hegmann教授,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等著名科研团队纷纷开展相关技术研究。但我国在该领域的研究一直处于空白。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM),具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等诸多领域,有望取得具有重要国际影响力的原创性科研成果。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科技厅、广州市、黄埔开发区等相关项目的资助。 THz-STM系统硅重构表面原子分辨(左),金表面原子分辨(右)
  • 国内首套太赫兹扫描隧道显微镜系统研发成功
    近日,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。THz-STM系统扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具,通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学教授Frank Hegmann,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等科研团队纷纷开展相关技术研究。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM)。该显微镜具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等领域。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科学技术厅、广州市、黄埔开发区等相关项目的资助。THz自相关脉冲和THz-STM电流信号硅重构表面原子分辨和金表面原子分辨
  • 长生不老神丹妙药的炼丹技术一细胞时空隧道技术
    摘要:间充质干细胞,干细胞外泌体已经被广泛应用到了多个领域的临床研究中,是医药史上最为复杂的治疗性产品。间充质干细胞,外泌体直接输入注射治疗法永远也不可能修成正果,时间机器突破干细胞瓶颈所面临的重重困难和障碍,利用细胞时间隧道技术与衰老组织细胞进行胞质效应交换能生产出万能干细胞,是再生医学长生不老的“神丹妙药”。1、干细胞治疗技术尚不成熟面临一系列技术瓶颈近年来,间充质干细胞,外泌体已经被广泛应用到了多个领域的临床研究中,其中包括多项疾病的临床治疗在肝损伤、肾损伤等方面都展现出强大的修复再生能力。间充质干细胞外泌体具有间充质干细胞的生物学特性,并且其含有大量且种类繁多的蛋白质、细胞因子和生物活性物质。此外,间充质干细胞外泌体中的miRNA,可以调控基因表达,其比例比细胞更高,例如miR-155、let-7f、miR-199a、miR-221、miR-125b-5p和miR-22等,使得其能够参与多种生理和病理过程,起到对多项临床疾病的干预治疗。有望取代技术不成熟的间充质干细胞,成为细胞治疗时代的下一个风口。干细胞制品的复杂多能性,动态性、异质性问题从根本上挑战了药物的均一性、稳定性基本质量要求。是干细胞临床治疗技术绕不过去的一道弯。从以上资料中我们可以看到一方面是干细胞科研成果不断涌现,而另一方面又是干细胞治疗技术产品的不成熟,不断的遭遇到夭折。临床应用干细胞面临着一系列技术瓶颈,怎样突破干细胞技术瓶颈所面临的重重困难和障碍,去再创辉煌。这就要我们从干细胞基础领域里去做起寻找突破口。2、生命分子时间无处不在,干细胞与时间撞碰将化解所有的技术瓶颈自从H. G. Wells于1895年撰写了他的著名小说《时间机器》以来,时间旅行便成为一个流行的科幻小说主题,但是它能真的实现吗?建造一台把人运送到过去或是未来的机器可能吗?爱因斯坦企图解释时间,由于他提出测量时间要取决于观察者如何运动等苛刻条件,以至于未能完成对时间的真正理解。生命科学则不同,任何学者都能正确分辨DNA、蛋白质的时间。例如原核mRNA半衰期平均大约3min,真核mRNA的半衰期平均3h,有的寿命长达数天。正常的P53蛋白半衰期为20min,突变型P53-蛋白半衰期为2~12h,如人正常细胞一生只能分裂50~60次,而突变的癌细胞无限增殖性,成为“不死”的永生细胞。在分子端粒酶、糖蛋白糖链、P53蛋白半衰期上,生物时间概念无所不在,有了时间概念,时间机器也就不在话下了。然而这一切归根结底就还是干细胞临床应用基础理论出现了问题,干细胞目前还是处于分子遗传学水平,当干细胞临床应用真正踏入生命量子时代,基因对分子时间有了进一步认识。干细胞有了时间概念,终将化解当前临床转化所有的技术瓶颈。事实上干细胞逆分化也正是想要建造一座细胞逆时空隧道来低抗人类衰老。根据爱因斯坦的相对论,干细胞魂牵梦绕的时空隧道它会出现吗?3、分子遗传学细胞时空隧道技术分子遗传学己经成功制造了时间机器,但它却还不知道什么是时间机器。克隆羊“多莉”的诞生震惊了世界。多莉的诞生证明高度分化成熟的哺乳动物乳腺细胞,仍具有全能性,还能像胚胎细胞一样完整地保存遗传信息,这些遗传信息在母体发育过程中并没有发生不可恢复的改变,还能完全恢复到早期胚胎细胞状态,最终仍能发育成与核供体成体完全相同的个体。以往的遗传学认为,哺乳动物体细胞的功能是高度分化了的,不可能重新发育成新个体。与这一理论相反,多莉终于被克隆出来了,它的诞生推翻了形成了上百年的上述理论,实现了遗传学的重大突破,为开发新的哺乳动物基因操作提供了动力,是一个了不起的进步。但直到现在,人们仍然不知道这就是时间机器,它使已分化的成熟体细胞在卵母细胞的时光中穿梭获得胚胎发育新生(细胞胞质效应技术实际上就是时间机器技术)。 