当前位置: 仪器信息网 > 行业主题 > >

能锂电池隔厚仪

仪器信息网能锂电池隔厚仪专题为您提供2024年最新能锂电池隔厚仪价格报价、厂家品牌的相关信息, 包括能锂电池隔厚仪参数、型号等,不管是国产,还是进口品牌的能锂电池隔厚仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合能锂电池隔厚仪相关的耗材配件、试剂标物,还有能锂电池隔厚仪相关的最新资讯、资料,以及能锂电池隔厚仪相关的解决方案。

能锂电池隔厚仪相关的资讯

  • 有“锂”走天下,兰格智能泵助力新能源锂电池行业
    最近,国内成品油价一直在变动,成为街头巷尾的谈资。与此同时,锂电池作为新能源汽车的动力来源行业也面临材料价格上涨,相关话题频上热搜。受益于新能源汽车行业飞速发展,锂电池新材料的研究也愈发火热。其中,全固态锂离子薄膜电池由于安全性更高等优点,日益受到重视。薄膜型全固态锂电池是在传统锂离子电池的基础上发展起来的一种新型结构的锂离子电池。其基本工作原理与传统锂离子电池类似,即在充电过程中Li+从正极薄膜脱出,经过电解质在负极薄膜发生还原反应;放电过程则相反。过程中电解质起着至关重要的作用,直接影响到薄膜电池的充放电倍率、循环寿命、自放电、安全性以及高低温性能。以某个全固态薄膜锂电池生产试验线的实际应用为例:兰格某客户在电解质试验工艺中,需要三个泵为一组,在不同的时间点输送试剂,一个小时为一个循环,一天连续工作8小时。挑战对于这种复杂的进样体系,常规的实验室人工管理显然无法满足要求,需要使用PLC、电脑等实现设备的自动化管理。对于常规的化学、材料实验室,这就大大增加了试验的难度,需要通过自动化工程来完成。尤其,研究人员想要随时改变实验参数,也难以灵活实现。兰格解决方案对于实验的过程进行模块化分解,兰格智能型蠕动泵可提供9种运行控制模块(匀速、匀加速、匀减速、阶梯加、阶梯减、正弦、均匀分配、减量分配、增量分配)和8种逻辑控制模块(方向、暂停、循环、事件触发、延时、跳转、外控输出、结束)。研究人员可以像搭建乐高积木一样,来使用智能蠕动泵。例如上述的电解质试验工艺,兰格智能泵程序可以做如下设定:更多优势:如果研究人员需要改变其中的步骤,只需插入或删除相应模块即可。如果要修改某个模块的运行参数,直接进入模块进行修改即可。同时整个工作过程可以保存为方法,在后续的试验中可以直接调用。新能源车行业是我国战略性新兴产业,而且锂电池和5G、化学储能、碳中和等等也都息息相关,未来仍将有“锂”走天下。兰格智能蠕动泵应对不同需求,可提供多种运行/逻辑控制模块的灵活选择,助力科学家与工程师实现更便捷的操作,提高有效性、可靠性和智能体验,为全球碳中和事业作出贡献!
  • 高分辨质谱技术丨赋能锂电池电解液成分表征
    概述锂电池与我们生活密切相关,比如手机、ipad、电脑、充电宝、玩具、电动汽车、电动轻型车和新型储能等都有锂电池的身影,锂电池综合优势与下游领域对电池大容量、高功率、使用寿命和环境保护日益提升的需求相契合,存在广阔的市场应用前景。锂离子电池四大关键材料包括正极材料、负极材料、隔膜、电解液。锂电池的正极材料中,行业已经认可镍钴锂、磷酸铁锂等材料,不过也有许多企业逐渐转入了新型复合材料的研发中,液相色谱串联高分辨质谱仪在该研发过程中,可以在探究新型材料氧化还原反应机理研究、及活性基团位置不同对电化学性能的影响等方面贡献力量。金属锂的高化学活性使其易于与大多数电解质发生不可逆反应,从而在阳极表面形成固体电解质层(SEI)。液相色谱串联高分辨质谱仪可以对SEI膜成分进行结构解析,帮助研究其形成机制,减少其形成。电解液被誉为电池的“血液”,是实现锂离子在正负极迁移的媒介,对锂电容量、工作温度、循环效率以及安全性都有重要影响。所以对电解液体系中的特有成分的鉴定,杂质鉴定,其在不同电极作用,不同循环次数,不同放置时间,不同添加剂等等条件变化下电解液组成的变化,反应机理的研究,这对电池性能研究都具有重要作用。X500R QTOF 系统在锂电池电解液成分分析的应用研究本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,仪器标配的ESI源和APCI源可兼顾不同性质的化合物,IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件对数据分析,为表征电解液提供解决方案。图 1 数据处理流程图流程一:SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程SCIEX OS软件可以设定的条件,快速筛选出一级偏差准确,同位素分布合理,二级质谱图匹配得分高的结果,帮助我们快速鉴定化合物。图2 TOF MS和TOF MS/MS谱图流程二:统计学分析得到差异化合物鉴定流程对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以采取组学的思路,使用SCIEX OS软件中MarkerView&trade 统计学分析模块进行PCA,T-test等统计学分析,MarkerView&trade 统计学分析模块和Explorer鉴定化合物模块互相链接,无需不同软件间转移,减少格式转化带来的数据丢失。可以将原始数据导入MarkerView&trade 统计分析后得到样本间具有统计学差异的离子后,可以直接查看一级和二级质谱图,进行鉴定分析。图3 MarkerView&trade 统计学界面展示流程三:非靶向流程软件可以设置空白样本,根据设定的峰面积比扣除空白样本中的离子,软件自动将不同加和离子形式和不同电荷数进行分组,增加鉴定准确度并减少重复鉴定的工作量。提取出来的离子会自动给出分子式,链接SCIEX本地数据库或者在线数据库进行检索,根据和二级质谱图匹配的情况,给出得分,同时也可以根据软件自动给出的二级偏差判断碎片归属,二级碎片可以和结构一一对应,有助于我们进行结构解析,分析合理性图4 非靶向流程中部分界面展示小结本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,分别使用ESI源和APCI源对样本进行采集,兼顾不同性质的化合物,可以更全面的表征化学成分。IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程简便且准确。对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以使用统计学软件找到统计学差异的离子,进行鉴定分析。也可以采用软件自动扣除空白,自动识别离子的不同加和离子形式,电荷形式,结合SCIEX本地数据库或者在线数据库的非靶向流程,是结构鉴定和解析的有力工具,为表征电解液提供了的解决方案。 参考文献 [1]冯东,郝思语,谢于辉,等.锂离子电池电解质研究进展[J].化工新型材料,2023,51(2):35-41.[2]付文婧,汪熙媛,柯伟,等.汽车电动化的重要发展方向——锂电池技术[Z].时代汽车,2023(7):123-125.[3]Ma, Ting, et al. "Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective." Polymers 14.17 (2022): 3452.
  • 科研赋能:珀金埃尔默在锂电池行业分析中的应用
    锂电池是一种以锂离子为电荷载体的可充电电池,广泛应用于便携式电子设备、电动汽车(EVs)、能源存储系统以及其他多种应用中。锂电池由正极材料、负极材料、电解液、隔膜、电池外壳等部件组成,其中 01正极材料: 常见的有锂钴氧化物(LiCoO2)、锂铁磷酸盐(LiFePO4)、锂镍锰钴氧化物(NMC)等。 02 负极材料: 通常使用石墨或硅基材料。 03 电解液: 含有锂盐的有机溶剂,如六氟磷酸锂(LiPF6)溶解在碳酸酯类溶剂中。 04 隔膜: 一种多孔材料,允许锂离子通过,同时防止电极间的物理接触。 05 电池外壳: 保护内部组件并提供结构支持。 如新能源汽车上使用的磷酸铁锂电池和三元锂电池,正极使用的配方与主量元素间的配比,直接决定电池的能量密度、充放电循环效率等。正/负极材料与点解液中的杂质元素含量,对电池品质也有着重要影响,珀金埃尔默分析仪器对上述质量控制节点,均有很好的解决方案。 1 ICP-OES/ICP-MS 正极材料分析中的应用 锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁(Fe )、铜(Cu)、铬(Cr)、镍(Ni)、锌(Zn)、铅(Pb)等金属杂质时,电池化成阶段的电压达到这些金属元素的氧化还原电位后,这些金属就会先在正极氧化再到负极还原,当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电。自放电对锂离子电池会造成致命的影响,因而从源头上防止金属异物的引入就显得格外重要。 图1. 电池正极材料 现阶段的众多锂电池企业,均采用ICP-OES作为主量元素配比以及杂质元素浓度的测定工具。使用ICP-OES测试主量与杂质元素时,可能会遇到的一些问题如: 1.主量元素浓度高,仪器动态范围是否够宽? 2.测定主含量元素的同时,能否测定微量杂质元素? 3.测定主含量元素仪器是否稳定? 4.测定杂质仪器是否有足够的灵敏度? 等等 得益于珀金埃尔默公司Avio系列ICP-OES上的独特设计,配备平板等离子体技术、双向观测模式、丰富的元素谱线库、专利性的光谱干扰校正技术(MSF,多谱拟合技术)能够有效解决上述问题。 (点击查看大图) 伴随着产业的发展以及工艺的提升,对杂质的管控越发严格,杂质浓度限值一直在往下调。ICP-OES由于其仪器原理的限制,在测定低浓度杂质元素时遇到瓶颈。Cr、Cu、Fe、Zn、Pb这些元素尤其明显。据调研,部分厂家该5个元素浓度控制在1ppm以下(部分厂家Fe含量在10 ppm以内),在常规100倍固液稀释比前处理后,样品溶液中该元素浓度在10 ppb以下,因此使用ICP-OES进行检测遇到了极大的挑战,尤其在谱线干扰严重的情况下。而ICP-MS由于其灵敏度更高,检测下限更低,是一个非常好的检测手段。 图2. NexION系列ICP-MS 使用ICP-MS测试正极材料中杂质元素的挑战包括: 1. 杂质元素会受到主量元素质谱干扰; 2. 对不同类型的质谱干扰,需要不同的干扰校正模式。 通过对多个厂家的锂电正极材料做测试,运用空白实验、平行样、加标回收等质控手段进行测试,验证了珀金埃尔默NexION系列ICP-MS,标配AMS进样系统,配合大锥孔三锥设计,四极杆离子偏转器,可以获得优异的基体耐受性、仪器稳定性,以及更低的记忆效应。 