当前位置: 仪器信息网 > 行业主题 > >

瞬态吸收光谱仪

仪器信息网瞬态吸收光谱仪专题为您提供2024年最新瞬态吸收光谱仪价格报价、厂家品牌的相关信息, 包括瞬态吸收光谱仪参数、型号等,不管是国产,还是进口品牌的瞬态吸收光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合瞬态吸收光谱仪相关的耗材配件、试剂标物,还有瞬态吸收光谱仪相关的最新资讯、资料,以及瞬态吸收光谱仪相关的解决方案。

瞬态吸收光谱仪相关的资讯

  • 创锐光谱中标东南大学显微红外瞬态吸收光谱仪项目
    一、项目编号:JTCC-2202AW1385(SEU-ZB-220146)(招标文件编号:JTCC-2202AW1385(SEU-ZB-220146))二、项目名称:东南大学物理学院显微红外瞬态吸收光谱仪采购项目三、中标(成交)信息供应商名称:大连创锐光谱科技有限公司供应商地址:大连高新技术产业园区会汇贤园7号1层#01-02室中标(成交)金额:69.8000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 大连创锐光谱科技有限公司 显微红外瞬态吸收光谱仪 创锐光谱 TA100-1030nm-NIR-MIC 1 690000.00 五、评审专家(单一来源采购人员)名单:赵伟杰(采购人代表)、雷文(组长)、陈黎来、杨洋、杨培红六、代理服务收费标准及金额:本项目代理费收费标准:中标供应商在领取中标通知书时需按《招标代理服务收费管理暂行办法》(国家发展计划委员会计价格[2002]1980号)招标收费基准费率的69%向招标代理机构支付招标代理服务费。费用一次付清。本项目代理费总金额:0.7224300 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜本中标公告期限为1个工作日。各有关当事人对中标公告结果有异议的,可以在中标公告期限届满之日起7个工作日内,以书面原件形式提出明确的请求并提供必要的证明材料,一次性向采购代理机构提出质疑,逾期将不再受理。九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:东南大学     地址:江苏省南京市玄武区四牌楼2号        联系方式:物理学院:赵老师 18115881316; 实验室与设备管理处:刘老师 025-83792693      2.采购代理机构信息名 称:江苏省招标中心有限公司            地 址:江苏省南京市鼓楼区郑和中路118号D座16楼1612室            联系方式:徐凌云、顾建钧,025-83307682、83249924            3.项目联系方式项目联系人:顾建钧电 话:  025-83249924
  • 瞬态吸收光谱法测量极紫外自由电子激光脉冲的频率啁啾
    【研究背景】快速发展的自由电子激光(FEL)技术在高光子能量下产生了飞秒甚至阿秒的脉冲,使得X射线能够用于状态选择性和相敏多维光谱分析和相干控制。直接和常规测量现有的极紫外(XUV)和X射线自由电子激光脉冲的光谱相位是充分实现这种非线性相干控制概念的关键,以便为它们与物质的相互作用找到和设置最佳的脉冲参数。自放大自发辐射XUV/X射线自由电子激光脉冲的直接时间诊断工具是线性和角度条纹法,它对脉冲的时间形状(包括啁啾)非常敏感。这些方法依赖于一个时间同步且足够强的外场的可用性。诊断SASE辐射脉冲的时间结构的一个补充途径是测量电子束中FEL激光诱导的能量损失(例如使用X波段射频横向偏转腔(XTCAV)),从中可以重建XUV/X射线发射的时间剖面。对于种子自由电子激光脉冲,两个几乎相同的自由电子激光脉冲的产生及其XUV干涉图的评估允许其光谱时间内容的完整表征。在这项工作中,科学家提出了一种直接测量XUV-FEL频率啁啾的技术,而不依赖于任何额外的外场或种子多脉冲方案。由于所报道的技术提供了对XUV辐射光谱时间分布的目标访问,它是对FEL激光性能敏感的用户实验的原位诊断的理想方法。例如,在这里,我们实验观察到频率啁啾对自由电子激光脉冲能量的系统依赖性(增加啁啾以减少脉冲能量)。【成果简介】由最先进的自由电子激光器(FELs)产生的极紫外(XUV)和X射线光子能量的高强度超短脉冲正在给超快光谱学领域带来革命性的变化。为了跨越下一个研究前沿,精确、可靠和实用的光子工具对脉冲的光谱-时间特性的描述变得越来越重要。科学家提出了一种基于基本非线性光学的极紫外自由电子激光脉冲频率啁啾的直接测量方法。它在XUV纯泵浦探针瞬态吸收几何结构中实现,提供了自由电子激光脉冲时能结构的原位信息。利用电离氖靶吸光度随时间变化的速率方程模型,给出了直接从测量数据中提取和量化频率啁啾的方法。由于该方法不依赖于额外的外场,我们期望通过对FEL脉冲特性的原位测量和优化,在FEL中得到广泛的应用,从而使多个科学领域受益。【图文导读】图1:频率分辨等离子体选通原理图2:等离子体选通效应的数值模拟图3:通过瞬态吸收光谱测量XUV-FEL频率啁啾图4:频率啁啾特性,自由电子激光脉冲能量依赖性分析图5:色散对部分相干自由电子激光场的影响原文链接:Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy | Nature Communications
  • 160万!中国科学院宁波材料技术与工程研究所采购中红外纳秒瞬态吸收光谱仪项目
    项目编号:CBNB-20232021G项目名称:中国科学院宁波材料技术与工程研究所采购中红外纳秒瞬态吸收光谱仪项目预算金额(元):1,600,000.00最高限价(元):1,600,000.00采购需求:标项号采购内容数量简要技术需求是否允许采购进口产品一中红外纳秒瞬态吸收光谱仪1套检测模式:透射模式。否合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目不接受联合体投标。
  • 大连化物所利用飞秒瞬态吸收光谱发现天然防晒霜防晒机理
    近日,中国科学院大连化学物理研究所复杂分子体系反应动力学研究组研究员韩克利团队发现了植物体叶表面防晒分子的超快反式-顺式光异构化机理及一种新的防晒霜分子,相关研究成果发表在《物理化学快报》(JPC Letters,DOI: 10.1021/acs.jpclett.7b00083)上。  紫外线照射到生物体上会引起DNA损伤,相对于动物,植物所受的光照时间更长。为防止紫外线造成不良影响,十字花科植物表面均匀分布了一层苹果酸类似物(Sinapoyl Malate,SM),其为一种芥子酸(Sinapic Acid,SA)的脂衍生物,可有效将紫外线的能量耗散到环境中,从而防止紫外线的破坏作用。但是,在溶液环境中,SM抵抗紫外线损伤的机理尚不清楚。  该研究团队利用飞秒瞬态吸收光谱技术和时间相关的密度泛函理论计算,发现在中性水溶液中,SM和SA都是去质子化的,它们吸收紫外线到达电子激发态后,会通过超快的光异构化方式内转换回到基态,有效地将紫外线的能量传递到环境中,避免了对遗传物质的伤害。但是,去质子化的SA发生光异构化后吸收紫外线的能力大大降低,而SM几乎没有变化,从而解释了自然选择SM作为防晒霜的原因。此外,该团队还发现处于质子化状态的SA能够在6个皮秒内通过反式-顺式光异构化的方式回到基态,生成的顺式产物也具有良好的吸收紫外线能力,为开发新型防晒霜指明了方向。  上述工作得到科技部“973”计划和国家自然科学基金的支持。
  • 大连化物所利用高灵敏瞬态吸收光谱揭示准二维钙钛矿载流子本征动力学方面取得新进展
    近日,大连化物所分子反应动力学国家重点实验室任泽峰研究员和中国工程物理研究院赵一英研究员等合作,在揭示准二维钙钛矿载流子本征动力学方面取得新进展。飞秒,是一种时间单位,等于10-15秒。飞秒激光是一种特殊类型的激光,其脉冲(像脉搏似的短暂起伏)持续时间非常短,达到了飞秒级别。我们知道,能量除以时间得到的是功率,所以即使一个很小的能量,除以一个极短的时间,也会得到一个非常巨大的瞬时功率。如果把这样具有巨大瞬时功率的光聚焦到小尺寸的材料上,材料就可以被精细的切割或加工,因此,飞秒激光可用于微型器件制造、纳米材料加工等方面;在医学领域,飞秒激光可以用于眼科手术,切割角膜组织。另外,科学家们还利用飞秒激光脉冲时间短、瞬时功率大等特点,研究物质在飞秒时间尺度上的动态过程,如同给照相机安装了一个超快的“拍照快门”,可以给分子、材料的变化过程 “拍电影”。总之,飞秒激光技术非常重要,具有广泛的应用前景。飞秒瞬态吸收光谱(Transient Absorption Spectroscopy,TAS)是一种常用的主要研究半导体载流子动力学的手段。受限于常规的探测灵敏度,TAS一般只能探测较高载流子浓度下的动力学过程(文献中往往大于1017 cm-3)。然而,太阳能电池工作环境中的载流子浓度远低于该浓度(通常低于1015 cm-3)。因此,常规瞬态吸收光谱测得的动力学规律和真实情况下的载流子动力学规律可能相差甚远。任泽峰团队前期发展了高灵敏度瞬态吸收光谱仪,灵敏度ΔOD达到10-7量级,比常规的TAS提高2个数量级。前期,团队利用该装置实现了3D钙钛矿本征载流子动力学的研究,该工作以(BA)2(MA)n−1PbnI3n+准二维钙钛矿薄膜为模型,阐述了准2D钙钛矿中本征载流子动力学过程。