生命科学制造的时间机器已有了大量的成功案例,现举例如下:鸡红血细胞是终末分化细胞,其细胞核不合成RNA或DNA,在与人Hela干细胞融合后,其细胞核可被Hela干细胞的细胞质激活而合成RNA和DNA,说明细胞质在基因表达中起重要作用。Hela干细胞miRNA等小分子在胞质效应中时光穿梭,使鸡红血细胞核获得激活,这是一例非常经典的分子遗传学时空机器技术。尽管大量工作表明细胞核和细胞质在不同动物的不同发育期均起重要作用,但二者间的相互作用、相互依存是胚胎发育过程中调控基因活动最重要环节之一。原肠胚期细胞质开始激活核内不同基因的活动,最初的基因产物移至细胞质中合成专一性蛋白质,它们又可回到核内,参与染色质的合成与复制,并调控另一些基因的活动。通过反复的核-质间相互作用,使未分化的细胞相继分化为定型的细胞,真正做到了细胞时间旅行。 4、量子遗传学细胞时间机器技术量子时间机器原理:细胞核移植实验和细胞移植的医学实践都已有了大量的成功案例,积累了丰富的文献资料。早期伯尔格(Berger)和施瓦格(Shweiger)作了伞藻的核移植,用年轻的和年老的细胞质分别与年老和年轻的细胞核分别在体外培养,10天中移植进去的老核变得年轻起来,而新核移植到衰老的细胞中则会受影响而老化,这说明胞质对核能产生影响。年轻的胞质能使衰老的细胞核恢复青春,年老的细胞质则使年轻的细胞核老化,根据这一原理我们制作了DNA时间机器,让生物细胞分子在细胞质效应中穿越时光。DNA相对论(DNA、蛋白质时间、空间、质量、能量的科学理论)是允许这一时空旅行发生在生物这种特定的时空结构中:一个旋转的生物细胞质宇宙,一个旋转的细胞核柱体,以及非常著名的虫洞—半透膜一条贯穿空间和时间的隧道,它成功构建了第一台细胞时间机器。 溶液通过弥散超滤作用,使细胞内高激发态物质向激发态低一侧流动,而miRNA等小分子由渗透压低向渗透压高的流动过程,最终达到动态平衡。DNA时间机器是通过年老细胞质(时间半衰期短)使年轻(时间半衰期长)的细胞核老化。年轻(时间半衰期长)的细胞质能使年老细胞核时间回到年轻,为癌症、干细胞研究又打开了一扇新的窗口,真正做到了细胞时间旅行。DNA时间机器这项生物量子技术成果将开拓癌症根本性治疗、干细胞应用、病毒快速减毒,解决小分子miRNA两面派特性的新工具(利用紫外吸收光谱测能技术掌握增减DNA核能)具有划时代的重大意义。生物时间机器技术(专利号;201309120065447.0) 5、长生不老神丹妙药的炼丹技术一细胞时空隧道技术时间机器突破干细胞瓶颈所面临的重重困难和障碍间充质干细胞,干细胞外泌体,都被归类为不同组织中多种不同的细胞群生物学特性,并且其中含有大量且种类繁多的蛋白质、细胞因子和生物活性物质,是医药史上最为复杂的治疗性产品。干细胞供者遗传背景千差万别,各种组织来源及不同代次的细胞区别显着,而且不同的技术路径、试剂仪器、操作手法等也会对细胞生理状态存在显着影响,干细胞,外泌体制品的动态性、异质性面临着重重困难和障碍。间充质干细胞,外泌体直接输入注射治疗法永远也不会修成正果,生命时空隧道技术为干细胞临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为:时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等部分组成。将间充质干细胞,外泌体加进在生物时间机器透析外柱內对透析柱內里的人体内采集的某组织衰老细胞,通过溶液及半透膜在时间机器中进行生长因子,激发态物质交换,然后再回输到衰老人体内的方法。 细胞时间机器膜外柱为干细胞等外泌体激发态高的细胞物质通过小分子miRNA等溶质向膜内柱人体内采集的衰老细胞及外泌体物质,撞碰移动从而激发调整了衰老细胞DNA蛋白质激发时间,干细胞时间在年老的细胞质时间中穿梭,能真实的回到过去年轻细胞时间(DNA氢介子结合能一份份合成就是DNA逆时间)。生物时间机器时空结构简单:一个旋转的生物胞质小宇宙,一个旋转的柱体,以及非常著名的虫洞-半透膜所组成。超滤膜根据需要通过干细胞小分子miRNA的大小设计,从干细胞中分离出miRNA以及外泌体来。 最常见的过滤膜具有0.8μm、0.45μm或0.22μm的孔径,也有设计成微柱多孔硅纤毛结构以分离40-100nm的miRNA外泌体。但最为关健一点是要密切利用时间测能技术来监测“干细胞种子”以及“人体内采集的衰老细胞土壤”移植时能量高低的透析时间差问题,这样才能做到安全有效的细胞时间旅行。 虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们都具有强大的细胞生长因子。1、利用超滤膜可以中筛选出专一人体内采集的某细胞分泌体miRNA;2、其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集的专一衰老细胞上;3、人体内采集的细胞与时间机器交换后可再监测安全有效性;4、生成某组织增强干细胞后可再进一步纯化分离,然后再安全回输到衰老人体内组织中。利用细胞时间隧道透析机与衰老组织细胞进行胞质效应交换,能生产出万能干细胞是再生医学长生不老的神丹妙药。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话15927431505☆相关资料,《自然》:打破间充质干细胞神话https://xw.qq.com/cmsid/20180927A0A9PL/20180927A0A9PL00DNA相对论是生命科学的第一生产力http://post.blogchina.com/p/2545288
  • 德科学家开发一种磁冷却扫描隧道显微镜:用于量子效应研究!