图3. NexION ICP-MS测试正极材料 杂质元素加标回收率 (点击查看大图) 图4. NexION ICP-MS测试正极材料 杂质元素校准曲线 (点击查看大图) 实验结果表明,通过选择合适的同位素以及仪器强大的耐基体性能保证了数据的准确性与稳定性。该方法十分适合分析高基体锂电正极材料。 2 ICP-MS在锂电池 电解液分析中的应用 电解液是锂离子电池的重要组成部分,在电池中作为离子传输的载体,使锂离子在正负极间移动。电解液通常由锂盐、溶剂和添加剂组成,其中溶剂提供离子传输介质,锂盐增强电解质的离子传输率。 电解液样品无法用传统的微波消解前处理,因为样品中含有乙醇与其他挥发性有机物,微波消解会发生爆罐。马弗炉灰化会产生大量有毒的氟化磷,而电热板消解需要大量酸同时实验人员必须在边上值守防止样品碳化,耗时且会引入污染。所以对于这类样品用有机溶剂直接溶解后快速直接进样。短时间内即可处理完样品,同时避免了容器与酸引入的污染。 珀金埃尔默公司的ICP-MS搭配全基体进样系统(AMS)为电解液中杂质元素分析提供一条全新思路。利用ICP-MS极高的灵敏度,可以采取更大稀释倍数降低Li元素带来的高盐影响,在前处理方面,仅采使用10%甲醇(电子级),50倍稀释上机,AMS使用氩氧混合气,实现加氧防止有机物积碳,同时用氩气减少基体效应。实现了电解液中杂质元素的准确、高效、环保分析。 电解液直接进样也会引入大量C相关的质谱干扰,如Mg、Al、Cr会分别受到CC、CN、ArC等干扰,另外Ar与H2O也会是K,Ca,Fe等收到干扰。NexION系列ICP-MS全系列均可使用纯氨气作为反应气体,消除相应的质谱干扰。从而获得最准确的结果。 图5. NexION ICP-MS测试电解液杂质元素1ppb(Hg 0.1ppb)加标回收率 (点击查看大图) 图6. NexION ICP-MS测试 电解液杂质部分元素校准曲线 (点击查看大图) 3 GCMS在锂电池 电解液分析中的应用 通常用于商用锂电池的电解质溶液含有锂盐、有机溶剂和一些添加剂。有机溶剂主要是环状碳酸酯,例如碳酸亚乙酯和碳酸丙烯酯,或链状碳酸酯,例如碳酸二乙酯和碳酸甲乙酯。这些碳酸盐的构成和比例对锂离子电池的能量密度、循环寿命和安全性有重要影响。因此,研究电解质溶液中碳酸盐的构成和含量对锂离子电池的开发和质量控制起着重要作用。 图7. 珀金埃尔默 GCMS 2400 珀金埃尔默 GCMS 2400配 EI 源测定了锂离子电池电解液中的9种碳酸盐。实验结果显示该方法具有良好的精确度、回收率、线性和检测限,能够满足锂离子电池行业的需求。 表1. 精确度、回收率以及方法检出限、定量限 (点击查看大图) 4 GC在锂电池中 鼓包气体成分分析中的应用 锂离子电池因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓包, 从而带来极大的安全隐患。因此,了解电池鼓包气体的组成对于优化电解液的组成是至关重要的。 珀金埃尔默独特的解决方案,采用气相色谱TCD和带甲烷转化炉FID检测器串接技术对锂离子电池中产生的鼓包气体进行检测,获得鼓包气体的主要成分和定量分析。常见鼓包气成分有H2,O2,N2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体,采用TCD和带甲烷转化炉FID检测器串接技术可以同时满足高含量的CO,CO2分析以及低含量的CO,CO2 ,CH4,C2H4,C2H6等烷烃分析,该方法CO,CO2及烷烃类检出限小于1ppm,H2检出限小于10 ppm,该方法可实现手动气密针进样以及气体阀进样,可以获得待测锂离子电池鼓包气体完整、精准的分析结果。 表2.n=7次进样的相对标准偏差(RSD%) (点击查看大图) 图7.鼓包气气体成分参考谱图 (点击查看大图) 5 热分析设备 在电池领域的应用简介 在电池组原材料领域, DSC设备可用来分析聚合物以及金属材料的各种相变过程以及相应吸放热量的大小(比如分析聚丙烯的玻璃化转变温度以及结晶熔融过程等);STA同步热分析仪可以研究各种材料的热稳定性,确定热分解温度,定量测定复合材料的相对组成比例等。典型图谱如下图8和图9所示; 图8 电池原材料熔融和结晶过程评价 (点击查看大图) 图9 电池原材料热稳定性评价曲线 (点击查看大图) 电池组件由正极、负极和隔膜等各种组件构成,珀金埃尔默公司所提供的逸出气体联用装置可用于研究各组件在温度变化过程中产生各类逸出气体的定性定量数据。图10为典型的STA-FTIR联用测试曲线; 图10 电池组件逸出气体分析测试谱图 (点击查看大图) 在电池封装领域,可对组件封装材料——EVA(乙烯-醋酸乙烯共聚物)等材料的交联率进行快速测试,进而替代传统的溶剂测试法。典型测试谱图如图11所示; 图11 电池封装材料交联度预测曲线 (点击查看大图) 扫描左侧二维码 获取《珀金埃尔默锂电池检测总体解决方案》 关注我们
  • 锂电池隔膜市场生变:行业“老大”欲20亿吞并“老二”
    p style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"近日,云南恩捷新材料股份有限公司(以下简称“恩捷股份”)发布公告称,公司已与苏州胜利精密制造科技股份有限公司(以下简称“胜利精密”)签订《股权转让框架协议》(以下简称《框架协议》),拟以20.20亿元收购其全资子公司——苏州捷力新能源材料有限公司(以下简称“苏州捷力”)100%股权,包括以9.50亿元对价受让股权和苏州捷力拖欠胜利精密的不超过10.7亿元其他应付款。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"此次《框架协议》的签订,被业界人士称为“湿法隔膜领域‘老大’对‘老二’的收购”,这意味着恩捷股份将进一步巩固其行业寡头地位。该人士分析指出,目前,湿法隔膜行业正处于“一超多强”的格局之下,企业间的竞争正愈演愈烈,随着行业集中度的不断提升,行业整体盈利水平将得到提升。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"恩捷股份并购苏州捷力是锂电池隔膜行业的头等“大戏”,必将令隔膜市场迎来新的一轮变局。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong“老大”20亿元收购“老二”/strongstrong/strong/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"根据《框架协议》,本次交易总额为20.20亿元,包括以9.50亿元对价受让标的股权和苏州捷力拖欠胜利精密的不超过10.70亿其他应付款总额。交易款将分四次付清,资金来源为公司自有资金及自筹资金,最后一笔尾款4.00亿元作为本协议业绩对赌条款约定的押金。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"公告显示,苏州捷力成立于2009年9月,注册资本为4.22亿元,经营范围包括锂离子电池隔膜、塑料软包装新型多功能膜(太阳能电池用EVA塑料多功能软包装热封膜)、PI光伏电池绝缘材料的生产等。2018年度,公司实现营收4.28亿元,期末净资产为2.76亿元。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者查阅资料发现,以湿法隔膜出货收入计算,2018年恩捷股份锂电池隔膜收入13.28亿元,苏州捷力2018年锂电池隔膜收入4.12亿元。根据GGII(高工产研锂电研究所)数据显示,在纯湿法隔膜企业排名中,2018年恩捷股份与苏州捷力的出货量分别位列行业前两位。/span/ppspan style="FONT-FAMILY: times new roman"  国盛证券某分析师认为,恩捷股份目前是国内湿法隔膜行业绝对龙头,国内市场占有率已经超过40%,苏州捷力在行业排名第二,两者合计市场占有率近60%,收购完成后,恩捷股份的行业寡头地位将得到进一步巩固。此外,通过兼并可避免重资产模式下耗尽现金流的恶性价格竞争,行业格局将进一步优化,后续价格降幅将有望大幅收窄。/span/ppspan style="FONT-FAMILY: times new roman"  对此,恩捷股份某高管回应称:“若本次交易顺利完成,将有利于公司进一步扩大锂电池隔离膜业务的产能,促进行业整合,也能够对公司在锂电池隔离膜领域的战略布局起到支撑作用。”/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong优势互补抢占3C新市场/strongstrong/strong/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  胜利精密2018年报显示,苏州捷力为锂电池行业龙头客户提供湿法基膜和涂覆膜,已达产的湿法基膜产线共有8条,产能规模每年可达4亿平米左右,月均出货量超3000万平米,产品良品率稳定在90%以上。湿法隔膜被广泛运用于三元电池,在下游3C和新能源汽车领域得到了广泛应用。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  同时,苏州捷力不仅为动力电池行业龙头客户,如CATL(宁德时代新能源科技有限公司)等,提供9-12μm 湿法膜(月供应量超千万平方米),还为国际客户,如日本、韩国等客户批量生产5-7μm的用于消费类电池的高端超薄隔膜。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  就收购苏州捷力一事,恩捷股份相关负责人在接受《证券日报》记者采访时表示:“目前, 恩捷股份的产品以动力电池为主,而苏州捷力在3C方面具有显著优势,目前客户包括ATL(宁德新能源科技有限公司)、LG、村田等,其4-5μm超薄膜产品也已实现批量化生产。收购完成后将对公司的产品种类形成有益的补充”。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"“此外,对苏州捷力而言,由于其产品以基膜为主,涂布优势不明显,恩捷股份将会在涂布方面为其提供协同 另一方面,恩捷股份对成本把控能力强,有利于降低苏州捷力成本,二者强强联合,优势互补,协同效应显著,公司龙头地位将得到进一步稳固。”上述负责人说。