当前位置: 仪器信息网 > 行业主题 > >

塑料滑擦检测仪

仪器信息网塑料滑擦检测仪专题为您提供2024年最新塑料滑擦检测仪价格报价、厂家品牌的相关信息, 包括塑料滑擦检测仪参数、型号等,不管是国产,还是进口品牌的塑料滑擦检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合塑料滑擦检测仪相关的耗材配件、试剂标物,还有塑料滑擦检测仪相关的最新资讯、资料,以及塑料滑擦检测仪相关的解决方案。

塑料滑擦检测仪相关的资讯

  • 我国塑料包装检测仪器市场崛起
    目前国内塑料凹版油墨以溶剂型油墨为主,超标的苯对人体危害极大,而凹印速度高,必须使用挥发性强的油墨才能满足印刷要求,这使得环保问题在凹印工艺中尤为突出。水性油墨由于不含挥发性有机溶剂,完全消除了溶剂型油墨中的有毒有害物质,避免对包装商品产生污染,是目前各种油墨中唯一经过美国FDA认可的无毒油墨。目前国内仅有极少数厂家生产该品种水墨,但由于水性油墨在凹版印刷中其附着力、印刷速度、光泽等方面还不能完全达到溶剂型油墨性能水平,一时无法满足塑料薄膜彩色包装印刷厂商的要求。  在国家和用户要求包装制品严格按标准生产的呼声越来越高的情况下,用于包装原辅材料和制品的检测仪器市场开始渐热,各种国产和进口的包装专用检测仪器纷纷出现在市场上。  据统计,我国年销售收入5,00万元以上的包装企业有1万余家,其中近三分之一为塑料包装制品企业。这些企业中过去只有少数企业拥有自己的检测试验室,而现在小企业也开始重视建立自己的检测室。专家指出,由于塑料包装制品大多具有阻隔水蒸气、氧气、二氧化碳功能,所以有关这方面检测仪器的需求将越来越大。
  • 2分钟快速检测!环保可降解塑料检测仪等快速检测仪器助力深圳“快速检测+管办服”改革
    近日,深圳市市场监管局举行了“快速检测+监管、办案、服务”改革试点启动仪式。市场监管和执法中强调应用快检技术,目的是为了提升监管效率和质量,强化快处效能。本次改革试点重点强调了根据基层监管实际,开展产品质量风险监测、结果比对,提升快检精确度和适用范围;建立完善规则,坚持快检技术和基层监管、执法、服务一体化推进,助力深圳制造业高质量发展。在改革试点启动仪式上,深圳市检测院技术人员现场展示了电源适配器、塑料购物袋等产品质量的检测过程与结果。其中,环保可降解塑料快速鉴别检测仪格外亮眼,该仪器依托近红外光谱分析技术,通过校正模型的建立,实现对未知样本的定性或定量分析,实现2分钟内同时得到样品是否可降解和材质成分结果,突破了传统测量技术生物降解性受降解环境影响因素多、生物降解体系复杂、环境中微生物种类和数量难以控制、耗时长、成本高等技术难点问题,从检测设备与技术上支撑塑料污染治理和生态环境建设工作。图片来源于央广网早在2021年,市场监管总局便发布《关于进一步深化改革促进检验检测行业做优做强的指导意见》,《意见》明确提出,要更加完善检验检测体系,强调培育具有国际影响力的检验检测知名品牌,以及检验检测高技术服务业集聚区和公共服务平台,同时鼓励更多的效益好、技术水平高、行业信誉优的检验检测企业进入检验检测行业。尤其在当前新的市场监管模式下,快检方法、快检设备、快检标准等的研发显得尤为重要,科学仪器行业的发展将有更大的空间。
  • 塑料袋包装摩擦系数仪依据GB10006检测的试验速度一般设为多少
    在包装行业中,塑料袋包装摩擦系数仪是一种关键的测试设备,它主要用于评估塑料袋表面的摩擦性能。这种性能的评估对于确保包装袋的开口性、包装机的包装速度等生产质量工艺指标至关重要。而依据我国国家标准GB10006进行检测时,试验速度的设定尤为关键。首先,我们需要了解GB10006标准对试验速度的推荐设定。这一标准是为了确保测试结果的一致性和可比性而制定的。在GB10006标准中,通常推荐的试验速度为100mm/min。这一速度的选择并非随意,而是基于多方面的考虑。它不仅能够较好地模拟塑料袋在实际使用中可能遇到的速度条件,还能在此速度下更准确地测量塑料袋表面的摩擦系数。然而,值得注意的是,随着技术的不断进步和行业的不断发展,GB10006标准也在不断更新和完善。最新的标准GBT 10006-2021除了对100mm/min的要求外,还增加了500mm/min的要求。这一变化对于已经拥有摩擦系数仪的企业来说,可能意味着需要对设备进行升级或调整,以适应新的测试要求。在实际应用中,根据具体的测试需求和条件,试验速度可能会有所调整。例如,对于一些特殊类型的塑料袋或特定的测试目的,可能需要采用更快的或更慢的试验速度。但无论如何,都应确保测试速度在设备的量程范围内,并且能够满足测试精度的要求。此外,除了试验速度外,使用塑料袋包装摩擦系数仪进行测试时,还需要注意其他一些重要的参数和因素。例如,负荷范围、测试精度、行程、试样高度、滑块质量等都会对测试结果产生影响。因此,在进行测试前,应仔细查阅设备的使用说明和技术参数,确保所有参数都设置正确。同时,为了确保测试结果的准确性和可靠性,还应遵循相关的操作规程和注意事项。例如,在测试前应对设备进行校准和检查,确保设备处于良好的工作状态;在测试过程中应保持试样的清洁和干燥,避免外界因素对测试结果的影响;在测试结束后应及时清理设备并保存测试数据。综上所述,依据GB10006检测的塑料袋包装摩擦系数仪的试验速度一般设为100mm/min。但具体的测试速度可能因测试需求和条件的不同而有所调整。在使用摩擦系数仪进行测试时,应确保所有参数设置正确,并遵循相关的操作规程和注意事项,以确保测试结果的准确性和可靠性。对于包装行业的企业来说,了解和掌握GB10006标准以及摩擦系数仪的使用方法和注意事项是非常重要的。这不仅有助于提高产品质量和生产效率,还有助于降低生产成本和减少不必要的浪费。因此,建议企业加强相关人员的培训和学习,提高员工的技能水平和专业素养,以更好地应对市场竞争和行业发展的挑战。
  • 微塑料检测技术,解决微塑料难题!
    微塑料指的是直径小于5毫米的塑料微粒,常见化学成分有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。相关研究表明,微塑料在鱼类、贝类等水生生物体内普遍存在,可通过食物链不断向上一级传递,位于食物链顶端的人类将不可避免成为微塑料的摄入和蓄积体。随着各方对微塑料的关注日益增多,微塑料的相关科学研究正如火如荼地开展着,如何精准快速的识别微塑料,对微塑料领域的研究至关重要。多年来,研究人员通过对水陆空环境与生物体等各类样品中的塑料微粒含量、大小、成分等进行科学分析,开展各类型的科研课题研究、环境本底调查,为我国环境微塑料污染防控与监控和常规产品检测等提供技术依据。为了了解当前微塑料检测分析技术和应用进展,加强沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议,在28日的下午,以“微塑料的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。“微塑料的检验检测”专场日程如下:07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授14:30--15:00岛津GCMS在环境新型污染物检测中的应用王子君岛津企业管理(中国)有限公司 产品专员15:00--15:30污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员15:30--16:00传感器在渔业环境中新污染物检测应用吴立冬中国水产科学研究院 研究员嘉宾介绍:蔡明刚 教授厦门大学蔡明刚,教授,博士生导师。现任厦门大学海洋与地球学院教授,海洋与海岸带发展研究院兼职教授,福建省高校重点实验室副主任。主要研究方向:基于海洋学视角的开阔海域污染物传输动力学过程研究,及其作为新型示踪剂在海洋科学上的应用。研究海域涉及我国南海等边缘海、全球大洋及两极海区,课题组近10次参加中国南、北极科学考察。个人系中国第3、5次北极科学考察队队员,先后入选福建闽江科学传播学者、福建省杰出青年基金计划、新世纪优秀人才计划、CSC中德合作团队项目等人才计划。主持国家及省部级项目10余项,在Environmental Science & Technology、Environmental Pollution、Deep Sea ResearchⅠ、Marine Chemistry等环境、海洋期刊发表论文70余篇,获得专利授权12项,获得多项省部级奖项。 主要科研与应用成果如下:1)开展我国主要边缘海和极区持久性有机污染物的时间序列变化和储量估算,提出全球变化背景下边缘海POPs海/气交换与垂直传输的海洋生物泵调控机制。2)较早开展大洋海水中细颗粒微塑料研究,发现南海存在数量可观的微塑料。3)利用氟利昂等污染物开展海洋学过程的示踪与人为碳估算,取得创新性成果,组装了国内第1套海水超痕量氟利昂/六氟化硫的吹扫捕集-气相色谱分析系统,获批多项发明专利,分析精度达到国际同类水平。4)构建和应用海湾陆源污染物排海总量估算技术及其系统,提出基于长时间序列观测的沿海社会、经济和环境生态协调发展的计量统计学方法。5)建立基于工业化生产的雨生红球藻培养技术和配方,搭建了微藻多级培养系统并研发新型LED藻类培养设备,拥有多项专利,服务于企业生产并产生实际效益。王子君 产品专员岛津企业管理(中国)有限公司毕业于天津大学应用化学专业,具有丰富的分析仪器产品经验,擅长环境应用解决方案。安立会 研究员中国环境科学研究院安立会(1975 -),博士,中国环境科学研究院研究员,博士生导师。主要从事天然与合成环境污染物的水生态毒理效应、环境质量基准与标准及生态风险评价研究,近年重点关注环境塑料垃圾与微塑料对生态系统安全和人体健康的影响,并致力于塑料污染来源及其控制对策,为开展我国环境微塑料的管控措施和治理提供科学依据。吴立冬 研究员中国水产科学研究院吴立冬,博士、研究员、博士生导师,入选中国水产科学研究院“百人计划”,国家市场监督管理总局食品补充检验方法和快检方法等国标方法审评专家。受邀成为“Biosensor and Bioelectronics”杂志编委(IF 12.545),Agriculture Communications 和Journal of Analysis and Testing杂志青年编委,Micromachines杂志(IF 3.523)专题主编。主持国家自然科学基金、国家重点研发计划、国家标准等国家级及省部级项目10余项。2022年获得了中国农学会青年科技奖、中国仪器仪表学会青年创新奖(朱良漪青年创新奖)和中国分析测试协会一等奖(排名第一)。主要从事水产品危害物快速检测方法及渔业环境智能化监测器件研发。迄今,吴立冬博士在Informat(IF 24.7)、Chemical Engineering Journal(16.7)、ACS nano、Food Chemistry、Biosensor and Bioelectronics、Anal. Chem等杂志发表80多篇论文,申请专利22项(其中美国专利1项,国际专利2项),授权7项(已转让2项)。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 塑料粒子及PVC粉末黑点外观检测仪一体机面世