    仪器信息网讯 扫描隧道显微镜(STM)能够以原子精度捕获材料图像,可用于操纵单个分子或原子。多年来,研究人员一直在使用这类仪器来探索纳米尺度世界。近日, 德国Jülich研究中心(Forschungszentrum Jülich)的物理学家开发了一种新方法,这种方法帮助使用STM来研究量子效应创造了新的可能性。由于该技术方法采用磁冷却,他们的扫描隧道显微镜无需任何移动部件即可工作,并且在低至 30 毫开尔文的极低温度下几乎无振动。该仪器可以帮助研究人员解锁量子材料的特殊特性,这对量子计算机和传感器的发展至关重要。物理学家认为接近绝对零度的温度范围是一个特别令人兴奋的研究领域。热波动降至最低,量子物理定律开始发挥作用,揭示材料的特殊性质。电流自由流动,没有任何阻力。另一个例子是一种称为超流体的现象:单个原子融合成一个集体状态,并在没有摩擦的情况下相互移动。Stefan Tautz 教授(左下)、Taner Esat 博士(左上)和 Ruslan Temirov 教授(右)与Jülich量子显微镜,图片自:Forschungszentrum Jülich / Sascha Kreklau研究和利用量子效应进行量子计算也需要这些极低的温度。全世界以及 Jülich研究中心的研究人员目前正在全速追求这一目标。在某些项目上,量子计算机可能远远优于传统的超级计算机。然而,发展仍处于起步阶段。一个关键的挑战是寻找材料和工艺,使具有稳定量子位的复杂架构成为可能。来自 Jülich 研究中心的 Ruslan Temirov 解释说:“我相信像我们这样的多功能显微镜是完成这项迷人任务的首选工具,因为它能够以多种不同方式在单个原子和分子的水平上对物质进行可视化和操作。”量子物理研究的一个典型对象:在中心,可以看到一个单一的分子,它是通过显微镜尖端分离出来的。在接近绝对零的温度下,没有干扰图像的噪声。图片来源:Forschungszentrum Jülich / Taner Esat, Ruslan Temirov经过多年的工作,他和他的团队为此装备了带有磁冷却的扫描隧道显微镜。 “我们的新显微镜与所有其他显微镜的不同之处类似于电动汽车与内燃机汽车的不同之处,”Jülich 物理学家解释说。到目前为止,研究人员一直依靠一种液体燃料,即两种氦同位素的混合物,将显微镜带到如此低的温度。 “在操作过程中,这种冷却混合物通过细管不断循环,这会导致背景噪音增加,”Temirov 说。另一方面,Jülich 显微镜的冷却装置则是基于绝热退磁过程。这个原理并不新鲜。它在20世纪30年代首次用于在实验室中达到低于 1 开尔文的温度。 Ruslan Temirov 说,对于显微镜的操作,它有几个优点:“通过这种方法,我们可以通过改变通过电磁线圈的电流强度来冷却我们的新显微镜。因此,我们的显微镜没有移动部件,几乎没有振动。”Jülich 科学家是有史以来第一个使用这种技术构建扫描隧道显微镜的人。 “新的冷却技术有几个实际优势。它不仅提高了成像质量,而且简化了整个仪器的操作和整个设置,”研究所主任 Stefan Tautz补充说,由于采用模块化设计,Jülich 量子显微镜也对技术进步保持开放态度,因为可以轻松实施升级。“绝热冷却是扫描隧道显微镜的真正飞跃。优势非常显着,作为下步计划我们现在正在开发商业原型机。”Stefan Tautz 解释说,量子技术是目前许多研究的焦点,这种仪器也势必会吸引许多相关研究学者的关注。这项研究发表在《Review of Scientific Instruments》上,DOI: 10.1063/5.0050532。mK STM 设置的示意图布局,包括 UHV 室、承载 mK 棒的 ADR 低温恒温器和高容量低温泵。 主 UHV 系统,包括负载锁、制备室 1 和 2 以及转移室,通过柔性波纹管连接到低温恒温器。 要将 mK 棒从真空中取出,低温恒温器和 UHV 系统必须在虚线标记的平面上分开。 右下角:插图显示了从 UHV 中提取 mK 棒的过程。 支撑 UHV 系统的框架在垂直于主图平面的方向侧向平移以进行提取。mK 棒的渲染 CAD 模型。 左:mK 棒全长 156.5 厘米。 箭头表示不同温度阶段的位置。 右上角:mK 棒的头部,其机制将其锁定到垂直操纵器,将其加载到低温恒温器中。 用于与温度传感器和 STM 压电元件建立电接触的两个接触板也是可见的。 建立同轴偏置和隧道电流触点的第三个接触板位于背面。 右下角:4K 载物台下方的 mK 棒的图像细节,无需布线。 左图:自制 STM 的分解图。 STM 的顶部通过蓝宝石板与 STM 主体电隔离。 STM 主体包含一个单独的压电管,用于 STM 尖端的粗略和精细运动。 右图:压电管的剖视图,显示粘滑粗调电机。
  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • mini扫描隧道显微镜系统研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="123"p style="line-height: 1.75em "成果名称/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "Mini 扫描隧道显微镜系统研制/p/td/trtrtd width="123"p style="line-height: 1.75em "单位名称/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="123"p style="line-height: 1.75em "联系人/p/tdtd width="177"p