/span/pp style="TEXT-ALIGN: justify"span style="FONT-FAMILY: times new roman"  前述国盛证券分析师认为,恩捷股份客户主要集中于动力电池领域,目前以9u隔膜产品为主,在消费电池领域积累相对薄弱。而苏州捷力则在动力电池、消费领域并举,已成为苹果电池供应商ATL的核心供应商之一,其提供的5u产品,超薄产品全球领先。据介绍,进入ATL供应体系需要长认证周期,从0到实现大批量供应将至少耗费1-2年时间,收购完成后,恩捷股份将把全球最大的消费电池龙头客户ATL收入囊中。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"strong行业整合加速谋变/strongstrong/strong/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者查阅资料了解到,2018年全球新能源汽车产业发展迅猛,全球新能源乘用车年销量已突破180万辆,国内首次突破100万辆,锂电池行业正迎来快速增长期,对应的隔膜市场需求旺盛。而国内多起隔膜企业间的整合预示着隔膜产能集中度的进一步提升,企业间竞争正进一步加剧。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"相关统计数据显示,现阶段国内真正有出货量的隔膜企业已不到40家,与2017年底统计的近60家(含干法、湿法)相比,数量大幅锐减,未来这一数量还将进一步减少。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"GGII认为,从2019年的趋势来看,隔膜行业的整合正在加快,隔膜龙头企业正在扩大产能、提升内部管理、增加功能隔膜开发投入,以进一步降低成本并拉开与三四线企业的差距。隔膜属于重资产行业,在企业间分化加剧的情况下,中小规模企业将面临更大的经营压力,预计到2019年底将有更多的隔膜企业倒闭或者停产。/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"《证券日报》记者了解到,除此次恩捷股份收购江苏捷力外,2018年中材科技与湖南中锂两者的兼并整合也有望在产能规模、技术联动、资源整合方面提升一定市场竞争力。/span/ppspan style="FONT-FAMILY: times new roman"  恩捷股份相关负责人还透露:“本次交易若能顺利完成,将对公司在锂电池隔离膜领域的战略布局起到支撑作用,这也意味着公司与其他湿法隔膜企业在市场份额及产能规模上的距离将进一步拉大。”(见习记者 顾贞全)/span/pp style="TEXT-ALIGN: right TEXT-INDENT: 0em"span style="FONT-FAMILY: times new roman" span style="FONT-FAMILY: times new roman FONT-SIZE: 14px"原标题:湿法隔膜市场生变:行业“老大”欲20亿元吞并“老二”/span/span/pp style="TEXT-ALIGN: justify TEXT-INDENT: 2em"span style="FONT-FAMILY: times new roman"/span /pp /p
  • 硅基超亲电解液锂电池隔膜研究获进展
    能量型锂金属电池作为下一代电化学储能技术,是电动汽车、航空航天等领域发展的基础。然而,在构建高比能锂金属电池的条件下,锂枝晶不可控生长和中间产物穿梭等问题严重制约了其产业化进程。近日,中国科学院兰州化学物理研究所环境材料与生态化学研发中心和淮阴师范学院合作,在硅基超亲电解液锂电池隔膜研究取得新进展。一种仿树叶结构的锂电池隔膜,用于解决高能量密度锂金属电池中不可控的锂枝晶生长等问题。相关论文发表于Small。据了解,课题组受树叶分级结构及其精细流体通道的启发,研究人员结合液体/温度诱导相分离和原位聚合反应,设计了一种具有分级多孔结构和离子选择性的凹凸棒石/聚合物复合隔膜。研究表明,该隔膜可有效、快速传递锂离子,同时能抑制锂盐阴离子的通过,从而实现了锂离子在锂金属负极表面均匀、定向沉积,改善了电池的界面稳定性和循环稳定性。此外,该隔膜展示了超亲电解液性能、高的电解液吸液率和保留率、良好的热稳定性和阻燃性能。研究人员将其应用于锂-硫电池和锂-磷酸铁锂电池时,在室温或高温条件下均表现出优异的循环稳定性和倍率性能等。仿树叶结构凹凸棒石/聚合物复合隔膜的制备及表征。兰州化物所供图。
  • 一层隔膜两重天:国产锂电池尚需拨云见日
    p  “也不知道这辆车的电池能坚持多久?”/pp  6月15日上午,望着窗外驶过的又一辆新能源汽车,南开大学新能源材料化学研究所所长、博士生导师周震习惯性地自语道。/pp  从事新能源材料研究20多年,看着日渐增多的新能源汽车,周震欣喜之余,仍存忧虑,“锂电池的基础材料研究,我们与世界一流水平还有差距,尤其高端电池隔膜材料仍然依赖进口”。/pp  在周震等业内专家看来,作为新能源车的“心脏”,国产锂离子电池(以下简称锂电池)目前“跳”得还不够稳。/pp style="text-align: center "strong  跨越太平洋的“四国游戏”/strong/pp  去年全球动力电池销量前10的企业中,中国企业就占了7席,在市场份额上超越日本,占据了世界第一位 预计到2020年,我国在全球电池市场所占的份额将达七成以上 目前我国电池生产企业已超过了200家,是全球拥有锂电池生产企业最多的国家……然而这一串的数字,并没有让业内人士觉得骄傲,不少人接受采访时指出,虽然我国已经形成了比较完善的动力电池产业链,电池产业规模够大,但是还远称不上强。/pp  在锂电池领域存在着一个跨越太平洋的“四国游戏”。“从行业角度来看,美国有比较强的研发设计能力,目前仍然引领锂电池原始创新、核心材料研发 日本作为电池材料制造大国,生产规范严格,能够最先制造出新的成品电池 我国和韩国作为第二梯队,后续跟进……”周震解释说,“相较日、韩,我国的低端锂电池产品更有优势,主要是由于人工和原始材料相对便宜,但是在部分高端产品,尤其是事关电池安全性的核心材料和制造工艺,仍有较大的差距。”/pp  据了解,电池四大核心材料中,正、负极材料、电解液都已实现了国产化,唯独隔膜仍是短板。国产隔膜主要供应低端3C类电池市场,高端隔膜目前依然大量依赖进口。核心专利缺乏,隔膜等关键材料不给力,不仅成了国产锂电池难以承受之痛,也拖了国产锂电池企业“走出去”的后腿。/pp  天津力神电池一位负责人在接受科技日报记者采访时表示,锂电池最前沿的三元材料,核心专利掌握在美国3M公司和阿贡国家实验室的手中,3M公司持有常规化学计量比的NMC材料的专利,阿贡国家实验室拥有层状富锂材料专利。目前,松下、三星、LG等主流厂商都要花钱购买相关专利授权。“国内锂电池企业众多,未来进入国际市场,面对国际巨头竞争,缺乏核心专利和材料技术是中国电池企业未来最大的隐忧和短板。”该负责人表示。/pp style="text-align: center "strong  一层薄膜两重天/strong/pp  采访中,有电池材料专家告诉记者,隔膜是锂电池的关键组件之一,隔膜主要材质为多孔质的高分子膜,包括聚乙烯及聚丙烯。锂电池用的隔膜对安全性、渗透性、孔隙度及厚度都有严苛的要求。/pp  “在锂电池内部,带有电荷的离子,在正负极间流动穿梭,才能形成电流,而隔膜位于电池内部正负极之间,既要防止正、负极直接接触,又要确保电解质离子顺利通行。”周震形象地解释说,电池电解液犹如河流,锂离子好比河上行驶的小船,隔膜是拦腰而建的大坝,一个个隔膜孔就像是大坝上的闸门,正常情况下,离子自由穿梭到达正负极,完成充放电的循环。/pp  “高端的隔膜一般附带有陶瓷材料,如果电解液温度过高,材料膨胀,孔隙会像闸门一样关闭,切断离子交流,从而避免电池因温度过高而起火爆炸。”周震介绍说,隔膜是锂电材料中技术壁垒最高的一种材料,其技术难点在于造孔的工程技术、基体材料,以及制造设备。“技术要求高,价格自然也就贵,差不多占到了电池总成本一成以上。”/pp  目前,世界上最好的锂电池隔膜材料出自旭化成和东燃化学两家日本公司,而国内锂电池铝塑膜市场九成份额也被昭和电工等日本厂商垄断。天津力神公司的工程师告诉记者,与日本相比,我国的高端隔膜差距明显。国产隔膜产品一致性不高,存在孔隙率不达标,厚度、孔隙分布以及孔径分布不均等问题。/pp  隔膜的品质直接影响电池容量、充放电循环寿命、阻燃止爆安全性能等指标。业内人士感慨:“一层隔膜两重天,迈过去就是晴天!”/pp style="text-align: center "strong  国产隔膜急需突破/strong/pp  目前锂电池隔膜制造工艺主要分湿法和干法。记者采访中了解到,我国在干法工艺上已迈入了世界第一方阵,但在湿法隔膜领域,国内企业虽掌握方法,但整体仍难以与外国巨头抗衡,此外,核心生产设备也主要依赖进口。/pp  数据显示,2017年,国内锂电市场规模达到了1130亿元左右,其中动力锂电池规模大约600亿元。而国家工信部印发的《节能与新能源汽车产业发展规划(2011—2020年)》也显示,到2020年我国纯电动汽车和插电式混合动力汽车生产能力达200万辆/年。有电池行业协会据此估算,我国未来每年需要的高品质车用动力电池隔膜材料需求量将达到数亿平方米。/pp  “锂电池发展要想不受制于人,隔膜等高端材料无法回避!”天津巴莫股份有限公司总经理吴孟涛认为,如此巨大的市场需求,完全依赖外国厂商,不仅不现实,也将是国产动力锂电池最大隐忧。/pp  高端隔膜技术具有相当高的门槛,不仅要投入巨额的资金,还需要有强大的研发和生产团队、纯熟的工艺技术和高水平的生产线。“对于湿法制造工艺来说,树脂材料与添加剂的挤出混合过程以及拉伸过程是两大核心难点。”周震认为,国内隔膜企业要想有更大的作为,必须要在基础材料表面处理工艺、胶粘剂配方工艺、产品冲压拉伸等涉及材料、设备和工艺控制等三大领域“补课”,此外,在隔膜产业链上游,包括国产涂布机等在内核心生产装备也需要迎头赶上,尽快实现国产化更大突破。/pp  “好比登山,离山顶越近成功登顶的希望就越大,而这时需要付出的努力也多!”周震说道。/ppbr//p
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 三元锂电池的异物分析
