当前位置: 仪器信息网 > 行业主题 > >

塑胶熔融分析仪

仪器信息网塑胶熔融分析仪专题为您提供2024年最新塑胶熔融分析仪价格报价、厂家品牌的相关信息, 包括塑胶熔融分析仪参数、型号等,不管是国产,还是进口品牌的塑胶熔融分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合塑胶熔融分析仪相关的耗材配件、试剂标物,还有塑胶熔融分析仪相关的最新资讯、资料,以及塑胶熔融分析仪相关的解决方案。

塑胶熔融分析仪相关的论坛

  • 大神们帮我看一下,这塑胶材料的熔点是多少?谢谢!

    大神们帮我看一下,这塑胶材料的熔点是多少?谢谢!

    样品:塑胶壳;材质:PC+ABS;从这两张分析图谱(DSC&TGA)来看,熔点在495℃左右,一般的塑胶材质应该不会有如此高的熔点。疑问一:是否因为设备参数或精度不足导致在34min以前为出现吸热峰?疑问二:非结晶材料是否没有熔点?http://ng1.17img.cn/bbsfiles/images/2017/03/201703091005_02_2610398_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/03/201703091005_01_2610398_3.jpg

  • 【讨论】PC塑胶表面油污的红外分析方法

    做过工业分析的会经常遇到这样的问题,塑胶表面残留油污,最快的分析方法就是红外光谱分析。1、油污含量比较多,呈珠状,用干净KBr片在塑胶表面轻轻贴一下,将沾有油污的KBr放在红外显微镜下透射扫描,并在空白KBr上扣背景;2、油污含量很少,在强光下看见彩色痕迹,用正己烷或石油醚轻轻洗刷污染区域,将溶剂用干燥气体吹,浓缩至几个ml时,用镊子沾取,滴在KBr片上做透射扫描,并在空白KBr上扣背景。

  • 在线熔融聚合物颗粒分析仪

    本产品为德国TOPAS公司07年开发出的产品,主要用于熔融聚合物颗粒分析,温度最高可达290摄氏度,压力最高可达150Bar。两种计数模式:一、单颗粒计数模式,测试颗粒的数目浓度和大小;二、光度计模式,测量纳米级颗粒的平均粒径和浓度。详细可查看附件!截止09年3月份的用户名单如附件中Reference list

  • X荧光分析时熔融法可以所有杨平共用一条曲线吗

    X荧光分析时熔融法可以所有(1)熔融法有许多优点:①可以消除成分、密度和粒度的不均匀性,完全消除了矿物效应和粒度效应。②通过助熔剂,可减小甚至消除吸收-增强效应,熔融的过程也是稀释的过程,大大减低了基体效应,吸收-增强效应也随之降低。③便于使用标准添加法、标准稀释法和内标法,可加入内标或重吸收剂以减少或补偿基体效应,或添加某种有干扰作用的次要基体元素,以固定这种元素的浓度。④标样的合成也比较容易,可按需要用纯氧化物等纯试剂人工合成制备适当的标准样品以适应各类样品的分析需要,并能得到较宽的校准曲线范围。⑤制得的玻璃便于长时间保存。玻璃片表面光滑均匀,标样易于保存,耐辐射性能好。其主要缺点:① 金属样品不能直接熔融,必须经过预氧化处理。② 由于熔剂和助熔剂的加入,样品被稀释,分析元素的强度降低,轻元素的分析线强度被大大减小了,痕量和次要组元的浓度也被大大减小了,对轻元素和痕量元素的测定不利。③ 熔融要花费大量时间。要制备玻璃圆片,还需一定技巧。④ 另外,在贮藏过程中,会失去透明性,或由于应力作用会发生破裂。玻璃圆片可以重新熔融和再制。(2)熔剂的选择①样品能被熔剂完全分解。经过高温熔融后,样品和熔剂能够形成均匀的单相玻璃体。②熔融温度合适,挥发性小。③熔剂中不能含有待测元素或干扰元素,要注意熔剂中杂质的含量。⑤ 制得的玻璃片表面要光滑平整。⑥ 制得的熔片要容易脱模。常用的熔剂有四硼酸钠,四硼酸锂,偏硼酸锂。硼酸的锂盐相对于钠盐来说,质量吸收系数要低一点,有利于轻元素的分析,制成的熔体流动性能比较好,熔融温度较高。四硼酸锂的熔解能力好,但熔片的机械性能差一点,而偏硼酸锂机械强度较好,经常把这两种熔剂混合使用,混合熔剂能兼顾各方面的优点。(3)助熔剂助熔剂的作用① 调节熔剂的酸碱性,有利于熔剂能更好地熔解样品。② 降低熔剂的分解温度。③ 增加熔体的流动性,使制得的试样更均匀,提高制样精度。④ 氧化作用,对于一些具有还原性的样品,加入氧化性的助熔剂,可以预氧化从而保存坩埚,还可以使一些易挥发的成分转化为盐类保存在熔体中。按不同目的,可在熔融前添加不同的其它物质。为了降低熔点,可在四硼酸锂中添加碳酸锂。为了使酸性和碱性试样更加易于溶解,可在四硼酸锂中分别添加碳酸锂和氟化锂。相应的在四硼酸钠中可分别添加碳酸钠和氟化钠。熔融时,碳酸盐会分解放出二氧化碳,可对熔融物起搅拌作用,但也可能在玻璃体中形成气泡。常用的助熔剂有Li、Na、NH4

  • 塑胶丝印有哪些特点呢?