二维钙钛矿由于其独特的稳定性和出色的光电性能而受到广泛关注。然而,围绕准二维钙钛矿中不同二维相之间的空间相分布和能带排列的争论给理解载流子动力学带来了复杂性,也阻碍了材料和器件的发展。本工作中,研究团队发现了2D和3D相之间载流子浓度依赖的电子和空穴转移动力学。在线性响应范围内的低载流子密度下,团队测量到了电子和空穴传输的三个超快过程,从数百fs到数ps、数十到数百ps、数百ps到数ns,可以归属于2D和3D相之间的横向外延(结构I)、部分外延(结构II)和无序界面异质结构(结构III)。此外,进一步通过考虑相分布、能带排列和载流子动力学,团队提出了旨在增强载流子传输的材料合成策略:(1)提高结构I和II的比例可以显著提高电子/空穴的转移速率;(2)增大3D相的晶粒尺寸可以提高准2D钙钛矿薄膜中电子转移速率;(3)增加2D相晶粒尺寸可以改善空穴从3D相到2D相的转移。该工作不仅为准2D钙钛矿的精确本征光物理学提供了深入的见解,而且也有望促进这些材料的实际应用的研发。相关成果以“Unveiling the Intrinsic Photophysics in Quasi-2D Perovskites”为题,于近日发表在《美国化学会杂志》(Journal of the American Chemical Society)上。任泽峰,博士,研究员,博士生导师。2004年中国科学技术大学化学物理系毕业后,来所分子反应动力学国家重点实验室学习,师从杨学明院士。2009年博士毕业后,到德国马普学会Fritz Haber研究所做博士后,洪堡学者。2011年底被聘为北京大学量子材料科学中心研究员,博士生导师。2016年9月回到所里工作,任化学动力学研究中心B类组群1114组组长,研究员,分子反应动力学国家重点实验室副主任。研究方向:(1)利用表界面非线性光谱,研究工作条件下粉末催化剂表面反应分子的振动光谱,能源材料表界面的电子光谱;(2)发展超高灵敏超快光谱,包括瞬态吸收光谱,时间分辨受激拉曼光谱,时间分辨表面和频光谱,研究光催化、热催化的动力学过程和能源材料载流子动力学;(3)发展超快时间分辨光发射电子显微镜,时空分辨研究半导体、光催化等体系中的光生载流子动力学;(4)发展超快激光技术,研制全国产化超快激光。
  • 2019年爱丁堡技术研讨会-稳态/瞬态光谱及拉曼光谱——上海首站成功举办
    为了更好的为爱丁堡用户提供服务,促进爱丁堡仪器的应用交流,天美公司于2019年10月14日在上海大学材料学院会议中心拉开了稳态瞬态光谱及拉曼光谱的巡回技术研讨会的帷幕。首站上海研讨会吸引了众多上海高校的老师和同学们参加。会议首先由天美公司华东区经理吴雪梅女士对参会的各位老师表示热烈欢迎,并介绍了天美公司三十多年的发展悠久历史以及天美公司分析产品线,使参会老师及用户更多的了解天美公司旗下产品及发展,为用户提供更好的服务。爱丁堡仪器公司是时间分辨荧光光谱仪、激光和气体传感器、激光器的世界领先制造商,并与2019年全新重磅推出拉曼光谱产品。会议期间由来自爱丁堡仪器公司的产品经理Johnny Bray先生介绍了2019年全新推出的显微共焦拉曼光谱仪RM5新品。RM5是一款紧凑型全自动显微拉曼光谱仪,可满足科研及分析工作的需求。RM5具有市场上独一无二的真共焦设计,能实现超高的光谱分辨率、空间分辨率和灵敏度。配置灵活,支持包括Mapping功能 、全自动样品台、偏振拉曼以及外置相机等多种附件和功能的实现,并且均可通过Rmancle软件直接控制(包括设置,测试及数据分析等)。同时,来自爱丁堡仪器的应用专家Stuart Thomson博士围绕着共聚焦显微拉曼光谱在科学材料领域应用的优势以及具体热点应用展开。如石墨烯材料的研究,TMD二维材料、半导体材料以及SERS等应用热点进行报告。此外,来自天美公司分析市场部的产品经理张轩先生介绍了爱丁堡稳态瞬态荧光光谱仪及高端耦合和相应的热点应用,让用户充分了解自己仪器配置的同时,还可以让大家了解到耦合不同的附件可以扩展出多种功能,用到更多热点研究当中。同时,张轩先生还介绍了瞬态吸收光谱的基本原理和应用,瞬态吸收技术与荧光技术在原理和应用上均不相同,通过详尽的介绍,使得参会老师对瞬态吸收技术以及爱丁堡LP980激光闪光光解仪均有一定的了解。会议上,与会老师积极提问,共同交流探讨。此次研讨会圆满举办,参会老师及用户对天美与爱丁堡仪器公司组织本次会议高度评价。天美公司作为全球科学仪器的知名供应商和科研工作的助手,一直致力于不断提升产品质量,为客户提供更加优质的服务。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 爱丁堡稳态瞬态光谱技术研讨会在兰州成功举办
    爱丁堡稳态瞬态光谱技术研讨会于4月13日在兰州大学化学学院成功举办。参与会议的有来自兰州大学,兰州中医药大学等著名院校的老师及学生30余人。  会议由天美公司分析产品经理覃冰女士主持。会议开始,天美公司西安办事处总经理蒲蓉女士对天美及爱丁堡公司分别作了简介,天美公司汇聚了全球知名的仪器品牌,正在扩大全球化布局。爱丁堡公司是时间分辨荧光光谱仪、激光和气体传感器方面的世界领先制造商。自从2013年被天美公司收购后,爱丁堡的不断推出新产品,并迅速领先同类产品中的市场份额。  来自爱丁堡公司的技术专家Johnny Bray接下来作了十分精彩的报告。报告内容分别为稳态瞬态光谱技术的应用,包括荧光共振能量转移在免疫分析中的应用,荧光淬灭过程在脂质体-蛋白质相互作用研究中的应用,生物探针的筛选,显微镜及荧光光谱仪联用于单线态氧的研究中等。 覃冰女士接下来介绍了爱丁堡光谱高端耦合技术的热点应用,瞬态吸收光谱仪的介绍及应用。爱丁堡荧光光谱仪十分灵活的模块化搭建特点是其能够紧跟当前科研热点应用的基础。近年来荧光光谱热点应用的关键词为超连续白光、变温量子产率、稀土上转换材料、电致发光、显微荧光等。  会议结束后,天美公司对兰州大学的爱丁堡仪器的用户进行了回访。兰州大学拥有很多爱丁堡仪器的老用户,目前仪器状态非常不错。有些仪器都使用了十几年都还处于高效运转的状态。”行千里路,送天美情”。我们也希望把天美公司的服务回馈给每一位支持我们的用户。 关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 瞬态光谱观察光生电子在金纳米颗粒-蓝细菌杂合体的界面传递
    光能易获取、能量充足,是公认的未来人类最安全、最绿色、和最理想的替代能源之一。天然光合作用可以直接利用光能固定空气中的CO2合成有机物,但光合作用的效率较低(通常低于1%)。近年来发展的半导体材料-微生物人工杂合体系,同时结合了高效捕获光能的半导体材料和高特异性催化的微生物细胞,已经成功实现:(1)使不能利用光能的微生物能利用光能(从不能到能);(2)提高天然光合作用效率(从低效到高效)。但目前,材料吸收光能产生的电子,仅有小部分被微生物细胞利用,因此杂合体系光能到化学能的转化,还远未发挥其潜在优势,其根本原因是材料-微生物界面能量和物质传递和转化机制不清、效率低。北京时间12月23日,南方科技大学机械与能源工程系陈熹翰课题组与中国科学院深圳先进技术研究院合成所材料合成生物学研究中心高翔课题组在ACS Energy Letters合作发表题为 “Ultrafast electron transfer in Au–Cyanobacteria Hybrid for Solar to Chemical Production” 的文章。该工作构建了金纳米颗粒-蓝细菌杂合体,将光能驱动CO2合成化学品的效率提高14%。通过瞬态吸收光谱直接观察到金纳米颗粒(Au)吸收光能产生的电子,可以直接被蓝细菌细胞快速吸收。为解析电子在材料-微生物界面传递机制提供基础。南方科技大学博士生胡秋实、深圳先进技术研究院研究助理胡海涛、博士后崔蕾为文章的共同第一作者。南方科技大学陈熹翰副教授和深圳先进技术研究院高翔副研究员为文章共同通讯作者。作者首先在蓝细菌中构建了甘油的合成通路,该途径以卡尔文循环(CBB)中间代谢物磷酸二羟丙酮(DHAP)为底物,消耗一分子的还原力合成甘油,该工程菌命名为XG608。在光照条件下,成功将CO2固定并转化为甘油。在此基础上,作者向培养体系中添加金纳米颗粒,利用共培养构建了金纳米颗粒-蓝细菌的杂合体,通过吸收光谱分析,观察到杂合体中同时具有金纳米颗粒和蓝细菌的特征吸收峰。此外,金纳米颗粒在525 nm附近吸收较强,与蓝细菌的吸收光谱性能互补,可以潜在提高杂合体的光能捕获效率。通过测试,在光照的条件下,与纯蓝细菌体系相比,杂合体生物量增长了10%,甘油产量增长了14.6%。进一步通过扫描透射电子显微镜 (STEM) 结合能谱(EDS) 分析,发现金纳米颗粒分布在蓝细菌细胞内,有利于材料光生电子向微生物细胞的传递。图1. 金纳米颗粒-蓝细菌杂合体提高光能驱动CO2固定合成甘油的效率随后作者对杂合体展开了原位瞬态光谱学分析(TA),当金纳米颗粒与工程菌XG608结合时,在2 ps内观察到更快的动力学衰减,而在4 ps后动力学衰减变慢,表明金纳米颗粒吸收光能产生的电子可以快速的被工程菌吸收。进一步研究发现,当加入光系统II抑制剂DCMU后,这种衰减特征消失(光系统II功能缺失突变体中也观察到相同结果)。有意思的是,金纳米颗粒电荷转移似乎只在活细胞中可行,黑暗条件,金纳米颗粒TA动力学特征不变,电荷转移过程停止。作者推测,只有活细胞才能作为电子受体来接收光激发的电子。图2. 金纳米颗粒-蓝细菌杂合体原位瞬态吸收光谱分析基于以上的研究,作者提出光激发金纳米颗粒提供了额外电子被光合电子传递链上潜在电子受体接收,进入光合电子传递链,提高光能利用效率,进而提高光能驱动CO2固定合成化学品的效率。图3.金纳米颗粒-蓝细菌杂合体界面电子传递该研究得到了科技部合成生物学重点研发计划、国自然重点项目和面上项目、深圳市基础研究专项重点项目和深圳合成生物学创新研究院的经费支持。
