当前位置: 仪器信息网 > 行业主题 > >

塑料封口拉量仪

仪器信息网塑料封口拉量仪专题为您提供2024年最新塑料封口拉量仪价格报价、厂家品牌的相关信息, 包括塑料封口拉量仪参数、型号等,不管是国产,还是进口品牌的塑料封口拉量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合塑料封口拉量仪相关的耗材配件、试剂标物,还有塑料封口拉量仪相关的最新资讯、资料,以及塑料封口拉量仪相关的解决方案。

塑料封口拉量仪相关的资讯

  • 热水掺化学原料和香精 名牌洗发水大塑料桶里造
    乳白色的洗发水半成品被分盛在塑料桶内  海飞丝、飘柔、拉芳、雨洁、潘婷5种消费者耳熟能详的洗发水,竟在一民房内的大塑料桶内勾兑而成。  8月31日下午4时,记者陪同临沂市质监局稽查局执法人员赶至临沂高新技术产业开发区马厂湖镇道沟村,一普通的二层民房,卷帘门紧锁,二楼安装了防护栏并用一块绿色的篷布遮挡,似与外界隔绝,但洗发水的浓香却四处飘散。  广州宝洁公司负责打假的王开明现身,让疑团逐渐解开,“我跟踪了一个月了,有两男两女,开一辆丰田面包车,早9点和下午5点,来这里拉货,除倒车装货,其它时间大门紧锁。8月31日,我向临沂市质监部门举报。”  执法人员通过村委、民房的主人与老板苏某取得联系,经过2个小时的等待和反复做工作。下午6时30分,执法人员进入苏某的“厂房”,一个200平方米的四合院,油迹斑斑的地面上,间或放着拖鞋、炒锅、辣椒和鸡蛋。一进门,是大袋的硫酸钠化工原料和香精、香料 10平方米左右的院落,一个锈迹斑斑的锅炉旁是一台简易的搅拌机,最中间是一个白色的塑料桶,一个长约1米的搅拌勺放置在桶内。南侧一偏房内放着20桶半成品洗发水,每桶300斤。执法人员现场向记者演示,一个用自来水管改装的手动灌装机,插入桶内,另一端就是盛放洗发水的瓶子。封口之后装箱,就摇身变成了潘婷或飘柔。在其他的各个房间,堆积着大量的纸箱、瓶子、瓶盖、防伪标签、废弃的塑料桶。  “海飞丝等包装瓶是从南方购进的,从包装瓶的标识来看,消费者很难判断真假。但是,他们的包装瓶做工相对粗糙。”王开明介绍说。  临沂市质监局稽查局一大队副大队长张自锋介绍说:“该生产窝点未取得工业产品生产许可证和其他的许可,通过热水与化工原料搅拌、配比,加入防腐剂,就生产出名牌洗发水。其配量使用化工原料且随意性大,很容易对消费者的身体造成伤害。”  经查,现场共查处洗发水半成品6000斤、各种成品洗发水1.2万瓶、空瓶3.09万个、包装箱4万余个、原料10余袋、瓶盖4万多个、封口机一台、搅拌机一套、涉案价值4万元左右,是近几年来临沂市质监系统查处的规模最大、数量最多、涉案价值最大的假冒洗化用品案件。  执法人员对上述半成品、成品、原料、工具等依法进行扣押。目前,此案在进一步调查处理中。
  • 治理塑料污染,碳酸钙如何乘借“可降解塑料”的东风?
    近日,国家发展改革委、生态环境部、工业和信息化部、住房城乡建设部、农业农村部、商务部、文化和旅游部、市场监管总局、供销合作总社等9部门联合印发《关于扎实推进塑料污染治理工作的通知》,明确禁限不可降解塑料袋、一次性塑料餐具、一次性塑料吸管等一次性塑料制品的政策边界和执行要求,对疫情防控等突发事件期间用于应急保障的一次性塑料制品予以豁免。相比2008年“限塑令”主要是针对于流通使用环节,这次的“禁塑令”不仅聚焦于使用环节,也关注到了生产、流通、使用、回收、处置的全过程。在政策方面,“禁塑令”没有不顾实际情况搞“一刀切”,指出用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等,不在禁止之列 “禁塑令”扩大到“餐饮打包外卖服务以及各类展会活动”。从技术角度看,环保替代塑料吸管有多种选择,而可降解塑料抗摔性、耐热性、防腐性等方面的提升空间是另一个问题。这也意味着我国可降解塑料将迎来发展机遇。到2030年,预计我国可降解塑料需求量可到428万吨,市场规模可达855亿元。2020年底“禁塑令”工作目标从材料与环保协调发展角度看, 使用源于自然并可回归于自然的无机矿物作为填料部分取代高分子材料生产塑料制品是目前的可行方案之一。近年研究表明,碳酸钙等无机粉体材料在制造环境友好塑料材料方面发挥了重要作用。实现了提高塑料制品尺寸的稳定性、提高塑料制品的硬度和刚性、改善塑料加工性能、提高塑料制品的耐热性、改进塑料的散光性、降低塑料制品成本等多重优势。碳酸钙有利于塑料材料的降解,聚乙烯(PE)薄膜中有碳酸钙粉末时,在填埋后碳酸钙有可能与CO2和H2O反应,生成溶于水的Ca(HCO3)2而离开薄膜。留下的微孔,将增大聚乙烯塑料接触周围空气和微生物的面积,从而有利于进一步降解。同时,填加碳酸钙有利于PE焚烧。燃烧时,塑料溶化容易形成黏壁现象,无机粉体加入能够使得这一问题得到极大改善。在PE塑料材料中添加了大量碳酸钙,其效果不仅体现在塑料材料的减量上,且焚烧时可减少对大气污染,减少尾气中有害气体的排放量, 特别是与焚烧热氧降解剂配合使用,对遏止二恶英产生有十分重要意义。近几年日本等国开发了可焚烧PE塑料薄膜袋用来作为盛放焚烧垃圾发电专用袋。随着中国禁塑行动的进行,超细重质碳酸钙、轻质碳酸钙和纳米碳酸钙由于价格相对低廉,又可促进塑料降解,环境友好,在可降解塑料中的添加比例会越来越大,市场前景会越来越广阔。广西贺州是全国的重钙粉体生产基地和人造岗石生产基地,被授予中国“重钙之都”和“岗石之都”称号。目前,贺州市年产重质碳酸钙粉体达800万吨,产品市场占有量达到60%以上。广西贺州也是珠海欧美克仪器用户最集中的区域之一,在深耕非矿行业二十余载的岁月里,欧美克的仪器质量和品牌口碑不断得到贺州“钙帮”老板们一致认可。Topsizer 激光粒度分析仪碳酸钙根据品种不同有多种不同的粒径和不同的表面涂层特性。欧美克Topsizer激光粒度仪应用于测试碳酸钙微粉,在短短几分钟的时间内就可以完成覆盖从纳米到毫米级别范围的测量。可以实现生产过程中以及最终产品的质量中对碳酸钙的粒度的监测和控制。其次,通过优化的产品设计,Topsizer可以为客户提供高准确性、高重复性和高重现性的数据。图3和表2显示了同一GCC(立磨)样品分成三等份样品的重复性结果,由同一台Topsizer仪器测量。图4和表3显示了三台不同的Topsizer仪器所测量的同一批次的重复性粒度分布。图3:方法重复性:同一台Topsizer仪器测量同一批GCC中三种不同样品的粒度分布表2:同一台Topziser仪器测量同一批GCC的三等份试样的粒度分布图4:系统重现性:用三台不同的Topsizer仪器测量同一批GCC的粒度分布表3:用三台不同的Topsizer仪器测量同一批GCC的粒径分布最重要的是,激光粒度仪测试过程比较简单,很容易掌握测试方法,对测试人员的要求不高,从样品制备到测试可以在几分钟内完成质控把关。随着后疫情时期的经济反弹,广大碳酸钙企业在这一难得机遇面前,可以通过增加碳酸钙与塑料的亲合性的活化处理及采用粒度仪进行良好的粒径控制,开发出可降解塑料用高填充比例高制品性能的碳酸钙专用产品,提高碳酸钙产品附加值,促进碳酸钙产业的发展。欧美克仪器也在仪器性能和日常维护上为广大碳酸钙企业提供及时全面的技术支持,例如针对行业集中区域客户的免费上门回访维护等系列售后增值服务活动(点击文字了解相关活动),以及多场碳酸钙行业专场直播课程等。扫描二维码报名专题直播课始终坚持“以客户为中心”的服务宗旨,欧美克作为国内最著名的颗粒测量仪器制造商、高新技术企业及广东省工程技术研究中心,始终致力于粉体行业粒度检测与控制技术的不断提高,为客户提供先进的物超所值的粒度测量仪器,服务及整体解决方案,为粉体行业创新发展提供强有力的支撑!参考资料:1. 欧美克仪器.《碳酸钙的激光衍射粒度分析报告》2. 腾讯新闻.《从“纸上谈兵”到“落地有声” “禁塑令”要突破两大难点》;3. 矿材网.《后疫情下,中国禁塑行动为碳酸钙行业带来大机遇!》
  • 便携式拉曼光谱系统,助力微塑料快速检测
    前段时间,一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,进一步引发了微塑料对人体健康长期影响的担忧。我国高度重视微塑料对环境、人体影响的监测工作,越来越多研究机构已经开始布局微塑料研究。图片来自网络微塑料是指粒径小于5 mm的塑料颗粒,往往难以肉眼分辨,而拉曼光谱作为一种分子指纹光谱技术,结合显微成像,能够在微塑料的成分定性和颗粒统计中发挥重要作用,并且无惧水分干扰、无需复杂前处理。RS2000便携式拉曼与显微镜联用鉴知RS2000便携式拉曼系统可以与高性能光学显微镜联用,实现微米级塑料颗粒的表征和鉴别,根据样品的不同,还可选配不同波长的激光光源。RS2000具有以下优势: 1. 光学性能佳,分辨率优于6 cm-1,光谱范围覆盖200-3200 cm-1,采用深度制冷探测器,信噪比(SNR)超过7000,轻松进行微塑料的成分分析 2. 高分辨光学显微镜,可以进行微米级塑料颗粒的表征分析,并能够获取微塑料的二维图像信息 3. 方便移动,可以快速搭建分析平台,支持现场分析检测任务 4. 功能多样,既可以与显微镜连接使用,也可以通过探头直接检测不可移动的样品 5. 可靠性强,能够在复杂环境条件下使用常见塑料的拉曼光谱鉴知技术作为一家的光谱分析技术供应商,可以为研究人员提供定制化拉曼光谱检测配件和专业的技术指导,满足微塑料样品的现场快速检测需求。此外还提供各类光纤光谱仪,为科学研究提供更灵活的检测工具,详情可后台咨询。 鉴知技术可为用户提供不同配置的光谱仪
  • 维萨拉助力确保塑料颗粒的理想干燥度
    在制造注塑塑料产品时,正确干燥原材料(塑料颗粒)至关重要。这是借助温暖干燥的空气完成的。干燥过程中使用的空气比周围空气干燥,因此使用空气干燥机将其回收到工艺过程中是相当经济实惠的。对干燥工艺过程和再生吸附式干燥机中使用的空气进行加热需要耗费大量能源。露点测量是优化能耗和干燥质量的关键。Eino Korhonen Oy (EKOY) 生产多种塑料产品,如固定件、接头和管套。该公司使用维萨拉 DRYCAP 露点变送器 DMT143 改进塑料颗粒干燥时的干燥空气质量监测。得益于露点测量,该公司已经取得了更好的整体盈利能力、产品质量和客户满意度。在生产过程中,首先需要将塑料颗粒在高温下熔化成热塑性熔体,然后注入模具。如果塑料颗粒太潮湿,很容易出现外观和机械质量问题。在高温情况下,过多的水分会引起化学反应,从而降低产品的机械性能。因此,密切和持续地监测干燥工艺过程是非常重要的。 为了达到合适的干燥程度,塑料颗粒被放置在料斗中,暴露在干燥和温暖的送风中。回风在再生过程中进行冷却和干燥。为确保空气在加热和重新送入干燥工艺过程之前适当干燥,露点测量在这一阶段必不可少。确保塑料颗粒正确干燥的最佳露点是 -35 °C (-31 °F)。‍DMT143 微型露点变送器维萨拉紧凑型 DMT143 变送器可精确测量小型压缩空气干燥机、塑料干燥机、添加剂生产和其他 OEM 应用中的露点。它采用维萨拉 DRYCAP技术,具有自动校准功能,并且易于集成,可与维萨拉 DRYCAP 手持式露点仪 DM70 配合使用。要优点之一是紧凑小巧,例如可应用于小型工业干燥机。DMT143 稳定测量可实现较长的校准间隔和较低的维护成本,它还具有模拟输出选项,易于维护且支持数据传输。 维萨拉 DMT143 响应快速,其露点测量范围为 -70...+60 °C (-94 ...+140 °F),准确度为 ±2 °C (±3.6 °F)连续且可靠的监测EKOY 吸附式干燥机的再生过程已预先设定,并通过定时开关定期执行此过程。这种方法既不考虑生产浮动性,也不考虑吸附式干燥机的状况,这意味着干燥机的性能持续存在不确定性。“我们经验丰富的技术人员发现热塑性熔体过于潮湿,”技术经理 Antti Heikkilä 表示。 EKOY 团队已经能熟练使用维萨拉 DMT143,因为它内置在 EKOY 的干燥机中,且此干燥机的再生过程已经通过露点测量进行了优化。他们决定借用维萨拉的设备进行测试,旨在测量其定时控制的旧式塑料干燥机的性能。“测试证实了我们的怀疑,也就是说我们旧式干燥机的性能甚至未能接近我们的目标值。根据测试结果,我们决定为所有干燥机购置维萨拉设备。目前,维萨拉 DMT143 变送器能够持续进行监测并能够提供可靠的数据,”Heikkilä 解释道。以前,我们每年都会使用从干燥机制造商那里借用的设备来监测干燥机的性能,如此看来,该设备一直都未能提供可靠的数据。干燥机中的 DMT143 变送器与 EKOY 的楼宇自动化系统相关联,所有测量数据都存储在一个位置,便于跟踪。这是向前迈出的重要一步,因为以前关于干燥机性能的数据非常有限。历史数据和趋势曲线提供了有关设备性能和任何维修需求的宝贵信息。变送器连接到 Modbus 通道,且在 MaWi 自动化和维萨拉技术支持的帮助下,使用起来相当容易。 当塑料颗粒的含水量保持在其目标值时,原料质量较高,且 EKOY 可以充分利用其全部生产能力。优化能耗从生产过程中收集有效和准确的数据也给 EKOY 提供了提高其能源效率的机会。 “我们希望成为一家节能的工业企业。举例来说,我们希望在未来能够告诉我们的客户,在制造每种塑料产品时消耗了多少能源,”Antti Heikkilä 表示。 