    随着塑料工业的飞速发展和通用与工程塑料在强度和精度等方面的不断提高,塑料制品的应用范围也在不断扩大,塑料制品所占的比例正迅猛增加.一个设计合理的塑料件往往能代替多个传统金属件.塑料产品的用量也正在上升。塑胶模具是一种生产塑料制品的工具.它由几组零件部分构成,这个组合内有成型模腔。注塑成型时,模具装夹在注塑机上,熔融塑料被注入模具腔内,并在腔内冷却定型,然后前后模分开,经由顶出系统将制品从模腔顶出离开模具,最后模具再闭合进行下一次注塑,整个注塑过程是循环进行的。一般塑胶模具由动模和定模两部分组成,动模安装在注塑成型机的移动模板上,定模安装在注塑成型机的固定模板上。  塑胶丝印的特点归纳起来主要有以下几个方面:  1、胶丝印可以使用多种类型的油墨。即:油性、水性、合成树脂乳剂型、粉体等各类型的油墨。塑胶丝印吸塑所采用的油墨会比较特殊,它必须能够耐吸塑高温,而且要求安全可靠、适性好,从环保的角度、质量的角度等都必须具有明显的优势,用它印刷出来的产品不会有皲裂现象。  2、不受承印物表面形状的限制及面积大小的限制。由前述可知,塑胶丝印不仅可在平面上印刷,而且可在曲面或球面上印刷。  3、塑胶丝印压印力小。由于在印刷时所用的压力小,所以也适于在易破碎购物体上印刷。墨层厚实,覆盖力强。  4、面柔软。塑胶丝印版面柔软且具有一定的弹性不仅适合于在纸张和布料等软质物品上印刷,而且也适合于在硬质物品上印刷,例如:玻璃、陶瓷等。  深圳市源和塑胶电子有限公司是一家专业的塑胶喷油加工厂,主要是塑胶外壳喷油,塑胶喷油,http://www.szpenyou.com/欢迎大家来本公司进行合作!

  • 【分享】同步热分析仪的优点

    同步热分析仪将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。   相比单独的 TG 与/或 DSC 测试,具有如下显著优点:   1.消除称重量、样品均匀性、升温速率一致性、气氛压力与流量差异等因素影响,TG 与 DTA/DSC 曲线对应性更佳。   2.根据某一热效应是否对应质量变化,有助于判别该热效应所对应的物化过程(如区分熔融峰、结晶峰、相变峰与分解峰、氧化峰等)。   3.在反应温度处知道样品的当前实际质量,有利于反应热焓的准确计算。 广泛应用于陶瓷、玻璃、金属/合金、矿物、催化剂、含能材料、塑胶高分子、涂料、医药、食品等各种领域。

  • 橡胶或塑胶中可溶性汞的测定

    各位大神,有测塑胶或橡胶中可溶性汞的人么?我按照方法基本没有回收,怀疑是样品在酸性条件下提取时把加入的标液进行吸附了。

  • 元素分析仪灰分管里的锡溶在管里了,该怎么办

    大家好,我最近在使用元素分析仪的时候发现一个问题,灰分管里的沉淀越来越多,却没有办法清干净,请问大家有没有好的办法把灰分管清干净呢?我们的灰分管是不锈钢的那种,可不可以放在马弗炉里加热熔融之后倒出来呢,可以的话温度有多高合适呢,谢谢大家

  • 【求助】请各位大大帮忙推荐下,那一款熔融指数测试仪比较好!

    各位论坛朋友:大家好!公司需要购买一台熔融指数测试仪,目前公司的采购同事有联系了两家一起供应商,提供的仪器分别是:1. XNR-400 AD熔体流动速率测试仪2. ZX-8970塑胶熔融指数测试仪由于之前没有使用这两种仪器,所以对这类设备不是很了解,不知论坛中是否有使用过这两种仪器,或者对这些设备比较了解的朋友?能否分享一下您们的宝贵经验?或者指导我选择一下,告诉我这两个设备哪种比较好用?如果您们现在使用的设备比以上两种更好用的话,也可以和我推荐哦!期待您的指导,请您多多指教,先谢谢您们啦!!万分感谢!!有参考了下述帖子的一些经验,但是没有针对我说的这两款设备的信息,呜呜……http://bbs.instrument.com.cn/shtml/20090630/1979826/

  • 【求助】高频熔融玻璃

    我只见过3种高频熔融,分别是理学的一种,另2种是linn的.可能是因为理学主要也做分析仪器的原因,相对来说,它的高频感应熔融设计考虑得更周到一些,包括几个方面:1、熔融液的混匀摇动;2、坩埚的设计细节上当然,linn还有一款是浇铸的,这个比直接成片的可以更好的避免气泡。我有2个问题:1、高频一般是自动完成的,那么在脱模剂在什么时候添加比较合适?2、和硅碳棒加热炉比较,脱模剂量加入量要大很多,是什么原因造成的?难道是因为高频的为开放的环境(一加热就分解挥发了)?望不吝赐教!