  • 天美-爱丁堡稳态/瞬态荧光光谱仪等产品
    天美(中国)科学仪器有限公司作为国内知名科学仪器供应商,始终把对用户的技术服务作为立足之本,为了更好的为爱丁堡仪器和日立电镜用户提供服务,促进爱丁堡仪器和日立电镜的应用交流。2017年4月5日-7日,天美(中国)科学仪器有限公司在河南郑州凌云温泉酒店举办了河南省第三届天美-爱丁堡稳态/瞬态荧光光谱仪、河南省第二届日立电镜等产品最新技术和应用研讨会。郑州大学、河南大学、河南农业大学、河南师范大学、河南中医药大学、河南省农业科学院、安阳师范学院、郑州航空航天学院、洛阳师范学院、华北水利水电学院、洛玻集团、科隆电器、烟草研究院等高校和科研院所的近70位相关研究领域的专家学者参加了本次研讨会。  天美(中国)科学仪器有限公司西安分公司总经理蒲蓉女士主持了本次会议。并对天美公司的发展历程、产品线和售后服务体系等方面做了详细介绍。爱丁堡公司工程师Johnny Bray,针对稳态/瞬态荧光光谱最新应用方向和应用领域作会议报告。天美市场部产品经理覃冰女士针对显微镜耦合、上转换分析、单线态氧分析、紫外区/近红外区量子产率测试、温度相关变温荧光以及荧光吸收光谱仪的应用等内容做了详细的报告。另外天美公司的电镜部产品经理周海鑫博士介绍了日立扫描电镜最新进展和应用、120kv透射电镜在生物和材料方面的应用等方面做了报告、日立公司的席晓宁做了原子力显微镜最新进展及电镜联用等方面的报告。  通过本次技术交流,加深了公司与用户之间的感情,增强了彼此间的了解。拓展了仪器的性能,解决了实际应用中的一些问题。一些用户表达了交流会对自己的研究工作的帮助以及感谢天美公司组织了本次交流会,期待在以后工作中多沟通多合作,多推荐好的产品。天美公司西安分公司总经理蒲蓉女士做欢迎致辞爱丁堡公司工程师Johnny Bray做产品最新应用介绍认真听讲的专家学者天美公司市场部产品经理覃冰女士做荧光报告电镜市场部产品经理周海鑫博士做电镜应用方面的报告关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 液体中全X射线阿秒瞬时吸收光谱技术获得重大突破
    美国和德国科研团队在实验中首次拍摄了液态水中电子实时运动的“定格帧”。该研究提供了一个窗口,使科学家能在以前用X射线无法企及的时间尺度上了解液体中分子的电子结构,标志着实验物理学的重大进步。相关研究发表在《科学》上。这项研究是通过美国直线加速器相干光源(LCLS)的同步阿秒X射线脉冲对而实现的。此前,辐射化学家只能在皮秒(等于一百万阿秒)的时间尺度上解析电子运动。现在,在阿秒尺度上研究X射线击中目标的电子反应的能力使科研人员能够深入研究辐射引发的化学反应,比以前的方法快100万倍。研究中开发的技术,即液体中的全X射线阿秒瞬时吸收光谱,使他们能在原子核移动之前,在电子进入激发状态时“观察”由X射线激发的电子。这项研究建立在阿秒物理学这一新学科的基础上,揭示了物质受到X射线照射时的瞬时电子变化,不仅加深了科学家对辐射诱导化学的理解,还标志着阿秒科学新纪元的开始。
  • 爱丁堡2019稳态瞬态光谱技术交流会-重庆站
    4月11日上午,在重庆举行了爱丁堡2019稳态瞬态光谱技术交流会,“爱丁堡技术交流会”以瞬态荧光FLS1000和瞬态吸收LP980的原理、最新应用方向和领域为主题,围绕当下科研工作者关注的焦点,引导未来科研工作者的判断。此次交流会为爱丁堡光谱与各位专家、学者提供一个更好的技术交流平台。  本次交流会主要有来自重庆大学、重庆理工大学、重庆师范大学、三峡学院等各大高校光谱专家和学者,分享最新应用方向和领域,传递科技前沿为目的,帮助专家学者能够更好地开展科研和教学工作。  会议由天美公司销售副总监吴灵威先生介绍了天美-爱丁堡公司,对爱丁堡仪器的布局产品线做了全面深入的介绍。 图一、天美公司吴总介绍公司的全球布局 图二、天美公司吴总介绍公司的产品线规划  随后,来自爱丁堡仪器的Johnny Bray和天美公司的市场应用经理张轩,分别对瞬态荧光FLS1000和瞬态吸收LP980在光物理学&光化学 、分析化学 、药理学 、生物化学&药物学 的应用进行了深入的讲解。瞬态荧光与显微镜耦合使用、瞬态荧光与瞬态吸收的耦合共用激光器、变温量子产率、时间相关变温附件的应用等。 图三、爱丁堡仪器Johnny Bray介绍FLS1000的特点 图四、天美公司市场经理张轩介绍FLS1000的应用热点  本次会议结束后,受到了专家学者的高度好评,在会议过程中,参会者听讲热情高涨,讲师与在座专家学者充分互动,现场气氛浓烈。在座的专家学者表示了解瞬态光谱的前沿技术和应用热点,有助于今后的科研和教学工作能够顺利进行。 关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • “瞬态新奇分子的光谱、成键和反应研究”荣获国家自然科学二等奖
    p  1月8日,2018年度国家科学技术奖励大会在人民大会堂隆重举行。复旦大学化学系教授周鸣飞领衔项目“瞬态新奇分子的光谱、成键和反应研究”荣获国家自然科学二等奖。/pp  该项目专注于通常条件下不能稳定存在的瞬态分子物种。利用自行研制的具有世界先进水平的分子光谱探测仪器,结合量子化学理论计算,项目首次确定元素周期表中元素可以形成的最高氧化态为+Ⅸ价 发现硼-硼三重键(B≡B)及主族元素?-?配键 并观察到一系列全新瞬态反应中间体。项目成果丰富了人们对化学键的认知,为相关分子物种宏观合成提供了新思路。/pp  清华大学李隽教授,复旦大学化学系王冠军、陈末华副教授,中国科学院上海应用物理研究所龚昱研究员同为该项目主要完成人。项目得到国家重点基础研究发展计划(973计划)和国家自然科学基金等资助。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/e12a2aea-9733-4952-b9e1-8cb3f14e4c71.jpg" title="1_副本1.jpg" alt="1_副本1.jpg"//pp  strong证实+Ⅸ氧化价态:/strong/ppstrong  “改变教科书的内容”/strong/pp  “这一发现为许多工业化学反应开辟了新的可能性,更新了成键规则,改变了教科书的内容。”(“The finding opens new possibilities for myriad industrial chemical reactions as well as rewriting the rules of bonding. It changes all the textbooks”)《科学新闻》杂志曾如此评论该项目中发现铱元素+Ⅸ氧化态的研究工作。/pp  氧化态是化学中常用的基本概念之一,亦是门捷列夫发现元素周期律的重要基础。它是元素的固有性质,能够反映元素在化合物及反应过程中得失电子的能力。100多年来,实验已知所有化学元素最高氧化态为+Ⅷ价,直至四氧化铱正离子([IrO4]+)将之改写。/pp  尽管具有9个价电子的过渡金属元素铱(Ir)曾被推测最有可能存在高于+Ⅷ价的氧化态,一直以来,实验已知含铱化合物中铱的最高价态却仅为+Ⅶ价。确认铱元素亦可以如钌、锇和氙一般形成稳定的+Ⅷ价态化合物,是周鸣飞等项目研究者的探索起点。/pp  采用脉冲激光溅射方法产生金属铱原子并和氧气分子反应, 研究者们在惰性氩基质中顺利制备得到中性四氧化铱分子。红外吸收光谱实验结合量子化学理论计算证明该分子具有所有IrO4异构体中最稳定的D2d结构,其中铱具有d1电子组态,处于+Ⅷ氧化态。/pp  在此基础上,项目组利用自主发展建立的基于串级飞行时间质谱技术的高灵敏红外光解离光谱实验装置,通过对脉冲激光溅射-超声分子束载带技术制备的贴附了 1-4 个氩原子的气相四氧化铱正离子络合物的红外光解离光谱研究,实验证实气相四氧化铱离子具有正四面体构型,其中铱具有d0电子组态,处于+Ⅸ价态。/pp  从+Ⅷ价态到+Ⅸ价态,化学元素最高氧化态的刷新,令该项研究在2014年10月顺利发表于《自然》(Nature)杂志。美国化学会《化学与工程新闻》(Chem.& Eng. News)杂志亦将之评为2014年度十大化学研究。/pp  据周鸣飞介绍,稳定的高氧化态化合物时常被用作工业反应中的氧化剂和催化剂。若能够找到[IrO4]+离子的宏观合成方法,一些重要的氧化和催化反应应用或有望得到开发。/pp  strong发现硼-硼三重键:/strong/ppstrong  为零价或低价主族化合物的宏观合成提供新策略/strong/pp  通过硼原子与一氧化碳分子反应的方法在低温惰性气体基质中首次制备得到的OC-B≡B-CO分子是该项目取得的又一项重要成果。/pp  尽管在元素周期表中与碳相邻,因价电子数少于价轨道数而被称为缺电子原子的硼却有着与碳截然不同的成键特性,容易形成缺电子多中心键,很难形成多重键。然而OC-B≡B-CO分子却有些“一反常态”:它具有B≡B三键特性,表明硼是继碳和氮元素之后,可以形成三键的第三个主族元素。/pp  作为一个线性单重态分子,OC-B≡B-CO分子的B-B键键长较之典型B=B双键和B-B单键都要短。成键分析表明,B-B之间包含一个?键和两个?键,B2单元和两个CO配体之间通过类似过渡金属羰基化合物的?-?配键方式结合。这一结果表明过渡金属配位化合物的?-?配键理论可以推广到主族化合物体系,从而为零价或低价主族化合物的宏观合成提供了新策略。可喜的是,采用同样的配位成键策略,德国维尔茨堡大学教授不伦瑞克(Braunchweig)等人利用比CO更大的有机卡宾配体成功合成了室温条件下稳定的具有B≡B三键特性的NHC-B≡B-NHC化合物分子,相关结果于 2012年发表于 《科学》(Science)杂志。在其引文中提到,正是周鸣飞等项目研究者的发现“激起了一阵风似的对B≡B三键分子的理论研究。”(“This finding prompted a flurry of theoretical studies of molecules with B-B triple bonds.”)/p