得益于准确的数据,EKOY 团队可以调整旧式塑料干燥机的再生周期,以尽可能实现节能。尽管仍需要手动调整,但在持续测量过程中允许优化调整设置。在未来,通过将使用定时开关进行再生的塑料干燥机转换为露点控制,将有可能进一步优化该过程。 与维萨拉的合作中,另一个在环境方面和产品生命周期相关的考虑:“我们持有相同的价值观念。对我们来说,维萨拉能够保证未来许多年的备件供应,这一点非常重要。比起丢弃和更换,我们更愿意进行维修和调整,”Heikkilä 说道。 Eino Korhonen OyEKOY 专门从事电工、塑料和金属产品的代工生产。其产品销往全球。EKOY 与 Nordic Aluminum/Lival、Ensto Produal 和 KONE 等公司均有合作。这家家族企业成立于 1978 年,在芬兰波尔沃和爱沙尼亚的哈尔尤县等地都有业务。DM70 手持式露点仪 用于抽检应用和现场校准的 Vaisala DRYCAP 手持式露点仪 DM70 能为工业露点应用提供准确快速的测量结果,例如在压缩空气、金属处理、添加剂生产以及食品和塑料干燥等应用方面。DM70 可提供宽量程范围内的准确露点温度测量。该探头可以直接插入带压工艺过程中,并且能在外界环境转换到工艺环境的条件下快速调整。DM70 也可用作对固定的维萨拉露点变送器进行输出读取的工具。DM70 通过其传感器净化功能进一步加快了响应时间,从而可确保快速准确的数据。该传感器抗冷凝,并且弄湿后可以完全恢复。其操作界面易于使用,并且具有清晰的 LCD显示屏和数据记录功能。❖ 微型露点变送器 DMT143 和 DMT143L(长型)(针对 OEM 应用)当您想要准确地测量小型压缩空气干燥机、塑料干燥机、添加剂生产和其他 OEM 应用场合内的露点时,微尺寸露点变送器 DMT143 和 DMT143L 是您的理想选择。它们很容易集成,并可以应用于手持式维萨拉 DM70 中。长型设备已取代 DMT242。特点:可进行自动校准的维萨拉 DRYCAP 技术快速响应时间露点测量范围为 -70 ... +60 °C (-94 ... +140 °F)准确度为 ±2 ºC (±3.6 ºF)防冷凝与维萨拉 DRYCAP 手持式露点仪 DM70 兼容可溯源的校准(包括证书)超过露点水平时触发 LED 报警
  • “禁塑令”进入倒计 时!塑料污染严重!显微拉曼竟能高效检测?
    30多地“禁塑令”枪响,在全国实施了12年的“限塑令”将于本月底升级为“禁塑令”。一次性塑料袋从“有偿使用”变成“禁止使用”。各大商场、超市、药店、书店将不再提供一次性塑料购物袋。此外,一次性塑料餐具也将禁止使用,餐饮行业也不能再提供不可降解一次性塑料吸管、餐具,花钱买也不行。 塑料是人类的一项伟大发明,小到食品包装、大到建筑材料,甚至包含交通工具、医疗器械等诸多人类必需品都离不开它,给人们带来便利的同时,也对自然环境造成了极大的破坏。 在自然环境中,塑料受到紫外辐射和机械磨损等物理破碎、化学分解及生物降解作用,由大尺寸逐渐变为小尺寸的塑料颗粒,当其粒径5mm 时,则被称为微塑料。欧洲联合胃肠病学周发布了一项新研究,首次确认:在人体内发现了多达9种不同种类的微塑料。海洋里,多达114种水生物种的体内发现了微塑料。研究表明,它们和塑料的遭遇结果往往是致命的。微塑料能进入动物血液,淋巴系统,甚至肝脏,造成肠道甚至生殖系统的损害。 目前,关于环境中微塑料的检测方法大多是在预处理后,人工挑选出疑似微塑料的颗粒,再使用红外光谱、拉曼光谱、热分析等方法进行化学组分鉴定。人工挑选法虽然简单,但由于手工操作的局限性,只能挑选较大尺寸的颗粒,准确率不高,挑选效率低。基于这个问题,采用用原位检测的方法,将载有预处理后样品的滤膜直接放在仪器下进行化学组分鉴定,奥谱天成拉曼光谱仪具有更高的空间分辨率,可以准确识别尺寸极小的微塑料颗粒。在使用光谱鉴定时 , 采用显微拉曼光谱仪面扫(ATR8800/8500mapping)模式可以在样品区域上自动逐点采集信号,大大提高了检测的效率和准确率。 使用拉曼光谱仪面扫在检测小尺寸微塑料应用中有以下 3 个优点:1、略去人工挑选的繁琐环节,减少目视和操作误差;2、可以识别粒径很小的微塑料颗粒;3、仪器自动采集所选区域内每一点的信号,提高了准确率。
  • 电镜-拉曼联用助力在环保领域科研——自然环境下风化微塑料研究
    中国地质大学(武汉)环境学院罗泽娇教授课题组联合地球科学学院佘振兵教授课题组发表了一篇利用电镜、能谱、拉曼和红外研究自然界中风化微塑料的新成果。 自2004年,英国普利茅斯大学的汤普森等人在《科学》杂志上发表了关于海洋水体和沉积物中塑料碎片的论文,首次提出了“微塑料”的概念,指的是直径小于5毫米的塑料碎片和颗粒。实际上,微塑料的粒径范围从几微米到几毫米,是形状多样的非均匀塑料颗粒混合体,肉眼往往难以分辨。微塑料的危害是成为了制造环境污染的主要载体。微塑料由于体积小,意味着更高的比表面积(比表面积指多孔固体物质单位质量所具有的表面积),比表面积越大,吸附的污染物的能力越强。环境中已经存在大量的多氯联苯、双酚A等有机污染物(这些有机污染物往往是疏水的,就是说它们不太容易溶解在水中,也容易被水体稀释),但微塑料一旦和这些污染物相遇,正好聚集形成一个有机污染球体。微塑料相当于成为污染物的坐骑,二者可以在环境中到处游荡。与一般的“白色污染”不可降解塑料相比,微塑料对于环境的危害程度更深,因此被形象地称为“海中的PM2.5”。一般认为老化或风化会增强微塑料吸附有机污染物和重金属的能力,以往关于老化或风化的塑料表面变化的研究大多是在实验室中通过模拟光氧化或化学氧化进行的,但自然环境中风化的微塑料的降解过程比实验室模拟中的降解过程更为复杂。所以研究自然界风化的微塑料的表面变化对于了解微塑料污染的持久性和小型微塑料的起源具有重要意义。罗泽娇老师的课题组的董明潭同学运用了扫描电镜、能谱、拉曼和红外光谱综合分析了风化微塑料的光谱特征与表面变化。图1:环境中风化微塑料的SEM图像(a~d为PE,e~h为PP)相比于标准塑料的光滑表面(图见论文补充材料),风化后塑料的表面是粗糙且不规则的,有裂纹、破裂、缺口、凹坑等,PP比PE具有更多的裂口。上图的c~d显示了塑料的表面层状剥落过程,提示风化过程会产生更多更微小的微塑料甚至纳米塑料。 图2:(a)二次电子图像;(b)碳元素EDS面分布;(c)氧元素EDS面分布图(d)线扫描 微塑料的SEM图像反映了内外层的形貌的明显差异,EDS分析发现风化的外表面氧元素含量较高,碳元素含量低;而与之相反,光滑的内表面,氧元素(含量较低,碳元素含量高, 风化的外表面的O / C比约为0.1-0.5,无风化的内表面的O / C比为0.01-0.03。互补的C和O元素图表明,O/C比是判断氧化程度的潜在指标。EDS还揭示了PET和PVC表面上的钛,这与用作阻光剂的二氧化钛有关。图3:PE微塑料碎片的拉曼光谱(左)和ATR-FTIR光谱(右) 研究发现拉曼光谱在鉴定环境微塑料中具有巨大潜力,而光谱和元素分析相结合可用于破译自然条件下的微塑料降解过程,并且初步建立了包括124个风化微塑料拉曼光谱的风化微塑料拉曼光谱数据库(RDWP),以用于准确识别自然环境中的微塑料,并且向所有用户开放。 自2014年 TESCAN 正式推出扫描电镜和拉曼联用系统—RISE显微镜,这是台真正实现实用化的扫描电镜-拉曼光谱联用设备,因为它独特的功能和应用创新,在国内和国际上都已经有了很多重量级用户,它的科研和分析价值已经被越来越多的人认可和发现。TESCAN RISE电镜-拉曼一体化系统
  • 拉曼和傅里叶光谱技术已成为最常用的两种微塑料鉴别方法
    目前微塑料定性定量探测技术主要有拉曼光谱技术(Raman)、傅里叶变换红外光谱技术(FTIR)、裂解气相色谱-质谱联用技术(Pyrolysis-GC/MS)等,其中Raman和FTIR已成为最常用的两种鉴别方法,这与其技术特点是分不开的。1.拉曼光谱技术(Raman)是基于拉曼散射效应,光照射在微塑料样品上后,大部分光子被样品分子直接散射出来,散射光频率不变,小部分光子和样品分子发生碰撞和能量转移,改变了分子的振动方式,导致样品散射出了其他频率的光,它与原入射光的频率差值又称“拉曼位移”。“拉曼位移”的程度与分子结构密切相关,因而可以起到类似“指纹”的作用,通过光栅光谱仪等设备可以提取出样品拉曼特征谱峰的位置和强度,然后与标准物质的光谱数据库进行比对,就可以确定样品的成分。在微塑料分析时,经常将拉曼光谱技术与光学显微镜组合,构成显微拉曼测量系统(Micro-Raman),这样不仅可以获取样品的拉曼光谱,还可以绘制整个样品区域图像,从而快速确定微塑料的种类、形貌、尺寸及数目。图4是显微拉曼系统结构示意图,它主要由激光器、显微镜和光探测器等组成。用于微塑料测定时,常用的激光波长有785nm,532nm或1064nm;因为样品的拉曼光谱信号往往很弱,光探测器需使用带制冷功能的高灵敏度光谱仪。测量时,激光器出射光经过调制或过滤,进入显微镜后,被物镜聚焦到样品上,样品散射出的拉曼光谱信号被显微镜头收集,再经过分束器和二向色镜过滤进入光谱仪的探测器中,变成电信号后由电脑记录和分析。样品的形貌、尺寸等信息可由显微镜上自带的CCD(或CMOS等)图像传感器获取。图4:拉曼系统测量原理示意图。图片来源:Raman Spectroscopy, ScienceFacts在微塑料分析方面,Raman光谱技术优势很多,对样品无破坏性或微损,抗水分子干扰能力强,对样品预处理要求简单,并且可以分析深色或不透明的塑料样品。此外拉曼光谱的空间分辨率较高,在鉴定粒径小于20um的微塑料颗粒碎片方面优势明显。该技术的主要缺点在于拉曼光谱属于弱信号,信噪比较低。另外样品中杂质的荧光会产生干扰,严重时会彻底淹没待检特征光谱信号,影响了测量速度和检测限。2.傅里叶变换红外光谱技术(FTIR)傅里叶变换红外光谱技术(FTIR)是基于迈克尔逊干涉仪和分子吸收光谱原理。红外光源发出的连续光被干涉仪内的分束器分为两束,一束到达动镜,另一束经反射到达定镜。两束光分别经过定镜和动镜反射后再回到分束器上汇合后射出。动镜以恒定速度前后移动,导致两束光之间存在光程差而发生干涉。射出的干涉光穿过样品池,照射在样品上,样品分子或其官能团会发生振动能级跃迁,吸收与其振动频率相同的红外光能量,使得几个特定波段的红外光能量被削弱,出射光束携带了样品的特征吸收信息,并被光电检测器转为电信号传输到电脑上,然后采用傅里叶变换算法对信号进行解析,最终提取出样品的吸收光谱信息。因为不同种类的微塑料会有不同的光谱吸收峰结构,可以起到类似“指纹”的作用,故可以像拉曼光谱分析一样,将其与标准物质的光谱数据库进行比对,就可以确定样品的成分。其测量系统如图5所示。如若样品比较透明、轻薄,可以采用简便的透射模式测量,不过需要红外滤片配合;如若样品比较厚或不透明,则可采用反射或衰减全反射(ATR)模式来获取样品特征光谱信息[5]。此外FTIR也可以与光学显微镜联用,进一步获取样品的图像特征。图5:FTIR测量系统示意图。图片来源:In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht.在微塑料分析方面,FTIR技术有和Raman技术相同的优点,比如对样品无破坏性,样品预处理要求简单,测量准确等。但不同于Raman技术,FTIR技术无需衰减严重的色散分光,光能量利用率高,光通量大,信号强度高,测量速度快,这是FTIR技术的独特优势。FTIR技术也有一些缺点,样品测试极易受水分子干扰,样品必须保持严格干燥;同时对于形状不规则或厚度过大样品,FTIR技术会因折射误差等原因造成红外光谱图解析困难。对于粒径小于20µm的小塑料颗粒,FTIR技术也易受周围粒子或者环境的干扰,测定效果一般。微塑料在人体内的检测与发现近年来,Raman和FTIR技术在帮助人们鉴定人体内塑料方面进展迅速,取得了一系列新发现,下面是几个案例。2021年,北京大学的研究团队,从北京体育大学的青年学生志愿者中,采集了24份粪便样品,使用光学FTIR技术对样品开展检测,结果有23份检测出了8种微塑料,其中聚丙烯(PP)的相对质量丰度比占到61.0%,检出的微塑料尺寸在20-800um之间。相关研究论文标题引用了一条西方谚语-“You are what you eat”,也是一个形象的提醒,检出的微塑料与大家饮用的瓶装水和饮料有关。2022年,南京大学和南京医大的研究团队从50名健康人和52名炎症性肠病(IBD)患者中获取了粪便样品,然后使用显微拉曼光谱技术开展了检测,发现健康者与肠炎患者的粪便中都有微塑料,其中PET和PA的拉曼特征峰出现次数最多[7]。图6是测试结果,测出的微塑料颗粒形状多为薄片、纤维、碎块和球状,其中薄片和纤维状微塑料占比超过80%,成分以PET(多用于瓶子和食品容器)和PA(多用于食品包装和纺织品)塑料为主。需要注意的是,研究发现,常喝瓶装水、常吃外卖食品、或经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。肠炎患者的粪便中的微塑料含量是健康者的1.5倍,意味着微塑料在肠炎患者肠道内有更多的堆积,可能加重了炎症。更进一步的,2022年荷兰阿姆斯特丹自由大学研究团队采用裂解-气相色谱/质谱(Py-GC/MS)技术,首次在人类活体血液中检测出微塑料颗粒,平均浓度为1.6ug/ml。图6:受试者粪便内微塑料。图片来源:Environmental Science & Technology 56.1 (2021): 414-421.不仅是血液,最近人们在人类胎盘和母乳中也检出了微塑料。2020年来自意大利Marche大学团队联合当地医院妇产科采集了6位正常怀孕并分娩的健康女性的胎盘样品[9],并选择了其中4%的区域,进行染色加工等预处理,然后该团队使用785nm激光器为光源,结合显微镜,测量了样品的微区拉曼光谱,结果首次在胎盘的胎儿侧、母亲侧以及胎盘膜中检测到了12个微塑料颗粒的存在,其尺寸小于10um,鉴定出塑料的成分为常见的乙烯和聚丙烯等。为避免胎盘受到污染,样品采集与分析过程中,该团队全程采取了零塑料措施。2022年,该团队再接再厉,继续发挥拉曼光谱技术的威力,以母乳为研究对象,结果首次在健康人体母乳样本中也发现了微塑料,其成分特征光谱和显微图片如图7所示,光谱图中横坐标代表波数(cm-1),纵坐标代表相对强度值(Counts)。研究人员将测量得到的波峰的位置与标准数据库中的波峰对比,确认出这些塑料与日常生活中常见的PE等塑料一样。其进入人体的途径与母体皮肤和呼吸接触的油漆、染料、塑料粘合剂、灰泥、化妆品以及个人护理等产品密切相关。图7:微塑料颗粒特征拉曼光谱。图片来源:Polymers 14.13 (2022): 2700.上述研究让我们清晰地感觉到,微塑料可以滞留在人体内,并进一步突破屏障,进入血液并被输运到全身各处,甚至可以进入人体胎盘和乳汁! 同时,上述研究也展示了Raman和FTIR技术在研究微塑料方面的价值。两种光谱技术各有千秋。在未来,如将两种技术进行有机组合,互补其优势,将可以进一步发挥其威力,对探索人体内的微塑料提供更全面、更深入的帮助。