  • 【求助】请各位大大帮忙推荐下,那一款熔融指数测试仪比较好!

    各位论坛朋友:大家好!公司需要购买一台熔融指数测试仪,目前公司的采购同事有联系了两家一起供应商,提供的仪器分别是:1. XNR-400 AD熔体流动速率测试仪2. ZX-8970塑胶熔融指数测试仪由于之前没有使用这两种仪器,所以对这类设备不是很了解,不知论坛中是否有使用过这两种仪器,或者对这些设备比较了解的朋友?能否分享一下您们的宝贵经验?或者指导我选择一下,告诉我这两个设备哪种比较好用?如果您们现在使用的设备比以上两种更好用的话,也可以和我推荐哦!期待您的指导,请您多多指教,先谢谢您们啦!!万分感谢!!有参考了下述帖子的一些经验,但是没有针对我说的这两款设备的信息,呜呜……http://bbs.instrument.com.cn/shtml/20090630/1979826/已经在采购交流区发帖求助了,但是没有网友回复,因此在物性测试仪器区再次发帖求助,期盼有使用过这两种设备的朋友能不吝赐教,谢谢了!

  • 【原创大赛】熔融玻璃片—波长色散X射线荧光光谱仪测定铁矿石中全铁及其它多种元素的分析进展

    【原创大赛】熔融玻璃片—波长色散X射线荧光光谱仪测定铁矿石中全铁及其它多种元素的分析进展

    熔融玻璃片—波长色散X射线荧光光谱仪测定铁矿石中全铁及其它多种元素的分析进展摘要: 综述了近年来国内应用熔融玻璃片–波长色散X射线光谱法测定铁矿石中全铁及其它成分这一分析技术的研究和进展,重点对标样的选择与制备、熔剂组成对制样效果的影响、氧化剂和脱模剂的选择、烧失量的影响进行了总结。对该法今后的发展方向提出了建议和展望。关键词:熔融玻璃片;X射线荧光光谱仪;铁矿石;进展目前,国标测定铁矿石中全铁方法中有汞K2Cr2O7滴定法和无汞TiCl3–K2Cr2O7滴定法。有汞法需加入5%氯化汞溶液10mL,生产分析汞的排放量是大大超过国家环境部门规定的允许排放量,造成严重的环境污染,而且有损操作人员人身健康。而无汞法操作繁锁,所配辅助溶液种类多,且不易操作易出现过失。早在20世纪60年代, X射线荧光光谱(XRF)分析就已经作为常规分析重要手段以来,国内许多学者和分析工作人员在借鉴和吸收国外同行先进经验的同时,不断努力在利用X射线荧光光谱法测定铁矿石中全铁方面做了大量工作。尤其是近二十年来随着计算机、分析仪器技术的迅速发展及校正干扰元素方法不断丰富,XRF测定铁矿石中全铁含量已成为一个成熟的方法,广泛用于进出口检验、炼钢 、地质等领域。除测定全铁含量外,同时还能测定SiO2、Al2O3、MgO、CaO、TiO2、P2O5等含量,且测定速度快,分析元素浓度范围宽,准确度高,完全满足日常分析的要求。本文总结了近年来的研究报道,对这一分析技术的研究和进展作了综合的介绍。1 实验方法及熔融目的1.1 实验方法 准确称取试样,加入熔剂、三氧化二钴及氧化剂和脱模剂于铂-金坩埚中,置于自动熔样机中熔融,取出冷却,制成熔融玻璃片。在波长色散X射线荧光光谱仪上测定。(分析元素测量条件略)1.2 熔融目的采用了硼酸盐高温熔融不但可以有效消除样品的颗粒度效应、矿物效应和不均匀性,同时也很好地降低样品元素间的吸收和增强效应,提高了分析的精确度和准确度。 2 结果与讨论2.1 标样的选择与制备标准样品的选择常用的三种方法⑴选用标准参考物质:目前我国铁矿石国家标准物质的研制工作进展迅速,但是品种与含量不太合理,烧结矿、磁铁精矿、赤铁矿、球团矿、贫磁铁矿、贫铁矿、褐铁矿、磁铁矿标样数量较多,缺少菱铁矿、钛铁矿、铬铁矿、钒钛磁铁矿标准系列。乌静等在选用标准物质的同时又采用这些标准物质以一定的配比合成新的标准物质相结合的方法解决铁矾土标样少的问题。⑵选用市售的高纯或光谱纯化学试剂与标准样品相结合:由于铬铁矿标样较少,李国会、谷松海[font

  • 求助:X荧光熔融法分析高碳铬铁

    各位大侠,1、有采用X荧光熔融分析高碳铬铁的吗?2、现在我采用岛津MXF2400检测出50多的铬的强度值才15左右,感觉不对头,有谁用岛津的检测吗?3、目前同一瓶标样熔融检测最大极差有1%。