style="line-height: 1.75em "郇庆/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="123"p style="line-height: 1.75em "成果成熟度/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="123"p style="line-height: 1.75em "合作方式/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/f0bed8ec-b171-4a82-9bae-a0e07ed68bd1.jpg" title="mini STM.jpg" width="400" height="294" border="0" hspace="0" vspace="0" style="width: 400px height: 294px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 这是一款工作在超高真空环境下的扫描隧道显微镜(STM)系统,具备样品的退火和溅射清理功能,并可以在原位情况下沉积各种有机/无机材料。可在从液氦温区( 10K)到室温范围内工作,降温/升温速度快,特别适合材料及相关研究人员快速表征样品。同时,该系统具有很好的稳定性,具备稳定的原子分辨能力并可获得一阶和二阶电流微分谱,经扩展后可具备与光路连结的可能和AFM功能。其主要技术指标为: br/ 背景气压:≤ 1x10-10Torr br/ 工作温度范围:8K~350K br/ 原位沉积: 是 br/ 扫描范围: br/ 4.0μmx4.0μmx0.6μm @ RT br/ 1.0μmx1.0μmx0.15μm @ 8K br/ 分辨率:原子分辨 br/ 灵敏度: br/ XY: ≤200Å /V Z:≤30Å /V @ RT br/ XY: ≤ 50Å /V Z:≤ 7.5Å /V @ 8K br/ 恒温器类型:连续流 br/ 降温时间(室温至≤10K): ~2小时/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 纳米表征和研究的重要工具,国内每年需求量在数十台。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 201510468456.5 br/ 发明专利:200810114537.5和201410165949.7/p/td/tr/tbody/tablepbr//p
  • 380万!华南师范大学计划采购超高真空低温扫描隧道显微镜
    一、项目基本情况项目编号:440001-2022-61861项目名称:华南师范大学采购超高真空低温扫描隧道显微镜项目采购方式:公开招标预算金额:3,800,000.00元采购需求:合同包1(超高真空低温扫描隧道显微镜):合同包预算金额:3,800,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他试验仪器及装置超高真空低温扫描隧道显微镜1(台)详见采购文件3,800,000.00-本合同包不接受联合体投标合同履行期限:(1)国产产品及进口含税产品:合同签订后12个月内交付使用。 (2)进口免税产品:合同签订、免税批文办妥后11个月交付使用。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2021年度财务状况报告或基本开户行出具的资信证明) 。4)履行合同所必需的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求: 无。3.本项目的特定资格要求:合同包1(超高真空低温扫描隧道显微镜)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。三、获取招标文件时间: 2022年12月19日 至 2022年12月26日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2023年01月09日 09时30分00秒 (北京时间)递交文件地点:广州市天河区龙怡路117号银汇大厦5楼广东志正招标有限公司会议室开标地点:广州市天河区龙怡路117号银汇大厦5楼广东志正招标有限公司会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。本项目支持电子保函,可通过登录项目采购电子交易系统跳转至电子保函系统进行在线办理。电子保函办理办法详见供应商操作手册。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华南师范大学地 址:广州市天河区中山大道西55号联系方式:020-852108522.采购代理机构信息名称:广东志正招标有限公司地址:广东省广州市天河区龙怡路117号501、503、504、505、506房联系方式:020-875546183.项目联系方式项目联系人:孔庆尧、吴挺娟电话:020-87554618
  • 仪器进国博,中科院首台扫描隧道显微镜入藏国家博物馆