    本文要点随着科技的进步,3C产品的多元化,集成化,便捷化,产品的体积越来越小,锂电池作为储能设备,不仅用于手持式电器,如手机,电脑,也广泛应用于汽车行业,得益于仅使用电能,几乎不产生CO2,相比传统燃油车具有更好环保效果,因此锂电池成为了当前应用最广泛的储能电池。目前主流的锂电池技术有磷酸铁锂和三元锂电池。其中三元锂电池具有更高的能量密度,更小的重量下具有更高的续航能力。然而三元锂电池相比于磷酸铁锂电池,耐高温性较差,如果电池因外部撞击破坏或内部异常损伤,均可导致电池短路,发生放热现象,更严重的会直接自燃。因此,有关锂电池的安全性,近来成为网上的热点话题,也是很多科学家及企业需要攻克的难题。三元锂电池结构三元锂电池是由正极,负极,隔膜,外包材,电解液等组成的。其中隔膜具有隔离电池正负极,仅让锂离子通过的作用。如果电池内部隔膜发生破坏,就会出现正负极联通导致电池短路放热,引燃电解液的现象发生。一般引起隔膜穿刺现象的原因有外部撞击破坏或内部异物破坏导致的。其中,外部的机械滥用或是电滥用均有可能导致电池热失控而发生意外自燃;内部异物破坏的诱因可能是原材料内部不纯净或工艺问题,而引入一些微米级别金属磁性单质,导致在电池使用过程中出现金属磁性单质刺破隔膜,发生短路现象。因此针对于三元锂电池原材料异物解析,可以采用扫描电镜及能谱异物分析功能,实现对原料或工艺后期引入的异物的自动寻找及分析。日立钨灯丝扫描电镜Flexsem1000 Ⅱ型(左)和场发射扫描电镜SU5000(右)本次测试采用日立钨灯丝扫描电镜Flexsem1000Ⅱ和牛津Aztec Feature软件,对微孔滤膜上的三元正极粉末的生产原料进行大区域自动采集,分析,找出关注颗粒单质Fe,对单质Fe进行统计,给出统计结果,进而评估原料是否合格。在整个测试过程中,设备自身的自动化功能调整,条件的标准化把控以及Feature软件自行检测,记录与统计,大大的降低了人的依赖性。测试特点1、 Flexsem1000Ⅱ可以一键切换高低真空,无论是导电与不导电样品,都无需对样品进行喷金处理而直接测试。2、 Flexsem1000Ⅱ配置了高灵敏5分割BSE探头,可轻松获得高衬度图像;且标配了自动聚焦,自动亮度对比度等自动化功能,快速准确调整电镜图片。3、 使用大面积拼图功能,可以测试整个微孔滤膜上的样品,获得全部颗粒的结果;同时,对每一个测量位置也可以实现追溯,再分析等功能。4、 根据自身需求,自行设置分类异物,在最终结果中得到异物颗粒的某一单一数据或所有异物的数据,如总个数,占比等结果。5、 在测试分析过程中,可实现后期无人监看,电镜自行完成样品台上样品的全部测试并获得最终结果。日立为三元锂电池异物分析提供了扫描电子显微镜及能谱,Feature软件的解决方案,不仅帮助检测原料异物,同时在工艺管控,品控测试环节提供更多的帮助。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 确保锂电池安全,珀金埃尔默推出定性定量检测锂电池溢出气体分析仪
    从锂电池溢出气体到微反系统,定性定量检测系统的气体组分含量以及系统总的气体体积,在很多时候都是一件很难实现的任务:取样困难,取样时取样量占总体积的比列无从得知,这样即便对所取的气体进行了严格的定量测定,最终也无法和整个系统的气体总量关联起来。这个时候,一套真空进样系统就可以在这些场合大显身手了。在专业的气体分析色谱仪和气质联用仪的基础上,使用全自动控制的真空进样系统,就可以实锂电池溢出气体,微反系统气体的气体含量的测定,而且可以根据真空度的变化计算出系统的总体积以及标准的取样体积,从而可以进一步计算出电池溢出气体的总体积、微反系统生成或消耗的气体的总量,进而可以通过这些测量值判断电池的质量、微反系统的效率。珀金埃尔默推出专业气体分析仪——带有真空进样系统的气相色谱质谱联用仪,是市场上唯一一套能定性定量测定电池溢出气和微反装置中的氢气、氧气、甲烷、一氧化碳、二氧化碳等轻质杂质气体、气体总体积以及气体中其它挥发性组分。珀金埃尔默锂电溢出气体或微反气体分析仪轻质气分析仪包含两个分析通道:通道1 使用氮气作为载气来全量程分析氢气、氦气。通道2 用于分析氯气中的氧气、甲烷、一氧化碳、二氧化碳、碳二、硫化氢和COS等轻质杂质气体。气质联用仪可以定性定量分析气体中其它非永久性气体。真空进样系统:可以和轻质气分析仪联用,和气质联用仪联用,或者和这两者同时使用。#该系统具有以下特点:超越ASTM D1946用气相色谱法对重整气的分析规程标准要求。出厂设置即经确认验证,名符其实的“交钥匙”工程(气相色谱解决方案)。安装完成后立即可运行样品分析分析样品,获得快速且可靠的分析结果。材料超坚固且耐腐蚀,具备放空功能以杜绝操作失误带来的风险。专用色谱柱填料,确保分析的同时氯气被完全反吹放空,延长仪器使用寿命。24H/7D全天候全自动运行,也可以按设定时间表运行。真空进样系统可以用于极其微量气体的定性定量测定,对于1-5ml的系统可以进行连续多次测定。欲了解详情,请扫描二维码,获取资料《锂电溢出气体或微反气体分析仪:微量气体的定性定量检测》。扫描上方二维码即可下载右侧资料➡
  • 岛津原子力显微镜-锂电池隔膜观测
    岛津原子力显微镜锂离子电池锂电池的结构由正极、负极、隔膜材料构成。 对于隔膜而言,其作用是分隔正极和负极,避免内部短路;同时,隔膜具有孔隙,可以吸附电解液使锂离子在充放电过程中可以双向通过。 目前常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜非常合适的观察工具。 以上三张图片是用原子力显微镜对不同制作工艺的隔膜材料进行成像的图,范围为5μm×5μm。因为原子力显微镜获得的形貌图像为三维图像,因此隔膜多孔结构可被很显著的表现出来。 对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,希望隔膜可以在快速产热温度(120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。 岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状,范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。 本文内容非商业广告,仅供专业人士参考。
  • 锂电池检测专题网络研讨会
    锂离子电池由于具备较高的性价比,自诞生之日起便以极快的速度抢占其他二次电池的市场份额,但是随着其应用范围的逐渐扩大以及单个电池的体积能量密度越来越高,容量越来越大,锂电池的安全性也越来越被人们所关注。为保障最终产品的质量,必须从锂电池的每个生产环节进行把控。珀金埃尔默特邀请广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员邵丹博士,并联合TESCAN公司,举办“锂电池检测专题网络研讨会”日程安排:日期:2019年6月28日时间题目主讲人14:00-14:40动力电池关键材料检测现状 邵丹博士广州能源检测研究院主任工程师14:40-15:30珀金埃尔默锂电行业解决方案陈观宇珀金埃尔默资深应用工程师15:30-16:00TESCAN产品在电池领域表征中的应用张芳TESCAN资深应用工程师详情介绍:讲座题目一:动力电池关键材料检测现状内容简介:围绕动力电池产业背景、动力电池关键材料检测标准以及全方位的测试评价动力电池及其关键材料的新技术等进行报告主讲人简介:邵丹,博士,广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员,主要从事化学储能材料及产品的相关技术研发、以及先进检测技术引进。讲座题目二:珀金埃尔默锂电行业解决方案内容简介:1.锂电池正极材料主量元素分析方法介绍2.锂电池负极材料掺杂元素分析方法介绍3.锂电池电解液分析方法介绍4.ICP-MS在锂电行业的应用优势主讲人简介:陈观宇,珀金埃尔默原子光谱资深应用工程师,从事原子光谱技术多年,是ICP及ICPMS的资深应用专家,在锂电关键材料的成分分析应用领域有着丰富的实践经验。讲座题目三:TESCAN产品在电池领域表征中的应用内容简介:1. 扫描电镜微分析平台在电池正极材料微观表征中的应用 -- 形貌(SEM),微量元素分布(EDS、TOF-SIMS)、晶体结构(EBSD、Raman); 2. 扫描电镜微分析平台在电池负极材料微观表征中的应用 -- 形貌(SEM),微量元素分布(EDS、TOF-SIMS)、晶体结构(EBSD、Raman); 3. 扫描电镜微分析平台在电池隔膜表面结构表征的应用; 4. X射线显微镜在电池三维无损分析中的应用。 主讲人简介:张芳,TESCAN(中国)资深应用工程师,专注于电镜及电镜联用分析技术解决方案。即刻扫码占座吧!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 梅特勒托利多 | 热分析在锂电池隔膜测试中的应用
    锂电系列 | 热分析在锂电池隔膜测试中的应用近期《经济参考报》发表了《新基建提速带动锂电池产业逆势上扬》的报道。文章称,进入2020年,在促进汽车消费和“新基建”等政策的推动下,国内动力锂电池产业显示出逆势上扬的态势。近日,工信部也召开专题会,研究部署加快5G网络等新型基础设施建设,对锂电池产业发展起到了重要推动作用。由于5G使用更大规模的阵列天线、更高的带宽,能量密度更高的锂电池就成为新基建的必然选择。锂电池市场需求巨大,但行业竞争日趋激烈,行业整合正在持续进行中,已经进入快速洗牌阶段。拥有核心技术和提高产品质量是生产厂家在激烈的竞争中生存的关键。热分析技术可以帮助企业更好地了解电池材料的受热稳定性,提高研发效率和质量控制,下面小梅就以热分析技术对电池隔膜的热力学分析为例进行详细解析。锂离子电池主要由正极、负极、电解液、隔膜以及集流体、外壳和安全元件等组成。其中电池隔膜起着隔离阴阳极、吸收电解液、同时具备微孔结构并允许某些导电离子和气体顺利通过的作用。锂电池隔膜的质量直接影响到电池的充放电性能、容量和使用寿命。目前,市场上主流的隔膜生产工艺有两种,一种是熔融拉伸法(干法),另外一种是热致相分离法(湿法),且目前主要的隔膜材料都是高分子材料,而电池由于不当使用而导致内部温度剧烈上升会使隔膜孔隙率和收缩率等重要指标发生剧烈改变,因此,在使用过程中,隔膜的热稳定性就显得尤为重要。热分析技术可以检测隔膜的熔融行为、玻璃化转变、热稳定性、失效温度、热收缩率等参数,帮助我们更好的了解隔膜的受热稳定性。用DSC测试隔膜的熔融行为DSC主要是用来测试样品在升降温过程中的热量变化情况,因此用DSC可以很好地测定高分子隔膜的熔融过程,下图是PP隔膜的测试图谱,测试结果显示,一次升温时,由于薄膜状的样品在熔融时易发生卷曲,所以往往在第一次升温曲线上容易出现假象,这对熔融温度的测定可能有一定影响。