  • 炭黑吸油计助炭黑塑胶领域改善生产能力

    由于炭黑测定技术的缺乏,我国塑胶合成产业及石油化工领域很难把质量度提升,为了提高工业产品的质量,北京冠远科技和国际炭黑吸油值测定企业,为石油化工产业及炭黑塑胶行业提供了有力的技术支持,不仅可以改善检测环境,还可以帮助石油化工和炭黑塑胶工业改善国内信息化工业生产能力,这是我国化工提升的重要步骤。  为了改善这种情况,引进国际先进科技产品,帮助改善国内生产能力,提升国际品牌知名度已成为冠远科技发展的标志。布拉本德炭黑吸油计成功获得国际唯一标准炭黑吸油值检测仪器后,冠远科技引进产品,提升化工生产水平成为为中国炭黑塑胶工业和石油化工企业的发展提供帮助。  炭黑吸油计是标准的具有炭黑吸油功能的分析测定仪器,符合C型炭黑吸油计可直接测试炭黑样品的吸油值,无需先做标准值,软件自动校准。其原理在于,添油期间,测量炭黑对旋转转子产生的阻力和确定其吸收能力。适用高精度滴定管将液体(作为滴定剂)添加到混合室中的粉末样品中。  C型炭黑吸油计的高标准测试能力得益于极高精度的扭矩测量能力和极高精度的混合室设计。在样品添油期间,从转矩曲线上可以看到3个物相:自由流动相、凝聚相、终止相。  通过样品从液态-固态-液态改变过程中转矩的测量,分析得出炭黑的吸油值,炭黑吸油值与其加工性能和橡胶化合物的硫化性能直接相关。  炭黑吸油计分析仪器一般应用于化工、色母粒产业、橡胶及炭黑及测试设备,通过确定所吸收的ParaffinOil/DBP含量,从而判断炭黑及填料的结构。

  • 【原创大赛】ABS工程塑胶的微波消解探讨

    【原创大赛】ABS工程塑胶的微波消解探讨

    ABS工程塑胶的微波消解探讨背景介绍: ABS是丙烯腈、丁二烯和苯乙烯的三元共聚物,A代表丙烯腈,B代表丁二烯,S代表苯乙烯。ABS树脂是目前产量最大,应用最广泛的聚合物,它将PS,SAN,BS的各种性能有机地统一起来,兼具韧,硬,刚相均衡的优良力学性能。ABS工程塑料一般是不透明的,外观呈浅象牙色、无毒、无味,兼有韧、硬、刚的特性,燃烧缓慢,火焰呈黄色,有黑烟,燃烧后塑料软化、烧焦,发出特殊的肉桂气味,但无熔融滴落现象。(来自百度) ABS塑胶里面有苯环需要高温高压才能打开,才能消解完全的。微波消解经常会发现有消解不完全的现象,也经常有版友讨论采用何种消解程序,温度要达到多少度,试剂如何组合才能消解完全,最近刚好有个ABS标准样,故采用了不同方法对它进行消解,看哪种消解方法效果最好,跟大家一起分享下。微波消解初探:http://ng1.17img.cn/bbsfiles/images/2013/08/201308082001_456912_2329805_3.jpg 图1、消解用微波消解罐 接到样品进行初步消解,验证不同消解试剂组合的消解效果,消解程序采用1600w的功率,20min升温到190℃,在190℃稳定保持25min。样品消解后的溶液见图2,从左到右用的试剂分别为:1、加8ml硝酸消解;2、加6ml硝酸及2ml双氧水消解;3、加6ml硝酸及2ml盐酸消解;4、加6ml硝酸及2ml氢氟酸消解。根据之前消解PVC的经验及版友的一些讨论经验,原来预估采用方法3或者4会取得较佳的消解效果的。可是初次消解得到的现象并不理想。消解效果:1、8ml硝酸消解:溶液较澄清,但是有透明的针状晶体;2、6ml硝酸及2ml双氧水消解:溶液微黄色,有絮状沉淀;3、6ml硝酸及2ml盐酸消解:现象基本同2,溶液微黄色,有絮状沉淀(沉淀不如2多);4、6ml硝酸及2ml氢氟酸:溶液有点浑浊。http://ng1.17img.cn/bbsfiles/images/2013/08/201308082003_456913_2329805_3.jpg图2、初次消解效果图片微波消解再次消解: 修改了下消解程序:1600w的功率,20min升温到210℃,在210℃稳定保持30min。主要是消解温度提升了。样品消解后的溶液见图2,从左到右用的试剂分别为:1、加8ml硝酸消解;2、加6ml硝酸及2ml双氧水消解;3、加6ml硝酸及2ml盐酸消解;4、加6ml硝酸及2ml氢氟酸消解。消解效果:1、8ml硝酸消解:终于完全消解了,惊喜了下,居然是用最普通的,只加硝酸消解效果是最好的;2、6ml硝酸及2ml双氧水消解:溶液有点浑浊;3、6ml硝酸及2ml盐酸消解:现象基本同2;4、6ml硝酸及2ml氢氟酸:也是完全消解。消解效果总体都好于初次消解。http://ng1.17img.cn/bbsfiles/images/2013/08/201308082004_456914_2329805_3.jpg图3、再次消解效果图片总结: 以往得到的经验及从他人处吸收的知识并不是都适用的,必须根据具体情况分析适用性,之前得到的经验是采用硝酸加盐酸组合消解效果是最好的,但本次接到的标准样消解是只采用硝酸消解效果是最佳的。实践是检验真理的唯一标准!