    近日,卡尔帕斯(塑料黑点缺陷扫描仪厂家)总部传来消息,用于检测塑料树脂黑点和PVC黑点杂质的产品在一台机上自由切换的技术完美解决。 塑料树脂粒子表面外观上会出现黑点、黑斑点,甚至整颗都是色粒,将粒子快速挑选出来并进行分析是几乎每个工厂质检部门都希望的事情,用人眼按照现行国标1公斤的方法,量太大,重复性差,颗粒外观仪器法国家标准在2016韵鼎公司承办至今仍在推荐,黑点缺陷扫描仪检测技术也越来越好,快速、重复性高。 PVC粉末中也经常存在黑点或杂质,很多生产厂在经过对比后,选择卡尔帕斯黑点缺陷扫描仪的产品。 有些客户两种产品都有,虽然原来的技术也是一台主机就可以测量塑料粒子和PVC粉末的黑点外观,但需要更换备件,现在两者的一体化设计让这类客户非常方便测试。 到目前为止,卡尔帕斯黑点缺陷扫描仪产品多模块化的设计可以自由组合完成客户任意对颗粒或粉末样品中黑点、黑斑点、色粒、纤维、拖尾、连粒及塑料膜上鱼眼的快速测量、评估。
  • 日本岛津推出塑料纯度自动化检测技术
    &mdash 岛津与三菱电机共同开发回收塑料的高精度材料识别技术&mdash 三菱电机株式会社与株式会社岛津制作所共同开发出「回收塑料高精度材料识别技术」,该技术能够以99%以上的精度瞬间识别在废弃家电产品回收工程中分选回收的塑料种类。以往以手工作业的回收塑料的纯度检测实现了自动化。 塑料高精度材料识别装置全景 塑料高精度材料识别装置概念图 <开发特长> 1.高速・ 高精度识别回收塑料的种类・ 无论着色剂、添加剂的含量有多少,都可识别回收塑料的种类・ 基于识别算法,用时约1秒钟完成向传输板上的塑料片照射中红外光以及反射光解析,实 现99%以上的高精度识别2.自动传输・ 连续识别塑料片・ 可将尺寸各异的塑料片自动传输到识别位置上进行连续识别・ 按种类自动分选识别的塑料片 <今后工作> 三菱电机株式会社正基于本技术争取提高回收塑料的纯度检测效率,扩大高纯度自循环回收量。株式会社岛津制作所正推进塑料回收装置产品化,以应用于家电回收等中。※本技术开发获得经济产业省2011年度产业技术实用化开发事业费补助金[资源循环实证事业(塑料的高度材料识别技术及回收材料化技术)]并实施。 <开发背景> 三菱电机株式会社以降低地球环境负荷、有效利用资源为目的,不断致力于废弃家电产品的再资源化与再利用的「自循环回收」工作,已于株式会社HYPER CYCLE SYSTEMS实施了铁、铜、铝以及单一材料塑料的回收工作,并开发了难以分选的「混合破碎塑料」的回收技术,于2010年在株式会社Green Cycle Systems Corporation启动业界首家大规模塑料材料化工厂,扩大了家电产品的主要塑料(PP、PS、ABS)的回收量。为了提高以往手工作业的回收塑料纯度检测的效率和高精度化,接受经济产业省2011年度产业技术实用化开发事业费补助金,与日本著名分析仪器厂家株式会社岛津制作所共同开发了回收塑料的高精度识别技术。为基于纯度检测自动化的回收塑料纯度检测高速化与高精度化做出了贡献。 <特长详细内容> 1.高速・ 高精度地识别回收塑料的种类传统的近红外光塑料分选装置由于受到从废弃家电产品回收的「混合破碎塑料」所含着色剂的干扰,无法识别浓色塑料。此次开发出使用波长长于近红外光的中红外光,不受着色剂、添加剂影响,高速・ 高精度地识别包括浓色塑料在内的塑料种类的技术。采用不易受到塑料片形状差异影响的光学系统以及高灵敏度识别反射光的检测器,并应用根据1秒钟内多次测定同一塑料片内反射光而获得的数据综合识别塑料种类的算法,达到了99%以上的精度。2.自动传输・ 连续识别塑料片倾斜开孔的圆盘状传输板,利用自重将每一塑料片逐一吸附在开孔上,然后自动传输到识别位置上,实现连续识别。使用空气枪自动分选已识别的塑料片,实现了塑料纯度检测的自动化。在株式会社Green Cycle Systems Corporation,将试制装置应用于分选回收的破碎塑料的纯度检测,结果可知,获得了与传统的手工检测同等的精度。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 塑料软包装溶剂残留检测又有新规定
    5月22日,参加塑料软包装溶剂残留标准制定会议的北京兰德梅克公司王庆国高工对记者表示,这次塑料软包装溶剂残留检测标准草稿的修改会议上,把原来的取样要求取0.2m2,裁剪为1×3cm的小块,放入500ml玻璃瓶进行烘烤。改为取内表面积100cm2放入20ml玻璃瓶进行烘烤,并且样品不要求裁剪。  这次修改是根据国外最新标准制定的,新方法比原来有三个优点:  1、 面积减小后容易取样。因为对于已经分切的卷膜,因为要除去边缘处,面积太大不方便取样。  2、 减少复合膜层间粘合剂层的溶剂干扰。溶剂残留主要指表层印刷的溶剂残留量,如果裁剪成很多小碎片,层间粘合剂层暴露多,集中挥发的溶剂对结果影响大。  3、 方便操作,减少了工作量。  王庆国高工是国内最早关注软包装溶剂残留的权威人士之一,曾经主持设计了专门用于软包装溶剂残留的2061C 、3061C气相色谱仪,是这次会议专家组中唯一被邀请的塑料包装检测仪器生产代表。
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 又一顶刊!微塑料快速检测新成果!
    研究证实,人体中微塑料的主要来源,除了生活中的塑料制品,还包括我们平时吃的海产品等。那么,生物体内的微塑料从何而来?根据有关报告,海产品似乎是目前了解最多的人类摄入微塑料的来源。正因为如此,近几年,微塑料污染对养殖水产品的影响引起了广泛关注。而渔业环境中的微塑料主要来源于陆地上大型塑料垃圾的降解及养殖过程中塑料的使用,长期暴露于高浓度微塑料环境中,养殖水生物的质量安全和生殖发育都将受到较大影响。顶刊新技术:淡水及海水养殖环境中微塑料快速检测及去除技术近日,中国水产科学研究院质量与标准研究中心吴立冬副研究员与东海水产研究所渔业生态环境实验室合作研发出一种可快速富集渔业环境(淡水及海水养殖环境)中微塑料的磁性纳米材料(mANM)。此项成果发表在环境科学顶级期刊《Journal of Hazardous Materials》。该复合材料对水体中不同粒径、多种典型微塑料均有作用,并且可通过调节pH控制磁性纳米颗粒聚团大小,实现在强磁场中30秒快速分离微塑料。为了更好地促进微塑料检测技术发展,网络讲堂邀请到论文通讯作者——中国水产科学研究院吴立冬副研究员,在8月25日做精彩的技术分享。(点击图片,立即报名)同时,本次会议特邀嘉宾——中科院烟台海岸带研究所陈令新研究员,将分享课题组在近海环境中分析新污染物样品前处理技术的最新研究进展。陈令新研究员作为海洋环境分析监测领域的资深权威专家,科技成果丰富,并著有海洋监测领域的宝典书籍——《海洋环境分析监测技术》,报名并观看本次直播,有机会免费领取哦!免费报名:https://www.instrument.com.cn/webinar/meetings/ocean20220825/(京东售价:161.90元)
  • 微纳塑料光学与质谱检测技术发展期望:微观化、可视化——访南开大学汪磊教授
    十八年前,英国普利茅斯大学研究人员发表在《Science》上一篇的文章,让“海洋微塑料”进入人们的视野。海洋微塑料是典型的人类污染物,任何一个海洋国家都存在着海洋微塑料的污染,南北极也不例外。这与地区的经济发展程度和人类活动密度直接相关,我国沿海地区多为人口密度大、经济较发达的地区,也不可避免地存在海洋微塑料污染。如今,微塑料已经成为我国乃至全球环境领域的研究热点,而且随着研究的深入,微塑料的介质、粒径以及研究方向均有了进一步的发展。近日,仪器信息网采访了南开大学汪磊教授,就环境微塑料研究现状、痛点和瓶颈及其对生态和人类健康造成的危害等话题进行了深入交流。汪磊教授 南开大学微塑料研究进一步发展:介质、粒径、研究方向微塑料的研究语境不再仅限于海洋,其介质已从海洋环境拓展到淡水环境、陆地环境及大气环境。如大量使用农膜,造成土壤环境出现微塑料;日常洗衣服时,涤纶和尼龙等材质的衣服释放出来的纤维也属于微塑料,进入淡水水环境,造成淡水环境的污染;空气环境中,微小的塑料颗粒通过扬尘进入大气环境,一些更小的颗粒可能会长期悬浮于大气当中,甚至会进一步向大气层上层迁移,并随着气团进行长距离的迁移。这些都是已经有科学证据的环境行为。因此,整个地球面临广泛的微塑料污染。随着微塑料研究的持续开展,研究方向和粒径方面也都有了更进一步的发展。研究方向从最开始的环境调查逐渐深入到毒理学效应和机制的研究;研究对象的粒径也越来越小,从最早微塑料定义的粒径5mm以下,到后来欧洲科学家提出的2mm以下,如今,动物实验发现亚微米级和纳米级的颗粒物更有可能在环境暴露后被吸收并进入到内循环,从而带来更大的健康风险,这引起科学家更为广泛的关注。微塑料研究难点:样品检测和源解析目前,微塑料研究的难点和瓶颈主要在于样品检测。实验室里对纯的化学品、塑料聚合物开展研究相对容易,因为这些物质在检测时加入的成分和剂量都是可控的,甚至还可以用一些染色或同位素标记的方法进行示踪。但环境里的微塑料本身表面粒径很小,比表面积很大,发生同质和异质聚集的能力较强,且有时易在环境中发生老化而与初始状态不同,给检测带来困扰。环境微塑料源解析也是一大瓶颈问题。微塑料的源头和归趋永远是大家关注的问题,由于塑料聚合物本身结构往往是由简单的碳氢结构组成的,很难建立特征性的指纹图谱去分析不同地域环境微塑料到底有哪些差别,所以常规通过化学成分指纹图谱进行污染物溯源的方法不一定适用于微塑料的污染研究。因此,找到合适的、能够对环境微塑料进行科学源解析的方法,也是目前研究当中的瓶颈问题。此外,亚微米级和纳米级别的颗粒已经成为研究人员关注的重点,同时,更小的粒径也使它们的检测难度也非常大,需要科学家和仪器公司技术人员共同努力来实现突破。首创化学解聚质谱检测技术 获学术界认可由于自身具有痕量污染物的环境行为和环境检测研究背景,汪磊自2015年开始关注环境微塑料,当时国内已经有许多团队在开展相关研究工作,但这其中环境分析化学领域的团队还不多。起初,环境生物学专家研究塑料污染时采用的检测技术仍以显微镜下对颗粒观察计数为主,汪磊认为镜检方法虽然可以满足部分实验要求,但由于偶然因素干扰较多,且受前处理过程和操作人员的限制,该方法不适用于痕量微塑料和亚微米尺寸的塑料颗粒检测,也难以实现方法的标准化,且其检测结果也难以用于环境微塑料的释放和迁移通量计算。结合自身研究专长,汪磊团队以将塑料聚合物通过化学解聚的手段解聚成具有特异性的单体化合物,以质谱对单体化合物进行分析检测,进而回溯到聚合物本身的质量思路,开发出聚酯、聚碳酸酯、聚乳酸、尼龙等微塑料的质谱检测技术,搭配镜检技术一起使用,具有更好的准确性和灵敏度。采用该方法,汪磊团队进行了包括污染调查和微塑料环境行为方面的研究,相关检测方法分别发表在美国化学会刊物Environmental Science & Technology Letters(EST Lett)、和Analytical Chemistry上,并被EST Lett杂志评为2017年年度最佳论文。