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 官方:未来海洋微塑料或翻50倍!共聚焦显微拉曼光谱能否......
    导读:2月8日,世界自然基金会(World Wide Fund for Nature)发布的最 新报告预计:到2050年,世界海洋中的塑料污染将增加四倍。该报告警告称:到本世纪末,海洋微塑料污染总体将增加50倍。届时,超过2.5个格林兰群岛面积的海域将遭受严重污染,微塑料浓度将超过生态危险阈值。该研究由德国的魏格纳极地与海洋研究所(Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research)开展。期间,研究人员分析了2500多份关于塑料污染的研究报告,汇编了大量相关数据,并得出了惊人的海洋塑料污染估计值。什么是“微塑料”?微塑料是在较大的塑料碎片解体过程中所产生的微小颗粒。卡在海龟鼻孔里的塑料吸管、填满海洋动物胃里的塑料制品等,这是我们能够肉眼看到的塑料,但肉眼难以分辨的微塑料对环境造成的危害更加可怕。对于海洋环境来说,海洋沉积物被认为是微塑料聚集的“汇”,然而海洋沉积物微塑料检测方法缺乏统一标准。光谱学领域的傅里叶红外光谱法以及拉曼光谱法被视为常用的无损分析手段,能够实现微塑料的分子内部结构表征。傅里叶红外光谱法对于小于20μm的微粒不能发挥良好的检测效果,而拉曼光谱法可以实现小于10μm“微塑料”的检测应用。海洋沉积物样品应用实例1、海滩实际样品获取与处理图1.1 实际海洋沉积物样品分析流程(a)海洋沉积物样品经密度浮选法获得上清液(b)样品颗粒收集于滤膜(c)共聚焦显微拉曼分析取样、密度分离后省略样品消解与染色鉴定等步骤,将收集的上清液经真空抽滤于滤膜后进行共聚焦显微拉曼分析(图 1.1)。保留原貌的样品富集于滤膜后(图 1.1a,b),在共聚焦显微拉曼分析下获得显微形貌与拉曼图谱(图 1.1c)。红色颗粒由于具有颜色干扰,因此选用 785 nm 波长进行光谱分析,为避免样品烧蚀从 1mW 激发功率下缓慢增加激光功率,以获得高信噪比的样品光谱。通过改变测量参数,在积分时间为 10 秒,积分次数为 3 次,激光功率为 20 mW 下获得特征峰位清晰的拉曼光谱(图 1.1c)。根据拉曼图谱反映的分子结构信息,通过与建立的微塑料标准拉曼谱库进行比对,确认样品类型为聚苯乙烯(PS)。2、微米量级的微塑料样品特征分析图1.2 实际海洋沉积物中样品颗粒拉曼分析图:(a)颗粒 A、(b)颗粒 B、(c)颗粒 C 样品共聚焦显微图像(d)颗粒 A、B、C 拉曼光谱分析图如图 1.2 所示,选取实际海洋沉积物样品中 20 微米以下的特征颗粒 A、B、C进行共聚焦显微拉曼分析。颗粒 A、B、C 在省略消解与染色步骤的处理流程下,经密度浮选实现与海洋沉积物样品的分离,共聚焦显微图像表明,样品的原有形貌得以保留(图 1.2a-c),其中,颗粒 B,C 粒径小于 10 微米。颗粒 A,B 和 C通过拉曼光谱分析可确认为不同形状的聚丙烯颗粒,其中,处于 809 cm-1,981 cm- 1,1156 cm-1,1128 cm-1 位置处的特征峰可归属为 C-C 键伸缩振动,1337 cm- 1,1367 cm-1 位置处特征峰归属为 C-H 键弯曲振动,2800 cm-1 至3000 cm- 1 拉曼频移区域归属于 C-H(-CH3)伸缩振动(图 1.2d)。共聚焦显微拉曼分析表明,对于海洋沉积物样品中小于 10 微米的颗粒,不仅能够表征微塑料颗粒的形貌特点,也能够获得高质量的光谱进行分子结构信息的判断。3、基于拉曼光谱的微塑料类型分析经拉曼光谱镜下测量近 200 个待测颗粒后,确定了 41 个粒径处于 5 微米至 500 微米之间的微塑料样品,其中微塑料类型包括聚丙烯(PP),聚乙烯(PE),聚四氟乙烯(PTFE),聚酰胺(PA),聚苯乙烯(PS),聚对苯二甲酸乙二醇酯(PET)以及丙烯腈-丁二烯-苯乙烯共聚物(ABS)。图1.3 海洋沉积物样品微粒共聚焦显微镜下图(a~f)其中,选取 PE,PS,PA,ABS,PET,PTFE 特征颗粒共聚焦显微拉曼图像如图 1.3 所示,分别标记为颗粒 D、E、F、 G、H、I,每一种微塑料样品均保留了原有的特征形貌。图1.4 海洋沉积物样品微粒拉曼光谱与标准拉曼参考库比对图(a~f)此外,每种颗粒对应的拉曼分析图如图 1.4 所示,颗粒物质分子内部的官能团信息从拉曼特征峰位得以表征,通过与建立的微塑料拉曼光谱库进行比对分析,确定每种颗粒物质的结构信息。图1.5 海洋沉积物样品微粒拉曼光谱与聚乙烯拉曼光谱比对图除上述样品特征光谱外,样品中有一个待测颗粒物质在进行拉曼分析时,除了具有聚乙烯的特征峰位,还在 880 cm-1,1655 cm-1 及 3010 cm-1 位置处表现有额外的拉曼特征峰(图 1.5)。其中,880 cm-1处的特征峰由 C-OH 键伸缩振动引起,可归属于羟基振动。1655 cm-1 及 3010 cm-1 位置处的特征峰可被归属为脂类物质。拉曼分析表明,由于聚合中添加的额外化合物或是由有机或无机物质带来的混合杂质,来源于海洋环境的微塑料光谱并不能总与标准光谱完全一致。因此,为了提高微塑料分析效率,将暴露在环境中的微塑料光谱也纳入到光谱库中至关重要。共聚焦显微拉曼光谱仪不仅能够获得更小的样品检测限度,也能够获得清晰样品的原有形貌,真正实现“所见即所测”。这种能够同时进行样品观察与检测的分析手段,不仅能提供样品化学组分信息,还能够提供微小颗粒的形貌特征,为相关研究提供数据支撑,使得研究人员能够据此探究微塑料的来源与传播途径,以及对于生物体的可得性。文章数据转载于 刘靖《共聚焦显微拉曼光谱技术在海洋沉积物微塑料检测中的探索应用》,文章版权、数据及观点归原作者原出处所有。如有侵权之处,请与我们联系,会第 一时间处理。
  • 中国科学家在垃圾堆中发现吃塑料的真菌
    p  塑料是工业文明的产物,塑料的合成大大提高了我们的生活质量。我们人类正在生产着大量的塑料,其中大部分最终成为垃圾。塑料废弃物通过阻塞水路和污染土壤,释放有害物质,甚至对动物造成威胁,这些动物会把塑料碎片误认为食物。中国科学院昆明植物研究所的科学家们最近发现并鉴定出一种真菌,其可以通过使用酶快速分解塑料,从而帮助解决我们环境中的塑料污染问题。/pp  在人类工业化合成塑料之前,塑料聚合物在自然界并不存在,因此塑料不容易被细菌、真菌和其它生物所降解。塑料的生物降解是全球环境污染研究的热点和难点。全球科学家在上个世纪九十年代就开始研究塑料的生物降解,先后发现了几十种具有降解塑料的真菌,但是由于其降解效率低、降解不彻底而作罢。这次昆明植物所许建初研究团队首次发现了能够高效降解聚氨酯(PU)塑料的新菌种,是近几年来科学家在塑料生物降解领域的重大突破。/pp  中科院昆明植物研究所许建初研究团队从垃圾堆中发现吃塑料的真菌——一种了不起眼的土壤小型真菌。该真菌首先是来自巴基斯坦的Sehroon Khan博士从伊斯兰堡一处垃圾处理场土壤中分离出来的。研究团队在实验室发现它可以在塑料表面生长,并通过生长过程中产生的酶和塑料发生生物反应,破坏塑料分子间或聚合物间的化学键。研究团队中来自斯里兰卡的Samantha Karunarathna博士把该真菌鉴定命名为塔宾曲霉菌(Aspergillus tubingensis)。/pp  研究团队发现在自然环境中的难以降解的塑料,在塔宾曲霉菌作用下两周就可以明显看到生物降解过程,两个月后其培养基上的塑料聚合物基本消失。/pp  /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/e35c7ffc-efe8-475e-95d1-bfab01f76830.jpg" title="1.jpg" style="width: 561px height: 261px " vspace="0" hspace="0" height="261" border="0" width="561"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "塔宾曲霉菌对聚氨基甲酸酯的降解过程/span/strong/pp  曲霉真菌和人类合成的塑料聚合物相生相克的关系也为土壤污染处理和生态修复提供了新的线索。该研究为处理塑料垃圾开辟了新途径,例如在垃圾填埋场喷洒生物降解的真菌剂可以大大加速垃圾中塑料聚合物的降解速度和效率。据科学家估计,全世界为人类认识并科学描述的真菌不到其总数的10%,这意味着仍有大量潜在有用的真菌可被发现。可惜的是自然界中包括热带雨林中许多物种在没有被科学描述之前就消失了。我们可能会越来越依赖在人造环境里寻找那些物种,更多的科学家可能会尴尬地发现是在人类自己产生的垃圾场进行研究,而不是在热带雨林之中。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/3cacf9c4-a9bd-4787-8058-c5564da84faa.jpg" title="2.jpg" style="width: 541px height: 404px " vspace="0" hspace="0" height="404" border="0" width="541"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong多/strongstrong个塔宾曲霉菌孢子/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/b34a72ab-68c2-4597-b513-c5144616fc0a.jpg" title="3.jpg" style="width: 535px height: 405px " vspace="0" hspace="0" height="405" border="0" width="535"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "塔宾曲霉菌孢子. Sehroon Khan/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/efbea33a-7002-417f-94f3-785ac730640d.jpg" title="4.jpg" style="width: 537px height: 404px " vspace="0" hspace="0" height="404" border="0" width="537"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "塑料的电子显微镜照片,显示了由于真菌生长而引发的裂纹. Sehroon Khan/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/a8730318-39a4-4a3c-b7ec-a4a956de2099.jpg" title="5.jpg" style="width: 538px height: 405px " vspace="0" hspace="0" height="405" border="0" width="538"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "废塑料通常最终会被堆放在垃圾填埋场里. Alan Levine_flickr/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/5a9df19d-9348-4ed2-b8b6-39dde0ce1d47.jpg" title="6.jpg" style="width: 537px height: 356px " vspace="0" hspace="0" height="356" border="0" width="537"//pp style="text-align: center "strongspan style="color: rgb(0, 176, 240) "废塑料通常最终会被堆放在垃圾填埋场里. Justin Ritchie_flickr/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/a112dd4e-1da2-436f-b648-368992666902.jpg" title="7.jpg" style="width: 538px height: 376px " vspace="0" hspace="0" height="376" border="0" width="538"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong洋流可将塑料带到远离其起源地的海岸线. Bo Eide_flickr/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201704/insimg/bae8cc2d-1931-4173-bec7-47a2985036e6.jpg" title="8.jpg" style="width: 538px height: 405px " vspace="0" hspace="0" height="405" border="0" width="538"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong一块塑料,显示了其被黑色真菌生长而吞噬出的孔洞. Sehroon Khan/strong/span/p
  • 日本用塑料瓶研制辐射探测仪
    日本研究人员利用回收饮料瓶的塑料制成能够测知辐射的传感器,可用于辐射探测仪,有望让成本下降90%。  京都大学助理教授中村秀人(音译)与帝人公司合作研究,设计出一种以PET材料制成的传感器,可用于制造小型辐射探测仪和较大型号的辐射值读数测量仪。  PET,即聚对苯二甲酸乙二醇酯,广泛用于塑料饮料瓶。研究人员利用饮料瓶制成一种塑料树脂,发现这种材料遭到辐射时会发出荧光,且强度好、柔韧、成本低,可用作辐射探测仪中的传感器。  当前,日本市场上传感器原材料大多从法国圣戈班公司进口,价格较贵。  帝人公司公关部估计,传感器售价大约1万日元(约合130美元),比市场现有产品便宜九成,最早会在下个月供应一些政府部门和企业。  帝人公司销售主管石井彻(音译)告诉路透社记者,“我们的目标是在9月底制成最终成品”、即辐射探测仪,9月、10月供政府部门和企业试用,随后逐渐供应公众。  日本东北部3月地震和海啸后,福岛第一核电站泄漏,不少民众争相购买辐射探测装置。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 焦塑料——经过火焚烧转变而来的一种新型塑料污染
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/1400f8bf-32a9-4176-aba4-1392bd6a7d02.jpg" title="塑料垃圾.jpg" alt="塑料垃圾.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "人们在康沃尔海滩上收集的塑料垃圾 图片来源:ROB ARNOLD/span/pp  在环绕英国西南部海岸线的沙湾上,人们可以找到各种各样的石头,从小鹅卵石到厚重的镇纸石,散落在漂浮物中。它们的颜色是深浅不一的灰色,表面平滑、没有棱角,看起来很不起眼。/pp  但如果你拿起它们看时,很快就会发现,这些看起来毫不起眼的“石块”其实根本不是岩石。/pp  这是焦塑料——经过火焚烧转变而来的一种新型塑料污染。地质学家甚至也对它们的外表感到困惑。英国普利茅斯大学环境科学家Andrew Turner最近在《全环境科学》上发表的一篇论文中对这种物质进行了描述。他认为,这种污染可能隐藏在世界各地。/pp  “因为它们看起来像地质变化形成的,这让很多人经过时都不会留意到它们。”Turner说。/pp  几年前,康沃尔塑料污染联盟志愿者联系到Turner时,他第一次听说了这种奇怪的新垃圾。/pp  海滩拾荒者发现了一些奇怪的鹅卵石和石块的塑料仿制品,它们非常轻,可以漂浮在水面上。Turner说,一些志愿者已经收集了数千块。环境艺术家Rob Arnold甚至为当地一家博物馆设计了一个展览,让游客在塑料中找真正的石块。很少有人能够分辨出来。/pp  “这个活动非常成功,但也令人震惊。”Arnold说,“人们很惊讶他们居然完全没有注意到这些污染。”/pp  一年前,Turner决定更系统地研究这一现象。在社交媒体上发出呼吁后,他收到了从苏格兰到英属哥伦比亚等地的垃圾样本,他的分析最终集中在从惠特桑德湾附近收集的垃圾上。这是一个受保护的大海湾,其中包括康沃尔郡一部分最好的海滩。在进行大小和密度测量后,该团队用X射线和红外光谱检测了塑料的化学成分。/pp  他们了解到,这些“石头”是由聚乙烯和聚丙烯构成的,这是两种最常见的塑料。它们还含有大量的化学添加剂,但最让研究人员吃惊的是它经常和铅、铬一起出现。/pp  Turner认为,这些是铬酸铅的痕迹。几十年前,制造商将这种化合物添加到塑料中,使其呈现出鲜艳的黄色或红色。而这些颜色可能由于燃烧而变暗。该团队在实验室里熔化了一些颜色鲜艳的塑料,验证了这个想法。果然,它们变成了深灰色。/pp  与此同时,多年的风和水的侵蚀可以让这些经过高温的塑料形成光滑的边缘和风化的外观。/pp  “想象一下,如果一块卵石在地质学上发生这样的变化,它会需要几十万年的时间。”Turner说,“我们在这些塑料上看到了同样的情况,但它发生的速度要快得多。”/pp  康沃尔热塑性塑料的确切起源仍然是个谜。Turner认为可能有很多来源,从篝火到旧的垃圾填埋场,篝火与夏威夷塑料—岩石混合物“塑小球”的形成就存在关联。他认为,其中一些塑料垃圾可能是从萨克岛漂到英吉利海峡对岸,因为最近的报告显示,萨克岛的垃圾在焚烧后被倾倒在海里 另一种可能是从加勒比海岸一路漂到英吉利海峡对岸。/pp  无论如何,高温塑料已经在世界上出现了,Turner想知道它们会对环境造成什么样的危害。他发现几个蠕虫样本中似乎富含铅,这表明这些生物可以摄取塑料,并将重金属引入食物链。/pp  Turner与美国的一位合作者分享了一些样本。这位合作者正在做进一步分析,以确定这些样本中是否也含有有害的有机化合物。“在不受控制的环境下燃烧塑料,会产生各种有害物质。”他说。/pp  除了直接的生态效应,热塑性塑料的出现还表明环境中的塑料无处不在。英国莱斯特大学古生物学教授Jan Zalasiewicz想知道,这些东西最终是否会在岩石记录中留下痕迹。/pp  无论高温塑料的最终命运如何,Zalasiewicz说,很清楚的是,塑料正在“成为地质循环的一部分”。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/60eaff85-f756-497e-837e-d605b32afed6.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论!/spanbr//p
  • 巧用光谱法 海洋塑料垃圾监测取得新进展
    113年前,一位名为贝克兰的人发明了酚醛塑料,从此,合成塑料的发展帷幕被拉开。经历了漫长的发展过程,到20世纪中期,这项塑料技术被人们发扬光大。得益于社会的快速发展,塑料工业如同雨后春笋般飞速成长。时至今日,塑料行业遍地开花,迅猛地占据了大量的市场,塑料制品充斥着每个人的生活,从吃穿住行到工业生产,塑料产品无处不在。趁着如火如荼的发展之势,塑料制品进军医药、食品、农业等诸多领域。塑料制品为人们带来发展利好的同时,也产生了负面效应。众所周知,塑料制品不仅好用,成本还非常便宜,正是因此,人们习惯性把其当成一次性用品,用完即丢。并且,塑料制品非常难以降解,人们对其丢弃后,它便会长期存在于地球的各个角落。如此一来,塑料垃圾数量越积累越多,悄悄涌向田野、山脉、海洋,甚至是人们身边的环境中。数量可观的塑料垃圾还无法快速处理掉,常用的填埋方法非常占地,还破坏土壤结构;对其进行焚烧处理又会释放大量的二氧化碳和有毒有害气体,危害健康还造成大气污染。如果置之不理,后果将无法想象。近几年,随着人们对生活质量的要求升高,塑料垃圾对生命健康以及生活环境的威胁备受人们的关注。不光陆地上存放了大量的塑料垃圾,就连偌大的海洋领域,也很大程度上受到了塑料垃圾的“侵入”。  那么,海洋里到底有多塑料垃圾呢?据中国科学报得知,从南极到北极,从地表到地下沉积,科学家在见到的每一个海洋环境中都检测出了塑料存在。重要的是,人类产生的其他材质废弃物,会随着时间慢慢腐烂或者锈化掉,但是塑料由于很难降解的性质,会持续存在多年。更为可怕的是,一部分塑料垃圾漂浮于海洋表面,易于检测出,而更为深层的海底塑料垃圾,却很难检测出来,所以,海洋里究竟存在多少的塑料垃圾,无法预估。海洋塑料垃圾不止是污染水体和环境,还伤害海洋动物的的生命,经过长久以来的观察和案例可知,海龟、鱼、海豹以及鸟类等,都无一幸免。它们或是被塑料中伤了身体器官,或是吃进去了塑料碎片,导致这些垃圾在消化器官中长期累积。尤其是会被送上餐桌的海洋动物,塑料垃圾长期以来在它们身体中无法分解,从而产生毒素,被人吃进人体。尽管人们自从意识到这些以来,就不断在处理塑料垃圾方面努力着,一方面加大废弃塑料的回收力度,一方面加速研发可帮助塑料垃圾降解的化学药剂。但是,每年仍然有超过8万吨塑料垃圾进入海洋中,可见,海洋塑料垃圾的治理工作还是不可懈怠。其实,对于海洋塑料垃圾的解决上,科技领域的研究者们也不断为其贡献着自己的力量,包括海洋塑料降解方面的研究,以及针对海洋塑料探测的研究。事实上,将海洋中的塑料从其它漂浮物中准确快速地筛选出来,是多年来困扰人们处理海洋塑料垃圾的一个大难题。4月23日,据科技日报得知,英国的《科学报告》刊登了一则关于海洋塑料垃圾处理的消息。消息称,英国一团队发现了一种能检测出海洋环境中大于5毫米的塑料漂浮物的新方法,该方法是利用欧洲空间局“哨兵2”号卫星数据,训练机器学习算法,实现将塑料从其他材料中区分出来的目的。经过试验,这个方法的平均准确率为86%,局部区域可高达百分之百。光谱仪据了解,关于机器识别塑料漂浮物的方法中,研究人员此次是从光谱法入手。他们发现,海洋中的不同漂浮物所吸收和反射的可见光与红外光波长也各不相同。基于此,他们利用这些不同的光谱特征,在“哨兵2”号的所识别出的漂浮物中,快速对漂浮物带中的材料进行详细划分,以此具体探测出海洋中存在的塑料垃圾。接下来,研究人员还将继续升级这项技术,致力于将光谱识别塑料技术与无人机或高分辨率卫星联用,为全球的海洋塑料垃圾监测工作提供更好的方法。  眼下,塑料制品仍是社会发展所离不开的产物,好在人们及时意识到了塑料给环境造成的影响以及带给人们的危害,积极采取防止措施。在此呼吁大家,防治塑料污染,从每一个日常习惯做起,塑料污染的危害并不远,就在我们身边。相信,在人们共同的努力和“科技魔法”的帮助下,海洋塑料垃圾终将消失得无影无踪。24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • SDL Atlas 公司参展国际塑料橡胶工业展览会
    「中国国际橡塑展」是目前世界第三、亚洲第一的塑料橡胶工业展。今届展会会场将达145,000平方米,并且云集了1,900家中外展商,为汽车、化学建材、家用电器、电线电缆、电器、照明电器及医疗设备等行业展出一系列化工及原材料,以及1,800多台先进机械设备。展会将于 2010年4月19-22日在中国上海浦东新国际博览中心盛大举行。 SDL Atlas将在本届展会上展出多款橡塑行业先进测试仪器,如来自美国著名仪器制造商Atlas生产的测试材料耐老化性能的Ci4000氙灯老化测试仪;来自英国著名仪器制造商Tinius Olsen生产的测试材料物理强度的H10KS万能材料试验机;测试材料熔融指数的MP600测试仪,测试维卡软化点的303HDTM测试仪,由锡莱亚太拉斯生产的测试家用电器着火危险性的SafQ GW-3020灼热丝测试仪等。 欢迎广大客户参观莅临我司展台:W1J 51 ,届时将有专人介绍我司的测试产品及方案,与阁下洽谈合作机会!