  • 碳硫分析仪器如何正确选用助溶剂锡粒

    碳硫分析仪器如何正确选用助溶剂锡粒 正确选用助溶剂,对确保试样燃烧完全是很重要的。锡粒,(英文名称:Tin flux,Tin chip accelerator,也可称为锡助熔剂,纯锡助熔剂)在碳硫分析中燃烧样品时做助熔剂用,可用于管式炉、电弧引燃炉,具有降低熔点,加速样品燃烧及搅拌的作用。 碳钢、低合金钢用锡粒好(一般加0.2-0.3g);而中、高合金钢等难熔合金,用锡粒再加铁粉(0.5g)作助溶剂。锡粒的熔点较低(231.89℃),熔融后形成液滴,可扑捉燃烧过程中产生的氧化物,这样可避免二氧化硫转化为三氧化硫,从而大大提高了硫的回收率。在不锈钢超低碳检测精度要求高的前提下,我公司生产的电弧红外碳硫分析仪产品配用助溶剂锡粒,可使熔点降低,燃烧充分,从而大大提高了超低碳检测精度,使其完全达到国家标准。

  • XRF熔融法测试多个元素含量总和值大于100%原因分析

    [align=center][font=楷体][size=14pt]XRF[/size][/font][font=楷体][size=14pt][font=楷体]熔融法[/font][/size][/font][font=楷体][size=14pt][font=楷体]测试多个元素含量总和值大于[/font]100%原因分析[/size][/font][/align][font=楷体][size=14pt][font=楷体]我们在应用[/font][/size][/font][font=楷体][size=14pt]XRF熔融法测试多个元素组分含量时,有时可能遇到组分的总和值大于100%的情况,笔者在应用XRF测试矿物中钛、钼、钒、硅、铝等物质组分时,我们应用的是XRF熔融法,在测试中遇到了[/size][/font][font=楷体][size=14pt][font=楷体]元素含量[/font][/size][/font][font=楷体][size=14pt][font=楷体]的[/font][/size][/font][font=楷体][size=14pt][font=楷体]总和值大于[/font]100[/size][/font][font=楷体][size=14pt]%的问题,经过和仪器厂商应用工程师的共同分析和应用实践,发现可能的原因有以下几点。[/size][/font][list=1][*][align=left][font=楷体][size=14pt][font=楷体]一个或多个组分的要求值太低,干扰物质大。[/font][/size][/font][/align][*][align=left][font=楷体][size=14pt][font=楷体]有效面积或直径比指定的数值大。[/font][/size][/font][/align][*][align=left][font=楷体][size=14pt][font=楷体]有效质量大于指定值。[/font][/size][/font][/align][*][align=left][font=楷体][size=14pt][font=楷体]矿物效应,例如二氧化硅以硅酸盐形式存在三氧化二铝和硅酸铝颗粒之间,在测试中没有办法解决此问题,可以将样品制成液体或者选择其他测试方法。[/font][/size][/font][/align][*][align=left][font=楷体][size=14pt][font=楷体]指定的稀释比太大,在熔融过程中溶剂损失较大。[/font][/size][/font][/align][*][align=left][font=楷体][size=14pt][font=楷体]样品制备和熔融不均匀。[/font][/size][/font][/align][/list]

  • 【求助】保护渣熔融分析方法

    请问各位保护渣用熔融法制样和分析有什么要求,就是说有没有具体的标准来操作,如何操作?还有就是保护渣的基体是什么,如果做曲线有什么要求?谢谢。E-mail: niu.y.y@hotmail.com

  • 毒塑胶跑道解析检测过程

    第一步 前期分析。塑胶跑道的主要成分是聚氨酯,劣质塑胶的可能毒性污染物,主要来源于三个部分:  ①塑胶跑道中使用的溶剂中会挥发含有毒性的甲苯、二甲苯;  ②劣质塑胶跑道中含有重金属催干剂 --铅盐,促进跑道凝固定型,但是重金属铅会造成永久性污染。儿童的皮肤与这种塑胶跑道长期接触后,铅会渗透进身体内部,造成血铅超标,也就是铅中毒。  ③危害最大的,是跑道中使用的有毒塑化剂,它能增加劣质跑道弹性,使其弹性达到国家标准,过量使用甚至将导致男孩绝育。  第二步 取样   在椭圆形跑道上均匀取样外圈跑道和内圈地板橡胶材料,参考GB/T 14833-2011合成材料跑道面层指定的方法对其中的苯、甲苯、乙苯、二甲苯等溶剂残留进行检测。然后用铝箔包装跑道材料样品,防止挥发,防止传输过程中材料样品被污染。其次,多点采集空气样品(教室、校外、操场)。在椭圆形跑道上方、教室均匀取样空气,并记录天气状况,取样地温湿度,风速等条件,对空气中苯、甲苯、乙苯、二甲苯等挥发性有机物进行检测;取样条件为500ml/min,采集10L。  第三步 样品前处理  按照推荐性国家标准《合成材料跑道面层》对送检试样的要求,样品应在固化14天后进行测试。  样品前处理流程  第四步 测试分析  气相色谱质谱联用仪和热解析-气相色谱质谱联用仪  主要检测仪器  针对跑道中含有的重金属,参考GB/T 14833-2011合成材料跑道面层中规定的方法对取样跑道橡胶材料中重金属铅、镉、汞、铬含量进行检测;  针对跑道中使用的塑化剂,参考标准GB/T 22048-2008玩具及儿童用品聚氯乙烯塑料中邻苯二甲酸酯增塑剂进行检测;  针对委托方描述的部分学生流鼻血现象,会将关注点集中在苯、甲苯、乙苯、二甲苯等挥发性有机物上,补充进行了如下二项针对材料的挥发性有机物测试:  参考ISO 12219-2:2012气袋法-汽车内饰件和材料的挥发性有机化合物释放量的测试方法,设定一定的模拟挥发温度,对取样跑道材料中苯、甲苯、乙苯、二甲苯等挥发性有机物进行测试;  参考VDA 278热脱附分析非金属汽车内饰材料中的有机挥发物,设定一定的模拟挥发温度,加速挥发跑道中的苯、甲苯、乙苯、二甲苯等挥发性有机物,并对挥发物进行定量。