为了消除热历史对熔融温度测定的影响,我们可以采用二次升温的方式消除热历史,此时测定的熔融温度为样品本身的熔融温度。目前市面上的高分子隔膜大都是PP/PE的复合隔膜,因此,在隔膜的DSC测试中,往往会出现两个熔融峰,下图是PP/PE隔膜的测试图谱,PE和PP的熔融峰分别出现在130℃和166℃。用TGA测试隔膜的热稳定性TGA测试结果可以分析样品在升温过程中的质量变化情况,以此来反映样品的热稳定性,下图是PP隔膜的TGA测试图谱,结果显示,该PP隔膜的热分解温度是437℃,且隔膜的成分较为单一。用TMA测试隔膜的膨胀系数及收缩率高分子隔膜材料在受热时会发生一定量的收缩,这对隔膜的孔隙率会有较大的影响,进而影响锂电池的性能。例如,PE隔膜在90℃条件下等温60min收缩率应小于5%。目前,常见的隔膜收缩率的测试方法为悬挂法,即将一定长度的隔膜悬挂于特定温度的烘箱中,一段时间后拿尺子测量隔膜的尺寸,比较烘烤前后隔膜的尺寸来计算收缩率,这种方法的优点是快速,可大批量测试,但缺点也很明显,测试精度较低,且若收缩率处于临界值时难以判断,因此,使用TMA可很好地测定隔膜的收缩率。下图是PP隔膜在升温过程中的收缩率和膨胀系数的测试图谱,结果显示,PP在加热至175℃时的收缩率达到了60%。同理,也可测试不同类型的隔膜材料在恒定温度下特定时间的收缩率。用DMA测试隔膜的实际失效温度为了提升隔膜材料的耐高温性能和力学性能,目前市面上一般都都采用陶瓷粉末增强PE/PP的方法制备陶瓷隔膜或使用PI增强PE/PP隔膜,若对陶瓷隔膜进行DSC测试,其熔融温度往往与纯 PE/PP隔膜一致,但其实这时陶瓷隔膜往往还能保证一定的形貌及力学强度,并没有失效。此时,采用DSC表征隔膜的失效温度往往是不准确的,而通过DMA可较好地表征隔膜实际失效温度。下图是PE隔膜的DMA测试图谱,结果显示,其失效温度为135℃。★了/解/更/多/应/用 ★想了解梅特勒托利多其它产品在锂电行业的应用信息?您可以点击“阅读原文”查看梅特勒托利多全价值链解决方案。欢迎大家在评论区留言,告诉我们你还想学习哪方面的知识~
  • 锂电池老客户再次购买禾工两套AKF-BT2015C锂电池专用水分仪
    近期,江西一位老客户再次购买上海禾工AKF-BT2015C锂电池专用水分测定仪,该公司主要研发、生产、销售锂电池正负极材料、电解液、隔膜纸等;是一家大型新能源汽车电池、模块及系统开发的高科技企业。 2016年的2月禾工与江西这位锂电池客户结缘,他们当时购买了一套禾工AKF-BT2015C锂电池专用水分测定仪用于公司锂电池原料的生产线上,在使用5个月的时间,仪器运行状态良好,检测精度高,稳定可靠,故障低,操作极为简便等优势得到了用户的肯定。 因公司业务发展需要,在2016年上半年首次购买我们AKF-BT2015C锂电池专用水分测定仪之后至今年3月份总共购买仪器五台,老客户是我公司及其重要的经营资源,能够吸引到老客户的只能是高性价比的产品质量和及时到位的售后服务。 AKF-BT2015C作为一台国内第一台带有卡式加热炉的卡尔费休水分测定仪,至2016年8月低,短短两年内,AKF-BT2015C锂电池水分测定仪在锂电新能源行业创造了累计销售数量过百!客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%的非凡销售业绩。完全可替代进口仪器设备。 AKF-BT2015C水分仪能够广泛的应用在锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 相信在今后,禾工AKF-BT2015C水分仪会应用到更多的锂电池研发、生产单位。
  • 锂电池发展亟待“全生命周期管理”
    p style="text-indent: 2em "电动汽车、智能手机、智能手环、扫地机器人……电子产品已经逐渐成为人们的必需品。随之而来的,是动力与储能电池越来越广泛地应用于生产和生活的各个领域。在这个过程中,大容量电池的安全性、废旧电池的回收处理和梯次利用等成为社会关注的焦点问题。/pp style="text-indent: 2em "近日,由上海空间电源研究所牵头、以“动力与储能电池系统全生命周期管理”为主题的第627次香山科学会议学术讨论会在上海召开。与会专家指出,我国应建立对动力与储能电池系统的全生命周期管理,加强资源综合利用,共同促进社会可持续发展。/pp style="text-indent: 2em "锂电池困局待解/pp style="text-indent: 2em "据中国化学与物理电源行业协会统计,中国已成为全球锂电池发展最活跃的地区。2016年,中国锂电池市场规模约为1115亿元,动力锂电池需求605亿元,同比增长65.8%。2020年,动力电池需求量将达到2015年的5倍。/pp style="text-indent: 2em "“虽然我国电池产量世界第一,但是单位产能利润低于日本。”上海市科委副主任秦文波在会议中指出,我国电池行业之所以出现高产量、低收益现象,原因在于缺乏自主知识产权。我国在锂电池的核心原材料及部件水平、制作工艺上,都与发达国家存在一定差距。/pp style="text-indent: 2em "新能源汽车的续航能力是锂电池水平的突出反映。数据表明,2017年我国新能源汽车保有量为153万辆,预计2020年将突破500万辆大关。“但大多数电动汽车电池的续航能力,可能无法支撑车辆从上海跑到合肥。”一名与会专家说。/pp style="text-indent: 2em "使用后的锂电池则留下了诸多隐患。此次会议执行主席、厦门大学教授、中国科学院院士孙世刚表示,废旧的锂电池存在爆炸等安全隐患,且对环境污染严重。/pp style="text-indent: 2em "全生命周期管理/pp style="text-indent: 2em "在专家们看来,“全生命周期管理”有望成为解决锂电池诸多问题的有效手段。清华大学汽车工程系教授张剑波介绍说,全生命周期管理可分为设计生产、一次使用和梯次利用与回收三个阶段。/pp style="text-indent: 2em "2016年,三星Galaxy Note7手机发布仅一个多月,就在全球范围内发生30多起因电池缺陷造成的爆炸和起火事故。“为避免这类事故发生,需要从电池设计上进行改进。”张剑波告诉《中国科学报》记者。在设计方法上,通过模型事先设定各种设计参数空间并进行实验验证后再投入生产的方式,能够围绕生产线的稳定和产品安全,进行试验线、中试线与量产线的三线整合并快速过渡。/pp style="text-indent: 2em "会议执行主席、上海空间电源研究所研究员解晶莹则认为,对锂离子电池状态进行准确的评估和预测,是电源系统高效利用的关键。“基于状态评估与预测的电池全生命周期管理,其核心还是对电池状态的在线诊断与预测。一方面,针对服役时间较长的电池系统,须对其不同生命阶段的性能进行评估与预测;另一方面,也需要对电池系统全生命周期下的安全性能演变进行评估。”她说。/pp style="text-indent: 2em "而梯次利用废旧电池有望促进循环经济。例如,对于使用过的低容量锂电池,可应用于低速车与储能,待容量耗尽后可进行破碎分解,提取出有效物质。/pp style="text-indent: 2em "目前,研究人员已在锂电池的回收工艺上取得一定进展。中南大学资源加工与生物工程学院教授孙伟在会议报告中介绍说,其带领的团队已经开发出以废旧负极石墨作还原剂的回收新工艺。“这一过程更加高效低廉,能充分利用其蕴含的热量和还原性,同时富集回收的锂资源,具有环保和经济效益。”他说。/pp style="text-indent: 2em "有效监管亟待出台/pp style="text-indent: 2em "在专家们看来,当前电池生产、使用、回收等各环节监管还处于无序的状态。/pp style="text-indent: 2em "“前期电池的设计生产阶段,相关机构还没有设立标准并进行有效监管。”张剑波表示,锂电池的设计是实现绿色环保化材料分解回收的前提基础。/pp style="text-indent: 2em "此次会议执行主席、中科院物理研究所研究员、中国科学院院士陈立泉认为,回收责任主体亟待规范。“究竟应当由谁来回收电池,是生产者还是使用者?这个问题应当得到重视。”/pp style="text-indent: 2em "与会专家指出,国家应明确相关法律制度,对生产品消费后的回收处理和再生利用阶段的责任归属予以规范。同时,行政管理部门应加强市场调控、优化组织管理,进一步完善对全生命周期系统的监管机制。/ppbr//p
  • 利用原位CT观察锂电池在充放电中的变化
    近几年中国锂电池的出货量持续增长,对电池的各种研究也在不断深入。锂离子电池充电后,其中的活性物质会发生体积膨胀,原位表征技术成为分析工作中的重要手段。这种变化有时并不显著,利用原位CT可以捕获微小变化的差异,让分析工作更加简单,品质管理更科学可靠。 小型锂电池外观电池整体的断面图像图中可见,间隙部分的增大。 放、充电后电池各层电极将放、充电后电池各层电极的图像进行对比,可见电极厚度上有微小膨胀,最终导致整体厚度的增加。 岛津微焦点X射线CT系统 inspeXio SMX-225CT FPD HR Plus——一款支持锂电池充放电试验的微焦点CTinspeXioSMX-225CTFPDHRPlus(可搭载充放电系统) • 人性化操作的理念贯穿整个设计。即使CT试验的步骤简化到三步,依然能拍摄出高质量的数据。• 维护保养简便易行,让设备的使用无后顾之忧。 本文内容非商业广告,仅供专业人士参考。
  • 手持材料分析光谱仪|怎么区分锂电池分类的成分