  • 每月可释放1.55万亿微塑料!亚微米红外拉曼同步测量系统,助力东南大学新成果
    导读:近日,东南大学苏宇老师团队和合作者利用非接触亚微米分辨红外拉曼同步测量系统—mIRage研究发现清洁海绵在擦除顽固污渍受磨损时,每月可释放1.55万亿微塑料,这些微塑料可能会污染环境进入食物链。该成果以“Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges”为题,发表于环境领域高水平期刊《Environmental science technology》上。 文中使用的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,因其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量对样品无污染等优势,为本研究提供了关键性技术支持。研究概述:微塑料(MPs)是指小于5 毫米的塑料颗粒,与常见的塑料袋和饮料瓶等塑料制品不同,微塑料常常难以用肉眼观察,而其一旦释放到环境中,就可能会进入食物链,对人体造成未知的健康风险。 日常使用的清洁海绵由三聚氰胺和甲醛的聚合物制成,在使用过程中,会磨损产生环境微塑料纤维(MPFs)。苏宇老师和其合作者购买了三个知名品牌的清洁海绵,反复在不同粗糙度的金属表面摩擦,通过非接触亚微米分辨红外拉曼同步测量系统—mIRage等多种技术手段表征了海绵的结构组成和释放的MPF。结果发现,海绵的密度对微塑料释放有显著的影响,密度越大,微塑料纤维的释放量越少。 实验详情:研究团队使用基于O-PTIR基于光学光热红外全新技术的非接触亚微米分辨红外拉曼同步测量系统—mIRage观察了磨损海绵释放的MPF(直径为7.4 ± 1.2 μm)上的原始聚合物分子结构的变化。获得了亚微米尺度下聚合物的组成和微结构参数。O-PTIR光谱点1 - 4与未磨损海绵的O-PTIR光谱不同。海绵的碳氮双谱带(1558和1506 cm&minus 1)在MPFs(范围从1600到1456 cm&minus 1)中表现出增宽,相对强度略有变化。MPF上1340 cm&minus 1(芳基C-N带)与1558 cm&minus 1(C-N带)的吸收强度之比增加或减少。此外,在磨损海绵的洗涤沃茨中检测到较小的微塑料碎片(3 - 10 μm)(图e),其O-PTIR光谱(图d,点5和6)与长I型MPF(图d,点1)相似。摩擦热不会导致MPF上的聚合物分解,因为海绵磨损期间金属表面的温度升高(从21.5 ° C至24.9 °C)低于三聚氰胺热解引发的阈值(379&minus 387°C。然而,在海绵中存在水和甲醛残留物的情况下,机械能可能通过缩醛胺基团(&minus NH-CH2-NH-)和羟甲基基团(&minus NH-CH2-OH)之间的交替水解和缩合反应,诱导破坏或形成三聚氰胺-三聚氰胺交联。从磨损海绵中释放的微塑料图示。其中 (a)为沉积的海绵磨损颗粒的全景和局部投影图像。(b) 和(c)为S1-S3样品的放大图像(I、II和III型MPF),S4-S6的反射光图像。(d) c和e中位置1 - 6的归一化O-PTIR红外光热光谱。(e)从磨损海绵释放的小微塑料碎片(直径5.8和8.3 μm)的投影、反射光、可见激光和OPTIR光热红外光谱图(1340 cm&minus 1,芳基C-N吸收带)。 基于O-PTIR技术的mIRage产品: 非接触亚微米分辨红外拉曼同步测量系统—mIRage,采用光热诱导共振技术(O-PTIR),突破了传统红外光谱衍射极限,空间分辨率可达500 nm且无散射伪影。创新性的技术使其具备了以下优异的科研级别分析优势:☛ 500nm左右的空间分辨率,无散射伪影;☛ 基本无需样品前处理,样品即放即测;☛ 光源“探针”对样品无污染、无损伤;☛ 可分析固体、液体等多物态样品; ☛ 同时、同位置红外、拉曼光谱共表征,提供相互佐证的分析结果;☛ 光谱表征、光学成像共表征,提供多维度科研分析信息;☛ 微塑料颗粒分析功能,自动搜索微塑料颗粒、自动测量微塑料颗粒尺寸、自动微塑料光谱表征。非接触亚微米分辨红外拉曼同步测量系统—mIRage 样机体验为满足国内日益增长的新型红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,期待与您的合作! 欢迎您通过电话:010-85120277/78、邮箱:info@qd-china.com或扫描下方二维码联系我们。 扫描上方二维码,即刻咨询产品详情!参考文献[1]. Yu Su, Chenqi Yang, Songfeng Wang, Huimin Li, Yiyu Wu, Baoshan Xing,* and Rong Ji. Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges. Environ. Sci. Technol. 2024, 58, 10764&minus 10775
  • 塑料一次性餐饮具新标准实施
    据悉,自从国家质检总局对食品用塑料制品实行市场准入制度之后,一次性塑料餐具质量有了明显提高,劣质餐盒也因为消费者食品安全意识的不断提高而慢慢淡出市场,一次性快餐餐盒向着密封性、透明性、防烫性等多功能方向发展。业内人士指出,《塑料一次性餐饮具通用技术要求》新国标的实施,使一次性塑料餐饮具行业的分类和管理有了可依据的标准,便于各有关部门顺利开展监管工作,逐步规范行业秩序,对生产者、销售者、使用者做出三方规定,淘汰不符合标准的生产企业,规范中小型企业。同时,有关部门也将根据相关法规,对市场进行严格监管。安全性能好、回收利用价值高的一次性塑料餐饮具将在未来市场更具竞争力。  新的国家标准gb18006.1-2009《塑料一次性餐饮具通用技术要求》从2009年12月1日起实施。据了解,此前我国尚未有一次性塑料餐具的国家标准,而是由每个企业制定企业标准,一次性塑料饭盒等不可降解餐具长期无标准可依,虽未明文禁止,却始终没有合法身份。新国标的施行将彻底结束这一现状,为进一步规范塑料一次性餐饮具的生产及使用起到重要的作用。  明确界定范围  《塑料一次性餐饮具通用技术要求》规定了塑料一次性餐饮具的定义和术语、分类、技术要求、检验方法、检验规则及产品标志、包装、运输、贮存要求,并对一次性餐饮具的范围进行了明确的界定:是指预期用餐或类似用途的器具,包括一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等,也包括有外托的一次性内衬餐具,但不包括无预期用餐目的或类似用途的食品包装物,如生鲜食品托盘、酸奶杯、果冻杯等。而塑料一次性餐饮具指树脂或其他热塑性材料通过热塑成型加工得到的一次性餐饮具。  据了解,新标准对塑料一次性餐饮具的技术要求更加严格和规范,主要表现在严把“两关”上:一是严把原材料关。新标准对塑料一次性餐饮具的原料制定了专门的规定,如使用的树脂等应为食品级 添加剂的用量应符合gb9685的规定 在感官上不得有异嗅 色泽正常 成型品不能有裂缝口及填装缺陷 无油污、尘土、霉变及其他异物 表面平整洁净、质地均匀,无划痕,无皱褶,无剥离,无破裂,无穿孔等。二是严把使用性能关。新标准主要对塑料一次性餐饮具的容积偏差、负重性能、跌落性能、盖体对折性能等方面提出了一系列规范性要求,尤其对塑料一次性餐饮具的耐温性能,如耐热水、耐热油方面制定了具体的要求。  根据新标准,塑料一次性餐饮具按照其材质可以分为通用塑料一次性餐饮具、植物纤维模塑一次性餐饮具、淀粉基塑料一次性餐饮具、其他覆塑一次性餐饮具 按照其使用时的耐温程度,可以分为耐温和不耐温一次性餐饮具 按照降解性能可以分为非降解一次性餐饮具和可降解一次性餐饮具 还可以分为可微波炉用和非微波炉用一次性餐饮具。  同时,该标准对一次性餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等,都作出了具体的规定。例如,标准规定,一次性餐饮具耐热水试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应变形、阴渗及渗漏 一次性餐饮具耐热油试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应阴渗及渗漏 对盛装液体功能的盒、碗、杯等一次性餐饮具,试验后不应漏水 一次性餐盒、碗、杯等餐饮具,其负重前后高度变化应不大于5% 微波炉试验应无变形、缺陷、渗漏和异常……这些规定为消费者科学选购、安全使用餐饮具提供了指南。  “可降解”不可随意标注  伴随着新国标的实施,执行了近十年的gb18006.1-1999《一次性可降解餐饮具通用技术条件》标准被替代。《塑料一次性餐饮具通用技术要求》不适用于一次性纸餐具、纸杯、木筷子、竹筷子等非热塑性材料制作的一次性餐饮具,同时较之原标准,修改了分类办法,修改了对原料的技术要求,增加了感官指标内容中的异嗅等,使用性能检验上明确了适用范围和样品的检验数量。增加了淀粉基塑料一次性餐饮具淀粉含量的要求,明确淀粉含量不小于40%。  增加了对标识可微波炉使用的一次性餐饮具的微波炉使用性能及检验方法,补充了淀粉基塑料一次性餐饮具和其他一次性餐饮具卫生理化指标的新要求,修改了检验规程以及降解性能要求适用范围、检验方法和技术指标。降解性能要求和检验方法也由原标准采用gb/t18006.2-1999《一次性可降解餐饮具降解性能试验方法》改为采用gb/t20197-2008《降解塑料的定义、分类、标志和降解性能要求》。  标准明确规定,对于标称其可生物降解的一次性餐饮具,其生物降解率不得低于60%。据了解,一直以来,市面上一些假冒伪劣的所谓“可降解饭盒”大行其道,因为真正可降解的餐具成本要比不可降解的高出20%,而旧的技术标准难以保证执法力度。根据新标准,一次性塑料餐具不能再随意标注“可降解”字样。《塑料一次性餐饮具通用技术要求》规定,只有能完全降解变成二氧化碳或甲烷、水等物质的一次性餐饮具,才能标注“可降解餐具”,对可降解餐饮具有更为具体、量化的成分要求。  行业监管有标可循  在新国标实施前,一次性塑料餐饮具种类繁多、功能各异,但许多产品的包装标识都过于简单、欠缺规范,多款产品均采用一般的塑料包装袋进行简易封装,外包装上仅仅注明了产地、生产商等信息,而无产品的化学成分、组成物质、卫生标准、耐高温性能等关键信息。新标准的实施将给一次性餐饮具生产企业明确的标准依据、新的机会和挑战。
  • 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:塑料包装篇
    普通拉曼可以穿过透明及半透明包装进行检测,但对纸包装、深色玻璃及有色塑料等不透明包装中的样品普通拉曼无法进行直接检测。鉴知RS1500手持式物质识别仪采用1064nm激光光源,结合特殊的光路设计和智能识别算法,有效提高了包装穿透能力,可以对上述不透明包装中的样品进行有效检测。 本系列测试使用RS1500手持式物质识别仪对多种不透明包装中的样品进行测试,并与普通785nm拉曼的测试进行比较。本篇为系列二:塑料包装篇 回顾:系列一 纸包装篇 【塑料包装测试篇】塑料是一种很常见的包装材料,本测试使用包装为常用的白色PE塑料瓶、彩色HDPE塑料瓶及编织袋。 白色PE塑料瓶透光性较差,会干扰普通拉曼的检测。彩色HDPE塑料瓶的颜色会带来荧光干扰,同时瓶壁一般较厚,穿透难度更大。编织袋厚度较薄但有颜色且完全不透明,普通拉曼透过编织袋直接检测时往往受到荧光干扰。这些因素给普通拉曼的直接检测带来诸多难题。 检测设备及方法检测设备1064nm手持拉曼:RS1500手持式物质识别仪785nm手持拉曼:RS1000手持式物质识别仪检测样品不透明PE塑料瓶内的乙醇彩色HDPE塑料瓶内的乙醇编织袋内的蔗糖测试方法使用RS1500及RS1000分别隔着3种塑料包装,对塑料包装内的乙醇、蔗糖进行直接检测,观察并分析检测结果。检测结果1、不透明PE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线,混合物分析结果显示为聚乙烯和乙醇。图1.不透明PE塑料瓶测试结果 2、彩色HDPE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线。图2.彩色HDPE塑料瓶测试结果 3、编织袋RS1500:报出蔗糖,谱图见下方红色曲线,与蔗糖标准谱图(蓝色曲线)一致。RS1000:报出蔗糖,谱图见黑色曲线,特征峰强较弱。图3.编织袋测试结果结果分析 RS1500可检测到3种塑料包装内的不同样品并正确报出,RS1000可穿透编织袋测到包装内的蔗糖。RS1000直接检测白色塑料瓶时,由于采集乙醇信号的同时采集到了塑料包装的信号,导致没有直接报出,但通过混合物分析可正确识别出聚乙烯材料和包装内的乙醇。测试彩色HDPE塑料瓶时,由于瓶壁厚且颜色鲜艳,具有较强荧光,仅RS1500可穿透该包装获得乙醇的拉曼信号(图2红色曲线)。编织袋是化工制药企业原辅料的一种常见包装,RS1000能正确报出包装内蔗糖,但由于其有颜色且不透光,导致荧光信号强,获取到的谱图信息不如RS1500清晰丰富。但总的来说二者都可帮助制药企业在不打开编织袋包装的情况下,实现原辅料的快速无损鉴别。