  • 【求助】DSC 曲线中出现多个熔融峰,请高手帮忙分析啊

    本人第一次作PAA材料([size=2]polyarylamide聚芳香酰胺)的DSC测试,条件是10度/min, 40-280度,对这种材料还不熟悉,同事说正常曲线应该是在235和256度左右分别出现一大一小两个熔融峰,但我重复了两次,在268度还有一个熔融峰,这个测试的样品是产品,用来分析产品的成型工艺参数的,请各位大侠帮忙分析下原因,不甚感激啊~~~~~[/size]

  • 【求助】熔融玻璃显色的问题?杂质离子能用xps分析不?

    各位大大,想请教一个问题?我在熔玻璃的时候 熔出来水淬后 有时候是淡红色(熔融时间短) ,长时间熔融就变淡蓝色了?玻璃是“钙-硅-磷-钠”系统 碱性比较高请教各位一下 为什么会有颜色?颜色为什么会变呢?是杂质显色嘛?我想分析是什么杂质显色的话 应该用什么分析手段好呢?打算用xps 但是不知道微量的杂质离子能不能测试出来? 请各位帮帮忙帮我分析下!谢谢啦! [em0808]

  • 【原创大赛】变稀释比熔融制样-X射线荧光光谱分析钼矿石

    在XRF分析中选择熔融制样作为硫化物前处理方法时,存在以下问题:以钼矿石为例,其最低工业品位仅为0.06 %,而钼精矿中Mo%要求不低于45 %,考虑矿产“三率”最低指标要求(回收率≥79%),可推断尾矿中Mo%应在0.01 %水平,若统一稀释比,则可接受的稀释比受精矿等强还原性样品所限,以此稀释比处理尾矿样品,则仪器灵敏度难以满足要求,针对上述情况,本实验选择以低稀释比(约2.67:1)处理尾矿及原矿样品,以较高稀释比(约16:1)处理中矿及精矿样品,建立了适用于钼矿石中主量至微量元素分析的变稀释比熔融制样-XRF分析方法,其中Mo线性范围涵盖尾矿至精矿,方法同时兼顾S、SiO[sub]2[/sub]等组分的定量分析。无标定量程序虽可用于任意稀释比样品的分析,但即便在充分预氧化的条件下,硫化物精矿亦难获得准确的结果。 本实验以钼矿石为研究对象,通过变稀释比熔融建立了三条工作曲线,在校正谱线重叠效应后以经验系数法校正基体效应,并以之分析系列未知样品,所得结果与ICP-OES及化学分析方法对照,总结优劣。[b]1 实验部分1.1 仪器与试剂[/b] Axios X射线荧光光谱仪(荷兰PANalytical公司),陶瓷薄铍端窗(75 μm)超尖锐铑靶X射线管,功率4 kW,SuperQ 5.1软件。样品均在真空条件下测量,仪器条件见表1。 TNRY-01C全自动熔样机(洛阳特耐实验设备有限公司),铂黄坩埚(Pt/Au=95/5,天津银鹏发展金属制品有限公司)。 钼矿石与精矿成分分析标准物质GBW07141、GBW07142、GBW07143、GBW07144,水系沉积物成分分析标准物质GBW07311、GBW07364、GBW07365,岩石成分分析标准物质GBW07107,土壤成分分析标准物质GBW07405、GBW07449,三氧化钨(≥99.99 %,国药集团化学试剂有限公司)。四硼酸锂/偏硼酸锂(12:22)([url=http://www.baidu.com/link?url=ujrw8yDGswiolK5OXmDrmBZ9kmStv-XnTi_f0sMLNutyea2vQ5RyR-HtATqM3Xex][color=windowtext]成都开飞高能化学工业有限公司[/color][/url])。碘化氨、硝酸铵(分析纯,成都市科龙化工试剂厂)。[align=center][b]表1仪器条件[/b][/align][align=center][b][img=,471,443]http://ng1.17img.cn/bbsfiles/images/2017/09/201709010924_01_1601883_3.bmp[/img][/b][/align][align=left]*选择黄铜滤光片。[/align][align=left]**表中Ca以前元素测量电压/电流为60 kV/60 mA,Ca及Ca以后元素为30 kV/120 mA.[/align][align=left]1.2 实验方法[/align][align=left] 先行称取~2 g熔剂铺垫于铂黄坩埚底部,而后称取~4 g熔剂于100 mL瓷坩埚内,加入样品(记录称样量,取样量为:原矿、尾矿1g至3 g,中矿、精矿0.35 g至0.80 g)及3 g NH[sub]4[/sub]NO[sub]3[/sub],混合均匀,转移至铂黄坩埚内,补加熔剂均匀覆盖表面。于600℃预氧化30 min,随后升温至1100 ℃(为保证低稀释比熔融,故未选择低温条件),熔融 5 min,加入NH[sub]4[/sub]I,摆动5 min,静置60 s后出炉,冷却后记录样片质量。