  • 气相分子吸收光谱技术的行业贡献
    气相分子吸收光谱技术的行业贡献 北裕仪器在气相分子细分行业发展中敢于创新,勇于进取,为该细分行业的发展作出了重大贡献:重大贡献一: 北裕仪器首次将流动注射进样技术引入到气相分子吸收光谱仪中,实现了气相分子吸收光谱仪由原来手动进样变成仪器完全自动进样,实现了仪器全自动化分析。该技术北裕仪器申请并获得中华人民共和国国家知识产权局颁发的专利证书:《一种气相分子吸收光谱仪》发明专利号为200910049514.5、《一种流动注射-气相分子吸收光谱仪》专利号为ZL200920070613.7。重大贡献二: 北裕仪器成功研发出利用半导体制冷技术的除水装置,改变了十几年来一直采用无水高氯酸镁作为干燥剂干燥技术,由于干燥材料在做完20个左右的样品时就需要更换,干燥剂更换起来非常不方便,更换后会影响仪器气路的气密性,因此半导体制冷技术的应用,大大提高了仪器操作的方便、简单、快速、自动化等优点。该技术北裕仪器申请并获得中华人民共和国国家知识产权局颁发的专利证书:《一种用于气相分子吸收光谱仪中的除水装置》专利号为ZL201220124293.0。重大贡献三: 北裕仪器获得发明专利的氨氮快速在线氧化技术,氧化时间由原来的半小时变成了瞬间,极大提高了样品分析效率;该技术的应用极大推动了气相分子吸收光谱仪在环保行业的推广使用。该项贡献意义深远,大部分用户购置气相分子主要还是用来测定氨氮,以前的设备氨氮测定过于麻烦,一个样需要30分钟以上,而选用快速氧化技术,可以将单个样品的测定时间缩短为3~4min,效率提升了10倍左右,可以说这个贡献挽救了摇摇欲坠的气相分子细分行业,并发扬光大。北裕仪器申请并获得中华人民共和国国家知识产权局颁发的发明专利证书:《一种氨氮快速氧化方法及其装置》发明专利号为201210086892.2。重大贡献四: 北裕仪器联合上海市计量院、浙江省计量院等单位,建立了《气相分子吸收光谱仪校准规范》,从此该仪器在计量时可以出具《校准证书》,这个意义对于专业实验室影响很大,专业实验室都要求计量仪器在使用前必须得到第三方机构出具检定报告或者校准证书。而在此之前,要么不能出具《校准证书》,要么只能出具效力不高的《检测报告》。该项标准的推出,使得气相分子吸收光谱仪在环保监测、第三方检测等行业迅被速推广。重大贡献五: 全国近20个省级环境监测中心(站)采购使用了北裕仪器生产的气相分子吸收光谱仪,省级监测中心(站)的普及使用极大推动了气相分子吸收光谱仪在全国地级市、县级市环境监测站的推广使用,并带动在水文水利局等行业推广使用。在气相分子行业,北裕仪器引领气相分子行业向前快速发展;自己也在发展中得到很多受益,根据公开招标信息,市场占有率约90%;同时北裕仪器在本行业中也是唯一至今保持零退货记录的气相分子吸收光谱仪生产兼研发公司。
  • 气相分子吸收光谱技术应用交流会
    会议报到时间:10月29日会议开始时间:10月30日会议地点:北京辉腾商务酒店工体店主办单位:中国仪器仪表行业协会分析仪器分会承办单位:上海安杰环保科技有限公司一、会议主题:气相分子吸收光谱应用技术交流会二、会议背景: 目前我国工业、农业和生活污染排放负荷大,全国化学需氧量排放总量为2294.6万吨,氨氮排放总量为238.5万吨,远超环境容量。全国地表水国控断面中,仍有近十分之一(9.2%)丧失水体使用功能(劣于Ⅴ类),24.6%的重点湖泊(水库)呈富营养状态;不少流经城镇的河流沟渠黑臭,饮用水污染事件时有发生。全国4778个地下水水质监测点中,较差的监测点比例为43.9%,极差的比例为15.7%。全国9个重要海湾中,6个水质为差或极差。全国水环境的形势非常严峻,2015年4月国家环保部出台《水污染防治行动计划》,对污水处理、工业废水、全面控制污染物排放等方面进行强力监管并启动严格问责制,铁腕治污将进入新常态。 国家对水质监测非常重视,可用于水质检测的仪器及方法繁多,气相分子吸收光谱仪即是其中之一,目前可检测氨氮、凯氏氮、亚硝酸盐氮、硝酸盐氮、总氮、硫化物、有机汞等,广泛应用于环境监测、水文监测、农业检测等各种领域的水质分析。由中国仪器仪表行业协会分析仪器分会主办、上海安杰环保科技有限公司承办本次气相分子吸收光谱仪应用交流会,希望通过学术交流探讨在水质监测领域新仪器、新方法的应用,汇集科学仪器行业的智慧,更好地服务国家环境监测事业。三、会议议程: 2015年10月30日上午 9:30-10:00 开幕式、领导致辞 国家水利部水资源司领导致辞 国家农业部农业环境重点实验室领导致辞 中国仪器仪表行业协会领导致辞 10:00-12:00 会场主题报告 水质监测新方法探讨——气相分子吸收光谱仪的应用 齐文启(中国环境监测总站) 气相分子吸收光谱仪的应用方法扩展 陈舜琮(北京理化测试中心) 气相分子吸收光谱仪的十四年发展历程 臧平安(安杰科技总工程师) 气相分子吸收光谱仪新产品介绍 孙璐(安杰科技总经理) 2015年10月30日下午 拟参观上海安杰(北京)生产基地四、会议费用标准 此次会议会务费全免,为了保证参会代表的住房安排,请与10月20日前电话联系我们。五、会议联系方式 联系人:曾祥丽 联系电话:13357726798 邮箱:13357726798@163.com 传真:010-53028853 中国仪器仪表行业协会分析仪器分会上海安杰环保科技有限公司
  • 千里行——天美稳态瞬态荧光光谱最新技术和应用研讨会-济南站
    2016年天美中国第17届质量千里行活动正在火热进行中,为了回馈并感谢用户们的支持,千里行期间的第一场爱丁堡用户交流会于3月10日在济南山东大学成功举行。  会议尚未开始,在山东大学(中心校区)邵逸夫科学馆内就坐满了来自山东大学,山东师范大学、济南大学等高校的老师及学生40余人。  首先是天美公司济南办事处的张起海经理给大家介绍了天美(中国)的发展历程以及历年质量千里行活动的概况,天美集团的分支机构已经遍布各大洲,正是众多用户的支持、包容和一路同行,让我们得以发展,所以我们奉行用户至上,服务第一的理念,“行千里路,送天美情”。   紧接着来自爱丁堡公司的技术专家Johnny Bray 先生从荧光基本原理出发,为大家生动展示了爱丁堡仪器公司稳态/瞬态荧光光谱仪的技术特点,并结合上转换发光、绝对发光量子产率、显微镜与荧光光谱仪耦合等例子,介绍了荧光光谱仪在各个科研领域的应用。由于山东有多套爱丁堡稳态瞬态荧光光谱仪FLS920/FLS980,参会的许多用户大多带着问题而来,大家都很积极踊跃参与讨论,Johnny也为用户进行详细解答,整个讨论过程持续了一个多小时。  荧光的介绍结束后,Johnny又介绍了爱丁堡公司最新推出的激光闪光光解光谱仪LP980,该仪器除了具备瞬态吸收光谱测试的功能以外,还能配置拉曼,激光诱导击穿光谱,激光诱导荧光光谱等附件,也引起了在座的老师很大的兴趣。  最后,来自天美公司的产品专家覃冰从样品测试以及仪器维护的角度,为用户们详细讲解了测试的技巧以及仪器使用过程中的注意事项,大家表示十分受益。 在本次交流会期间,Johnny和天美公司的工程师还对山东大学、山东师范大学的用户进行了回访,并实际解决了一些用户使用中的问题。我们希望把爱丁堡专业的服务继续下去。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 千里行——天美稳态瞬态荧光光谱最新技术和应用研讨会-济南站
    2016年天美中国第17届质量千里行活动正在火热进行中,为了回馈并感谢用户们的支持,千里行期间的第一场爱丁堡用户交流会于3月10日在济南山东大学成功举行。 会议尚未开始,在山东大学(中心校区)邵逸夫科学馆内就坐满了来自山东大学,山东师范大学、济南大学等高校的老师及学生40余人。 首先是天美公司济南办事处的张起海经理给大家介绍了天美(中国)的发展历程以及历年质量千里行活动的概况,天美集团的分支机构已经遍布各大洲,正是众多用户的支持、包容和一路同行,让我们得以发展,所以我们奉行用户至上,服务第一的理念,“行千里路,送天美情”。 紧接着来自爱丁堡公司的技术专家Johnny Bray 先生从荧光基本原理出发,为大家生动展示了爱丁堡仪器公司稳态/瞬态荧光光谱仪的技术特点,并结合上转换发光、绝对发光量子产率、显微镜与荧光光谱仪耦合等例子,介绍了荧光光谱仪在各个科研领域的应用。由于山东有多套爱丁堡稳态瞬态荧光光谱仪FLS920/FLS980,参会的许多用户大多带着问题而来,大家都很积极踊跃参与讨论,Johnny也为用户进行详细解答,整个讨论过程持续了一个多小时。   荧光的介绍结束后, Johnny又介绍了爱丁堡公司最新推出的激光闪光光解光谱仪LP980,该仪器除了具备瞬态吸收光谱测试的功能以外,还能配置拉曼,激光诱导击穿光谱,激光诱导荧光光谱等附件,也引起了在座的老师很大的兴趣。 最后,来自天美公司的产品专家覃冰从样品测试以及仪器维护的角度,为用户们详细讲解了测试的技巧以及仪器使用过程中的注意事项,大家表示十分受益。 在本次交流会期间,Johnny和天美公司的工程师还对山东大学、山东师范大学的用户进行了回访,并实际解决了一些用户使用中的问题。我们希望把爱丁堡专业的服务继续下去。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 爱丁堡稳态瞬态光谱仪助力石墨烯科研大潮