    p style="text-indent: 2em text-align: justify "提到中国国家博物馆,大家首先就会想到馆藏的历史文化珍宝,其中的“后母戊鼎”和“四羊方尊”更是通过小学的历史课本深深的印刻在中国人民的心中。但谁能想到,科学仪器可以被国家博物馆收藏呢?/pp style="text-indent: 2em text-align: justify "昨日,我国自主研发的首台扫描隧道显微镜CSTM-9000设备入藏了中国国家博物馆,中科院化学研究所向国家博物馆捐赠了这台设备。/pp style="text-indent: 2em text-align: justify "据了解,CSTM-9000是在1987年、由我国科学院院士白春礼主持研制的,是我国第一台计算机控制、有数据分析和图像处理系统的数字化扫描隧道显微镜,这台仪器当时达到国际先进水平。CSTM-9000的研制成功,获1990年国家科技进步二等奖。更为重要的是,它使我国当时在探索物质表界面研究领域迈入了世界先进水平的行列,同时也开拓和促进了多个学科领域尤其是纳米科技的研究和发展。/pp style="text-indent: 2em text-align: justify "“CSTM -9000的研制成功,使我国当时在探索物质表界面研究领域迈入了世界先进行列。今天来看,它的性能与最新设备已经无法相提并论,但其彰显当代中国科技发展、留于后人思考的历史意义却十分重大。”中科院化学研究所副所长范青华说道。/pp style="text-indent: 2em text-align: justify "中国国家博物馆副馆长陈成军表示,科技创新事业,是当代中国不断改革发展进步的重要动力,也是实现中华民族伟大复兴光辉历程不可或缺的组成部分。扫描隧道显微镜的入藏,丰富了国家博物馆在当代科技实物领域的馆藏,中国国家博物馆在拓展征集领域、积累新中国科技史馆藏过程中具有重大意义。/pp style="text-indent: 2em text-align: justify "中国国家博物馆馆长王春法表示,国博和中科院两家单位将以此次捐赠为契机,进一步在当代中国科技发展物证的收藏、展览和研究等领域开展深入、多元的合作,共同记录当代中国科技工作者奋进创新的历史,为民族存史,为时代画像。/pp style="text-indent: 2em text-align: justify "中国国家博物馆馆长王春法向中科院化学研究所副所长范青华颁发了收藏证书。/p
  • 680万!北京大学极低温强磁场扫描隧道显微镜采购项目
    项目编号:BMCC-ZC22-0255项目名称:北京大学极低温强磁场扫描隧道显微镜采购预算金额:680.0000000 万元(人民币)采购需求:包号名称数量预算金额是否接受进口产品01极低温强磁场扫描隧道显微镜1套680万元是注:1.交货时间:合同签订后390日内交货并安装完毕。2.交货地点:北京大学用户指定地点。3.简要技术需求及用途:通过将射频、微波等高频信号与极端条件下的原子扫描探针相耦合,发展融合扫描隧道显微学和量子相干操控技术的新型仪器,从而有能力对单原子、单分子级自旋态进行相干操控,同时探索对电子核量子态、分子振动态等单量子态的极限探测和操控。 合同履行期限:按招标文件要求。本项目( 不接受 )联合体投标。
  • 第十届全国扫描隧道显微学学术会议将在广州召开
    第十届全国扫描隧道显微学学术会议(STM&rsquo 10)将于2008年11月23-25日在美丽的花城广州召开。会议由暨南大学纳米化学研究所承办,在广东温泉宾馆举行,由中国科学院副院长白春礼院士担任本次学术会议主席。 扫描隧道显微学学术会议为全国性会议,迄今已成功举办了九届。1990年第一届全国扫描隧道显微学学术会议在北京举行,随后全国扫描隧道显微学学术会议每两年举办一次,最近几次分别在大连(2006)、天津(2004)、上海(2002)、厦门(2000)和合肥(1998)召开,在国内外同行中已形成良好影响。 本次会议是我国扫描探针显微学(SPM)研究领域同行的又一次聚会,探讨扫描探针显微学领域的国际发展新动向,交流扫描探针显微学理论、技术、仪器的最新进展和SPM技术应用的最新研究成果等。会议时间: 2008年11月23-25日 会议地点: 广东温泉宾馆 承办单位: 暨南大学纳米化学研究所 协办单位:暨南大学化学系 会议主题:交流近年来我国在扫描探针显微学以及相关领域的研究成果 会议语言及发表方式:会议语言为中文。交流方式包括邀请报告,口头报告和墙报。口头报告和墙报论文均享有同等学术地位。组织委员会根据本人愿望和议程的可能,确定安排口头报告或墙报论文。会议将出版摘要论文集(附全文光盘),高质量论文(全文)将推荐到《电子显微学报》发表。 征稿范围 1、SPM技术及相关应用 2、纳米级结构和功能材料 3、新型分子电子器件 4、单分子生物学 5、分子传感器 6、其他相关研究 摘要要求和截止时间:论文摘要不超过600字,加上参考文献为A4纸一个版面,排版格式见附件1。截止时间为2008年7月31日。 投稿信箱:stm10@126.com;stm10@yahoo.cn 会议网站:http://sky.jnu.edu.cn/stm10/index.htm 咨询信箱:stm10@126.com;stm10@yahoo.cn 会议注册费:注册费一般代表每人950元,研究生代表每人650元(凭学生证)。 联系电话:+86-20-85223569;传真:+86-20-85223569 联系地址: 广东省广州市暨南大学化学系(510632) 联系人:蔡继业(教授):Tel:+86-20-85223569;Fax:+86-20-85223569 胡明铅(秘书):Tel:13242864096 陈家楠(秘书):Tel:13631332225 具体的第一轮会议通知及征稿通知可在我公司资料中心下载,或直接访问本次大会官方网站 http://sky.jnu.edu.cn/stm10/index.htm 。 Veeco公司诚挚地邀请您参加本届STM&rsquo 10学术会议!