[/align][align=left][b]2结果与讨论2.1预氧化程序[/b] 硫化物精矿还原性较强,若预氧化不完全,在熔融过程中可能腐蚀铂黄坩埚。为保证预氧化效果,设计验证试验如下:以标准序列中S含量最高的样品GBW07144(取样量0.5000 g,NH[sub]4[/sub]NO[sub]3[/sub]2g,n=3)为实验对象,样品准备流程参照1.3,坩埚(含物料)入炉前称重,记为m[sub]1[/sub],对照空白坩埚称重为m[sub]1b[/sub],预氧化30 min后取出,称重分别为m[sub]2[/sub]和m[sub]2b[/sub],计算得样品灼烧变量((m[sub]2[/sub]-m[sub]1[/sub])-(m[sub]2b[/sub]-m[sub]1b[/sub])),仅为0.16xxg,与理论值(GBW07144中Mo、S配分与辉钼矿MoS[sub]2[/sub]相近,其差异可以解释为样品中部分S源于硫铁矿或单质硫。假设样品中S均以硫化物或单质硫形式存在,在充分预氧化的情况下,Mo、S氧化产物依次为MoO[sub]3[/sub]与SO[sub]3[/sub],0.5 GBW07144的理论灼烧变量约为0.3735 g)存在显著差异,遂将预氧化时间延长至1 h,灼烧变量增至0.29xxg。比较数据发现相比对照空白,由于发生氧化还原反应,样品中NH[sub]4[/sub]NO[sub]3[/sub]消耗速度更快,在30 min内已消耗殆尽,将预氧化时间延长至1 h其质量并无变化,而对照空白中的NH[sub]4[/sub]NO[sub]3[/sub]则在约40 min后方才分解殆尽,以上情况解释了灼烧变量的增加。为探索预氧化效率能否进一步提高,NH[sub]4[/sub]NO[sub]3[/sub]用量依次增至3.0、4.0 g(因硝酸铵分解可能产生多种氮氧化物,根据化学反应理论计算确定其用量的方式不切实际),结果发现样品灼烧变量维持不变,即0.29xx g为通过以上预氧化程序可获得的灼烧变量上限。与此同时,我们发现根据样片质量计算所得的灼烧变量亦小于理论值,约为0.32xx g(灼烧变量=样片质量-对照空白质量-称样量),但需注意的是,样品中各待测元素对硼酸锂盐熔剂挥发的影响及样品组分的挥发均难以准确量化。因此,在通过上述验证实验判断熔融制样预氧化程序是否可行时不应依赖理论计算(因缺乏对样品中各元素赋存状态的详细研究,理论计算值必然存在偏差),在预设温度条件下,若氧化剂用量不同而样品灼烧变量基本保持恒定,即可认为预氧化程序安全有效。在此基础上本实验探索了在更低温度条件下以更低稀释比预氧化精矿样品的可行性,预氧化温度设为400 ℃,取样量增至0.8000 g,结果发现400 ℃条件下对照空白中NH[sub]4[/sub]NO[sub]3[/sub]分解缓慢,即便将预氧化时间延长至1 h以上,仍有残留,且质量基本保持恒定,导致计算所得的样品灼烧变量偏低,需在30 min后升至600 ℃加速其分解,以判断与氧化效果,结果表明NH[sub]4[/sub]NO[sub]3[/sub]用量依次为3.0、4.0、5.0 g的样品灼烧变量基本一致,证明在400 ℃条件下以3.0 g NH[sub]4[/sub]NO[sub]3[/sub]在30 min内可氧化0.8000 g钼精矿样品,但在本实验中进一步降低精矿稀释比作用并不明显,因此工作曲线中精矿、中矿等稀释比仍维持在约16:1。此外,在处理含铅锌等硫化物的重晶石矿物时,因硫化物可能为重晶石晶体包裹,应采用较高的预氧化温度。 熔融制样定量分析的基础在于待测元素在样片中分布均匀,砷、锑、铋、碲等元素氧化物易挥发,在熔融制样过程中亦无法避免,在变稀释比熔融制样方法中,熔体表面积、流动性等可能影响挥发的因素相比均一稀释比方法差异更大,对上述元素工作曲线线性及分析结果的准确度、精密度影响亦相应增加,在进行基体效应校正及结果分析时应注意。[/align][align=left][b]2.2工作曲线[/b] 钼矿石标准物质数量稀少,且含量跨度巨大,需加入人工混标。在标准配制过程中采用如下两种方法:1.参考文献,以GBW07141与GBW07144为基础,通过改变稀释比(80~2.667:1)及两者间配比([i]w[/i][sub]7141[/sub]:[i]w[/i][sub]7144[/sub]=9~1:1)的方式建立工作曲线;2. 将GBW07141-7144与土壤、沉积物、岩石等混合,以解决中方法1中造岩元素配比单一的问题。在输入标准序列浓度时试验了两种模式:1. 样品类型选择熔片,稀释比设为可变,逐一输入称样量及样片质量;2. 样品类型选择固体或粉末压片,标准中各待测元素含量按下列公式计算后录入(即待测元素在样片中的质量浓度)。