    近年来,随着全球新能源电动汽车的快速发展,锂电池的消耗量也迅速增加,镍、钴和稀有金属等原材料作为制造电池的常用材料,其需求量也骤然激增。面对与日俱增的需求和全球供应链的紧张,许多国家出现了原材料短缺的问题,废旧锂电池回收是获取原材料的重要来源之一。回收锂电池行业虽然热门,但是它的“水也很深",想要赚大钱不仅要有专业的回收设备,还要懂得行内话,了解锂电回收的“行话",还能让你判断对方在圈内的“道行"。手持材料分析光谱仪|怎么区分锂电池分类的成分-1、按正极材料分:“铁锂":即磷酸铁锂电池;“钴锂":即钴酸锂电池;“锰锂":即锰酸锂电池;“三元":即三元锂电池;手持材料分析光谱仪|怎么区分锂电池分类的成分-2、按产品形态分:“铝壳":即方形锂电池“钢壳":即圆柱锂电池;“聚合物/铝塑膜":即软包锂电池。手持材料分析光谱仪|怎么区分锂电池分类的成分-3、按用途分:消费类锂电池;动力锂电池;储能锂电池。可以为锂电回收行业提供系统的解决方案,为了帮助刚入行或者想要入行的客户快速了解锂电回收行业, 不同类型的锂电池价格可是天差地别,区分锂电池的种类,来给废料定价,是达到现场结算的基础;快速收货,以免上当,是回收的目的!千万别把铁锂的当成三元的带回家!手持光谱仪正极片及粉中镍(Ni)、钴(Co)、锰(Mn)等元素的成分检测;废旧电池负极材料铜箔中铜(Cu)含量的检测、电池金属外壳及粉料中成分检测;可以对大量废旧电池进行现场检测和快速分类;数秒便可判断出废旧电池的型号和成分含量;为购销双方在交易时,作出迅速判断提供必要的信息依据林巴斯合金分析仪是一种XRF光谱分析技术,可用于确定物质里的特定元素,同时将其量化。在这个飞速发展的时代,无论是什么行业,对于效率的要求就非常高了。  SciAps手持合金分析仪之所以被各个厂家和企业青睐,SciAps手持式合金分析仪设备耗电量低,适合野外检测,避测过程中电量不足导致实验中断的现象发生,弥补了大多数合金分析仪续航时间短这一共性缺陷。SciAps手持式合金分析仪重量仅有1.54公斤,这一特性也让它在野外检测工作中奠更受欢迎。
  • 锂电池老化测试的目的是什么
    锂电池老化测试的目的是什么? 锂电池老化通常是指在电池组装注液完成后次充电化成后的放置,既可以有常温老化,也可以有高温老化,目的都是为了保持第一次充电后形成的 SEI膜的性质和组成的稳定性。对锂电池来说,老化的原则和目标一是让电解液充分渗透,二是让正、负极活性材料中的一些活性成分经过一定的反应而失去活性,从而使电池的整体性能更加稳定。在高温老化之后,电池的性能会更加稳定,大部分的锂离子电池厂家在生产的时候,都会选择高温老化的工作方式,在45到50摄氏度之间,进行1到3天的老化,之后在常温下放置。在高温下,电池会暴露出一些可能存在的问题,例如电压变化、厚度变化、内阻变化等等,这些问题都会对电池的安全性和电化学性能产生直接影响。高温老化仅仅是为了缩短电池的生产周期,对于新生成的电池来说,在高温下只会加快电池的化学反应速度,不会给电池带来太大的益处,甚至还会对电池造成伤害,所以在常温下,要保持三个星期以上,让正负极,隔膜,电解液等发生化学反应,从而使电池的性能更加稳定。手机中使用的锂电池除了老化测试,还需要做循环寿命测试、高低温放电测试、倍率测试、内阻、电压、安全性测试等等。手机锂电池测试中为了更稳定的传输电流,可用弹片微针模组作为电池测试模组,来起到稳定的连接作用。它能在1-50A 的范围内保持很好的电流传输,使过流稳定。弹片微针模组还能应对手机锂电池高频率的测试需求,平均使用寿命可达到20w次,弹片头型的自清洁设计还能保持弹片不受污染,保证测试的长期稳定性。测试中应用不同的头型接触不同的测试点,有利于电流的导通和信号的传送。欲了解更多详情欢迎和Lab Companion 沟通交流www.oven.cclabcompanion.cn labcompanion.com.cn labcompanion.com.cn lab-companion.com labcompanion.com.hk labcompanion.hk Lab Companion Hong Konglabcompanion.de Lab Companion Germany labcompanion.it Lab Companion Italy labcompanion.es Lab Companion Spain labcompanion.com.mx Lab Companion Mexicolabcompanion.uk Lab Companion United Kingdomlabcompanion.ru Lab Companion Russia labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francelabcompanion.kr Lab Companion Korea
  • 飞纳电镜点亮亚太电池展,带来锂电池材料高效检测方案
    8 月 16 日 - 18 日,2017 第二届亚太电池技术展览会在广州琶洲国际会展中心举行。飞纳电镜作为锂电材料形貌成份高效检测工具,盛装出席此次会议,现场展示了飞纳电镜高分辨率专业版 Phenom Pro 和飞纳电镜大样品室卓越版 Phenom XL,其中 Phenom XL 集成了背散射电子成像,二次电子成像与能谱分析等功能,两台台式扫描电镜吸引了众多参观者的目光。由于新能源汽车的高速增长,各锂电池企业纷纷扩产。相对以往单纯追求产能的突破外,行业内先行企业把目光投射到材料研发带来的电池产品性能提升上。锂电池主要由五部分构成,即正极材料、负极材料、电解液、隔膜和包装材料。其中,包装材料和石墨负极技术相对成熟,成本占比不高。锂离子电池的核心材料主要是正极材料、电解液和隔膜。其中,正极材料是锂电池最为关键的原材料,占锂电池成本的 30% 以上。材料的研发少不了一双“眼睛”,这双眼睛就是扫描电镜。扫描电镜可以对锂电池材料的正极材料,负极材料,隔膜,极片等进行微观的形貌检测及元素成份分析。飞纳台式扫描电镜使用独特的 CeB6 灯丝,提高了扫描电镜的分辨率,保证了图像质量。由于操作简单,维护方便,抽真空时间短,大大地提高检测效率,受到锂电池企业客户的青睐。设计精巧,完全防震,省去了客户为精密仪器安装环境要求高的担忧。即时在展会现场喧闹的环境中,飞纳电镜仍然能高效运行,30 秒成像,持续稳定地工作。锂电池正极材料由于中国大型锂电正极材料近十年迅速发展,产品质量大幅度提高,并具备较强的成本优势,近年来日韩锂电企业开始逐步从中国进口锂电正极材料,据悉目前中国锂电正极材料市场份额已占据全球一半左右,未来发展空间仍广阔。飞纳电镜拍摄的锂电池正极材料锂电池负极材料负极材料作为锂电池的四大关键材料之一,决定了锂电池充放电效率、循环寿命等性能。锂电池负极材料国内技术成熟,碳材料种类繁多,成本比重最低,在 5-10% 左右。现阶段负极材料研究的主要方向如下:石墨化碳材料、无定型碳材料、氮化物、硅基材料、锡基材料、新型合金和其他材料。飞纳电镜拍摄的锂电池负极材料隔膜隔膜在成本构成上仅次于正极材料,占 20-30%,隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能。飞纳电镜拍摄的锂电池隔膜更多体验,尽在飞纳电镜飞纳台式扫描电镜 VR 之旅手套箱版台式电镜有些锂电池材料很容易与空气发生反应,影响形貌成份分析,飞纳电镜发布全球首款手套箱版台式电镜,实现扫描电镜放置在手套箱内,制样-观察全程惰性气体保护。原位通电样品杯允许用户将电探针连接到样品进行原位测量
  • TOF-SIMS质谱仪帮助新电池开发 储能2倍于锂电池
    p  美国能源部可再生能源实验室(NREL)的科学家们开发了一种制造可充电无水镁电池的新方法。br//pp  近期刊登在Nature Chemistry上的一篇论文引起了轰动,该篇论文详细阐述了科学家开发镁金属在无腐蚀性碳基电解质中发生可逆化学反应的过程,并且该过程通过了接下来的测试。比起锂离子电池,该技术具有更有潜力的优势——其中最大的优势是具有更高的能量密度、更强的稳定性和更低的成本。/pp  Seoung-Bum Son, Steve Harvey, Andrew Norman 和 Chunmei Ban是NREL的研究人员,同时也是Nature Chemistry 白皮书《碳酸盐中人造可逆的镁化学反应》的合著者,他们利用飞行时间二次离子质谱仪来辅助自己的研究工作。该设备可以帮助他们在纳米尺度上研究材料退化和失效机制。/pp  NREL材料科学部门的科学家、《碳酸盐中人造可逆的镁化学反应》的作者之一Chunmei Ban表示:“作为科学家,我们总是在想接下来会发生什么。”她认为在市场上占主导地位的锂离子电池技术已经触摸到了技术上的天花板,因此迫切需要探索新的化学电池技术,以更低的成本提供更多的能量。/pp  NREL前博士后,现科学家科学家,该论文的第一作者Seoung-Bum表示:“这一发现将为镁电池的设计提供新的途径。”其他合著者则是Steve Harvey, Adam Stokes, 和 Andrew Norman。当离子从负极流向正极时,电化学反应就会使电池产生能量。对于锂电池来说,电解液是含有锂离子的盐溶液。而电池技术的关键在于化学反应必须是可逆的,只有这样电池才能实现充电过程。/pp  理论上讲,同体积的镁(Mg)电池所能储存的能量几乎是锂离子电池的两倍。但是之前的研究遇到了一个难题:传统的碳酸盐电解质会因为化学反应在镁表面形成一道屏障,这会阻碍电池的充电过程。镁离子可以通过高腐蚀性的液体电解质流向相反的方向,但这也打消了高压镁电池的可能性。/pp  而为了解决这个难题,研究人员开发了一种由聚丙烯腈和镁离子盐组成的人工固体电解质夹层,这可以保护镁阳极表面。而最终这种受保护阳极的性能也得到了改善。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/f5d8577d-dfe1-4599-8433-a5dce896b151.jpg" title="201804080849345113.jpg"//pp style="text-align: center "NREL科研人员攻克可充电镁电池难关示意图(图片来源:John Frenzl)/pp  上文中的插图显示了NREL的科学家是如何解决可充电镁电池问题的。/pp  科学家们组装了标准电池,证明了人工中间相的有效性,而最终的结果也令人十分欣喜:Mg在具有保护阳极的电池的碳酸盐电解质中发生了可逆化学反应,这一现象是镁电池领域的首次发现。与没有保护阳极的原型电池相比,带有保护阳极的镁电池可以提供更多的能量,并且可以维持周期性的充放电过程。此外,该科研小组还充分展示了镁电池的充电能力,这也首次为解决阳极/电解质不相容问题以及离子离开阴极收到限制的问题提供了解决方法。/pp  与锂相比,镁的获取范围更广,并且与锂电池这种更成熟的电池技术相比,镁电池还具有其他的潜在优势。首先,镁可以释放两个电子,这是锂的两倍,这使得它可以产生几乎两倍于锂的能量。其次,镁电池中没有枝晶的生长,这种枝晶很容易导致短路,从而导致过热甚至事故的发生,这种特质使得镁电池比锂离子电池更加安全。/p
  • 锂电池起火屡见不鲜,背后成因是什么?如何避免发生?