  • 新品推荐|粮食真菌毒素检测仪 荧光定量 随到随检
    粮食的质量对于食品安全至关重要,然而,在粮食的生产供应链中,储存与运输环节如果处理不当,容易导致粮食质量问题,尤其是真菌毒素的污染。真菌毒素对人体健康的危害不可低估,因此我们迫切需要可靠的粮食真菌毒素检测仪,以快速获取相关数据,更好地管理粮食的贮存与销售。粮食真菌毒素检测仪采用荧光定量快速检测原理,是一种先进的仪器设备,主要应用于粮油谷物、饲料等样品中真菌毒素的有效、准确检测。以下是该检测仪的两个重要特点:一、荧光定量原理:粮食真菌毒素检测仪采用荧光定量技术,通过读取荧光定量检测卡,对比检测区(T线)、质控区(C线)与背景区的荧光信号强度。根据检测卡内置的标准曲线,计算出样品中真菌毒素的含量。这一原理保证了检测的准确性和可靠性,为粮食安全提供了可靠的数据支持。该仪器可检测粮油、谷物、饲料等中的真菌毒素,如黄曲霉毒素B1、黄曲霉毒素M1、玉米赤霉烯酮、呕吐毒素、伏马毒素等。二、随到随检:粮食真菌毒素检测仪具有随到随检的特点,不受检测样本量的限制。它可以灵活地单个或少量样本进行即时检测,也能够高效地处理大量样本,实现现场检测。这一特性使其在粮食生产、仓储、销售等各个环节都能够迅速投入使用,提高了检测的效率与便捷性。1、可应用于粮库、谷物生产企业等粮食行业,确保存储和销售的粮食产品安全。2、在养殖业中,对饲料原料进行检测,预防真菌毒素对畜禽的危害。3、在食品生产和加工行业,保障食品制品质量。4、用于政府监管、第三方检测机构等,加强对真菌毒素的监测和管理。在确保粮食质量安全的同时,粮食真菌毒素检测仪的应用为粮食行业提供了强有力的技术支持,为保障食品安全做出了重要贡献。
  • 美研发出双扫描隧道显微和微波频率探针
    美国加州大学洛杉矶分校17日表示,该校纳米系统科学主任保罗维斯领导的研究小组开发出了研究纳米级材料相互作用的工具——双扫描隧道显微和微波频率探针,可用于测量单个分子和接触基片表面的相互作用。  过去50年中,电子工业界努力遵循着摩尔定律:每两年集成电路上晶体管的尺寸将缩小大约50%。随着电子产品尺寸的不断缩小,目前已到了需要制作纳米级晶体管才能继续保持摩尔定律正确性的地步。  由于纳米级材料和大尺寸材料所展现的特性存在差异,因此人们需要开发新的技术来探索和认识纳米级材料的新特征。然而,研究人员在研发纳米级电子元器件方面遇到的障碍是,人们没有相应的能力去观察如此小尺寸材料的特性。  元器件间的连接是纳米级电子产品至关重要的部分。就分子设备而言,分子极化性测量的范围涉及到电子与单个分子接触的相互作用。极化性测量有两个重要方面,它们分别是接触表面以次纳米分辨率精度进行测量的能力,以及认识和控制分子开关两个状态的能力。  为测量单个分子的极化性,研究小组研发出能够同时进行扫描隧道显微镜测量和微波异频测量的探针。借助探针的微波异频测探,研究人员将能确定单个分子开关在基片上的位置,即使开关处于“关”的状态也不例外。在开关定位后,研究人员便可利用扫描隧道显微镜变换开关的状态,并测量每个状态下单分子和基片之间的相互作用。  维斯说,新开发的探针能够获取单分子和基片之间物理、化学和电子相互作用以及相互接触的数据。维斯同时还是著名的化学和生化以及材料科学和工程教授。参与研究工作的还有美国西北大学的理论化学家马克瑞特奈和莱斯大学合成化学家詹姆斯图尔。  据悉,研究小组新的测量探针所提供的信息集中在电子产品的极限范围,而不是针对要生产的产品。此外,由于探针有能力提供多参数的测量,它有可能被研究人员用来鉴定复杂生物分子的子分子结构。
  • 武汉大学预算430万元购买1套超高真空扫描隧道/原子力显微镜系统
    4月29日,武汉大学公开招标购买1套超高真空扫描隧道/原子力显微镜系统,预算430万元。  项目编号:HBT-13210048-211202  项目名称:武汉大学超高真空扫描隧道/原子力显微镜系统采购项目  预算金额:430.0000000 万元(人民币)  最高限价(如有):430.0000000 万元(人民币)  采购需求:  超高真空扫描隧道/原子力显微镜系统(进口)1套。  合同履行期限:交货期为合同签订并图纸确认后10个月,质保期两年。  本项目( 不接受 )联合体投标。  开标时间:2021年05月21日 09点30分(北京时间)
  • 1000万!重庆大学极低温强磁场扫描隧道显微镜系统采购
    项目编号:CQU-SS-HW-2022-156项目名称:重庆大学极低温强磁场扫描隧道显微镜系统采购预算金额:1000.0000000 万元(人民币)最高限价(如有):980.0000000 万元(人民币)采购需求:序号产品名称(设备名称)※数量单位备注1极低温强磁场扫描隧道显微镜系统1套(核心产品)合同履行期限:中标人应在采购合同签订后18个月内交货,交货后30日内完成安装调试。本项目( 不接受 )联合体投标。重庆大学“极低温强磁场扫描隧道显微镜系统”采购项目-招标文件(挂网稿)-1205改.doc
  • 297万!浙江大学低温扫描隧道显微镜采购项目
    项目编号:ZUPC-GK-HW-2022029G项目名称:低温扫描隧道显微镜预算金额:297.0000000 万元(人民币)最高限价(如有):297.0000000 万元(人民币)采购需求:低温扫描隧道显微镜 一套,详见标书文件。合同履行期限:合同签订后12个月内交付至用户指定地点。本项目( 不接受 )联合体投标。
  • 1150万!北京理工大学低温磁场扫描隧道显微镜、多功能针尖增强拉曼光谱仪采购项目