    p  石墨烯是从石墨材料中剥离出来的,由碳原子组成的只有一层原子厚度的二维晶体,是目前人类已知的最薄、最坚硬、导热率最高、电阻率最小的纳米材料。2004年,英国曼彻斯特大学物理学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫,成功从石墨中用胶带分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。石墨烯被认为是可以引发现代电子技术和信息技术革命的材料届的一颗璀璨的新星,越来越多的研究聚焦在石墨烯制备和应用上,而先进的检测仪器是研究石墨烯必不可少的武器。/pp style="text-align: center " img title="1.png" src="http://img1.17img.cn/17img/images/201512/uepic/c2c66ebc-5956-4d7f-8659-cff61e14183f.jpg"//pp 爱丁堡仪器仪器公司携其主打产品稳态/瞬态荧光光谱仪加入了这支浩浩荡荡的石墨烯研究大军中,凭借其多年领跑荧光市场的技术优势,助力于石墨烯的科学研究。/pp  爱丁堡公司目前的稳态瞬态光谱仪系列有FLS980模块化结构搭建荧光光谱仪,一体化、功能丰富的FS5荧光光谱仪,专门用于寿命测试的零时间色散的LifeSpec II和经济适用型的Mini-Tau荧光光谱仪;瞬态吸收测试有基于泵浦-探测光技术的LP980激光闪光光解光谱仪。/pp  本文将带来使用爱丁堡荧光光谱仪在石墨烯测试中的应用。(以下测试所使用的光谱仪为Edinburgh Instrument FLS920/FLS980/LP980)/ppstrong石墨烯纳米复合材料(Graphene-Based Nanocomposites)/strong/pp  石墨烯掺杂纳米复合材料,因其高效俘获、传输光生电子及提高对光能的吸收及污染物的吸附性能,在环境有机污染物治理中表现出十分出色的光催化活性。/pp  下图是二氧化钛掺杂的石墨烯氧化物在光催化降解亚甲基蓝中的应用。(Zhixing Gan, etal, ACS NANO ,2014, VOL.8, NO.9, 9304–9310)/pp style="text-align: center "img width="500" height="143" title="2.png" style="width: 500px height: 143px " src="http://img1.17img.cn/17img/images/201512/uepic/bfe91a81-b9aa-4d3b-82ce-1ded16052810.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongMechanism of MB degradation over P25-rGO And Emission Spectra/strongbr//pp  氧化石墨烯作为石墨烯的前体及ZnS的模板,合成了ZnS–GR 纳米复合结构,通过合成机理的研究,可以为以后合成金属硫化物掺杂的石墨烯提供有用的信息(Linhui Yu etal, Nanotechnology 24 (2013) 375601 )/pp style="text-align: center " img width="500" height="135" title="3.jpg" style="width: 500px height: 135px " src="http://img1.17img.cn/17img/images/201512/uepic/6c08130f-132c-488a-ba09-3062d54f8a12.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongThe possible mechanism of photocatalytic degradation of MB on ZnS–5%GR-120 nanocomposite/strong/pp  以磺化石墨烯为Pt载体,合成了小粒径的GSO3Pt复合结构, 可以作为有效的催化剂,将产氢反应的效率提高18倍 (Hui-Hui Zhang, Catal. Sci. Technol., 2013, 3, 1815 )/pp style="text-align: center " img width="500" height="291" title="4.png" style="width: 500px height: 291px " src="http://img1.17img.cn/17img/images/201512/uepic/982990d5-8249-4360-a9c1-0b9a333b7377.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongA schematic illustration of photocatalytic H2 evolution from GSO3Pt/strong/pp style="text-align: center "strongnanocomposites photosensitized by EY/strongbr//ppstrong石墨烯量子点(Graphene Quantum Dots)/strong/pp  石墨烯量子点(GQDs)是因其受到量子局限效应和边界效应的影响,具备独特的光电磁性质,GQDs从石墨烯二维的结构变成受到三维空间限制的量子点,展现出更多新特性,成为石墨烯家族里的一员,备受研究者青睐。/pp  下图是双层氢氧化物中形成的单层石墨烯量子点。 (Liqing Song, etal, Chem. Sci., 2015, 6, 484)/pp style="text-align: center "img width="500" height="179" title="5.png" style="width: 500px height: 179px " src="http://img1.17img.cn/17img/images/201512/uepic/6d9e1179-f4f7-4324-ab8c-550795f335e4.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongSchematic illustration of the formation of S-GQDs in the confined space of LDH/strong/pp  过渡金属离子可以导致石墨烯量子点光致发光的淬灭,因此GQDs可用于金属离子的传感器。(Hongduan Huang, etal, Talanta 117 (2013) 152–157)/pp style="text-align: center "img width="500" height="163" title="6.png" style="width: 500px height: 163px " src="http://img1.17img.cn/17img/images/201512/uepic/feec013d-7240-4dba-80ed-fb98410b6225.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "stronguenching and recovering effect of transition metal ions on the photoluminescence of GQDs./strongbr//ppstrong石墨烯材料相关机理研究(Mechanism)/strong/pp  目前,也有大量研究工作是针对石墨烯在化学反应及催化反应中所起到的作用, 通过机理研究可以为某一类反应提供指导性建议;/pp  石墨烯量子点上转化发光机理的研究,证明了用氙灯激发石墨烯量子点产生上转换荧光是假象, 用脉冲激光才可以观察到真正的上转换信号 ( Zhixing Gan, etal. Adv. Optical Mater. 