    锂离子电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池。因其具有电压高、比能量高、循环寿命长、环境友好等优点,被广泛应用于电子产品、轨道交通、新能源等动力领域。然而...关于锂离子电池起火的案例却屡见不鲜这背后究竟有怎样的成因?小谱在线来解答请输入当锂离子电池正极材料中存在铁(fe)、铜(cu)、铬(cr)、镍(ni)、锌(zn)、银(ag)等金属杂质时,电压达到这些金属元素的氧化还原电位后会到负极还原为固体单质,当累积到一定程度,沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电,从而发生起火现象。所以,在新能源锂电池行业中禁用锌、铜、镍元素,其杂质含量也应得到严格管控,从而避免锂电池起火等事件发生。元素检测利器icp-oes电感耦合等离子体发射光谱仪(icp-oes)作为一种快捷、准确检测元素含量的分析仪器,是锂离子电池及相关材料元素检测的常用设备。相关标准如 gb/t 20252-2014《钴酸锂》、gb/t 24533-2009《锂电池石墨负极材料》、gb/t 30835-2014《锂离子电池用复合磷酸铁锂正极材料》、gb/t 30836-2014《锂离子电池用钛酸锂及碳复合负极材料》及iec 62321中,均规定使用icp-oes测试锂离子电池中常量及微量杂质元素含量。难点分析一、杂质元素含量低,常量及微量元素需同时检测;二、锂电池电解液含有机溶液,直接进样易形成积碳;三、基体光谱干扰严重,对仪器的基体耐受性和抗干扰能力带来极大挑战。谱育科技解决方案expec 6000 icp-oes谱育科技expec 6000 是一款经典的高性能国产icp-oes仪器,可凭借优异的产品性能帮助您解决锂离子电池元素检测中遇到的难题。- 基体耐受性强:炬管垂直放置,功率可达1600w,具备更强的抗基体干扰能力;- 高低浓度同时检测:防饱和溢出ccd,智能积分以获得最佳信噪比、高动态线性范围;- 干扰校正功能:多种干扰校正方法和全自动实时背景扣除功能,消除基体背景干扰。- 功能扩展:配置有机进样系统,有机物直接进样;超级微波消解仪实现全自动消解。典型应用数据(一) 磷酸铁锂电池材料中锂元素及13种金属元素含量采用expec 6000测定锂离子电池正极材料磷酸铁锂中13种金属元素含量,样品做5个平行加标。检测结果:各元素检测值与参考值基本吻合,方法精密度和加标回收率良好,检测结果准确可信,完全满足分析测试要求(如下表所示)。(二) 锂离子电池电解液成膜添加剂采用expec 6000测定了2种锂电池电解液成膜添加剂中8种金属元素,每个样品做5个平行加标。检测结果:方法精密度与加标回收率良好(如下表所示),检测结果稳定、准确,仪器完全满足分析测试要求。
  • “续航”新动力 | 助力锂电池产业升级——锂电产业一站式解决方案
    锂离子电池作为智能手机、笔记本电脑等电子电器设备,以及电动汽车、混合动力汽车等的电源,其性能的提升一直深受行业关注。日立科学仪器作为先进的技术企业,可为锂电领域的“研发”、“制造”、“品质管理”,以及当下广泛关注的“电池回收”等产业链环节,提供从仪器到零配件再到方案等全面解决方案。1. 研发(R&D):创新驱动,助力锂电池研发突破【背景介绍】国内新能源汽车产业经过几十年的发展,已经形成一定的产业规模并取得很大技术突破。动力电池作为新能源汽车核心部件,是新能源汽车产业发展的关键因素之一,动力电池综合性能的提升是重要的支撑。电池的化学性能、电性能、循环性能、安全性能、可靠性能等评价能力的迫切要求下,推动电池产业界在技术创新投入方面不断加码。日立科学仪器可以为锂电研发、制造、品质管理等提供电子显微镜、分析仪器产品与解决方案。【案例分享】浓度分析——原子吸收分光光度计ZA3000为了提高锂离子电池的性能,需要高精度“定量分析各材料中的锂元素”、“测定正极活性物质中的组成元素摩尔比”、“测定有机溶剂-电解液中分离出的异物”等。ICP等离子体发射光谱法适合多元素分析,但不适用碱金属和有机溶剂分析,对某些元素的检测灵敏度低, 而且使用成本较高。分析实例:正极活性物质相关分析左:正极活性物质中的组成元素摩尔比;右:原子吸收分光光度计ZA3000日立偏振塞曼原子吸收分光光度计ZA3000系列可以高精度定量分析碱金属-锂元素,并且可以稳定测定正极材料中组成元素的摩尔比,其精度低于1%。此外,还可以轻松测定有机溶剂-电解液中含有的异物,石墨炉法比ICP等离子体发射光谱法的检测灵敏度更高。分析实例:正极活性物质相关分析左:钴酸锂中的锂分析;右:钴酸锂中的钴分析分析实例:电解液(电解质)相关分析左:碳酸锂中的钠分析;右:六氟磷酸锂中的钾分析2. 制造:智能制造,提升锂电池生产效能【背景介绍】锂电是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。其生产环节需要经历多道复杂工序,这对提高生产效率、提高良品率等都提出很高的要求。同时,随着锂电产业的不断升级发展,智能制造、自动化、数字化等成为锂电制造当下的发展趋势。【案例分享1】高速检出隐藏于表面之下的微米级金属异物——X射线异物分析仪EA8000A原材料中的金属异物会使电池失效,甚至发生事故。X射线异物分析仪EA8000A具备强大的X射线异物检出能力,可以高效检出20μm级微小金属异物颗粒,并对其进行元素识别。这套异物检测系统能帮助用户提高成品率、提升锂电制造工序的效率、构建工序管理并不断改进,从而有效控制异物混入情况。X射线异物分析仪EA8000A(产品来自日立分析仪器(上海)有限公司)EA8000A在锂电领域的应用【案例分享2】成分和水分测试——自动电位滴定仪COM-A19自动电位滴定仪COM-A19可以高精度地测定氢氟酸、氢氧化锂、碳酸锂等电解液中的各种成分。锂电池电解液成分浓度测定案例左:氢氧化锂和碳酸锂的测试结果案例;右:自动电位滴定仪COM-A19对于非水相体系的锂电池材料而言,水分是一个关键指标,因为它不仅会对材料的稳定性有影响,而且可能引起一系列有害的反应。在自动滴定装置上增设“水分测定单元”,可以同时测定水分含量。另外,平沼的单室电解单元由于不需要阴极液,能够降低运行成本。锂电池原料:聚氨酯硬化剂多元醇中水分含量测定案例左:测试结果案例;右:MOICO-A19与卡式蒸发炉3. 品质管理:精准监控,确保锂电池卓越品质【背景介绍】锂电产品安全性至关重要,这决定了锂电行业对产品品控和管理的高规格要求,如何在生产环节中保证锂电产品的性能稳定性、均一性等尤为重要,精准的检测技术和分析手段此时便可以发挥重要的支撑作用。【案例分享】仅需3分钟即可观察影像——TM4000Plus IITM4000Plus II是日立台式扫描电镜系列中最新的型号。样品无需前处理,从放入样品到获得图像只需要短短几分钟。从形貌观察到元素分析,以及生成报告都可以迅速完成。尤为适合各工序的锂离子电池的品质管理。 上左:EDS颗粒分析;上右:日立台式扫描电镜TM4000Plus II;下:宽范围成分图4. 回收:环保先行,推动锂电池可持续发展【背景介绍】我国新能源汽车行业在“双碳”政策引导下进入规模化快速发展阶段。在电池需求大力拉升下,镍、锂、钴等金属价格持续上涨,,锂电回收不仅复合减污降碳的政策方向,且目前全球镍、锂、钴等原生矿产资源相对稀缺。通过对废旧动力电池的循环利用,可有效解决资源枯竭问题。如何推动锂电回收产业由规模速度型向质量效益型有序化转变已经成为当下的重要命题。【案例分享】:锂电材料综合评测—SEM和AFM联动分析SÆ Mic.是指将SEM、AFM的特点功能结合使用得到综合评价。在同一视野下,对锂离子电池正极材料进行测试。将SEM得到的成分信息和AFM的SSRM像的电气特性进行匹配,得到全面的样品信息。左:SEM-AFM联合观察SÆ Mic.;右:锂电正极材料的SEM/AFM同一视野下的测评观察锂电材料,SEM和AFM联用2023年,随着新能源汽车产业进入叠加交汇、融合发展新阶段,面对全球不断壮大的发展需求,动力电池产业进入新的发展阶段,电池的安全、可控、低碳等发展方向为对应检测技术提出越来越高的要求。日立科学仪器将在锂电解决方案的开发中不断加码,在锂电领域“研究开发”、“制造”、“检测”的价值链中,提供从仪器到零配件的高端及前沿的解决方案。携手广大客户,共同为锂电升级不断赋能。欢迎垂询日立科学仪器(北京)有限公司电话:400-898-1021邮箱:contact.us@hitachi-hightech.com 欢迎扫描下方二维码,官微更多产品内容等您来看!公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 锂电池浆料与性能之间的桥梁——流变仪
    p  随着近些年新能源汽车、数码电子产品等锂离子电池应用领域的大力发展和推广,锂离子电池市场迅猛发展,预计2020年全球锂离子电池市场规模有望达到4500亿元。/pp  相比于传统的镍氢电池,铅酸电池来说,锂离子电池具有能量密度高,无记忆效应,环境污染小等特点。/pp  锂离子电池的主要材料有正负极、电池隔膜、电解液,这也是锂电池目前研究的热点领域和对象。其中在电极的制备过程中,锂电池浆料的性质,尤其是浆料的流变特性对最终电池的储电性能具有很大程度上的影响。/pp  锂离子电池浆料含有活性材料及多种非活性物质,通过将其涂覆于金属集流体上来制备锂离子电池的电极。/pp  锂离子电池中需要添加各种导电剂和粘结剂以形成导电网络,颗粒聚集在浆料中产生不均匀性,会导致复合电极中出现裂纹和空隙,使电子通路出现中断,从而影响电池性能。因此,制作分散均匀的、稳定的浆料成为重中之重。/pp  锂离子电池浆料多为黑色不透明粘性流体或胶体状态,肉眼无法直接观测到分散是否均匀,不同分散状态的浆料又有着不同的粘度趋势。因此,流变特性是分析锂离子电池浆料分散状态的重要手段。/pp  流变仪可在接近真实加工条件下,对样品在力、热作用下的行为进行研究,如样品的流动特性、加工过程中的结构变化、降解及混合质量等性质。锂离子电池浆料的流动特性与固含、搅拌工艺及加料顺序等都有很大的关系。另外,浆料的粘度和沉降稳定性也会对后续的涂布过程产生影响。/pp  多项研究表明,锂电池的性能与浆料的粘度、添料次序、浆料固含、混合工艺、粘结剂种类、导电剂种类、溶剂种类、添加剂种类有关,且它们均是通过影响锂电池浆料的流变特性而影响最终的重放电性能。在体系相同的情况下,浆料的表观粘度基本与浆料的分散情况相关,浆料的分散程度越好,浆料的表观粘度越低。/pp  制作分散均匀而稳定的浆料已成为提高锂离子电池性能的重要手段,流变仪则已成为锂电池开发研究过程中不可或缺的仪器。/p
  • 锂电池材料试验解决方案
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。锂离子电池隔膜拉伸测试LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。锂离子电池隔膜穿刺试验LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用双杠升降,可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过脚踏开关(或手动开关)快速操作完成夹持,夹持完毕后,只需按手控盒的开始键即可开始试验,试验完毕后可快速安置好下一试验点,迅速完成5点或多点测试。锂离子电池涂层隔膜剥离试验以锂离子电池聚乙烯(PE)等隔膜为基体,在其表面均匀的涂覆厚度为1~2μm混有纳米氧化铝粉末及胶凝剂浆体,可以制成无机复合陶瓷涂层锂离子电池隔膜。陶瓷涂层隔膜可以有效的提高锂离子电池的热安全性,同时对电解液具有良好的润湿性及保液性能,可以有效的提高锂离子电池的容量保持性能。锂离子电池强制内短路测试从每年在世界各地发生的电池安全事故的失效初步分析来看,大部分是由于电池内部发生短路引起的。 自 2004 年日本某公司笔记本电池发生起火后,经详细调查,起火是由于电池在生产过程中内部混入了微小的金属颗粒,此颗粒在电池充放电、温度变化和外部撞击的过程中穿刺了正负极隔膜,从而导致内部发生了短路,进而引起热失控,以致发生起火。 但此类偶然混入无法完全避免, 所以我们对锂电池提出了新的测试要求,即: 电池即使有微小颗粒混入, 需要依然能够安全的使用, 而测试电池混入微小颗粒后表现的测试即为锂离子电池的强制内短路测试。