[/align][align=center][img=,320,89]http://ng1.17img.cn/bbsfiles/images/2017/09/201709010930_01_1601883_3.bmp[/img][/align][align=left][b] [/b]各工作曲线标准序列及浓度模式选择见下:[/align][align=center]表2 工作曲线[/align][align=center][img=,690,129]http://ng1.17img.cn/bbsfiles/images/2017/09/201709010931_01_1601883_3.bmp[/img][/align][align=left] 以康普顿散射内标法校正Mo、Zn、W,但造岩元素以基本参数法或理论α系数法校正均无法获得满意的工作曲线,只能选择经验系数法,其曲线外推效果较差的缺点可通过在标准中添加对应元素的方法解决,而可能出现的过度校正问题则需要以一系列不同含量水平的实际样品加以验证。1号曲线因样品来源单一,元素配分缺乏变化,对实际样品中造岩元素分析效果欠佳;2、3号工作曲线改进了上述情况,3号工作曲线相对简单直观,2号曲线的优点则在于其受灼烧变量、熔剂挥发等因素的影响更小。本实验选择3号曲线开展后续研究。[/align][align=left] 与此同时,某些中矿样品因分离过程尚未完成,干扰元素含量可能远超标准预设值,其影响可能被忽略,将导致分析结果异常。为解决上述问题,可考虑在部分标准中补充以上元素并复熔,本实验中W即为后续补充。[/align][align=left][b]2.3准确度、精密度与检出限[/b] 以实际原矿、中矿及精矿样品(在变稀释比条件下)开展精密度研究,精密度较差,未满足《DZ/T 0130.3-2006 地质矿产实验室测试质量管理规范》中标准偏差值要求,后以标准物质GBW07141、7144代替,结果有明显改善,见下表。[/align][align=center]表3 精密度实验[/align][align=center][img=,470,265]http://ng1.17img.cn/bbsfiles/images/2017/09/201709010933_01_1601883_3.bmp[/img][/align][align=left] 通过SuperQ软件计算得到的检出限随稀释比波动,即便参考方法建立模式二,将检出限定义为待测元素在样片中的质量浓度,但样品间基体差异的问题仍无法解决,故在讨论检出限时,应指定适用范围(如尾矿样品中Mo的检出限、精矿样品中SiO[sub]2[/sub]的检出限),以上检出限数据亦更具实用价值。[/align][align=left] 因实际样品的均匀性问题,故部分元素方法对照结果存在差异,但其中主量组分及Mo相对误差较低,相对误差较高的次量分析结果亦具有一定参考价值,同时,本方法重现性良好,因未固定取样量及熔剂用量,在称量时间方面亦有优势,适用于日常分析。与其他方法对照时CaO、MgO、K[sub]2[/sub]O的测定采用焙烧-四酸溶解-ICP-OES分析,Fe、Mo、SiO[sub]2[/sub]的测定采用过氧化钠熔融-硝酸提取-ICP-OES分析,S的测定则采用燃烧中和法。结果见表4:[/align][align=center]表4 方法对照实验[/align][align=center][img=,411,222]http://ng1.17img.cn/bbsfiles/images/2017/09/201709010935_01_1601883_3.bmp[/img][/align][align=center][b]3 结论[/b][/align][align=left] 本实验通过变稀释比熔融建立了适用于钼矿石选矿流程样品中主量至微量元素分析的X射线荧光光谱分析方法,在一定程度上克服了单一稀释比方法检出限不足的问题,提出了一套合理可靠的预氧化程序验证方法,指出判断预氧化效果无需依赖理论计算,当预氧化温度在400~600 ℃,使用NH[sub]4[/sub]NO[sub]3[/sub]做为氧化剂,有效预氧化时间不超过30 min。在配制标准序列过程中各待测元素浓度应呈梯度,配比多样。以康普顿散射内标法校正Mo、Zn、W,以经验系数法校正造岩元素。方法准确有效,重现性良好,变稀释比熔融方法亦可应用于锡矿石、铬铁矿的分析。[/align][align=left][/align][align=left]本实验的灵感来源于Adnan Younis, ZohrabAhmadi, Matthew G. Adams, Amir Iqbal. X-Ray Spectrometry, 2017, 46(1): 69~76。[/align][align=left]不足之处敬请指出,多多讨论~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制