采用质谱检测-镜检结合方法,汪磊团队对一些典型塑料污染场景进行了研究,如提出以质谱检测配合光学显微方法能更准确地评估洗衣废水对污水处理厂进水中微塑料污染的贡献;评估了大气沉降与剩余污泥再利用对陆地环境中微塑料污染的输入通量;发现了垃圾填埋场矿化垃圾土中微塑料和它的前体物以及塑化剂在成分分布上的变化与填埋时间存在相关性;并结合环境微生物学技术,揭示了室内灰尘中较高浓度的微塑料特别是生物可降解塑料微粒会影响室内环境中微生物的群落结构,这些研究成果于在EST、科学通报等刊物上连续发表。此外,汪磊还对微塑料的长距离迁移、“双碳”战略背景下生物质塑料和可降解塑料等新课题进行了一些初步的探索。由于从事环境微塑料技术的研究,2021年,汪磊团队获得安捷伦公司的全球开放型课题的支持,汪磊表示:“我很感谢安捷伦,我们很多研究工作都是用安捷伦的仪器完成的,如Agilent 8700 LDIR激光红外成像系统,以及LC/MS/MS产品。安捷伦特别关注微塑料方面的技术开发,也愿意与科研单位合作,因此我们双方一拍即合。”汪磊团队合影质谱技术在反映聚合度和粒径方面存在局限性当前,环境微塑料研究主要用到光学和质谱学两种技术手段,光学手段包括普通光学显微镜和结合聚合物特征光谱开展的显微光学技术,后者如显微红外、显微拉曼等,实验室研究还可用到电镜、原子力显微镜等。大部分微塑料研究工作只会采用两种手段中的一种。在微塑料检测中,光学手段使用更为广泛,该技术简单直接,对研究条件要求较低,方便使用。光谱学手段可以识别塑料聚合物,因此红外光谱在微塑料检测中迅速成为主流技术。质谱学方法在采用不同解聚或裂解处理后,以液质或气质联用仪对相对完整的聚合物功能单体化合物或聚合物的分子碎片进行检测,再回溯聚合物质量。微塑料的质谱检测技术还存在一定局限性,如热裂解技术在产生碎片时一些环境基质会产生同类碎片,对样品分析造成干扰。而相对温和的化学解聚手段也并不能有效解聚所有塑料聚合物,且如果产生的功能单体不具有特异性,该方法将同样面临基质干扰的问题,这些问题限制了质谱技术的应用发展。质谱分析样品解聚手段的另一大局限性是无法有效区分不同聚合度的聚合物,低聚物也会产生相同的碎片和功能单体,因而会对微塑料的定量产生干扰。“在研究过程当中,我们也不断地被要回答编辑和审稿人提出的这类问题,尽管这些低聚物相对于高聚物来说体量常常微小到可以忽略不仅,但它总归是一个客观存在的误差。”汪磊讲到,“但低聚物本身是否也有环境风险和研究的意义呢?”光学技术需更微观 质谱技术期待原位可视化当前,两种主要的微塑料检测技术都存在一定的局限性,汪磊详细讲述了局限问题并提出了对微塑料分析技术的发展期许。光学技术最大的局限性体现在更小粒径的微塑料检测灵敏度不足。目前市场上常见显微红外技术产品灵敏度多在10~20微米左右,这个尺度以下的环境微塑料很难被识别;显微拉曼技术灵敏度相对较高,但对5微米以下的样品也很难检测。因此,光学技术,需要在灵敏度方面进一步发展,使分析更加微观化。质谱方面,希望能发展对高分子聚合物直接进行检测的质谱技术,虽然据悉已有相关技术,但尚未能应用到塑料聚合物的检测上;另外,现有质谱方法分析塑料聚合物时,只能间接证明它的存在,不能实现微塑料的直接原位检测,说服力不足,期待适用于微纳塑料的质谱成像检测技术出现,从而更直观地揭示这些人造高分子聚合物的生物富集行为和毒理学作用机制。政策监管尚空白 制定相关标准应考虑多技术结合目前,在政策方面,针对塑料本身的地方性和行业性的约束,如各类“限塑令”时有颁行,但目前尚未出台针对微塑料的监管或污染治理标准。据悉,国家海洋监测中心编制了《海洋微塑料监测评价技术规程(试行)》。全球公认的环境微塑料污染监测标准技术尚未形成,各国和各团队使用的方法不同程度上存在差别。“因为环境微塑料的检测本身有很大的困难,同时又要考虑到自身的污染现状、科研能力和软硬件条件,因此构建科学、实用的监测和检测标准方法十分具有挑战性。”汪磊解释。汪磊认为,在制定环境微塑料相关监测法规或标准时,应考虑多种技术结合,例如光学检测的计数结果不利于数据之间的比较,质谱学技术无法直接反映颗粒形态和聚合度,两种技术的结合可以提高检测结果的准确性和科学性。大众应正确面对微塑料危害 减少环境中的微塑料排放微塑料对于生态环境和人类健康都存在一定的风险。较大粒径的微塑料易被动物摄食,导致海洋生物食道阻塞、厌食甚至死亡;附着到珊瑚礁表面的微塑料会引起珊瑚病变,而由于珊瑚礁对于海洋环境调节十分重要,珊瑚礁的死亡会引起一系列不良海洋环境生态效应的出现;也有研究表明,土壤环境中,微塑料会影响营养物质的传质,导致植物对营养物质的吸收障碍;浮萍类水生植物容易与悬浮的微塑料结合在一起,影响生物表面膜的通透性;微塑料表面普遍具有疏水性,其负载的内生和外源污染物对生物也可能存在毒性,这些都反映了微塑料对生态环境的潜在风险。同时,微塑料的人体暴露广泛存在,由于微塑料中存在未聚合的单体化合物、及其含有的添加剂和吸附的其他污染物,人体摄入微塑料后,这些物质可在人体内释放,造成人类对这些化学品的额外摄入;微塑料表面微生物的特异性定植可能形成独特的微生物 “塑料域”,在致病菌和抗性基因传播方面可能导致新的风险。此外,塑料纳米颗粒本身也可能对人类健康产生危害,这方面的研究仍“在路上”。但由于人体摄入微塑料的机会和剂量都不大,微塑料对人体健康的已知影响并不显著。塑料是人造高分子聚合物,而自然界中动物、植物、微生物也都在制造高分子聚合物。人们每天都可能摄入木质素颗粒,这些植物聚合物颗粒无法被消化吸收而会自行排出体外,所以对人造聚合物也没必要过分紧张。汪磊认为,对于大众来说,还应正确面对其对健康产生的潜在影响。最后,汪磊建议,减少微塑料的污染,应该从减少塑料的污染。“塑料作为20世纪最伟大的发明之一,给人类带来了巨大的便利,减少塑料污染并不等于放弃使用塑料,而是增加其循环使用和回收再生,从而减少环境中的塑料排放,这对我们每一个人或者说对每一个消费者来说是最容易做到的事情。”人物简介:汪磊,南开大学教授、博士生导师,环境科学系系主任,“环境污染过程与基准”教育部重点实验室副主任。主要研究领域为新型污染物的环境行为与环境暴露。曾获得国家海洋科技进步二等奖、天津市科技进步一等奖、教育部高等学校科学研究优秀成果奖自然科学二等奖;首届全国环境化学青年奖。获得国家基金委优青基金项目、天津市杰青项目,入选天津市中青年创新领军人才、131创新人才第一层次,并担任Bulletin of Environmental Contamination and Toxicology亚洲副主编、Ecotoxicology and Environmental Safety编委、环境科学学会环境地学分会、环境化学分会委员。
  • 探微知著:微塑料多维检测技术的发展与应用
    微塑料(Microplastic)的定义是指尺寸小于5 mm 的塑料颗粒、微纤维或者薄膜等。从目前的研究报道看,微塑料在环境中的分布已极为广泛,从深海到高山,从极地到赤道地区,几乎无处不在。近几年微塑料的环境影响引起了全球的关注,它们能够被多种生物摄取,通过食物链的传递可能对生态系统造成长期且复杂的影响。此外,微塑料还能吸附水中的有毒物质,如重金属和有机污染物,这些物质可能通过食物链累积并放大,最终对人类健康构成潜在风险。微塑料逐渐成为一种需特别关注的潜在环境污染物,越来越受到研究人员和公众的关注。 “微塑料”的概念最早于2004年《Lost at Sea: Where Is All the Plastic? 》文章中被首次提出。2012年《The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments》文章发表,红外光谱技术被引入微塑料的定性表征检测,很荣幸珀金埃尔默的Spotlight红外显微成像系统担任了文章中检测微塑料光谱信息的任务。 2017年中国重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”启动,同年3月份辽宁省海洋水产科学研究院起草发布了国内首个微塑料的检测标准《DB21/T 2751-2017 海水中微塑料的测定 傅立叶变换显微红外光谱法》。 △ 点击可查看大图 在微塑料科研和检测方法的发展过程中,珀金埃尔默始终和各行各业的客户合作,助力客户的科研和检测工作,改进完善微塑料的检测方案。 2018年,一项由新闻机构Orb Media组织的研究对全球11个国家的259瓶瓶装水进行了测试,结果显示其中93%的瓶装水样本含有微塑料。微塑料污染问题引起了国际社会的广泛关注,成为全球环境和健康议题的一部分。 微塑料相关领域的研究人员,采用了各种测试方法来确定微塑料在环境中的分布和来源。其中红外及显微红外光谱法,被用作检测和鉴别各种环境和样品基质中的微塑料的标准方法。珀金埃尔默的红外及显微红外已有完善的准确可靠检测方案,另外还充分挖掘不同检测设备的优势,将热分析-红外光谱-色谱质谱联用方法和单颗粒ICPMS方法引入微塑料研究,以提供微塑料多维检测数据,更好的服务于行业客户对全面表征数据的需求。 Part.1 ✦ ✦ 微塑料的红外及显微红外 光谱检测方案 ✦ △ 点击可查看大图 多尺寸 提供1.56微米以上多尺寸全光谱范围的微塑料的红外光谱法检测方案,可以根据测试尺寸要求的下限,自由选择不同的检测手段。现场检测大尺寸的微塑料,比如在船上直接检测拖网上的颗粒,可以直接使用红外光谱仪Spectrum 3或Spectrum 2。在实验室测试肉眼不可见的微米级别的微塑料,可使用Spotlight200i红外显微镜或Spotlight400红外显微成像系统。采用Spotlight200i红外显微镜,配合珀金埃尔默自主开发的微塑料自动分析统计软件,可以快速得到整张滤膜的微塑料的测试数据和尺寸统计等信息。下图是自来水样品过滤到滤膜上之后,整个滤膜全自动扫描微塑料光谱和微塑料自动计数的数据。 △ 点击可查看大图 测试10微米以下尺寸的微塑料,采用Spotlight400红外显微成像系统,配合ATR成像附件,最小可以原位测到1.56微米尺寸的微塑料。下图是海洋中贝类样品的小尺寸微塑料的ATR成像原位测试的数据。 △ 点击可查看大图 全光谱 珀金埃尔默方案提供微塑料完整的红外光谱图定性结果,光谱范围至少覆盖7800cm-1~600cm-1波段,保证谱图符合光谱学的定性三要素(特征峰位置、峰形状和峰强度),确保微塑料定性结果的准确无误。 其他使用局部波段的检测技术,会出现微塑料光谱图的误判情况,导致微塑料成分鉴定是不准确的。 △ 点击可查看大图 上图是高密度PE微塑料和ABS微塑料的全波段红外光谱图,在1900cm-1以上和900cm-1以下的波段有非常关键的特征官能团和指纹吸收峰(标阴影区域),如果只是采集中间局部光谱图,比如1900-900cm-1的谱图来定性微塑料,会缺少待测物质的特征信息,不符合光谱学的定性三要素,不能始终给出可靠的光谱学定性结果。 Part.2 ✦ ✦ 微塑料的热重-红外-GCMS 联用技术检测方案 ✦ 微塑料通常悬浮在水面,被生物摄入后进入食物链,并在体内蓄积。