  • 中国海洋大学郭金家团队:基于显微拉曼光谱的水下原位微塑料测量技术研究
    水下原位微塑料检测系统的研发对于评估海洋微塑料污染状况具有重要意义。然而,由于在水下环境中难以实现连续、原位的微塑料采样富集和鉴定分析,微塑料的水下原位检测仍然是一项技术挑战。近期,中国海洋大学郭金家教授团队对相关技术进行了深入研究。该研究基于显微拉曼光谱技术首次研制了一种新型水下原位微塑料检测系统,并通过海上实验对其性能进行了评估。海试过程中,系统成功获取到了不同悬浮物的显微图像和拉曼光谱,实现了海水中微藻、PP微塑料颗粒、有机物、沙粒等不同种类悬浮物的准确识别。相关成果以“A new underwater in-situ microplastics detection system based on micro-Raman spectroscopy: development and sea trials”为题发表在Measurement期刊。本研究得到了崂山实验室(LSKJ202203500)、国家重点研发计划(2022YFC2803800)、国家自然科学基金(62205170和42206194)的资助。近年来,海洋环境中微塑料污染问题日益凸显,对水生生态系统、海洋生物和人类健康带来了严重威胁。因此,深入调查和全面评估海洋微塑料污染状况显得尤为迫切和必要。当前,海洋微塑料的分析通常需要通过拖网、泵抽等方法进行样品采集,然后将样品转移至船上或实验室后进行鉴定,这一分析流程复杂且耗时。与其他鉴定方法(如目视分析法、傅里叶红外光谱、扫描电子显微镜-能谱仪联用法、质谱法等)相比,拉曼光谱因其受水分干扰较小的特点在检测水中微塑料方面具有明显优势。然而,商业化的拉曼光谱仪对检测环境的稳定性要求极高且价格昂贵,这在一定程度上限制了其在现场和原位检测水中微塑料的应用。因此,亟需开发一种适用于海洋微塑料研究的水下原位检测系统,以应对海洋环境微塑料污染的挑战。综上所述,水下原位微塑料检测系统具有为海洋微塑料污染调查研究提供新型有力工具的潜力,为海洋微塑料污染监测提供技术支持。然而,目前尚未有关于此类传感器的报道。针对水下原位显微拉曼微塑料检测系统的研发需求,团队采用步进电机驱动滤网翻转的巧妙设计,克服了水下环境中微塑料连续采样富集和滤网清洁的技术难点,提高了系统的长时间水下工作能力。另外,显微成像和拉曼光谱的结合可以同时表征微塑料颗粒的形貌信息和组分信息。这是水下原位微塑料检测的首次尝试。综上所述,所报道技术可为该领域传感器的研究提供重要参考,为海洋微塑料污染调查研究提供了一种新的技术手段。
  • 走进禾工实验室和我们一起探讨塑料粒子水分检测方法
    塑料粒子水分检测的目的:塑料粒子是塑料颗粒的俗称 ,是塑料以半成品形态进行存储、运输和加工成型的原料,是用来生产和注塑塑料制品的原料,广泛应用于各类塑料制品。塑料粒子的产品质量直接影响注塑后产品的质量,水分含量过高,注塑过程中水分就会气化产生气泡,影响塑料制品的外观和机械强度,因此,控制塑料粒子水分含量是控制塑料注塑工艺的一个关键步骤。 常用的水分检测方法:目前市面上常用的塑料粒子水分检测方法为加热失重法,通过将样品加热到一定温度后,水分挥发,样品重量的改变来测得塑料粒子中的水分含量。常用的测量仪器有烘箱加热检测和红外或者卤素水分测定仪(参考型号HM-101X)。由于烘箱检测时间过长,需要人工计算,测量误差也较大,因此烘箱检测的方法逐渐淘汰;而卤素水分测定仪检测时间较短,使用方便,因此很多客户会选择这种方法来进行塑料粒子的水分检测。但是,这种加热失重的方法来进行水分检测的弊端在于,在对塑料粒子的加热过程中,除了水分以外,其中还含有一些挥发性的溶剂和有机组分也随之挥发,这样就造成了水分检测的结果偏高。那么除此之外还有什么更好的方法呢下面我们就跟着周工一起来实验一下卤素水分测定仪与上海禾工研发生产的塑料粒子专用水分测定仪水分检测对比: 检测过程与对比: 我们对客户寄来的塑料粒子样品用塑料粒子专用的卡尔费休水分测定仪AKF-PL2015C和卤素水分测定仪HM-101X进行水分检测。 塑料粒子1 塑料粒子2 AKF-PL2015C测定方法: 打开仪器,点击测量,仪器自动平衡;卡式加热炉设置加热温度为150℃,空气流量为15ml/min,吹扫样品瓶和管路中存在的水分,等待平衡;平衡后将样品瓶移至冷却槽中冷却至室温,用电子天平称取样品,然后在水分仪上点击“测量”,同时将样品瓶装入加热槽,开始测量; 测量结束后将样品瓶移至冷却槽中冷却,进行下一次测试。 塑料粒子1检测图 塑料粒子2检测图 HM-101X测定方法:打开仪器,设置加热温度为150℃;将样品放入铝盘上,点击开始后测量; 测量结束后显示含水量,进行下一次测试。 塑料粒子1检测图塑料粒子2检测图样品来源:江苏某客户环境温度:16 ℃加热温度: 150℃载气流量:15ml/minAKF-PL2015C检测结果样品名称样品质量/g含水质量/μg检测时长测量结果/% 塑料粒子10.2207416.95:120.18880.2421467.25:290.19290.2363458.35:250.1939 HM-101X检测结果 样品名称样品质量/g加热后重量/g检测时长测量结果/%塑料粒子13.1433.1272:200.503.4293.4112:500.523.4193.4012:500.52 AKF-PL2015C检测结果样品名称样品质量/g含水质量/μg检测时长测量结果/% 塑料粒子20.896152.41:430.00581.055149.61:400.00471.009059.41:450.0058 HM-101X检测结果样品名称样品质量/g加热后重量/g检测时长测量结果/% 塑料粒子24.4374.4291:450.183.5653.5581:450.193.9173.9091:400.20 结论:由上述结果可以看出,卤素水分测定仪HM-101X的检测结果比卡尔费休水分测定仪AKF-PL2015C的结果大很多,由检测图片我们也可以看出,塑料粒子加热后除了水分,可能还会有其他挥发性组份挥发,因此加热法的测试结果会比卡尔费休法的测试结果偏大,且卤素加热水分测定仪的测量精度为1mg,远大于AKF-PL2015C的0.1μg 的测量精度。
  • 省时省力!微塑料全自动快速分析,非接触式亚微米红外拉曼同步光谱显微系统再度升级!
    随着大量塑料的使用和随意处置,微塑料几乎污染了整个地球,科学家也愈发关注对微塑料的研究。环境中微塑料的尺寸往往小于5μm,传统红外因受限于微米级别空间分辨率,以及不同尺寸颗粒变化的实际红外吸收峰相较于理想吸收峰散射严重等问题,很难对样品进行有效的定性和定量分析。美国PSC公司推出的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,得益于其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量等优势,有效解决了绝大多数环境微塑料样品光谱显微测试的问题。其显著的技术优势为:✔ 亚微米红外空间分辨率,比传统的FTIR/QCL红外显微提高~20倍;✔ 有效排除小尺寸样品散射伪影,极大提高样品测试范围,获得高质量红外拉曼分析图谱;✔ 非接触式,反射(远场)模式测量,对样品无污染,没有任何常见光谱失真。可快速匹配光谱商用数据库,获得样品种类结果;✔ 可升级亚微米同步红外+拉曼同步联用系统,在相同时间、条件、位置下获得相同空间分辨率的红外和拉曼光谱。非接触亚微米分辨红外拉曼同步测量系统—mIRage近日,PSC公司将mIRage系统全新升级,即将发布FeaturefindIR功能。FeaturefindIR创新性的实现了微塑料和其他颗粒快速、自动化的光谱测量和化学鉴定,显著提高了实验效率,并为应用中大量样品的测量提供了基础,包括但不限于微塑料,缺陷污染和细胞分析,以及许多其他样品类型。mIRage升级系列将原有优势进一步拓宽:☛ 测试从亚微米到毫米范围内微塑料样品;☛ 红外拉曼同步,测量大量的微塑料和颗粒;☛ 测试系统自动搜索和检测粒子;☛ 自动测量和定位化学ID。升级功能新品发布会为使研究者更好的了解这一升级功能,美国PSC公司将举办升级功能新品发布会,发布会将由产品管理和营销总监Mustafa Kansiz博士主持介绍。此次发布会将主要介绍“FeaturefindIR”软件自动化工具如何在mIRage上对更具有生物学意义的微塑料颗粒(从小于500 nm到大尺寸(mm))进行自动化、快速和准确的分析,规避传统FTIR/QCL和拉曼显微系统所见的明显缺陷,从而有效完成微塑料样品测试。同时,Mustafa Kansiz博士也将实时演示亚微米mIRage的featurefindIR功能,无论颗粒形状和大小如何,都将得到一致、无伪影的图谱,并使用交叉偏振可见光增强颗粒检测。敬请期待mIRage系统featurefindIR的详情发布!FeaturefindIR优势解析:【高效粒子数据收集】微塑料、颗粒和有机污染物有时很难在大量的一般污染物中发现。为了获得最大的灵活性,featurefindIR可以使用图像输入,以实现更准确和敏感的检测和定位。【自动测量和识别】一旦确定了颗粒的位置和大小,mIRage系统就会自动移动到所需测量位置,并执行快速、自动化的红外光谱测量。测量完成后,粒子信息汇总表将列出获得关键光谱的每个粒子的位置和特定尺寸。此表可以转移到featurefindIR μChemical ID报告中,也可以导出为CSV文件。【FeaturefindIR μChemical ID报告】FeaturefindIR μChemical ID报告将自动分析PTIR Studio文件中用户选择的所有光谱,并将它们与集成数据库中的参考光谱集相关联。对每个测量的频谱报告命中质量指数(HQI),如果HQI高于用户设置的阈值,还会报告最佳匹配化学ID。在测量光谱和参考光谱之间显示覆盖层,颜色编码可用于评估光谱数量的视觉支持,特定塑料类型被分配特定颜色作为视觉辅助。此外,可以通过选择每个结果来进行定量检查,以显示与OPTIR参考匹配接近的详细光谱叠加。FeaturefindIR为研究人员提供了一种快速测量大量相关微塑料的自动化方案。不但提供了维度方面的信息,同时可以通过专用的μChemical ID数据库确定它们的化学ID。所有数据都可以通过CSV导出,以便根据需要进行进一步分析。FeaturefindIR通过提供识别微塑料类型的不同方法(如单波长成像和荧光图像)来提高测量效率,提供了从亚微米到毫米大小的微塑料研究完整解决方案。
  • 长春智能赞助2011年汽车塑料零部件高级研修班
    随着国民经济的发展和人民生活水平的提高,近几年,我国汽车工业发展迅速,2010年全国汽车产量已达1500万辆,已晋升为世界第一汽车生产和消费大国。塑料材料由于质轻、性能优良、成型效率高,在汽车零部件的生产中得到广泛应用,其质量的重要性日益突出。为此,中国塑料加工工业协会于2011年10月26日-28日在长春成功举办汽车塑料零部件生产工艺及质量检测技术高级研修班,主要研修学习汽车塑料零部件生产工艺、工艺参数对产品性能质量的影响和产品质量性能检测技术,研修学习将安排实习环节。 讲课专家主要来自国家汽车零部件产品质量监督检验中心(长春)、大众汽车、北京化工大学材料学院、北京石油化工学院、和国内著名注塑企业。 参加研修班学习的主要对象:汽车塑料零部件生产企业和相关单位的产品(研发)部和质控(质保)部技术和管理人员。(学习期间,将组织参观国家汽车零部件产品质量监督检验中心实验室)主办单位:中国塑料加工工业协会承办单位:中国塑料加工工业协会教育与培训委员会 北京三德斯科技有限公司赞助单位:长春市智能仪器设备有限公司 北京化工大学材料学院&mdash &mdash 苑会林教授参观长春智能&mdash &mdash 转矩流变仪高级研修班工程师参观&mdash &mdash 长春智能仪器&mdash &mdash 设备展厅研修班工程师王茜(左)与长春智能芮工(右)合影留念研修内容1、 我国汽车用塑料需求分析2、 国内外汽车用工程塑料性能比较3、 中国强制性产品认证制度(CCC)认证详解答疑4、 汽车塑料零部件(保险杠、仪表盘、油箱、内饰件、车灯、密封圈(条)、接线板等)对材料性能要求5、 汽车塑料零部件的生产(PP、ABS、PS、PVC、PA、PC、POM、PBT等的)成型工艺及工艺条件对产品性能的影响6、 汽车塑料零部件改性配方与应用(保险杠、仪表板、 内饰件、方向盘、暖风机壳、空调管道及空调风口、后视镜壳、汽车电动玻璃机构部件、燃油系统部件、安全系统部件、座椅部件、发动机室内部件)7、 塑料零部件注塑缺陷原因分析8、特种工程塑料的研究与应用9、气体辅助注射技术在汽车塑料零部件生产成型中的应用10、汽车非金属材料零部件生产及供应(生产现状,在整车中的应用,主机厂供应要求等)11、汽车塑料零部件性能检测12、橡塑产品检测实验室管理13、Rosh指令及其相关法规概要 报告主要专家:一汽大众质保部非金属材料试验专家 于慧杰 高工吉林大学化学学院麦柯德尔米德实验室 卢晓锋 副教授 北京化工大学材料学院 苑会林 教授北京石油化工学院 杨明山 教授国家汽车检测中心(长春) 魏学颜 主任 研究员国家汽车零部件产品质量监督检验中心(长春) 李尚禹 博士 总工国家质检总局REACH工作组组长 李 聪 研究员 国务院特殊津贴获得者