2013, 1, 554–558 )/pp style="text-align: center " img width="500" height="192" title="7.png" style="width: 500px height: 192px " src="http://img1.17img.cn/17img/images/201512/uepic/ecd04113-8540-49c2-b103-f9872964ad95.jpg" border="0" vspace="0" hspace="0"//pp strong (a) UCPL spectra obtained from GQDs under excitation of a femtosecond pulsed laser at 800 nm. (b) UCPL integrated intensity as a function of laser power/strong/pp  氧化石墨烯在化学反应中的作用;研究了氧化石墨烯,还原型氧化石墨烯,及功能化的还原型氧化石墨烯随着构型改变对光谱的影响;(Zhixing Gan, etl. Adv. Optical Mater. 2013, 1, 926–932 )/pp style="text-align: center "img width="500" height="400" title="8.png" style="width: 500px height: 400px " src="http://img1.17img.cn/17img/images/201512/uepic/c80e118d-dbf6-48b8-95ed-f7c5d7a9cb7e.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongSchematic illustration of the PL emission mechanism/strong/ppstrongspan style="color: rgb(255, 0, 0) "更多详细应用请见下列文献:/span/strong/pp1] Zhixing Gan, Xinglong Wu, Ming Meng, Xiaobin Zhu, Lun Yang, and Paul K. Chu, ACS NANO, VOL. 8, NO. 9, 9304–9310, 2014/pp2]Hongduan Huang, Lei Liao, Xiao Xu a, Mingjian Zou, Feng Liu, Na Li, Talanta 117, 152–157, 2013/pp3] Liqing Song, Jingjing Shi, Jun Lu and Chao Lu, Chem. Sci., 6, 4846, 2015/pp4] Linhui Yu, Hong Ruan, Yi Zheng and Danzhen Li, Nanotechnology 24, 375601, 2013./pp5] Zhixing Gan, Xinglong Wu, Gengxia Zhou, Jiancang Shen, and Paul K. Chu,Adv.Optical Mater. 1, 554-558 , 2013./pp6] Zhixing Gan, Shijie Xiong, Xinglong Wu, Tao Xu, Xiaobin Zhu, Xiao Gan, Junhong Guo, Jiancang Shen, Litao Sun, and Paul K. Chu, Adv. Optical Mater. 1, 926-932, 2013./pp7] Zhixing Gan, Xinglong Wu and Yanling Hao, CrystEng Comm, 16, 4981-4986, 2014./pp8] Hui-Hui Zhang, Ke Feng, Bin Chen, Qing-Yuan Meng, Zhi-Jun Li, Chen-Ho Tung and Li-Zhu Wu, Catal. Sci. Technol., 3, 1815-1821, 2013./pp style="white-space: normal "span style="color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px background-color: rgb(255, 255, 255) "br//span/pp style="white-space: normal "span style="color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px background-color: rgb(255, 255, 255) "关于天美:/spanbr//pp style="padding: 0px color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px margin-top: 0px margin-bottom: 0px white-space: normal background-color: rgb(255, 255, 255) "  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。/pp style="padding: 0px color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px margin-top: 0px margin-bottom: 0px white-space: normal background-color: rgb(255, 255, 255) "  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn/pp style="text-align: center "img width="500" height="313" title="微信长按二维码.gif" style="width: 500px height: 313px " src="http://img1.17img.cn/17img/images/201512/uepic/85e4ed3b-7c8f-40af-a8c1-d173db17c4be.jpg" border="0" vspace="0" hspace="0"//p
  • 气相分子吸收光谱仪的自主创新及产业化的30年
    p strong 一、气相分子吸收光谱法的起源及发展/strong/pp  气相分子吸收光谱法(Gas-Phase Molecular Absorption Spectrometry)是基于被测成分所分解成的气体对光的吸收强度与被测成分浓度的关系遵守光吸收定律这一原则来进行定量测定样品的。在国际上,自1976年Cresser等人首先提出该方法至今40多年间,GMPAS在水质分析方面研究了许多测定项目,如对Brsup-/sup 、Isup- /sup、NOsub2/subsup-/sup、NHsub3/sub-N 、Clsup-/sup 、硫化物和SOsub2/subsup3-/sup的测定。Syty最先应用该法测定了SOsub2/sub,Rechikov等人测定了用于半导体工艺的惰性气体混合的氢化物气体中的B、N、P、As、Sb、Si、Ge、Sn的氢化物,关于该方法的研究几乎每年都有文章的发表。但是这些方法中都是为了配合每一个研究课题而为之,因此在国外该技术一直未产业化。/pp style="TEXT-ALIGN: center"img title="QQ截图20171107135701.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/c04ede4a-148f-4df8-87d5-37e5c317ced8.jpg"//pp style="TEXT-ALIGN: center"strong图1 国外已发表论文/strong/pp  我国自80 年代开始研究该分析手段,如张寒奇等研究的氯离子测定法具有实用性,原上海宝山钢铁总厂环境监测站的臧平安先生(现任上海安杰环保科技股份有限公司总工程师)于1987年对GMPAS进行了研究,他发现了瞬间即能加速分解亚硝酸盐的催化剂和快速将硝酸盐分解成一氧化氮气体的还原剂,并结合原子吸收光谱仪于1990年和1992年先后发明了亚硝酸根离子和硝酸盐氮的专利方法,专利号为ZL 90102835.5和ZL 92108475.7,其中亚硝酸根离子的专利方法在1991年的第六届全国发明展览会上荣获铜奖。