  • 中科院锂电池实验室落户金华
    “我们已经与中科院上海微系统与信息技术研究所签订合作协议,在金华成立以动力和储能锂离子电池相关课题研发为主的联合实验室,首期合作三年,全面提升金华汽摩配产业在动力研究方面的话语权。”昨天,浙江南博电源科技开发有限公司董事长陈庆武告诉记者,该公司的锂电池产品已经通过中试鉴定。  南博公司成立于2006年,在国家有关科研院所的技术指导下,从事研发、生产锂离子动力电池科技型新能源产品。  据了解,目前我国汽车产销量已达1300万辆。到2020年中国汽车保有量肯定要突破2亿辆,油品供应问题将非常突出。除了电动汽车,没有其他更有效的解决方案,因此电动汽车产业化发展已经列入国家“十二五”规划中。陈庆武告诉记者:“金华有青年、众泰、康迪、绿源、金大等多家整车制造厂,2009年锂电池市场需求已经超过9000万元,今年还要翻番。南博公司将投入1.8亿元资金,专门用于生产锂电池,加强产业化技术和工艺的研发。”  浙江力霸皇工贸集团副总经理李家亮,对锂电池的好处如数家珍。锂电池重量只有2.5至5公斤,是普通电池重量的1/4,使用寿命却为铅酸电池的3~5倍,锂电池电动车顺应了国家的环保要求,是我市电动车产业可持续发展的必然选择。浙江金大车业有限公司总经理章小理告诉记者,我市电动车产业发展路线一直采用跟随战略,虽然具备整车优势,但在新能源领域,是否能够摆脱跟随路线,逐步向领导者行列跨进,锂电池技术将成为关键突破口。如果南博公司能将电动车锂电池从目前的1200元降到800元,将改变金华电动车行业在国内的竞争格局。
  • 八年探索,锂电池浆料评价方法终获突破
    近日,中文国家核心期刊《电源技术》2024年第1期和第2期连续发表仪思奇(北京)科技发展有限公司杨正红等两篇论文:《超声/电声谱法测定锂电池浆料的粒度、流变和微观电学参数》(见2024,48(1):95-100)及《用超声/电声谱监测锂电池正极浆料的合浆及包覆质量》(见2024,48(2):284-288)。这预示着在锂电池浆料稳定性和微观电学性质评价方面取得决定性突破。众所周知,在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接影响到锂离子在电池两极间的运动,因此在锂离子电池生产中各极片材料的浆料混合分散至关重要。浆料分散质量的好坏,直接影响到后续锂离子电池生产的质量及其产品的性能。目前对电池浆料的质量监测依据的是剪切流变性能的监测,然而,对相同工艺产生不同流变性质的原因始终是困扰电池浆料质量控制的痛点。据报道,影响锂离子电池浆料流变性的一些主要参数包括:1. 分散相的类型及表面电荷的大小:对于不同种类的正负极活性物质,由于其种类不同,具有不同的水化膨胀特性以及不同的表面电荷,因而不同种类的活性物质其分散特性、胶溶特性以及形成具有一定强度的结构体系的能力也各不相同,其宏观表现是不同种类的活性物质配制而成的浆料具有不同的流变特性。2. 固相的浓度:分散相或固相浓度的大小主要影响浆料的屈服应力和塑性粘度或表观粘度。在一般情况下,固相浓度越大,其屈服应力、塑性粘度或表观粘度越大。3. 固相颗位的大小、形状以及粒径的分布:在固相浓度不变的条件下,颗粒的粒径越小,由于其总的表面积增加,因而浆料的屈服应力和粘度将随之增加。 4. 分散介质本身的粘度:不同的溶剂具有不同的粘度,使得浆料的粘度也将随之变化。5. 温度和压力:在不同的温度和压力下浆料具有不同的流变特性。6. 浆料的pH值。对于锂电池合浆工序而言,合浆的搅拌工艺、粘结剂、固含量和浆料粘度对浆料的稳定性有重大的意义。通过高粘度搅拌工艺,浆料中导电剂是否能较好地分散在主料的表面,均匀地包覆住主料,这将影响极片的导电性,直接影响电池的倍率性能。因此,我国锂电池行业只能通过测粘度对浆料稳定性进行粗放的宏观管理,而缺乏对浆料本身电学性质的研究和监测,极大地影响了锂电池的成品率,导致成本无法下降,品质无法提高。美国和日本锂电企业都是通过超声衰减/电声学技术(ISO 20998/ISO13099)表征浆料中颗粒的电化学性能,进行锂电池浆料及其稳定性精准质控的。为了打破封锁,提高我国锂电池生产品质,根据所掌握的信息,仪思奇对电池浆料品质控制的超声/电声学参数进行了初步探索。美国分散技术公司的DT-1202或DT-1210超声/电声谱分析仪具有在常压条件下测量和计算上述包括粒度及zeta电位等几乎全部涉及的宏观和微观参数的能力(颗粒形状除外),国家标准GB/T 41316-2022《分散体系稳定性表征指导原则》中也推荐了超声/电声学方法。在日本,DT-1202以每年20台的销量早已广泛应用于电池浆料的质量控制中。然而,日本公司在向我国销售电池设备的同时,却对质控仪器及其相关参数对我国严格保密。为打破垄断,提高我国锂电池生产质量,降低消耗,仪思奇科技从成立之初,即与锂电材料企业广泛合作,对电池浆料可能的质控参数进行了一系列探索实验。经过八年的艰苦探索和努力,他们发现锂电池正负极浆料的稳定性化存在着不同的机制,它们的作用可以通过不同的参数表征出来,即宏观电动学参数——Zeta电位和微观电学参数——表面电荷密度。在锂电池浆料的稳定效应中,后者起到更重要的作用。因此,在锂电池浆料的研究或质量监控中,不仅需要关注zeta电位值,更需要关注表面电荷密度值的变化,二者不可偏废。这些微观电学参数也影响着浆料的宏观流变性能。超声衰减谱还可同时测量浆料体系的高频剪切黏度(动力黏度)和体积黏度(纵向黏度),反映了浆料在微观尺度上流变学性质,并且是一种非侵入式和非破环性的方法,为物质的微观结构提供了更深入的信息,有助于判断锂电池浆料工艺不稳定性的原因。研究表明,超声法直接测定锂电池合浆过程中的原浓浆料粒度直观有效,对于工艺质控非常重要。zeta电位作为疏水胶体体系静电排斥效应的表征参数,却很难直接作为电池浆料NMP有机体系的稳定化表征参数。但是在合浆过程中,因导电添加剂团聚的存在,很难均匀包覆在LFP颗粒上,而通过胶体电流(CVI)测定的电声法直接测量锂电池浆料的Zeta电位和双电层厚度可以成为导电剂是否分散和包覆均匀的关键质量控制参数。上述对电池浆料评价方法的突破,对锂电池浆料稳定性和工艺控制的解决方案探索具有重要意义
  • 锂电池回收产业百亿风口来临 仪器企业是否需要关注?
    p  据了解,自2014年国内推广应用新能源汽车以来,截至2017年底累计装配动力蓄电池约86.9GWh。动力电池的使用年限一般为5-8年,意味着前期投入市场的新能源电池基本处于淘汰临界点。中国汽车技术研究中心数据显示,2018-2020年,全国累计报废动力电池将达12万-20万吨 EVTank通过经济模型测算认为,到2020年中国动力电池回收拆解和梯次利用的总体市场规模将达到66.8亿元,到2022年整体市场规模将达到131.0亿元。“我们分析认为,2018年之后,国内退役动力电池的规模将会快速上升。”工信部国际经济技术合作中心助理研究员白旻说。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/262098ce-ffa8-4f58-9a8f-ded05c5f7235.jpg" title="1521426015618006.png"//pp  面对即将到来的动力电池报废高峰,政策层面及时跟进。近日,国家陆续发布:《新能源汽车动力蓄电池回收利用管理暂行办法》、《新能源汽车动力蓄电池回收利用试点实施方案》 2016年以来,《车用动力电池回收利用拆解规范》、《车用动力电池回收利用余能检测》等标准已经出台实施。针对即将到来的“报废潮”,《暂行办法》中可看出,回收的汽车动力电池将通过梯次利用和报废拆解两种方式实现资源的再循环。/pp  我国对钴、锰、镍等稀缺金属的严重进口依赖和市场需求的不断释放,导致以钴为代表的锂电池材料价格持续上涨,让产业链各方面临巨大的制造成本压力。通过对废旧锂电池中的镍、钴、锂等有价金属进行提取进行循环再利用,锂电池回收的经济效益显而易见,这对整车、电池厂商等产业链而言都是一座可待挖掘的金矿。三大势力已经竞逐锂电池回收产业蓝海:(1)以华友钴业、寒锐钴业、厦门钨业、天赐材料、天齐锂业和赣锋锂业等为代表的锂电材料系。(2)以比亚迪、宁德时代、国轩高科、天能动力、中航锂电等为代表的动力电池主流企业。(3)以格林美、湖南邦普、赣州豪鹏、芳源环保、金泰阁、长优实业、威能环保等为代表的第三方动力电池回收拆解企业。可以看到,2015年,宁德时代通过子公司宁德和盛持股69.02%,取得主业为废旧锂电池拆解的广东邦普控制权 2017年8月,国轩高科公告显示,与钴产品生产商兰州金轩分别出资5000万元在安徽、甘肃成立了安徽金轩和甘肃金轩两家电池资源循环利用技术公司 2018年,3月9日,国内的电池制造商骆驼股份发布公告,拟投资50亿元建设骆驼集团动力电池梯次利用及再生产业园项目。/pp  按《车用动力电池回收利用余能检测》标准,梯次利用的电池需利用性能检测仪进行性能评估。废旧电池回收利用涉及拆解、萃取等物理和化学复杂工序回收有价值元素,并进行无害化处理,减小对于环境的压力,这需要具有冶金、化工、物理等行业的专业技术及仪器设备的支持。业内普遍认为,废旧动力电池回收途径、安全拆解、环保处理、保证产品质量以及再利用技术仍是行业面临的共性难题,国内针对动力蓄电池的回收工艺路线还处于探索阶段,以循环制造为目标的回收技术还未开展。随着最新的《新能源汽车动力蓄电池回收利用试点实施方案》发布,众多相关仪器设备供应企业或可对这锂电池回收“蓝海”加以关注。/pp a href="http://www.instrument.com.cn/news/20180328/243064.shtml" target="_self" title="" 《新能源汽车动力蓄电池回收利用试点实施方案》发布(附全文)/abr//pp  a href="http://www.instrument.com.cn/news/20180302/240981.shtml" target="_self" title=""六部委联合发布《新能源汽车动力蓄电池回收利用管理暂行办法》/a/ppbr//p
  • 应用分享 | 锂电池安全分析
    锂电池是人类可再生清洁新能源发展的重要一环。我国已把“碳达峰“与”碳中和“纳入了政府重点工作计划。一方面,研究人员不断探索通过新材料、新技术增加锂离子电池的能量密度,构建新的能源存储和输出生态;另一方面,其安全性也需要在严格把控的基础上不断提高。 今年,锂电池爆炸起火的事件屡见不鲜,除了热量、穿刺等外部因素外,锂电池本身的构造也可能造成安全隐患,如负极析锂、隔膜瑕疵、极片变形等。 本文中,我们使用扫描电子显微镜(SEM)分别对电池材料的阴、阳极表面、粘合剂以及隔膜进行了观测。 01正负极 负极析锂也被认为是引发锂离子电池安全性的可能原因。在大倍率充电、低温充电,或者是电池制造中的涂布偏差等均可能导致负极中析出金属锂,由于金属锂反应活性强、容易反应产热,使得电池内化学反应发生的条件阈值降低,即电池安全性降低。 锂电池正、负极表面 02隔膜及粘合剂 隔膜瑕疵是过去被常常忽略的问题。隔膜微孔的均匀性是很难通过产品质量确认的,大部分均通过电池企业的电池成品率来确认。例如:一个微孔被堵是很难被检测出来的,但是局部隔膜孔被“堵”(也可以是局部阻抗增大)可能导致局部锂金属析出,引发安全事故。 锂电池粘合剂及隔膜 目前锂电池技术尚有不足之处,相信希望随着科学和技术的进步,未来的生活中一定会更加和谐、幸福与安宁。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制