随着微塑料带来的环境问题越来越受关注,除了微塑料颗粒、纤维的定性定量研究外,越来越多的研究人员,也在研究微塑料吸附的污染物以及微塑料降解产物的成分相关信息。在研究开始早期,微塑料的热裂解气相色谱-质谱联用技术,被用于分析和鉴定微塑料及其裂解产物的分析。但是随着研究方法使用的深入,暴漏了一些方法的弊端,比如无法获得关于降解产物特性的充分信息,几乎无法获得关于降解产物形成时间的信息。 △ 点击可查看大图 珀金埃尔默将热重分析(TGA)-红外(IR)-气相色谱-质谱(GC/MS)联用方案引入微塑料研究,可以程序控制样品升温速率,实时分析微塑料基质中微塑料PE、PP、PS的总离子色谱图(TIC)数据热分解产生的产物,对逸出气体进行深入表征,获得更多关于降解产物特性的信息以及关于降解产物形成时间的详细信息。 下图为珀金埃尔默联用技术TGA-GCMS模式,悬浮液体中的微塑料(聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS))成分分析数据。 △ 点击可查看大图 另外珀金埃尔默联用技术的TG-IR模式,可快速的对可降解性塑料的成分进行界别,下面是可降解性塑料餐盘(上)和不可降解性塑料(下)的对比热红联用数据。 △ 点击可查看大图 Part.3 ✦ ✦ 微塑料的TGA-ICPOES 及单颗粒ICPMS技术检测方案简述 ✦ 微塑料吸附的污染物,有机污染物部分可以用前面所述的联机技术进行检测。可能吸附的无机污染物部分,可采用珀金埃尔默开发的TGA-ICPOES联用技术,对微塑料上吸附的重金属等无机污染物进行定性表征,如下图为微塑料的热失重和热重逸出气体的实时ICPOES响应曲线数据。 △ 点击可查看大图 单颗粒ICPMS(SP-ICP-MS)技术,也可作为一种快速筛选方式,作为微塑料表征手段的一种补充工具。 相比其他分析手段,SP-ICP-MS分析速度较快,可以在更短的时间内采集更多颗粒,并能提供粒度分布和颗粒浓度的更多信息。通过监测C13的信号,使用NexION系统的SP-ICP-MS,可以成功用作微塑料测定的筛选工具或补充技术。利用单颗粒ICP-MS分析技术采用的快速瞬时采集能力(NexION 系列ICP-MS高达100000点每秒),C13背景得以大大降低,从而实现纳微塑料颗粒的准确分析。将SP-ICP-MS与可鉴别微塑料成分的红外光谱技术相结合,可以获得有关微塑料的更全面信息。右图为SP-ICP-MS筛选塑料茶包中微塑料颗粒的分析数据。 △表1:塑料茶包中含碳颗粒结果 综上,珀金埃尔默仪器与解决方案,在微塑料检测技术的发展中扮演着关键的角色,不断推动各项测试技术的创新与更新。我们的微塑料检测方法开发团队不仅积极参与当前的研究工作,而且与不同行业的合作伙伴携手,共同推动检测标准的建立与完善。我们坚信,微塑料问题所在之处,正是珀金埃尔默技术和解决方案发挥作用的地方。珀金埃尔默的使命是致力于创造一个更加美好的未来,我们期望能够支持和帮助更多投身于微塑料研究和检测的科研工作者。我们共同努力,为了我们共同生存的地球环境的改善和可持续发展贡献力量。 关注我们
  • 塑料保鲜膜有必要使用摩擦系数仪测试湿态下的摩擦系数吗
    塑料保鲜膜是家庭和商业厨房中常用的食品包装材料,它的主要作用是保护食品免受污染,减少水分蒸发,并在一定程度上隔绝氧气,延长食品的保质期。摩擦系数是衡量材料表面滑爽性的一个重要参数,尤其在包装和运输过程中,它影响着材料的堆叠、展开和使用便利性。湿态下摩擦系数测试的必要性使用环境:在实际使用中,塑料保鲜膜可能会暴露在潮湿环境中,或者用于包裹含水食品,因此测试湿态下的摩擦系数可以更准确地模拟实际使用条件。产品性能:湿态下的摩擦系数可能会与干态时有所不同,这可能会影响保鲜膜的使用性能,如开合的便利性、包装的密封性等。质量控制:通过测试湿态下的摩擦系数,制造商可以对产品进行更全面的质量控制,确保其满足不同条件下的使用要求。安全标准:某些食品安全标准或包装材料标准可能要求测试材料在不同条件下的性能,包括湿态下的摩擦系数。消费者体验:湿态下的摩擦系数直接影响消费者在使用保鲜膜时的体验,如易拉性、易撕性和易铺展性。摩擦系数仪的选择和测试设备选择:选择能够进行湿态测试的摩擦系数仪,确保设备可以模拟潮湿环境并准确测量摩擦系数。测试条件:设定合适的测试条件,包括湿度、温度和测试速度,以确保测试结果的准确性和可重复性。样品准备:按照标准要求准备样品,确保样品的代表性和测试的有效性。数据记录:记录测试过程中的数据,包括摩擦系数、测试条件等。结果分析:对测试结果进行分析,评估塑料保鲜膜的湿态摩擦性能,并与干态性能进行比较。结论虽然塑料保鲜膜在干态下的摩擦系数测试是常规的质量控制步骤,但进行湿态下摩擦系数的测试同样重要。这不仅可以提供更全面的产品性能评估,还可以确保产品在实际使用中的性能满足消费者的期望和安全标准的要求。因此,使用摩擦系数仪测试塑料保鲜膜湿态下的摩擦系数是有必要的,它有助于提升产品质量和消费者满意度。
  • 微塑料检测标准盘点:多项团标在进程中
    微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。早在2004年,英国普利茅斯大学Thompson等在《科学》杂志上就首次提出了“微塑料”的概念。作为一类重要的新污染物,微塑料近年来多次引起业界的热议。据发表在《冰冻圈》杂志上的一篇论文称,新西兰坎特伯雷大学研究人员在南极洲的新降雪中首次发现了微塑料 ;发表在《整体环境科学》上研究显示,德国研究人员在城市收集的蜘蛛网中检测出了微塑料颗粒,并且蜘蛛网“捕获”的微塑料颗粒占整个蜘蛛网重量的10%,由多种不同的种类组成;一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,引发微塑料对人体健康长期影响的担忧;今年,来自美国国家标准与技术研究院 (NIST) 的化学家Christopher Zangmeister团队开展的一项新研究,带有防水涂层——低密度聚乙烯(LDPE)内衬的一次性纸杯,在接触 100 ℃ 热水短短 20 分钟后,释放的微塑料颗粒密度可达 1012/L。这意味着喝下一杯 300 ml 的外带热咖啡,将有上千亿微塑料颗粒进入体内,研究人员推算,这意味着平均每 7 个身体细胞就会吸收一个微塑料颗粒… … 不得不说,以上研究让大家细思极恐,与“白色污染”塑料相比,微塑料的危害体现在其颗粒直径微小上,这是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因,其治理迫在眉睫!(更多阅读:南极雪中惊现微塑料 新污染物治理迫在眉睫)作为一种新型环境污染物,目前微塑料相关研究如火如荼,但是对其科学客观评判迫切需要建立标准化的分析测试方法和生态健康风险评估技术。由于微塑料物理特性以及化学组分等的差异,不同类型微塑料在不同环境中流动过程的时间均不相同,使微塑料检测变成一大难题。近年来发展的微塑料检测方法主要有傅立叶红外光谱法(FT-IR)、拉曼光谱法、热裂解气质联用法(Pyr-GCMS),以及其他方法等,大大提高了微塑料定量分析的准确性。(更多阅读:微塑料治理持续加码 这些仪器采购正当时)同时,相关标准也在完善过程中,据不完全统计,现行的地方标准有两项:DB21/T 2751-2017海水中微塑料的测定 傅立叶变换显微红外光谱法 ;DB37/T 4323-2021海水增养殖区环境微塑料监测技术规范 ;作为标准体系的一个重要部分,团体标准越来越吸引大家的关注。近年来,一系列微塑料相关的团体标准也在陆续立项或者发布中。其中,2020年6月,上海市环境科学学会批准立项了上海锐浦环境技术发展有限公司申报的《环境水体中微塑料的测定傅里叶变换显微红外光谱法》团体标准;2020年12月,中国材料与试验团体标准委员会批准CSTM标准《景观水中微塑料的测定 显微红外光谱法》立项;2021年5月,中国纺联标准化技术委员会发布关于下达21项团体标准计划项目的通知(中国纺联标委函[2021]3号),其中包括《纤维微塑料术语、定义和分类》、《纤维微塑料鉴别试验方法》、《地表水环境纤维微塑料分析测试方法》。序号项目编号标准项目名称标准类别制定/修订完成年限申报单位1202102-CNTAC001纤维微塑料术语、定义和分类基础制定2022东华大学2202102-CNTAC002纤维微塑料鉴别试验方法方法制定2022东华大学3202102-CNTAC003地表水环境纤维微塑料分析测试方法管理制定2022东华大学其中,《T/CSTM 00563—2022 景观环境用水中微塑料的测定 傅里叶变换显微红外光谱法》已经于2022年2月21日公布,2022年05月21日实施。该文件规定了傅里叶变换显微红外光谱法测定景观环境用水中微塑料的术语和定义、方法原理、仪器设备与试剂、测试样品制备、测定步骤、结果分析与计算等,适用于景观环境用水中尺寸范围在50 μm-5 mm之间的微塑料的形状、颜色、尺寸、数量和聚合物种类的测定。其他水环境中微塑料的测定可参考本方法。此外,2021年4月13日,中国水利企业协会发布通知,对《地表水中微塑料的测定(征求意见稿)》征求意见,标准中涉及了显微拉曼成像光谱法、傅立叶变换显微红外光谱法、傅立叶变换红外光谱法等。2022年初,“中国材料试验团体标准委员会/基础与共性技术领域委员会/微塑料及其环保试验技术委员会(CSTM/FC00/TC03)成立暨专题报告会”召开期间,CSTM 标准委员会批准同意在基础与共性技术领域委员会(CSTM/FC00)下设立微塑料及其环保试验技术委员会。与会专家、委员组成评审组召开团体标准立项答辩会,对《饮用水中微塑料的测定 傅里叶变换显微红外光谱法》、《地下水中微塑料的测定 傅里叶变换显微红外光谱法》、《污水中微塑料的测定 傅里叶变换显微红外光谱法》、《海产品中微塑料的测定 傅里叶变换显微红外光谱法》、《土壤中微塑料的测定 傅里叶变换显微红外光谱法》等5项CSTM团体标准进行立项评审,经全面论证后一致同意立项。2022年7月19-22日,仪器信息网联合江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等共同举办“第十一届光谱网络会议(简称iCS2022) ”。其中,针对微塑料的热点话题,特别邀请了中国地质调查局南京地质调查中心沈小明高级工程师和中国科学院烟台海岸带研究所王运庆研究员,分别就《激光共聚焦显微拉幔光谱分析技术在海岸带沉积物微塑料检测中的应用》、《SERS标记纳米塑料及其在典型模式生物体内分布研究》主题发表演讲。立即报名》》》
  • 高铁检测仪器推动大规模设备以旧换新——塑料行业实施指南
    日前,国务院印发《推动大规模设备更新和消费品以旧换新方案》,提出实施设备更新、消费品以旧换新、回收利用、标准提升四大行动。按照党中央、国务院决策部署,高铁检测仪器积极响应国家号召,现启动全国范围的仪器更换与置换活动,为2024年国家仪器设备更新行动做出大力支持,全力以赴为创新产业赋能增效。高铁检测仪器始终坚持以科技创新为核心竞争力,立足检测仪器科技前沿,投入大量科研资金进行产学研合作,近年来持续不断的推陈出新,为科研创新提供强有力的支撑。仪器年久,无法跟上日益增长的检测需求;标准更新,无法满足最新的测试方案要求;亦或者您有自动化、智慧化实验室的管理需求,欢迎您随时联系我们!高铁检测仪器有专业的技术团队为您提供全方位一站式的服务咨询,量身定制实验室更新升级方案,与您一起环保低碳,绿色换新。