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 德国VITLAB新推出避光,抗紫外线塑料橙色容量瓶
    德国vitlab 新近首先推出PMP材质橙色、半透明塑料容量瓶,PP材质螺纹盖,适用于光敏物质,可避光,抗紫外线,有较高的抗破裂能力,较轻的重量,是传统棕色容量瓶的理想替代品。 规格有10,25,50,100,250,500和1000ML,,精度A级,,每个新型vitlab 橙色塑料PMP容量瓶都在20℃按DIN ISO 1042标准校正。 新型vitlab 橙色塑料PMP容量瓶,防透系数接近20 。由于非常低的传输系数,在紫外光280 nm和可见光580 nm时,它的避光性甚至远远超越高级棕色玻璃容量瓶。 ●特性:  好的透明度  能消毒灭菌(121℃ 20MIN)  可用福尔马林、乙醇消毒  可用&beta 射线消毒(25KGY)  适用于微波 ●使用说明:  初次使用请彻底清洗,推荐清洗温度不超过60℃,以免影响刻度准确性。  温度耐受性0℃到150℃,建议最高使用温度不要超过50℃  不能将产品置于火焰或者加热器  请用标准的洗涤液清洗  切勿用研磨剂或者钢丝球来清洗 ●抗化学腐蚀能力  在室温(20℃)时,对酸,碱,抗化学腐蚀  对脂肪烃及其衍生物、醛、酮、醇有较好的化学耐受性  不能用于芳香、卤代烃及其衍生物、醚类、氧化性酸、氧化剂
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 珠峰顶部已发现微塑料?当前微塑料的检测技术,你可能不知道
    11月24日 英媒称,地球zui高处和最深处都出现了微塑料。此前在太平洋11公里深的马里亚纳海沟发现了塑料微粒,如今又在珠穆朗玛峰上探测到了。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。微塑料进入环境后很难被降解,在环境中的半衰期长达数百年,给自然环境及生态系统造成极大危害,还可能通过食物链威胁到人类,因此微塑料的污染问题引起了全球的重视。微塑料的来源解析是当前的重点,微塑料的检测是来源解析的重要手段。本文主要是基于化学表征微塑料的检测技术汇总,为未来的研究开展提供思路。化学表征分析最常用的是傅立叶变换红外光谱(FTIR )、拉曼光谱、 ESM-EDS和气相色谱-质谱联用技术。1、FTIRFTIR依靠物质偶极矩改变产生红外光谱,可以实现20μm以上的微塑料的鉴定。不受滤膜和杂质的干扰,尤其适用于极其微小尺寸微塑料的检测。2、拉曼光谱拉曼光谱依靠分子化学键极化率的变化产生指纹图谱,可以实现20μm以下微塑料的鉴定,和 FTIR 相比,拉曼光谱空间分辨率更高、光谱覆盖范围广,但是容易受色素、添加剂、污染物等有机质和矿物质产生的荧光干扰,奥谱天成拉曼光谱仪1064nm 系列在抗荧光干扰方面有着出色的表现,加上软件的优化处理,将结果调到zui优状态,用于微塑料检测方面有着独特的技术优势。3、气相色谱-质谱联用技术通过对微塑料的热降解产物进行分析判断其种类,将峰面积与同位素标记的内标进行比较实现微塑料的定量,但是应用范围较窄。微塑料检测方法虽然多,但还有很多问题需要解决,微塑料在环境中存在的不规则性问题,不仅困扰着检测手段,同时也对采样有较大的挑战。
  • 客户案例 | 挪威Norner公司新型环保塑料的研究与开发
    krüss于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力top100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。krüss研究背景挪威公司norner位于欧洲北部,公司业务始终聚焦在聚合物研究和创新—是全球塑料行业研发服务供应商中的市场领导者之一。在本案例中,我们介绍了norner公司以及工程师iselin grauer moen的工作,她正在使用krüss的接触角仪研究聚合物材料的润湿性。norner关注的是聚合物行业的未来:开发可持续的、可回收的塑料,同时在生产过程中节约资源,或者从另外一个角度出发,研究涂层,从而使其他材料更有效、更持久,如太阳能电池板的防水膜。实验介绍iselin grauer moen是norner的一名高级工程师,她在实验室里进行显微镜和其他光学仪器进行分析。她通过使用krüss公司的光学法液滴形状分析仪-dsa30进行表面分析,样品是可注射成型的塑料和薄膜材料,用于产品包装。她将润湿性优化作为实验室的一项重要任务:“根据材料的应用,增加或减少润湿性,来获取最佳的材料综合利用率”。获得稳定涂层或印刷的塑料的必要条件是具有良好的润湿性。但是对于可回收性,情况恰恰相反:粘附的污垢会阻碍回收过程,因此对于材料而言,润湿和粘附性必须尽可能低。对于与食品直接接触的包装,例如酸奶罐或果汁容器,尤其如此。对于这类应用,norner专门开发了一种易滑表面的改性工艺,并获得了许可授权。低润湿性和粘附性对于永久性与水接触的材料特别重要。经过优化的聚合物和涂料是norner光学实验室的典型样品。分析讨论通过dsa30,iselin grauer moen发现了材料与水和其他液体(包括油性液体)接触时的行为。为此,她可以采用标准的液滴形状分析方法:用几种测试液体测量接触角,确定表面自由能以及塑料的表面极性。在实验过程中也经常需要研究人员的创造力:“我想将酸奶直接滴在塑料表面来研究润湿性。” 在测量技术方面无疑是一项挑战,但可以通过灵活的测量系统实现测量目的。过去、现在、未来:在乌尔德(urd)、维丹迪(verdandi)和斯库尔德(skuld)这三位诺尔人中,哪一位最重要的问题对于神话学家来说是毫无意义的。然而,对于iselin grauer moen和她来自诺norner的同事来说,答案很清楚:他们的工作是面向未来的。
  • 塑料一次性餐饮具新国家标准已正式实施
    新的国家标准GB18006.1-2009《塑料一次性餐饮具通用技术要求》从2009年12月1日起正式实施。据了解,此前我国尚未有一次性塑料餐具的国家标准,而是由每个企业制定企业标准,一次性塑料饭盒等不可降解餐具长期无标准可依,虽未明文禁止,却始终没有合法身份。新国标的施行将彻底结束这一现状,为进一步规范塑料一次性餐饮具的生产及使用起到重要的作用。  明确界定范围  《塑料一次性餐饮具通用技术要求》规定了塑料一次性餐饮具的定义和术语、分类、技术要求、检验方法、检验规则及产品标志、包装、运输、贮存要求,并对一次性餐饮具的范围进行了明确的界定:是指预期用餐或类似用途的器具,包括一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等,也包括有外托的一次性内衬餐具,但不包括无预期用餐目的或类似用途的食品包装物,如生鲜食品托盘、酸奶杯、果冻杯等。而塑料一次性餐饮具指树脂或其他热塑性材料通过热塑成型加工得到的一次性餐饮具。  据了解,新标准对塑料一次性餐饮具的技术要求更加严格和规范,主要表现在严把“两关”上:一是严把原材料关。新标准对塑料一次性餐饮具的原料制定了专门的规定,如使用的树脂等应为食品级 添加剂的用量应符合GB9685的规定 在感官上不得有异嗅 色泽正常 成型品不能有裂缝口及填装缺陷 无油污、尘土、霉变及其他异物 表面平整洁净、质地均匀,无划痕,无皱褶,无剥离,无破裂,无穿孔等。二是严把使用性能关。新标准主要对塑料一次性餐饮具的容积偏差、负重性能、跌落性能、盖体对折性能等方面提出了一系列规范性要求,尤其对塑料一次性餐饮具的耐温性能,如耐热水、耐热油方面制定了具体的要求。  根据新标准,塑料一次性餐饮具按照其材质可以分为通用塑料一次性餐饮具、植物纤维模塑一次性餐饮具、淀粉基塑料一次性餐饮具、其他覆塑一次性餐饮具 按照其使用时的耐温程度,可以分为耐温和不耐温一次性餐饮具 按照降解性能可以分为非降解一次性餐饮具和可降解一次性餐饮具 还可以分为可微波炉用和非微波炉用一次性餐饮具。  同时,该标准对一次性餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等,都作出了具体的规定。例如,标准规定,一次性餐饮具耐热水试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应变形、阴渗及渗漏 一次性餐饮具耐热油试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应阴渗及渗漏 对盛装液体功能的盒、碗、杯等一次性餐饮具,试验后不应漏水 一次性餐盒、碗、杯等餐饮具,其负重前后高度变化应不大于5% 微波炉试验应无变形、缺陷、渗漏和异常……这些规定为消费者科学选购、安全使用餐饮具提供了指南。  “可降解”不可随意标注  伴随着新国标的实施,执行了近十年的GB18006.1-1999《一次性可降解餐饮具通用技术条件》标准被替代。《塑料一次性餐饮具通用技术要求》不适用于一次性纸餐具、纸杯、木筷子、竹筷子等非热塑性材料制作的一次性餐饮具,同时较之原标准,修改了分类办法,修改了对原料的技术要求,增加了感官指标内容中的异嗅等,使用性能检验上明确了适用范围和样品的检验数量。增加了淀粉基塑料一次性餐饮具淀粉含量的要求,明确淀粉含量不小于40%。  增加了对标识可微波炉使用的一次性餐饮具的微波炉使用性能及检验方法,补充了淀粉基塑料一次性餐饮具和其他一次性餐饮具卫生理化指标的新要求,修改了检验规程以及降解性能要求适用范围、检验方法和技术指标。降解性能要求和检验方法也由原标准采用GB/T18006.2-1999《一次性可降解餐饮具降解性能试验方法》改为采用GB/T20197-2008《降解塑料的定义、分类、标志和降解性能要求》。  标准明确规定,对于标称其可生物降解的一次性餐饮具,其生物降解率不得低于60%。据了解,一直以来,市面上一些假冒伪劣的所谓“可降解饭盒”大行其道,因为真正可降解的餐具成本要比不可降解的高出20%,而旧的技术标准难以保证执法力度。根据新标准,一次性塑料餐具不能再随意标注“可降解”字样。《塑料一次性餐饮具通用技术要求》规定,只有能完全降解变成二氧化碳或甲烷、水等物质的一次性餐饮具,才能标注“可降解餐具”,对可降解餐饮具有更为具体、量化的成分要求。  行业监管有标可循  在新国标实施前,记者走访部分超市时看到,一次性塑料餐饮具种类繁多、功能各异,但许多产品的包装标识都过于简单、欠缺规范,多款产品均采用一般的塑料包装袋进行简易封装,外包装上仅仅注明了产地、生产商等信息,而无产品的化学成分、组成物质、卫生标准、耐高温性能等关键信息。新标准的实施将给一次性餐饮具生产企业明确的标准依据、新的机会和挑战。  据悉,自从国家质检总局对食品用塑料制品实行市场准入制度之后,一次性塑料餐具质量有了明显提高,劣质餐盒也因为消费者食品安全意识的不断提高而慢慢淡出市场,一次性快餐餐盒向着密封性、透明性、防烫性等多功能方向发展。业内人士指出,《塑料一次性餐饮具通用技术要求》新国标的实施,使一次性塑料餐饮具行业的分类和管理有了可依据的标准,便于各有关部门顺利开展监管工作,逐步规范行业秩序,对生产者、销售者、使用者做出三方规定,淘汰不符合标准的生产企业,规范中小型企业。同时,有关部门也将根据相关法规,对市场进行严格监管。安全性能好、回收利用价值高的一次性塑料餐饮具将在未来市场更具竞争力。
  • 微塑料检测技术,解决微塑料难题!