    一、项目基本情况1.项目编号:0873-2301HW2L0473项目名称:北京理工大学低温磁场扫描隧道显微镜采购预算金额:800.000000 万元(人民币)采购需求:采购低温磁场扫描隧道显微镜1套;用于科研,接受进口产品投标,详见附件合同履行期限:合同签订后2个月内出具图纸,采购人批复图纸后8个月交付。本项目( 不接受 )联合体投标。2.项目编号:CFTC-BJ01-2311049项目名称:北京理工大学多功能针尖增强拉曼光谱仪预算金额:350.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述多功能针尖增强拉曼光谱仪教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月04日 至 2023年12月11日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:北京中教仪国际招标代理有限公司512室,北京市海淀区文慧园北路10号方式:建议采用汇款形式进行报名(节假日、工作日均可),请按本公告“其他补充事宜”所述账户信息汇款(不接受个人账户汇款),请您在本公告页面最下方附件自行下载“报名登记表”,填写完成后以word文本形式和汇款底单一起发送至shige@china-didac.com,工作日可以现场登记报名,招标文件售后不退。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:北京市海淀区中关村南大街5号        联系方式:林老师,010-68917981      2.采购代理机构信息名 称:北京中教仪国际招标代理有限公司            地 址:北京市海淀区文慧园北路10号            联系方式:施歌、李璟琨、卢琛曦、杨硕,010-59893121、010-59893127、010-59893109            3.项目联系方式项目联系人:施歌、李璟琨、杨硕、蒋旭、谢杰、韩寿国电 话:  010-59893121、010-59893129
  • 600万!天津大学理学院低温扫描隧道显微镜系统采购项目
    项目编号:1395-224TDZCJ0014(TDZC2022J0014)项目名称:天津大学理学院低温扫描隧道显微镜系统预算金额:600.0000000 万元(人民币)采购需求:低温扫描隧道显微镜系统 1台,本项目接受进口产品参与投标。合同履行期限:合同签订后540天内交货本项目( 不接受 )联合体投标。
  • 扫描隧道显微镜助力“药物击靶”可视化:原来药物分子也会“玩乐高”
    p  8月5日,Science Advances期刊发表我国学者论文,其上登载了一张“药物击靶”显微镜照片。据论文通讯作者之一的中国医学科科学院基础医学研究所副研究员王晨轩介绍,这是科学家首次直观看到“药物击靶”的状态,可用于指导药物分子的设计。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 489px " src="https://img1.17img.cn/17img/images/202008/uepic/a84d5415-9f82-46e6-9b7b-49dcd99b74d4.jpg" title="微信图片_20200813111429.png" alt="微信图片_20200813111429.png" width="500" height="489" border="0" vspace="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 363px " src="https://img1.17img.cn/17img/images/202008/uepic/3faeb35b-438a-4004-a05c-ddb29962f12d.jpg" title="1b2fd81ff88d4487bc9adafb2c51ee14.jpg" alt="1b2fd81ff88d4487bc9adafb2c51ee14.jpg" width="600" height="363" border="0" vspace="0"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "strong  照片显示:当药物分子(硫黄素T)要与生命体内的靶蛋白结合、起药效时,不是像人们想象的单个分子去结合蛋白,而是自动像“乐高积木”一样组装后,合力“击靶”,这种“机灵劲儿”与之前人们的想象完全不同。/strong/span/pp  本以为它只身赴命,没想到它两两成对、凑四成团、甚至6人成伍… … 这个新发现可能带来哪些颠覆性改变?据王晨轩介绍:“教科书中有一个经典的‘锁钥模型’,是说药物分子能够‘击靶’必须要和蛋白严丝合缝,像一把钥匙开一把锁,但现在的显微镜观测结果表明,药物分子用寡聚态的方式‘工作’,或许我们只需要半个钥匙就能开锁。”/pp  “药物设计是个‘配钥匙’的过程。人们已知一个疾病相关的蛋白质结构,想设计一种反向性的药物,需要有机化学家、计算机辅助药物设计的理论化学家等一起构筑一个和蛋白质活性中心匹配的足够大的钥匙才能工作。药物合成越长越难,每个基团像“粘胳膊”一样,到了产业化的时候对工艺的要求更是指数级的增加。如果药物其实只需要合成原来的很小一段,1/4或者是1/8,那么难度将大大降低。