  • analytica 2014聚焦塑料分析领域: 质量保证源于技术革新
    在我们的日常生活中,新型功能材料正发挥越来越重要的作用&mdash &mdash 从医疗器械和消费品到高科技电子和汽车产品都有赖于这些材料。 与此同时,复杂材料的测试和质量控制对设备的复杂度和先进方法的需求也越来越高。因此,这一话题将再次成为analytica展会(4月1&ndash 4日)的重要主题之一。  从实验室色谱和光谱分析,到快速、无损的便携分析仪:analytica 2014期间1100多家国际展商将推出自己的最新分析设备。&ldquo 塑料化学分析非常复杂,质量要求很高。除了聚合物之外,还需要分析里面所含的软化剂、阻燃剂、稳定剂、色素以及其他为数众多的添加剂,&rdquo 展会总监Susanne Grö dl解释说。&ldquo 塑料分析是今年analytica的主题之一,展会也以该领域最新技术发展和方法革新为主要焦点。&rdquo   实验室塑料定性分析  analytica为所有希望全面了解塑料分析技术的人士提供了最好的平台。除传统塑料分析仪器外,各种分析控制设备和附件&mdash &mdash 从计量器具和实验磨到参考材料和各种试剂&mdash &mdash 都能在展会上找到。Agilent, Axel Semrau, Mettler Toledo, Shimadzu和Bruker等各大领先厂商都将推出自己的最新设备。展会期间也将推出不少新开发的系统,如LUM的LUMIFrac。该系统可用于确定复合材料、多层复合材料和粘合部件的粘合力和抗拉强度。LUMIFrac的离心分离机采用了特殊转子,可以同时分析8个样本。分析仪不断给实验样本施加更大的离心力直至其断裂,几秒钟内转子中的电子设备就能将断裂时间和速度等信息传递到处理计算机中,通过软件计算出相应的材料抗拉强度。  此外,Oxford Instruments将在LOT Quantum Design 展台推出台式核磁共振分析系统MQC, 帮助样本制备过程进一步简化。该系统能用于工业质量控制,例如它可以确定PVC材料中软化剂的含量。  Fritsch将在展会上推出Analysette 28粒度分析仪,可用于分析粉末和大块固体物质的体积和形状。该分析仪配有4个高清晰度可更换镜头,能进行动态图像分析。其测量器尤其适合20微米到20毫米之间大小的粒状物质量控制。  聚焦:现场便携测量设备  复杂材料特性、多样的应用领域、法律方针、生态和经济:市场对塑料产品的多方面考量也对控制机构提出了极高的要求。因此,能够快速准确测量的便携设备正越来越成为市场焦点,方便检测难以运输的物品。相关展品方面,B&W Tek将在展会上推出NanoRam检测仪,它可以测量透明包装如玻璃或塑料中的物品。而ColorLite sph900和sph860则可以测量液体、粉末和其他固体物的色值。  analytica国际研讨会:研究成果全面展示  参加analytica的观众也不应该错过同期举办的analytica国际研讨会。会议在慕尼黑国际会议中心举行,集合了世界众多高水平科学家。塑料分析专业人员应该特别关注4月2日(14:30&ndash 15:00)星期三的会议。届时,Till Grü ndling将讨论&ldquo 气相色谱法&ndash 质谱法联用在聚合物表征分析中的难点及对应方法&rdquo ,着重介绍路德维希港巴斯夫公司所采用的MALDI-MS, LC(/MS), GC(/MS)和热解方法。会议详细信息均可登录:www.analytica.de/en/conference。analytica展会观众可免费入场。  现场实验室:塑料分析质量测试  参加B1大厅的现场实验室,观众能够充分了解塑料分析的挑战。在这里,科学家和用户将在真实实验室环境中介绍自己的专业经验。世界领先厂商也会实际演示自己的创新产品和解决方案。周二到周四的1:00, 13:00和15:00,以及周五11:00和13:00,大会将举办30分钟讲座,介绍具体应用、最新技术和先进方法:参加讲座可以帮助观众们了解质量控制、理想样本制备、分子重量确定和如何使用热物性分析等丰富知识。同时,大会还将推出现代混合分析方法、长期和短期风化及渗透测量等方面的讲座等活动。  关于analytica  analytica是分析、诊断、生物及实验室技术领域的国际盛会,每两年在德国慕尼黑召开一届。自1968年品牌创立以来,展会以发展成为全球分析、诊断、生物技术行业和科研及应用行业用户的重要交易平台。展会同期举办的analytica国际研讨会是全球领先的分析学术盛会,为科研界精英讨论化学、生化和实验室药物等问题提供绝佳机会。2012年共有30,481名观众和1,026家展商参加analytica。  更多展会和相关活动信息请访问:www.analytica.de/en  关于analytica China  analytica China(慕尼黑上海分析生化展)是analytica全球网络的一部分。2014年9月24-26日analytica China将在上海新国际博览中心N1、N2、N3馆隆重召开。展会规模将达30,000平方米,预计将吸引超过20个国家及地区约700家中外展商,集中展示包括分析仪器、测试测量、生命科学、生物技术、实验室建设、试剂耗材和通用实验室设备等在内的最新产品及应用,提供全方位的实验室技术解决方案。更多信息,敬请访问展会官网:www.a-c.cn  慕尼黑国际博览集团  慕尼黑国际博览集团是世界领先的展览企业之一。仅在慕尼黑一地,慕尼黑国际博览集团就每年组织近40场展览,涵盖资本货物、消费品及高科技行业等众多领域。每年有超过30,000家展商和近200万观众参加集团在慕尼黑展览中心、ICM-慕尼黑国际会议中心和慕尼黑MOC展览中心举办的展会。慕尼黑国际博览集团举办的领先国际展会均接受独立审计。  此外,慕尼黑国际博览集团还在亚洲、俄罗斯、中东和南非举办展览。集团在欧洲、亚洲和非洲拥有9家分公司,并在60多个国家设有代表处,服务于90多个国家,并形成自己的全球性业务网络。集团在可持续性方面也作出了突出贡献:我们是世界上第一家由TÜ V SÜ D 授予高能效认证的展览企业。
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 在线色差仪进行塑料薄膜颜色检测
    塑料薄膜的颜色是产品设计和品牌营销中至关重要的元素。通过选择适当的颜色,塑料薄膜能够吸引消费者的目光,从而增加产品的吸引力和销售潜力。同时,特定的颜色也可以建立品牌的识别度和差异化,使消费者能够迅速辨认出属于特定品牌的产品。颜色不仅传达产品的特性和价值,还能够激发消费者的情感共鸣,与他们建立情感连接。因此,塑料薄膜的颜色选择应该经过精心考虑,以确保与产品定位、目标受众和品牌形象相契合,从而实现市场竞争的优势和品牌的成功。本文将介绍ERX130在线色差仪在塑料薄膜的色彩颜色解决方案。ERX130在线色差仪用于测量和评估塑料薄膜颜色的准确性和一致性。它是一种高精度的仪器,采用先进的光学技术和色度学算法,可提供可靠的颜色测量结果。ERX130在线色差仪具有生产线反射测量、与ESWinQC或CLCC连接、300mm测量距离和90mm测量光斑以及在线反射测量等优点,提供便捷、准确和实时的塑料薄膜颜色测量解决方案。这种仪器专为小型结构化图案样品的反射测量而设计。它的目标是帮助操作人员及时预警色彩问题,以避免生产过程中可能导致昂贵的浪费、返工和推迟上市等问题。当与ESWinCLCC软件配套使用时,ERX130在线色差仪将成为自动化在线质量控制系统的关键组成部分,实现自动调整色彩,从而满足各种工业应用的要求。另外,ERX130非接触式在线色差仪可用于避免生产线出现错误。它可以在整个生产过程中进行反射测量,确保及时发现并纠正色差问题,无需停止生产。配合ESWinQC软件使用,该仪器能够为操作人员提供实用的指导,使其能够立即采取措施来纠正问题。该仪器操作简单,支持与特定标准或绝对测量值进行比较,能够在人眼察觉色差之前识别出问题,并及时进行调整,从而避免批次损失而且凭借同轴光学测量结构、远距离测量和大测量光斑特点,ERX130在线色差仪非常适合监测各种带纹理、精细图案和反光工业材料,包括乙烯基、纺织品、颜料、油漆、石膏、薄膜以及粉末和沙子等散装货物。ERX130在线色差仪作为高精度的工具,为塑料薄膜颜色的准确性提供了可靠的解决方案。它的使用能够提高生产效率、降低成本,并确保产品的色彩一致性和质量稳定性。作为色彩管理的可靠伙伴,ERX130在线色差仪为企业实现市场竞争优势和品牌成功提供了有力支持。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 塑料软包装膜摩擦系数仪为何业内都按GB10006标准进行检验
    在塑料软包装材料的检测中,摩擦系数是一个重要的物理性能参数,它直接影响到材料在高速生产线上的运行性能,如开卷、输送、装填等过程。摩擦系数过高或过低都可能导致生产过程中的故障,影响生产效率和产品质量。在中国,GB/T 10006-1988《塑料薄膜和薄片摩擦系数测定方法》是一个被广泛认可和采用的标准,尽管已有新的替代标准出台,但许多业内实验室仍然按照老标准进行检验,原因如下:1. 历史沿革GB/T 10006-1988标准是中国较早制定的关于塑料薄膜摩擦系数测定的标准,许多企业和实验室长期以来一直使用该标准进行测试,积累了大量的测试数据和经验。这种长期的使用习惯使得业内对这一标准有着较高的依赖性。2. 设备兼容性由于GB/T 10006-1988标准的普及,相关的测试设备也广泛配备于各个实验室和生产企业。这些设备一般按照老标准设计,更换或升级设备需要额外的成本和时间,因此,许多实验室选择继续使用现有的设备和标准。3. 数据对比性长期积累的测试数据使得企业和实验室可以进行历史数据的对比分析,对于产品质量控制和改进具有重要意义。更换新的标准可能会导致数据对比上的困难,影响数据的连续性和可比性。4. 行业习惯在某些情况下,行业习惯和客户要求也是继续使用老标准的原因之一。由于客户可能习惯了按照GB/T 10006-1988标准进行检验的结果,因此,为了满足客户需求和保持市场竞争力,企业可能会继续沿用老标准。5. 新标准的接受度虽然有新的替代标准出台,但新标准的推广和接受需要时间。此外,新标准可能需要企业进行人员培训、设备更新等,这些都是转换过程中需要考虑的因素。结论尽管存在新的替代标准,但由于历史沿革、设备兼容性、数据对比性、行业习惯以及新标准的接受度等因素的影响,GB/T 10006-1988标准在塑料软包装膜摩擦系数仪的检验中仍然被广泛采用。然而,随着技术的发展和行业的进步,逐渐过渡到新标准是行业发展的必然趋势。企业和实验室应关注标准的更新动态,适时进行设备和技术的升级,以适应市场的变化和需求。
  • 海洋微塑料监测方法的标准化及风险评估专场周四上午开讲!