    微塑料指的是直径小于5毫米的塑料微粒,常见化学成分有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。相关研究表明,微塑料在鱼类、贝类等水生生物体内普遍存在,可通过食物链不断向上一级传递,位于食物链顶端的人类将不可避免成为微塑料的摄入和蓄积体。随着各方对微塑料的关注日益增多,微塑料的相关科学研究正如火如荼地开展着,如何精准快速的识别微塑料,对微塑料领域的研究至关重要。多年来,研究人员通过对水陆空环境与生物体等各类样品中的塑料微粒含量、大小、成分等进行科学分析,开展各类型的科研课题研究、环境本底调查,为我国环境微塑料污染防控与监控和常规产品检测等提供技术依据。为了了解当前微塑料检测分析技术和应用进展,加强沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议,在28日的下午,以“微塑料的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。“微塑料的检验检测”专场日程如下:07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授14:30--15:00岛津GCMS在环境新型污染物检测中的应用王子君岛津企业管理(中国)有限公司 产品专员15:00--15:30污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员15:30--16:00传感器在渔业环境中新污染物检测应用吴立冬中国水产科学研究院 研究员嘉宾介绍:蔡明刚 教授厦门大学蔡明刚,教授,博士生导师。现任厦门大学海洋与地球学院教授,海洋与海岸带发展研究院兼职教授,福建省高校重点实验室副主任。主要研究方向:基于海洋学视角的开阔海域污染物传输动力学过程研究,及其作为新型示踪剂在海洋科学上的应用。研究海域涉及我国南海等边缘海、全球大洋及两极海区,课题组近10次参加中国南、北极科学考察。个人系中国第3、5次北极科学考察队队员,先后入选福建闽江科学传播学者、福建省杰出青年基金计划、新世纪优秀人才计划、CSC中德合作团队项目等人才计划。主持国家及省部级项目10余项,在Environmental Science & Technology、Environmental Pollution、Deep Sea ResearchⅠ、Marine Chemistry等环境、海洋期刊发表论文70余篇,获得专利授权12项,获得多项省部级奖项。 主要科研与应用成果如下:1)开展我国主要边缘海和极区持久性有机污染物的时间序列变化和储量估算,提出全球变化背景下边缘海POPs海/气交换与垂直传输的海洋生物泵调控机制。2)较早开展大洋海水中细颗粒微塑料研究,发现南海存在数量可观的微塑料。3)利用氟利昂等污染物开展海洋学过程的示踪与人为碳估算,取得创新性成果,组装了国内第1套海水超痕量氟利昂/六氟化硫的吹扫捕集-气相色谱分析系统,获批多项发明专利,分析精度达到国际同类水平。4)构建和应用海湾陆源污染物排海总量估算技术及其系统,提出基于长时间序列观测的沿海社会、经济和环境生态协调发展的计量统计学方法。5)建立基于工业化生产的雨生红球藻培养技术和配方,搭建了微藻多级培养系统并研发新型LED藻类培养设备,拥有多项专利,服务于企业生产并产生实际效益。王子君 产品专员岛津企业管理(中国)有限公司毕业于天津大学应用化学专业,具有丰富的分析仪器产品经验,擅长环境应用解决方案。安立会 研究员中国环境科学研究院安立会(1975 -),博士,中国环境科学研究院研究员,博士生导师。主要从事天然与合成环境污染物的水生态毒理效应、环境质量基准与标准及生态风险评价研究,近年重点关注环境塑料垃圾与微塑料对生态系统安全和人体健康的影响,并致力于塑料污染来源及其控制对策,为开展我国环境微塑料的管控措施和治理提供科学依据。吴立冬 研究员中国水产科学研究院吴立冬,博士、研究员、博士生导师,入选中国水产科学研究院“百人计划”,国家市场监督管理总局食品补充检验方法和快检方法等国标方法审评专家。受邀成为“Biosensor and Bioelectronics”杂志编委(IF 12.545),Agriculture Communications 和Journal of Analysis and Testing杂志青年编委,Micromachines杂志(IF 3.523)专题主编。主持国家自然科学基金、国家重点研发计划、国家标准等国家级及省部级项目10余项。2022年获得了中国农学会青年科技奖、中国仪器仪表学会青年创新奖(朱良漪青年创新奖)和中国分析测试协会一等奖(排名第一)。主要从事水产品危害物快速检测方法及渔业环境智能化监测器件研发。迄今,吴立冬博士在Informat(IF 24.7)、Chemical Engineering Journal(16.7)、ACS nano、Food Chemistry、Biosensor and Bioelectronics、Anal. Chem等杂志发表80多篇论文,申请专利22项(其中美国专利1项,国际专利2项),授权7项(已转让2项)。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 达成合作:中美两国决心终结塑料污染,全球塑料污染防治条约将迈向何方?
    11月15日,中美两国发表《中美关于加强合作应对气候危机的阳光之乡声明》,其中表示,将在循环经济和资源利用效率方面达成合作:中美两国决心终结塑料污染,并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。这份声明在塑料污染的第三次国际谈判过程中发出,为当前全球协同应对塑料污染释放出了积极信号。11月13日—19日,“塑料条约”第三届政府间谈判会议(INC-3)在位于肯尼亚内罗毕的联合国环境规划署总部举行。会议谈判进程如何?全球塑料污染防治条约又将迈向何方? 记者联系到作为观察员机构的深圳零废弃政策顾问刘华进一步分享。INC-3大会现场全球塑料污染防治:存在共识基础却艰难启动目前,INC-3 如期于 11月19日晚间落幕。深圳零废弃政策顾问刘华坦言:“INC-3的‘显著进展’是确定了INC-4和INC-5的会议时间、地点等安排。但在实质性内容,特别是关于生命周期边界、定义等关键性文本方面的进展仍然有限” 。塑料污染是当前最显著也是关注度颇高的全球环境问题之一,也有多项多边环境协议涉及塑料污染,例如《控制危险废物越境转移及其处置巴塞尔公约》《关于持久性有机污染物的斯德哥尔摩公约》以及国际海事组织(MO)负责船舶运输相关的塑料垃圾管理。但三者各自侧重于危废、持久性有机污染物(POPs)和海洋污染。塑料污染自身一直缺乏系统性、直接性的国际协定来推动相关污染防治工作。2022年3月,第五届联合国环境大会续会在肯尼亚首都内罗毕召开。来自175个国家的政府首脑、环境部长和其他部门代表通过了一项历史性决议,即《终止塑料污染决议(草案)》(以下简称塑料条约)。决议指出,建立一个政府间谈判委员会(INC),到2024年年底前,达成一项具有国际法律约束力的协议,涉及塑料制品的整个生命周期,包括其生产、设计、回收和处理等。联合国环境署执行主任英格安德森表示:“这是自《巴黎协定》以来最重要的环境多边协议” 。“可以说自此之后,塑料污染正式从一个国家或地区的局部问题上升至全球化、国际化的环境问题。”在绿色创新发展研究院日前举办的全球塑料条约背景下中国塑料污染治理进程与展望论坛中,刘华评价道。分歧仍在:零草案讨论仍延续前次会议本次INC-3会议之前,2022年11月,在乌拉圭埃斯特角城召开了INC-1,主要讨论文书框架并选举了INC主席;2023年5月,在法国巴黎召开了INC-2,此次会议授权INC主席在秘书处的支持下,在INC-3召开之前准备一份“零草案”协议(Zero Draft)。“我们过去参与的两次会议中,会发现不同国家的代表看待塑料污染的出发点并不一样。例如,有些岛国更关注海洋污染问题,内陆国家更多从固废的角度考虑,而另一些则更关注生态。不同国家和地区基于其产业结构、对于塑料的使用情况及其在不同的发展阶段形成了对塑料污染的不同观点,这也解释了为什么各国在对塑料污染治理存在共识却仍然艰难地启动了几次会议。”刘华说。本次INC-3会议主要是基于“零草案”进行进一步商讨,而“零草案”的第二部分——塑料及塑料产品的全生命周期,仍然保留了INC-2中较为焦灼的讨论内容。“例如,塑料聚合物是否需要纳入塑料污染管控的生命周期范畴内仍然存在较大争议。一些国家坚持认为其作为原生塑料的重要生产要素应该限制和减少,另一些国家则持反对态度,认为塑料文书应聚焦管控塑料污染,而不是消灭塑料。这也是会议期间较有争议的热点话题。”刘华举例。记者注意到,此前包括欧盟、日本、加拿大和肯尼亚在内的数十个国家曾呼吁塑料污染防治条约其中应包含“具有约束力的条款”,以减少生产和使用从石化产品中提炼出来的原始塑料聚合物,并消除或限制问题塑料,如聚氯乙烯(PVC)和其他含有有毒成分的塑料。但这一立场遭到了塑料行业以及沙特阿拉伯等石油和石化出口国的反对。他们认为,该条约应着重关注塑料的回收和再利用——即塑料供应的“可循环性”。国际化学协会理事会发言人Matthew Kastner也曾在一份声明中称,“塑料协议应该专注于结束塑料污染,而不是塑料生产”。刘华认为,“零草案”第二部分第三项“有问题和可避免的塑料产品,包括短寿命和一次性塑料产品,以及有意添加的微塑料”也值得关注,这一项主要是对 “有问题和可避免的塑料产品”进行定义厘清。“但是什么是有问题,什么是可避免,这一定义难以达成一致。”刘华说。他介绍,因为团队长期关注化学品的问题,实际检测中会发现一些塑料制品添加了并没有必要、并不合适的化学物质,这种情形会为塑料制品的循环利用设置极大障碍,这就属于有问题的产品类型。但定义价值体现在,一旦塑料产品以附件形式被列为有问题和可避免的产品或产品类别的标准、确定有问题和可避免的特定产品或产品类别,就会对其明确其削减或淘汰的时间范围。刘华介绍:“上述争议几乎持续了整个会议阶段,但由于各方的观点分歧显著,直至闭幕仍然无法形成统一意见,各方代表通过接触组会议等方式表达了不同的观点,很多条款被打上方括号需要进一步讨论。本次全球塑料大会依然最终未能在实质性内容上突破,在这是令人遗憾的,也意味着明年内是否能达成最终共识仍然面临挑战”。中美两国决心终结塑料污染,成会议期间热点话题全球塑料公约被寄予终结塑料污染的厚望同时,一些大国也被寄予厚望。本次全球塑料公约大会期间,中美两国联合发表了《中美关于加强合作应对气候危机的阳光之乡声明》。声明在第15条明确提出,“中美两国决心终结塑料污染并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。”,以及第14条提及,“认识到循环经济发展和资源利用效率对于应对气候危机的重要作用,两国相关政府部门计划尽快就这些议题开展一次政策对话,并支持双方企业、高校、研究机构开展交流讨论和合作项目”。刘华介绍,这对塑料公约谈判期间带来积极信号,也迅速成为会议期间的热点话题。中国作为塑料生产和消费大国,在塑料污染的治理发挥着举足轻重的角色。刘华表示:“从会场的反馈来看,无论是国际NGO组织还是科学家联盟包括我们接触到的一些不同利益相关方,我能感受到他们对于中国在塑料污染治理议题上的期待还是很高的。因为他们会认为,中国宣布禁止进口‘洋垃圾’后,不仅对中国国内产生了极大效益,也推动了国际的废弃物的贸易变革”。在历次INC会议中,中国代表团在多轮讨论中积极陈述,坚持问题导向,聚焦易向环境泄露的塑料制品,针对不同种类的塑料制品采取分类管控措施,加强回收利用和安全处置。在国内层面,我国政府对塑料污染治理高度重视,2022年10月21日,中国已全面禁止“洋垃圾”入境,实现固体废物零进口目标。在国内层面,2007年,中国限制生产销售使用塑料购物袋。2020年年初,中国进一步加强塑料污染治理,在餐饮行业禁止了一次性塑料袋和吸管的使用。目前,国家发展改革委联合多部门发布的《关于进一步加强塑料污染治理的意见》《“十四五”塑料污染治理行动方案》《商务领域经营者使用、报告一次性塑料制品管理办法》等政策文件正持续保障塑料污染治理从全链条、重点领域开展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制