此发现可以简化药物合成路径。/pp  据悉,蛋白质的照片拍摄很困难,先是晶体衍射法,再是冷冻电镜的方法,但是至今仍不是所有的蛋白都能拍摄成功,原因是都必须要让蛋白排列成有序的阵列,才能满足成像要求。“这就好比,只有阅兵式上的解放军方阵才能成像,而后面的群众大联欢方阵是拍不上的。”王晨轩打了个特别形象地比方,因此要拍摄和药物分子结合的蛋白分子,就要用新的拍摄设备。/pp  扫描隧道显微镜勇最初是物理学家用来探测原子、亚原子的微观结构,具有超高的分辨能力。王晨轩说,把物理设备引进生物领域是上世纪90年代的事情,需要完成对设备的硬件、软件、算法的全新研制,中国团队在国际上是较早进入这一领域的。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 400px " src="https://img1.17img.cn/17img/images/202008/uepic/bdfe1e18-3132-4394-88b3-5eff33787fac.jpg" title="1597292515109044001.jpg" alt="1597292515109044001.jpg" width="300" height="400" border="0" vspace="0"//pp  由于它是通过量子力学中的隧穿效应,通过记录穿越样品的电子直接捕捉蛋白质和药物分子的“模样”,最开始的扫描隧道显微镜操作必须在真空中。中国科学家团队很早解决了常态下用扫描隧道显微镜观测的问题,在世界上首次使用了扫描隧道显微镜,实现了在大气室温下对化学分子的观察。/pp  为了拍摄首张“药物击靶”显微镜照,医科院基础所王晨轩、于兰兰、张文博,与国家纳米科学中心的王琛、杨延莲、方巧君团队等几代科研人打磨多年,不仅发明了蛋白质对基底的吸附技术、分子伴侣的固定技术、扫描探针的脉冲技术等一系列专利技术,还对整个“拍照”的流程进行优化和摸索。/pp  “整套(拍照)技术非常复杂,很难形成照搬流程,只能像是匠人之间的口口相传,需要知识、经验和揣摩,专业人员可能需要一年或者几年的训练时间跟着走下来,才能系统掌握。”王晨轩说。/p
  • 天美将携手Park参加“第十一届全国扫描隧道显微学学术会议”
    扫描隧道显微学学术会议是由白春礼院士发起的全国性会议,每两年一届,迄今已成功举办了十届。本次会议将于11月3日至5日,在美丽的江城武汉举行,由中国科学院武汉物理与数学研究所承办。本次会议的宗旨是展示最近两年来我国高校与科学研究机构在扫描探针显微术及其应用领域所取得的研究成果,并为与会者提供一个学术交流的平台。会议将邀请知名研究学者报告最前沿的研究成果。会议内容将涵盖SPM在各个领域的研究与应用,包括:1)STM与物理;2)STM与化学和与材料科学;3)SPM在生命科学中的应用;4)SPM技术发展;5)国内外SPM厂商仪器介绍与展示。 为了更好的满足国内高校和科研机构对扫描探针显微镜的需求,天美(中国)科学仪器有限公司将与Park Systems Corp. 共同赞助本次会议,并邀请Park Systems的应用科学家作大会邀请报告,介绍新技术如何更好的服务于前沿科学研究。 关于白春礼院士:白春礼是中国纳米技术的领军人物、扫描隧道显微学的开拓者之一。 关于Park Systems:Park Systems是国际知名的原子力显微镜系统供应商,起源于原子力显微镜的诞生地&mdash &mdash 美国斯坦福大学,成长在孕育了无数世界顶尖高技术企业的加州硅谷。
  • 451万!厦门大学化学化工学院低温超高真空扫描隧道显微镜
    项目编号:XDZB2022-A-005项目名称:厦门大学化学化工学院低温超高真空扫描隧道显微镜预算金额:451.0000000 万元(人民币)最高限价(如有):451.0000000 万元(人民币)采购需求:低温超高真空扫描隧道显微镜 1台 技术需求详见招标文件合同履行期限:详见招标文件本项目( 不接受 )联合体投标。
  • 【新闻快讯】公司中标上海交通大学太赫兹光耦合扫描隧道显微镜
    项目名称:上海交通大学太赫兹光耦合扫描隧道显微镜项目编号:0773-2341SHHW0045招标范围:设备名称: 太赫兹光耦合扫描隧道显微镜 数量:1套招标机构:中金招标有限责任公司招标人:上海交通大学开标时间:2023-06-20 09:30公示时间:2023-06-21 16:58 - 2023-06-25 23:59中标结果公告时间:2023-06-26 10:48中标人:束蕴仪器(上海)有限公司制造商:CreaTec Fischer & Co. GmbH制造商国家或地区:德国
  • 扫描隧道显微镜发明者罗雷尔逝世 享年80岁
    据瑞士媒体报道,瑞士物理学家、1986年诺贝尔物理学奖获得者之一海因里希• 罗雷尔(Heinrich Rohrer)因病于5月16日在家中逝世,享年80岁。海因里希• 罗雷尔(Heinrich Rohrer)  罗雷尔1933年生于圣加伦州布克斯市,拥有瑞士联邦工学院博士学位。据媒体报道,1981年他与同事成功研制出了扫描隧道显微镜(STM)。1983年,他们利用STM在硅单晶表面第一次直接观察到周期性排列的硅原子阵列。由于STM这一发明,他与Ernst Ruska、Gerd Binnig分享了1986年诺贝尔物理学奖。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制