    海洋面积约占地球表面积的71%,含水量约占地球总水量的97%。值得关注的是,目前大量的海洋垃圾已经切实威胁到了海洋生物的生存,对海洋生态环境造成了巨大的破坏。2022年2月28日至3月2日,第五届联合国环境大会于肯尼亚共和国首府内罗毕召开,在该次会议中,联合国官员彼得汤姆森倡议各国共同治理海洋塑料污染。海洋塑料污染问题,确实已经到了刻不容缓的地步。据统计,海洋垃圾的60%~80%是塑料,塑料从最开始能以肉眼观测到的“白色污染”逐渐向粒径极小、难以被观测到,但却能对环境造成巨大污染的“微塑料”转变。研究显示,微塑料在较浅的海洋沿岸和大多数海洋水体中均已存在。微塑料因形态、色泽、种类多样、粒径较小,对海洋中不同营养级生物均会产生毒性作用,且可沿食物链传递,危及人类健康。仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院将于4月27日-4月28日联合主办“ 微塑料检测与分析网络研讨会”。海洋微塑料监测方法的标准化及风险评估专场将于27日(本周四)上午9:00准时拉开帷幕。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427张彦旭 南京大学 教授报告题目《全球海洋微塑料的源与汇:三维传输模型视角》张彦旭,南京大学大气科学学院教授、国家海外高层次青年人才、江苏省双创人才、全国优秀博士学位论文。2006年本科毕业于北京大学,2010年和2013年获得北京大学和华盛顿大学博士学位,此后在哈佛大学从事博士后研究,2017年起回国任教并担任大气物理系副主任。研究领域包括空气质量、地球系统模式和全球变化等。发表论文70余篇,包括美国科学院院刊、自然通讯等高影响期刊。研究成果被多家媒体采访报道,为国家能源研究所等机构提供咨询报告。张微微 生态环境部国家海洋环境监测中心 副研究员报告题目《海洋微塑料标准化监测技术方法研究进展》张微微,国家海洋环境监测中心副研究员,主要从事海洋生态环境监测评价工作,承担中国-东盟海上合作基金、海洋公益性科研专项等多项科研项目,主持起草《海洋垃圾监测与评价指南》《海洋微塑料监测技术规范》,作为联合国海洋污染问题专家组成员参加《海洋塑料垃圾监测与评价指南》起草。张晓丹 安捷伦科技(中国)有限公司 分子光谱应用工程师报告题目《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》张晓丹,2012年加入安捷伦科技(中国)有限公司,担任分子光谱产品线应用工程师。主要负责包括红外、拉曼、紫外以及分子荧光等产品售前/售后应用支持和应用方案开发工作。从2015年起,开始从事微塑料红外检测方法的开发工作,先后开发了单点显微微塑料测试方案、显微红外成像微塑料测试方案以及激光红外成像微塑料测试方案,在微塑料分析测试方向具有非常丰富的工作经验。查珊珊 珀金埃尔默企业管理(上海)有限公司 材料表征产品高级技术工程师兼北区实验室经理《Perkinelmer微塑料检测分析方案》查珊珊,目前主要负责Perkinelmer公司分子光谱类仪器、热分析类仪器以及联机类仪器的应用方法的开发和技术支持工作,另外负责公司北区实验室的运营管理工作,拥有仪器分析行业10多年的工作经验。王清 中国科学院烟台海岸带研究所 研究员报告题目《黄渤海微塑料污染及其生态效应》王清,目前就职于中国科学院烟台海岸带研究所,研究员,主要从事海洋生态与环境科学研究,关注近海微塑料污染及其生态风险。作为负责人先后主持国家重点研发计划课题、国家自然科学基金项目、中国科学院装备研制项目、先导专项子课题等10余项。发表SCI论文100余篇,论文总引用次数3500余次。入选中国科学院青年创新促进会,获得中国科学院“沈阳分院第五届优秀青年科技人才奖”,2017年度获得中国科学院科技促进发展奖。徐向荣 中科院南海海洋研究所 研究员报告题目《海洋微塑料的生态效应研究进展及展望》徐向荣,中国科学院南海海洋研究所责任研究员,博士生导师,中国科学院大学教授。2010年入选中国科学院海外杰出人才引进计划(“百人计划”),入职中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室,组建海洋环境污染与修复技术研究团队。先后主持国家自然科学基金面上项目、国家重点基础研究发展计划973项目课题、海南省重点研发项目及中科院百人计划项目等各类科研项目20多项。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427张彦旭 教授南京大学
  • 终于全了!微塑料检测主流技术专家报告!
    微塑料最早在海洋领域被科学家发现。近几年,随着科学家不断深入的研究,大气、土壤、陆地环境乃至生物体中相继检出微塑料,研究人员已开始尝试对微塑料样品进行更进一步的定性和定量分析。目前常用的微塑料检测方法包括光谱方法和热裂解-气质联用法(Py-GC/MS) 等手段。对于微塑料在合成过程中使用化学品和添加剂、微塑料表面吸附或吸收的污染物质的检测,还需要色谱质谱联用及原子光谱技术。科学家新发现:“微纳塑料”的定量检测方法微塑料是指直径小于5毫米的塑料颗粒,进一步还可分为纳米塑料、亚微米塑料、微米塑料。微纳塑料的检测难度更大,往往需要更高精度的分离-分析技术或分析方法。为此,主办方拟于5月26日举办环境研究系列活动——环境中微塑料分析检测新技术,并邀请到中科院于素娟副研究员出席。届时,于老师将主要介绍研究团队在微纳塑料分离测定方面的研究进展,介绍几种分离测定方法,如用浊点萃取-热裂解-气相色谱质谱联用仪,膜分离-热裂解-气相色谱质谱联用仪测定微纳塑料的质量浓度,单颗粒-电感耦合等离子体质谱测定微纳塑料的数浓度,以及基于总有机碳法测定微纳塑料的监测方法等。更多权威专家,陆续更新,点击右侧红字免费预约:5月26日,我要参会多位专家开讲:光谱、质谱技术检测微塑料显微、光谱技术作为微塑料检测的经典技术,最近又有了新发展。为此,主办方将于6月9日举办微塑料分析检测技术网络研讨会。会议聚焦光谱、质谱技术,涵盖海洋、饮用水、大环境健康范围内容的微塑料检测技术报告,将有疾控中专家团队、中科院烟台海岸带研究所专家开讲,同时,Nature发表微塑料检测技术文章的第一作者将惊喜出席!点此右侧红字免费参会:6月9日,我要参会会议日程:报告时间报告主题报告嘉宾09:30--10:00基于拉曼光谱检测饮用水中微塑料张岚 中国疾病预防控制中心环境所 主任/研究员10:00--10:30“见微知著,赛默飞助您洞察微观世界”-微塑料检测全面解决方案邓洁 赛默飞世尔科技(中国)有限公司 赛默飞分子光谱应用专家10:30--11:00聚合物和聚合物材料的MALDI-TOF质谱分析王勇为 布鲁克(北京)科技有限公司 应用经理11:00--11:30黄渤海微塑料污染特征研究王清 中国科学院烟台海岸带研究所 研究员14:00--14:30O-PTIR显微光谱技术识别环境中微塑料来源苏宇 东南大学能源与环境学院 教授/研究员14:30--15:008700 LDIR 激光红外成像如何准确快速的进行环境样品中微塑料含量测定张晓丹 安捷伦科技(中国)有限公司 分子光谱工程师15:00--15:30待定魏琳琳 布鲁克纳米表面仪器部 应用工程师15:30--16:00土壤微纳塑料分析检测技术待定 南京土壤所
  • 珠峰顶部已发现微塑料?当前微塑料的检测技术,你可能不知道
    11月24日 英媒称,地球zui高处和最深处都出现了微塑料。此前在太平洋11公里深的马里亚纳海沟发现了塑料微粒,如今又在珠穆朗玛峰上探测到了。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。微塑料进入环境后很难被降解,在环境中的半衰期长达数百年,给自然环境及生态系统造成极大危害,还可能通过食物链威胁到人类,因此微塑料的污染问题引起了全球的重视。微塑料的来源解析是当前的重点,微塑料的检测是来源解析的重要手段。本文主要是基于化学表征微塑料的检测技术汇总,为未来的研究开展提供思路。化学表征分析最常用的是傅立叶变换红外光谱(FTIR )、拉曼光谱、 ESM-EDS和气相色谱-质谱联用技术。1、FTIRFTIR依靠物质偶极矩改变产生红外光谱,可以实现20μm以上的微塑料的鉴定。不受滤膜和杂质的干扰,尤其适用于极其微小尺寸微塑料的检测。2、拉曼光谱拉曼光谱依靠分子化学键极化率的变化产生指纹图谱,可以实现20μm以下微塑料的鉴定,和 FTIR 相比,拉曼光谱空间分辨率更高、光谱覆盖范围广,但是容易受色素、添加剂、污染物等有机质和矿物质产生的荧光干扰,奥谱天成拉曼光谱仪1064nm 系列在抗荧光干扰方面有着出色的表现,加上软件的优化处理,将结果调到zui优状态,用于微塑料检测方面有着独特的技术优势。3、气相色谱-质谱联用技术通过对微塑料的热降解产物进行分析判断其种类,将峰面积与同位素标记的内标进行比较实现微塑料的定量,但是应用范围较窄。微塑料检测方法虽然多,但还有很多问题需要解决,微塑料在环境中存在的不规则性问题,不仅困扰着检测手段,同时也对采样有较大的挑战。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 岛津与三菱合作开发出高效塑料检测技术
    三菱电机与岛津制作所于2012年12月19日宣布,共同开发出了“再利用塑料高精度成分检测技术”,能够在1秒钟内,以99%以上的精度瞬间检测识别出塑料的品种。除此之外,此技术也实现了塑料纯度检测的自动化。  此技术的原理是,通过向树脂照射波长比近红外光长的中红外光,然后分析其反射光来识别塑料的品种。无论染色剂及添加剂的含量是多少,该技术均可在1秒钟内以99%以上的精度识别出塑料的品种。  此技术将主要运用在从废旧家电中回收资源并循环利用。以前的技术已经能比较好的对铁、铜、铝及单一成分塑料进行回收利用,但对混合材料的塑料仍然难以筛选并进行分离及回收,而且塑料的纯度检测完全靠手工作业来完成。另一大问题在于,原来主要使用近红外光检测技术,很容易受染色剂影响而难以准确检测深色塑料。新技术将大幅提升塑料检测及回收的效率。塑料高精度材料分析设备 岛津及三菱已展示出开发完成的塑料高精度材料分析仪器设备,如图,此次开发的设备采用了不易受塑料形状影响的光学设备,以及能够以高灵敏度识别反射光的检测设备,此外还开发出了1秒钟内多次检测同一片塑料内的反射光、根据其数据综合识别塑料品种的算法,提高了识别精度。高精度塑料材料分析设备原理图  该设备中,塑料物体不断进入到有许多小孔的圆盘状搬运板上,在马达驱动下自动搬运,搬运板是倾斜的,利用塑料自身的重量使其落入各个小孔,被自动搬运至识别位置,能够连续检测识别。过程通过电脑掌握和控制,另外,该设备根据设置,利用气枪自动筛选识别后的塑料,使筛选后的塑料的纯度检测也实现了自动化。  目前,此技术已申请了14项专利。今后进一步的研究开发上,三菱电机的研究方向是利用此技术提高回收的树脂的纯度检测效率,扩大循环再利用的产量,而岛津制作所的研究方向则是实现回收的家电等的塑料循环再利用设备的产品化。
  • 首届橡胶及塑料质量控制及检测主题网络会议回放视频
    仪器信息网于2021年7月22日组织举办首届橡胶及塑料质量控制及检测主题网络会议,邀请业内从事橡胶研发、检测和质控的资深专家分享了相关经验成果。小编将会议报告的部分报告视频整合成集锦以飨读者。回放视频链接如下(点击观看):国家橡胶轮胎质量监督检验中心副总工程师 苍飞飞:《检测技术服务于橡胶及塑料质量控制》上海市食品药品包装材料测试所主任 徐俊:《药用橡胶密封件的质量控制》四川大学教授 严正:《聚丙烯CO2超临界发泡》布鲁克(北京)科技有限公司资深应用科学家 魏岳腾:《橡胶和塑料制品表面微观力学及摩擦磨损性能测试方法》
  • 安捷伦:覆盖三方面的微塑料检测解决方案
    p  微塑料,是指粒径很小的塑料颗粒以及纺织纤维。现在学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料。微塑料还会吸附多氯联苯、双酚A等POPs,从而加速这些物质的迁移和生物富集。/pp  目前,在海洋水体、海洋生物、人类器官以及人类排泄物都检出了微塑料。但在监测、观测和微分析上,尚缺乏可被广泛接受的适合我国海洋及海岸环境的微塑料调查与监测分析技术规范,导致调查结果不具可比性。/pp  随着微塑料的大量检出,微塑料的研究人员和国家监测技术也在增多,为适应市场需求,各仪器公司纷纷推出了微塑料的检测方法。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/62746982-f1c5-4fc5-8b5d-71478d5e130f.jpg" title="全产品解决方案_副本.jpg" alt="全产品解决方案_副本.jpg"//pp  为帮助相关用户学习、了解微塑料检测的方法、仪器等内容,仪器信息网特别策划了“a href="https://www.instrument.com.cn/zt/wsl" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "strongspan style="color: rgb(255, 0, 0) "微塑料的危害及检测方法/span/strong/a”专题并邀请仪器公司分享微塑料的检测方法。安捷伦技术人员为我们分享了安捷伦针对微塑料检测的看法以及整体解决方案。/pp  strong仪器信息网:/strong您认为目前的微塑料污染在环境保护中处于什么地位?从全球角度或者中国的角度来看,微塑料未来是否会成为重点管控的污染物之一?/pp  strong安捷伦:/strong微塑料(microplastics MPs)是一种环境新型污染物,通常认为其尺寸范围在 1mm~5mm 之间。据估计,全球塑料产量为 3 亿吨,而大约 10% 的塑料最终会进入环境,并碎裂成微塑料。许多报告显示,海洋、淡水水域、大气颗粒、陆地环境和生物体中均发现了微塑料,而在食物链富集作用下,微塑料会对人体健康产生不可估量的危害。此外,纳米尺寸的聚合物颗粒(Nanoplastics NPs)也会形成。与MPs相比,NPs足够小,可能对环境和人体健康造成更大的危害。/pp  我国开展环境微塑料污染防治研究既必要又迫切。 2020 年 1 月,国家发改委与生态环境部发布关于《进一步加强塑料污染治理的意见》,要求强化与微塑料污染防治相关的科技支撑,开展不同类型塑料制品全生命周期环境风险研究评价,加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。/pp  strong仪器信息网:/strong在微塑料污染的科研工作中,一般会检测微塑料的哪些特性?一般从哪些项目来检测微塑料的这些特性?这些项目的技术难点主要在哪儿?/pp  strong安捷伦:/strong微塑料相关研究主要分为对环境的影响以及对人体健康的影响两大类,具体包括:环境微塑料的污染特征 源解析 环境微塑料的降解及表面变化 环境微塑料的环境迁移行为与预测模型 环境微塑料的生物积累、毒性效应和生态安全 微塑料与污染物的相互作用及健康风险等。/pp  微塑料本身的定性与定量分析,以及微塑料添加剂和吸附污染物的检测,是微塑料研究的基本工作之一。为收集关于微塑料在环境中的丰度、分布、迁移和归趋等详细信息,通常需要对微塑料粒子数目,粒子丰度,浓度丰度等方面进行定量分析,对聚合物种类鉴别的分析,以及粒径分布等形貌分析。/pp  目前常用的微塑料检测方法包括红外成像等光谱方法和热裂解-气质联用法(Py-GC/MS)等手段。对于微塑料在合成过程中使用化学品和添加剂(稳定剂、抗氧化剂等)、微塑料表面吸附或吸收的污染物质的检测,往往需要色谱质谱联用及原子光谱技术。而对于微塑料对生物及人体健康影响的研究,高端质谱和细胞分析等技术是非常有力的研究手段。/pp  传统方法主要难点在于:微塑料样品收集提取的前处理方法,手动挑取颗粒的方式对方法可操作性和检测方法的重复性带来的挑战 检测效率局限性等方面。目前科学界正在努力寻找合适和可靠的方法来检测和量化分散在环境和生物样品中的微塑料。/pp  strong仪器信息网:/strong请介绍贵公司在微塑料检测方法开发的方法?这些方法用到哪些仪器或产品?贵公司开发的方法在微塑料检测方面有哪些优势?/pp  strong安捷伦:/strong在微塑料对环境影响的研究领域,安捷伦推荐的 8700 LDIR 激光红外成像全自动工作流程、久经考验的 GC/MS 产品以及独特的 Q-TOF GC/MS 系统,为微塑料定性定量分析提供了完备的方案,并将微塑料分析的效率和准确度大大提升。另外,安捷伦 GC/MS/MS、LC/MS/MS、ICP-MS 等产品,在微塑料添加剂,或吸附有害物质的分析提供了更多有效手段。在环境微塑料的生物积累、毒性效应和生态安全,微塑料与污染物的相互作用及健康风险等微塑料与人类健康相关的方向,安捷伦高端 LC/MS 产品 Seahorse,xCELLigence,NovoCyte 细胞分析技术结合的解决方案帮助您在微塑料相关毒理学研究取得成功。/pp  a href="https://www.instrument.com.cn/news/20200522/539172.shtml" target="_blank"span style="color: rgb(0, 176, 240) "安捷伦微塑料检测整体解决方案/span/a/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/sh100320/s927504.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/752e64c5-8cd7-47d3-8b93-5a817b4eba0f.jpg" title="QQ截图20200528095102.jpg" alt="QQ截图20200528095102.jpg"//a/pp  其中8700LDIR产品是一款比较特色的产品。/pp style="text-align: center "span style="border: 1px solid rgb(0, 0, 0) "8700 LDIR 激光红外成像的微塑料全自动测试流程/span/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/sh100320/s927504.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/fff51966-d299-47cf-b908-fc6c85f3fbd4.jpg" title="QQ截图20200528095312.jpg" alt="QQ截图20200528095312.jpg"//a/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  -QCL 量子级联激光器光源,比传统 FTIR 成像能量高 104 倍,可获得更可靠、更灵敏的微塑料测试结果 /span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  –Clarity 全自动工作流程,只需点击“play”,海量微塑料统计结果自动获取 /span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  –超快速大面积成像,2 小时完成 5 mm * 5 mm 面积中上千个微塑料颗粒全测试,比传统红外成像快数个数量级。/span/pp style="text-align: center "span style="border: 1px solid rgb(0, 0, 0) "定性定量结果和海量统计数据全自动获得/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/b21d8d4b-f46f-4ed9-95e8-03469beb259d.jpg" title="定性定量.jpg" alt="定性定量.jpg"//pp更多内容详见专题:  /pp style="text-align: center"a href="https://www.instrument.com.cn/zt/wsl" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/26bca28d-0630-4eea-a70f-01dcfa06fc92.jpg" title="企业微信截图_15906459669401.png" alt="企业微信截图_15906459669401.png"//a/ppbr//p
  • 海洋生物微塑料检测方法及污染现状研究进展
    来源:《农业资源与环境学报》2022 年 06 期作者:李娟1,季超2,张芹1,汪星宇1,伍志强1,解玉鑫1,李嘉晴1,张皓森1,臧桐宇1, 郑文杰1*单位:1. 天津师范大学生命科学学院;2. 云南农业大学云南生物资源保护与利用国家重点实验室摘要海洋微塑料污染问题是全球研究热点,现有研究表明微塑料在海洋环境中无处不在,对海洋生态的威胁逐渐加重,伴随着海洋食品的兴起,人们也越来越重视微塑料污染对人体健康的危害。本文通过对海洋生物体内微塑料污染情况的概述,系统分析了微塑料对海洋生物造成的影响。主要针对微塑料检测的前处理方法以及组分的鉴定方法展开综述,对不同方法的优缺点进行比较,指出在微塑料检测研究中多种方法综合应用效果最佳。基于现阶段海洋微塑料的研究状况,从科学研究和管控方面讨论了目前研究中存在的问题,展望了未来的研究方向。结论与展望:微塑料已经成为全球海洋环境中的新兴污染物之一,获取海洋环境中微塑料丰度等信息的标准程序方案对于确定微塑料对海洋环境的污染情况和潜在影响至关重要。本文总结了海洋微塑料污染的现状,详细阐述了对样品进行消解和分离的常用方法,认为对于海洋生物体内微塑料的提取分离而言,碱液(KOH、NaOH 等)提取相较于其他提取液的回收效果更好。针对微塑料的鉴定分析方法,本文重点介绍了显微观察法、傅里叶变换红外光谱法、拉曼光谱法和热分析法,并讨论了多种分析方法的优缺点及各自的适用特点。目前而言,单一的分析方法很难对复杂的环境样品中的微塑料进行准确定性和定量研究,尤其对于尺寸小于1 mm 的微塑料,建议采用显微观察和光谱分析相结合的方法;而对于截距小于10 μm 的微塑料,拉曼光谱是更好的选择。微塑料的来源与人类活动息息相关,人类产生的塑料垃圾会通过排水系统、河流以及风的作用进入海洋生态系统,在其中产生累积效应,已有相关研究表明,微塑料可能是海洋生物多样性降低的重要因素之一。这一方面由于微塑料体积相对较小,易被海洋生物摄取并在其体内富集,对海洋生物的组织、循环系统造成有害影响;另一方面由于微塑料自身的物理和化学性质特殊,其表面易吸附污染物,成为污染物进入海洋生物体的载体,并可通过食物链进入人体,对人类产生潜在危害,但其作为载体的具体机制和转移途径鲜见报道。未来,微塑料相关研究可从以下几个方面进行:(1)目前塑料颗粒检测技术多样且发展迅速,但随着新产业新科技的发展,一些新的材料会产生微米级、纳米级等更小的塑料颗粒,因此,针对这些新材料的检测需要探索新的检测方法来实现。(2)现阶段微塑料的检测方法良莠不齐,各种方法检测结果的准确性有待进一步验证。为了更加全面准确地监测微塑料污染情况,应建立检测微塑料、评估微塑料污染风险的标准体系,标准化、规范化的微塑料检测流程,可保证微塑料污染风险评估的准确性,为维护海洋环境和生态安全提供理论支撑。(3)人们普遍认为粒径小于100 μm 的微塑料对海洋生物和人体的影响最大,但是微塑料不同的形态、大小及聚合物类型对海洋生物的风险仍缺少具体的参考标准,故建立评估微塑料污染风险的标准体系非常必要。微塑料危害并不仅限于微塑料本身,其表面富集的各类污染物的风险更大。通过微塑料摄入将有毒化学物质转移到生物群是一个值得重视的问题,然而现有的研究鲜少使用微塑料载体进行毒性研究。为进一步明确微塑料的物理性质和污染物的连锁效应,应加强对微塑料的吸附作用和污染物(如放射性重金属和抗生素)之间相互作用的研究。(4)目前全球不同区域的食品种类繁多,而大多数微塑料研究是针对鱼类、贝类等水生生物体内微塑料浓度、形态、大小和聚合物类型所开展,对加工食品中微塑料的研究不多,这使得人类通过食物摄入的微塑料总体数量很难估计。因此,今后的研究应加强对各类食品中微塑料提取鉴定方法以及定量分析方法的研究,为食品安全检测提供途径。
  • 微塑料检测网络会议顺利闭幕!回看视频上线
    2004年,英国普利茅斯大学的汤普森等人在《科学》杂志上首次提出了“微塑料”的概念,其指的是直径小于5毫米的塑料碎片和颗粒。2023年4月27日-28日,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办“ 微塑料检测与分析网络研讨会”。本次会议共邀请领域内相关报告专家15位,吸引线上听会观众700余位报名。现场学术报告与答疑讨论穿插进行,专家与听众共同就微塑料检测与分析进行了一场别开生面的学术研讨。《全球海洋微塑料的源与汇:三维传输模型视角》(点击图片回看)会议以海洋微塑料监测方法的标准化及风险评估专场开场。南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》。报告围绕目前微塑料的河流入海通量有多高?海洋中有多少塑料?不同年代和国家的贡献有多大?河流入海的塑料归驱如何?这四大关键科学问题展开。《海洋微塑料标准化监测技术方法研究进展》(未授权回看)生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》。报告围绕微塑料问题产生的背景、国内外微塑料的监测进展、微塑料监测存在的挑战三大方向展开。报告指出,2019年,塑料产生了18亿吨温室气体排放,相当于全球排放量的3.4%。《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》(点击图片回看)安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》。报告介绍了安捷伦 8700 LDIR 激光红外成像的详细解决方案。《Perkinelmer微塑料检测分析方案》(点击图片回看)珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》。报告详细分享了Perkinelmer最新的微塑料检测分析方案。《黄渤海微塑料污染及其生态效应》(未授权回看)中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》。报告提到微塑料的研究有一系列重要的背景与意义:2008年,欧盟海洋战略框架指令和美国NOAA将微塑料作为重要监测研究对象;2019年,G20首脑峰会通过《大阪宣言》,重申应采取措施解决海洋垃圾污染,尤其是海洋塑料垃圾和微塑料;2022年,来自160个国家的代表在乌拉圭召开关于制定全球塑料公约的第一轮谈判。《海洋微塑料的生态效应研究进展及展望》(未授权回看)中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。报告介绍到,微塑料的摄氏效应会造成物理堵塞或损伤,会沿食物链传递与累计;微塑料的毒性效应会传播有毒化学物质,会引起生物中毒现象;微塑料的附着效应还会影响生物多样性,并导致生物入侵。《农田土壤微塑料污染及其环境风险研究进展》(未授权回看)陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》。报告介绍了农田土壤微塑料的多种分析检验方法,包括传统的密度分离法后使用体视镜记录微塑料的形态及尺寸,并结合显微傅里叶变换红外光谱进行聚合物类型判定。《微纳塑料检测分析中的那些“坑”》(点击图片回看)浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》。在采样、分离与富集阶段,现在常用的大面积水体拖网采样存在孔径大小不一、只能采集相对大粒径的塑料微粒等问题;而采用密度法和简单浮选方法很难达到农田土壤中微塑料的分离,存在土壤中有机质和黏土容易黏附在微塑料表面等问题。这些大大小小的“坑”都会影响农田土壤微塑料的分离与检测。《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》(点击图片回看)QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》,介绍了亚微米分辨红外-拉曼同步测量系统。《微塑料表面生物膜的结构与功能研究方法》(未授权回看)中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》。报告内容涵盖微塑料表面生物膜的形成过程及其组成;微塑料生物膜的主要研究方法;微塑料表面生物膜形成的影响因素;生物膜的形成对微塑料表面性质的影响;生物膜的形成对微塑料吸附污染物的影响与机理;生物膜的形成对微塑料降解的影响及未来的研究展望等。《基于表面增强拉曼光谱的纳米塑料检测》(点击图片回看)复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。报告聚焦拉曼光谱技术在微塑料研究上的应用,指出传统的拉曼光谱存在信号响应较弱、易受荧光干扰、缺乏深度信息等问题。而如今的改进技术包括傅里叶变换拉曼光谱、针尖增强拉曼光谱、共聚焦拉曼光谱、相干抗斯托克斯拉曼散射技术、表面增强拉曼光谱(SERS)、受激拉曼散射技术(SRS)等。《海洋大气微塑料入海通量:问题与挑战》(未授权回看)28日上午的大气微塑料的监测及健康风险专场,华东师范大学李道季教授分享报告题为《海洋大气微塑料入海通量:问题与挑战》。报告提到,到目前为止,全球所有关于大气微塑料的研究包括大气沉降和大气悬浮。据了解,李道季课题组通过西太平航次在2019年首次揭示了大气微塑料会持续由陆向海传输,并通过估算模型揭示了西太平洋大气塑料袋的存量为1.21吨。《东亚陆地-海洋微塑料大气传输的数值模拟研究》(点击图片回看)中科院重庆绿色智能技术研究院龙鑫副研究员分享报告题为《东亚陆地-海洋微塑料大气传输的数值模拟研究》。报告提到大气微塑料的传输存在形态、来源复杂;采样困难,数据少;远洋及冰川等生态敏感区难以采集;微塑料对于生态系统的影响难以评估等问题。而研究微塑料的源及汇的动力过程及通量可使其造成的生态效应被准确评估,并方便开展有效消减干预对策。《PY-TD-GCMS技术应用于微塑料中典型污染物分析》(点击图片回看)岛津企业管理(中国)有限公司胡辉应用工程师分享报告题为《PY-TD-GCMS技术应用于微塑料中典型污染物分析》。详细介绍了岛津最新的PY-TD-GCMS技术。《城市冠层及海气边界层大气微塑料赋存观测》(点击图片回看)华东师范大学刘凯博士后分享报告题为《城市冠层及海气边界层大气微塑料赋存观测》。面对目前大气微塑料领域亟待解决的大气输送过程中时空分异、理化多样性的变化未知等问题,该报告提出了可靠的大气微塑料采集分析方法,并阐明了微塑料在城市冠层及海气边界层的赋存特征。
  • 土耳其研究人员的微塑料检测技术进入全球文献
    土耳其研究人员的开创性微塑料检测技术受到国际赞誉,可迅速识别环境和健康危害,快速准确地解决关键问题,获得全球认可。土耳其研究人员的技术能够迅速识别与微塑料颗粒相关的环境和健康风险,因此获得了国际赞誉。土耳其首都安卡拉比尔肯特大学(Bilkent University)机械工程系教师塞利姆哈内(Selim Hanay)及其同事的工作数据发表在国际科学杂志《先进材料》(Advanced Materials)上。哈内的新技术还得到了欧洲研究理事会(ERC)初创项目和ERC概念验证项目的支持,这些项目都是欧盟著名的资助项目。哈内在接受阿纳多卢通讯社采访时说,科学家们认为,通过食物、液体或空气,每周都会有相当于一张信用卡的微塑料进入人体。他说:“小于5毫米的微塑料和纳米塑料无法排出体外,因为它们不能被生物降解。低于100纳米的塑料微粒可以穿过血脑屏障进入人体细胞,并在大脑中积聚。这种情况威胁着人类健康。目前的技术还不够先进,不足以发现纳米塑料。”他强调,这些超微粒子会在人体的关键组织中积聚,对健康产生不利影响。现有技术很难检测到20微米以下的微塑料,也就是人体细胞的大小。使用这些设备,分析一个微塑料颗粒至少需要10分钟。但要衡量这种威胁,需要连续分析数千个颗粒。他说:“如今,这些分析既缓慢又昂贵,需要训练有素的博士人员。例如,如果我们想在欧洲与一家公司签约进行微塑料分析,他们无法在六周内给我们结果。”他表示,需要快速、廉价的技术来监测微塑料,尤其是饮用水中的微塑料,而他们最近开发的系统正好满足了这一需求。他们开发了第一个使用电子方法进行分析的设备,并表示他们首次能够对20微米及以下的微塑料进行分类。他说:“我们为该设备开发的传感器可以对微型塑料、玻璃材料和含有二氧化钛添加剂的颗粒进行分类。这些传感器使用非常小的液体通道,称为微流体通道。当颗粒流经该通道时,它们会相继进行两次电子测量。当我们把这两种电子测量结合起来时,就能得到这些粒子的电子特性与速度较慢、成本较高的光谱学方法相比,这种系统可以进行更快、更实用的分类。”快速检测可能的威胁哈内表示,他们为该系统制定了两个阶段的计划,他说:“首先,我们希望建立一种可以分析水(微塑料)的服务。当一个机构希望对其水进行分析时,我们就会使用各种技术进行分析。我们希望在一天左右的时间内将结果反馈给用户。这样,饮用水中可能存在的微塑料污染源就能很快被检测出来”他表示这些微粒会在河流和海洋中积累,他强调说,他们的工作对监测和减少微塑料污染具有重要意义。他补充道:“该设备为现场分析水样提供了一种快速、经济、便携的解决方案。它可以在全球范围内部署,用于评估河流、湖泊和海洋等各种水环境中的微塑料污染水平。我们希望与图尔基耶和欧洲的利益相关者,如地方和城市政府、水务公司和部委一起展示如何推进这项技术。”哈内表示,在土耳其科学技术研究理事会(TÜBITAK)支持的另一个相同主题的项目中,正在开发一种测量水和空气中纳米塑料风险的设备。他表示该项目得到了ERC启动基金和ERC概念验证基金的支持,他说:“我们的项目还有一年左右的时间。我们正在一步一步地解决剩余的问题,在这里研究不同的塑料形状。在取得这些技术进步后,我们将把这项应用作为一项服务提供给各个机构。”哈内表示,他们开发的设备的概念验证结果发表在《先进材料》上,这是一份涵盖材料科学的同行评审科学周刊,因此向科学界公开。他表示,他们有权获得欧洲研究理事会的支持,将他们的开创性工作付诸实践。哈内表示,世界各地已开始采取措施应对微塑料污染,根据美国加利福尼亚州的一项新法律,将对饮用水中的微塑料污染进行持续检查,加拿大和欧盟也正在讨论类似的措施。
  • 便携式拉曼光谱系统,助力微塑料快速检测
    前段时间,一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,进一步引发了微塑料对人体健康长期影响的担忧。我国高度重视微塑料对环境、人体影响的监测工作,越来越多研究机构已经开始布局微塑料研究。图片来自网络微塑料是指粒径小于5 mm的塑料颗粒,往往难以肉眼分辨,而拉曼光谱作为一种分子指纹光谱技术,结合显微成像,能够在微塑料的成分定性和颗粒统计中发挥重要作用,并且无惧水分干扰、无需复杂前处理。RS2000便携式拉曼与显微镜联用鉴知RS2000便携式拉曼系统可以与高性能光学显微镜联用,实现微米级塑料颗粒的表征和鉴别,根据样品的不同,还可选配不同波长的激光光源。RS2000具有以下优势: 1. 光学性能佳,分辨率优于6 cm-1,光谱范围覆盖200-3200 cm-1,采用深度制冷探测器,信噪比(SNR)超过7000,轻松进行微塑料的成分分析 2. 高分辨光学显微镜,可以进行微米级塑料颗粒的表征分析,并能够获取微塑料的二维图像信息 3. 方便移动,可以快速搭建分析平台,支持现场分析检测任务 4. 功能多样,既可以与显微镜连接使用,也可以通过探头直接检测不可移动的样品 5. 可靠性强,能够在复杂环境条件下使用常见塑料的拉曼光谱鉴知技术作为一家的光谱分析技术供应商,可以为研究人员提供定制化拉曼光谱检测配件和专业的技术指导,满足微塑料样品的现场快速检测需求。此外还提供各类光纤光谱仪,为科学研究提供更灵活的检测工具,详情可后台咨询。 鉴知技术可为用户提供不同配置的光谱仪
  • 药品塑料瓶包装密封性能检测方案解析
    在药品包装领域,塑料瓶因其轻便、耐腐蚀、成本低等优点而被广泛使用。然而,塑料瓶的密封性能直接关系到药品的保存质量和安全性。因此,对药品塑料瓶包装的密封性进行检测是确保药品安全的关键环节。本文将解析药品塑料瓶包装密封性的检测方案。首先,药品塑料瓶包装密封性检测的基本原理是通过检测瓶内外压力差或真空度变化来判断瓶体的密封性能。常用的检测方法包括水检法、压力差法、真空衰减法等。这些方法各有优缺点,选择合适的检测方法需要根据实际需求和生产条件来确定。水检法是一种简便易行的检测方法,通过将塑料瓶完全浸入水中,观察是否有气泡产生来判断瓶体的密封性。这种方法适用于初步筛选和现场检测,但无法定量分析密封性能。压力差法是通过在塑料瓶内外施加不同的压力,检测瓶体是否漏气来判断密封性。这种方法可以定量分析密封性能,但需要专门的设备和技术人员操作。真空衰减法是通过在塑料瓶内部形成真空,检测真空度的变化来判断密封性。这种方法具有较高的灵敏度和准确性,但需要专门的真空衰减仪和熟练的操作技巧。在实际应用中,可以根据生产规模和检测要求选择合适的检测方法。对于小规模生产或现场检测,可以选择水检法;对于大规模生产或要求较高的检测,可以选择压力差法或真空衰减法。其次,药品塑料瓶包装密封性检测的设备选择也非常重要。不同的检测方法需要不同的检测设备,如LEAK-01负压法密封性测试仪,LSST-01泄漏与密封强度测试仪等。在选择设备时,需要考虑设备的精度、稳定性、操作简便性等因素。最后,药品塑料瓶包装密封性检测的操作流程也需要严格控制。无论是哪种检测方法,都需要进行标准化操作,以确保检测结果的准确性和可重复性。同时,还需要定期对检测设备进行校准和维护,以保证设备的正常运行和检测结果的准确性。综上所述,药品塑料瓶包装密封性检测是确保药品安全的关键环节。选择合适的检测方法和设备,严格控制操作流程,才能确保检测结果的准确性和可靠性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制