/pp style="TEXT-ALIGN: center"img title="02.jpg" style="HEIGHT: 360px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/96fa95c3-dd54-4102-a8a8-b6d5702c5201.jpg" width="450" height="360"//pp style="TEXT-ALIGN: center"strong图2 “亚硝酸根离子的测定方法”发明专利证书/strong/pp style="TEXT-ALIGN: center"img title="03.jpg" style="HEIGHT: 310px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/2521ba95-afc8-4e11-b334-873a944b7cc3.jpg" width="450" height="310"//pp style="TEXT-ALIGN: center"strong图3 “硝酸盐氮的测定方法”发明专利证书/strong/pp style="TEXT-ALIGN: center"img title="04.jpg" style="HEIGHT: 319px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/48cd3478-875c-48eb-98c5-6330e872d5cf.jpg" width="450" height="319"//pp style="TEXT-ALIGN: center"strong图4 第六届全国发明展览会铜奖/strong/pp  该方法经过臧平安先生的不断摸索改进,最终使亚硝酸盐氮和硝酸盐氮测定的检出限低至0.6µ g/ L,使测定水样中该两个项目的时间缩短至2min之内出结果, 1995年国家环境保护局(环境保护部前身)委托中国环境监测总站组织研究和验证,并发「环检测[1995]079号文」颁布试行该两方法, 1996年获得中国分析测试协会颁发的科学技术二等奖。/pp style="TEXT-ALIGN: center"img title="05.jpg" style="HEIGHT: 533px WIDTH: 400px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/eff57ae1-93a1-4a5e-838c-49f959dfa0b7.jpg" width="400" height="533"//pp style="TEXT-ALIGN: center"strong图5 国家环境保护局司发文 环检测[1995]079号/strong/pp style="TEXT-ALIGN: center"img title="06.jpg" style="HEIGHT: 326px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/7416b629-3fab-4bed-813a-ee407bce0919.jpg" width="450" height="326"//pp style="TEXT-ALIGN: center"strong图6 中国分析测试协会二等奖/strong/pp  在以上两种方法的基础上,臧平安先生又相继发现了氨氮、凯氏氮、总氮的测定方法,而后又在前人工作的基础上研究出了可在2min左右即能准确测定出水和废水中硫化物的方法,并于1998年被国家环境监测总站列为国家标准方法进行申报,同年由于该方法获得行业广泛认可,臧平安先生入选《科学中国人· 中国专家人才库》。/pp style="TEXT-ALIGN: center"img title="07.jpg" style="HEIGHT: 476px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/noimg/8b8db655-e303-4909-bb10-097e7306b7cf.jpg" width="300" height="476"//pp style="TEXT-ALIGN: center"strong图7 中国环监总站出具的列入国家标准方法的证明/strong/pp style="TEXT-ALIGN: center"img title="08.png" style="HEIGHT: 324px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/d139980c-5905-4ef5-b3ad-fbce9e04ebcf.jpg" width="450" height="324"//pp style="TEXT-ALIGN: center"strong图8 《科学中国人· 中国专家人才库》荣誉证书/strong/ppstrong  二、气相分子吸收光谱仪的研发及进一步发展/strong/pp  研究初期的气相分子吸收光谱仪,其样品化学反应为人工操作,再利用原子吸收光谱仪进行检测,对操作人员的操作技术要求较高,臧平安先生于1998年在积累了10年使用经验的工作基础上成功制造出了国内外首台气相分子吸收光谱仪原型机,后来通过对仪器的不断改进和完善,2000年与上海分析仪器总厂下属的上海自立仪器厂合作,研制生产了三台型号为GMA-2000 的气相分子吸收光谱仪样机,并将该研究成果发表在当年的全国光谱仪器与分析监测学术研讨会会刊上。/pp style="TEXT-ALIGN: center"img title="09.jpg" style="HEIGHT: 324px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/38f97d86-9b83-4e57-9501-95f5801b641a.jpg" width="450" height="324"//pp style="TEXT-ALIGN: center"strong图9 样机原型设计图/strong/pp style="TEXT-ALIGN: center"img title="10.jpg" style="HEIGHT: 402px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/12f22814-c097-47e3-9b37-627dd0f39fc7.jpg" width="450" height="402"//pp style="TEXT-ALIGN: center"strong图10 《专利产品GMA2000气相分子吸收光谱仪》/strong/pp  为了更好的对此方法进行推广,臧平安先生于2001年成立了上海安杰环保科技有限公司,进行公司化运营, 2002年在GMA-2000型样机基础上推出了第一台商品化的专用型气相分子吸收光谱仪AJ-2100,随后起草编写了氨氮等六个项目的环监方法标准稿,经由国家环监总站审阅,2005年7月由国家环境保护总局(环境保护部前身)科技标准司组织全国省级以上监测站进行使用鉴定,并组织相关专家共8人审定通过此标准内容。随即国家环境保护总局科技标准司于2005年11月批准公布了HJ/T 195~200(2005)的环保行业标准, 于2006年1月正式实施。AJ-2100作为方法验证用机参与了标准方法验证的全过程。/pp style="TEXT-ALIGN: center"img title="11.jpg" style="HEIGHT: 195px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/insimg/c598e65a-823e-4e59-b071-e376c65b29e5.jpg" width="450" height="195"//pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img title="12.jpg" style="HEIGHT: 506px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/noimg/e3ffe17f-a853-4ceb-9a8f-1a21f6e5d9a1.jpg" width="450" height="506"//pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"strong图12 HJ/ T195~200(2005)的标准评审专家名录/strong/pp  气相分子吸收光谱法已经广泛应用在38项国家及地方标准中:/pp style="TEXT-ALIGN: center"img title="01.jpg" src="http://img1.17img.cn/17img/images/201711/noimg/a1f2a95f-d307-4679-bd0d-37fba719f76c.jpg"//pp style="TEXT-ALIGN: center"img title="02.jpg" src="http://img1.17img.cn/17img/images/201711/noimg/44bc612d-f84e-402d-b35d-c3ea3544a7dd.jpg"//pp style="TEXT-ALIGN: center"strong表1 GPMAS已应用的行业标准目录/strong/pp  随着技术水平的不断发展,经过16年,臧平安先生带领的技术团队陆续推出了AJ-2500、AJ-3000、AJ-3000plus等多个型号的第二代及第三代气相分子吸收光谱仪;逐步确立和完善了仪器的研发方向、技术思路、技术框架、技术路线以及要突破的关键技术等,在保证分析准确性的基础上,满足水环境监测工作的要求,实现整机自动化程度、检测流程优化、检测精度、可靠性等方面的进步作为总体研发目标,研发和建立拥有自主知识产权的、更加智能化、更加自动化的快速检测仪器,对前处理系统、进样系统、配液系统、气液分离系统、光学系统和检测系统进行集中技术攻关,满足气相分子吸收光谱仪对样品进行完全自动化检测的需求;同时制定符合水环境监测工作实际要求的检测标准。 /pp style="TEXT-ALIGN: center"img title="QQ截图20171107142210.jpg" src="http://img1.17img.cn/17img/images/201711/noimg/0af2abe4-d615-427a-acd4-cd2bc2e8ce7b.jpg"//pp style="TEXT-ALIGN: center"strong表2 气相分子吸收光谱仪系列产品/strong/pp  臧平安先生带领的团队研制的第三代气相分子吸收光谱仪AJ-3000 plus先后荣获“2015年科学仪器行业优秀新产品奖”、“2017 CISILE自主创新金奖”、“2017 BCEIA金奖”,这个方法和仪器已经获得分析行业及使用客户的广泛认可。同时作为由我国自主研发创新的科学仪器,以及其对水质检测分析的影响,国家水利部欲将其列为水利行业标准,在水利部门广泛使用。于2015年底,中国水利学会作为国家标准委办公室团体标准试点单位,将“气相分子吸收光谱法”作为第一批中国水利学会团体标准立项,安杰科技作为此系列标准的主要起草单位参与了从立项到成稿的过程。至2017年6月29日,《水质 氨氮的测定 气相分子吸收光谱法》(T/CHES 12~16-2007)等5项标准颁布,并于2017年9月1日起实施。/pp style="TEXT-ALIGN: center"img title="13.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/42f8f23a-11ef-4211-a7a9-eba40bf0cbdc.jpg"//pp style="TEXT-ALIGN: center"strong图13 水利标准发布公告/strong/pp style="TEXT-ALIGN: center"img title="14.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/6a0249f9-7879-44b5-ab7f-77b6f328e6ad.jpg"//pp style="TEXT-ALIGN: center"strong图14 获得行业多项荣誉奖励/strong/pp  气相分子吸收光谱仪随着技术的突破和创新,其检测限已能覆盖低浓度的范围,能针对更多复杂环境水质进行检测,同时也突破了在高海拔区域使用的困境。2017年10月25日“AJ-3000 PLUS气相分子吸收光谱仪”在海拔约3700米的西藏拉萨调试完成并成功验收,标志着气相分子吸收光谱仪作为一种能够适应高原地区环境监测的分析仪器通过实用检验。/pp  气相分子吸收光谱仪在环境、水利、海洋、农业、化工、石油等行业的广泛应用,以及其使用便捷、高效、快速的优点,已逐渐成为市场的潜力军,引起了各个行业的关注,凸显了其巨大的市场前景。作为该方法和仪器的原创单位,臧平安先生带领的技术团队秉承着“源于传承、勇于创新、精于技术、重于服务”的理念,进一步强化技术创新,提升产品质量,将气相分子吸收光谱技术发扬光大。/pp style="TEXT-ALIGN: right"(作者:臧平安)/p
  • 中科院物理所成功研制高精度脉冲升温-纳秒时间分辨中红外瞬态光谱仪
    &ldquo 十年磨一剑,不敢试锋芒,再磨十年剑,泰山石敢挡&rdquo 。每一位从事实验研究的科研人员都梦想手中有一把利器,能够和侠客一样在科学的天地里纵横天下,快意恩仇。然而当看准一个研究方向后,手头不可能都有现成的设备,尤其是遇到国外设有技术壁垒的时候。  5月27日,Review of Scientific Instruments 发表了中科院物理研究所软物质物理重点实验室翁羽翔研究组的一篇题为A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity的仪器研制论文,便是一项磨剑之作。  蛋白质的动态结构信息是理解其生物学功能的基础。为此国际上发展多种蛋白质动态结构的测量方法,各有千秋。脉冲升温-纳秒时间分辨瞬态红外光谱便是其中的一种,相比较而言,该方法的特点时具有高的时间分辨率。其中涉及的关键设备之一为可调谐连续工作中红外激光源,用于蛋白质二级结构变化的红外指纹光谱指认。由于其在军事用途方面的敏感性,在2009年之前一直属于对华出口限制物资。  翁羽翔研究组长期致力于脉冲升温纳秒时间分辨红外光谱技术的发展及其在蛋白质动态结构方面的应用研究。该课题组与大连理工大学于清旭教授开展长期合作,于2005年建立了基于国内一氧化碳气体中红外激光技术的宽谱带脉冲升温-时间分辨瞬态光谱仪(测量精度为千分之一的吸光度差10-3&Delta OD ,Chin. Phys. 2005, 14, 2484),并用于蛋白质动态结构的研究,取得了系列成果(Biophysical Journal, 2007,93, 2756-2766  2009, 97, 2811-2819  Scientific Reports, 2014, 4,4834)。在前期大量工作的基础上,该课题组意识到只有将已有设备的测量精度再提高一个数量级,即到达万分之一的吸光度差(10-4&Delta OD)之后才能满足普适性要求,由此对脉冲升温光源和一氧化碳气体红外激光光源提出更高的要求。  为此该课题组在2008年申请了中科院科研装备研制项目,提出研制新一代具有国际先进水平的脉冲升温-纳秒时间分辨中红外吸收差光谱仪 包括研制高稳定连续输出可调谐一氧化碳中红外激光探测光源,以及研制新型的脉冲激光加热光源,即空间模式稳定、输出能量稳定的纳秒调Q的Ho:YAG脉冲近红外激光光源(2.1微米,与安徽光机所吴先友研究员合作)。该设备对蛋白质细胞色素c的脉冲升温-时间分辨中红外光谱测量结果表明,在蛋白质酰胺I' 光谱范围(1600-1700 cm-1)内达到的平均测量精度为2× 10-4&Delta OD 。该指标目前领先于国际上同类设备。论文第一作者为物理所博士研究生李得勇,署名单位为中科院物理所,安徽光机所和大连理工大学,并申请了国家发明专利。  该工作的意义在于,通过对高性能设备的自主研发,不仅能够满足基础研究的需求,同时还带动了国内特种激光技术的发展。  此项工作得到了中科院科研装备研制项目和国家自然科学基金委的资助。  图例. 脉冲升温诱导的细胞色素c在重水中温度由25℃阶跃到35℃、温度跳跃2微秒后在酰胺I' 内的瞬态吸收谱。作为比较,实线为35℃和25℃间测得的傅里叶红外吸收差谱。
  • 天美爱丁堡稳态/瞬态荧光技术研讨会在南方科技大学成功举办
    2019年4月19日,天美(中国)科学仪器有限公司在南方科技大学举办了“爱丁堡稳态/瞬态荧光光谱仪技术研讨会”。在本次研讨会中有来自深圳各大高校的多名从事光谱研究的用户、专家和老师出席了此次会议。此次研讨会的宗旨是让各位老师可以借助最先进的分析技术,为与会者提供一个公开的技术交流平台,更多地汇集稳态瞬态荧光用户在应用上的疑难问题,提高科研和仪器使用的效率。   天美公司分析产品线副总监吴灵威先生对天美公司做了简介,介绍了天美公司的近远期目标、发展历程、产品线和售后服务体系。爱丁堡公司Johnny先生、天美公司张轩先生,针对荧光吸收光谱仪和稳态/瞬态荧光光谱仪最新应用方向和特殊定制高端附件耦合及瞬态吸收技术的应用的做了会议报告。   此外,南方科技大学陆为老师也分享了使用荧光光谱仪获得的科研成果。   来到用户身边,主动帮助用户解决实际问题,体现了天美一直倡导的“服务至上”理念。天美公司作为全球科学仪器的知名供应商和科研工作的助手,一直致力于不断提升产品质量,不断引进国外先进的技术和服务科研工作作为天美公司的职责,让我们携起手来,为科研工作服务。 关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 1250万!哈尔滨工程大学微区瞬态拉曼光谱仪和全时域瞬态光谱仪采购项目
    一、项目基本情况1.项目编号:2034-234GFZBGJ300项目名称:哈尔滨工程大学微区瞬态拉曼光谱仪采购项目预算金额:680.000000 万元(人民币)最高限价(如有):680.000000 万元(人民币)采购需求: 序号产品名称数量简要技术规格备注1微区瞬态拉曼光谱仪1套详见招标文件合同履行期限:详见招标文件本项目( 不接受 )联合体投标。2.项目编号:2034-234GFZBGJ299项目名称:哈尔滨工程大学全时域瞬态光谱仪采购项目预算金额:570.000000 万元(人民币)最高限价(如有):570.000000 万元(人民币)采购需求: 序号产品名称数量简要技术规格备注1全时域瞬态光谱仪1套详见招标文件合同履行期限:详见招标文件本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月05日 至 2023年11月10日,每天上午8:30至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:按本公告第4部分规定的方式方式:按本公告第4部分规定的方式售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:哈尔滨工程大学     地址:哈尔滨市南岗区南通大街145号        联系方式:0451-82519862      2.采购代理机构信息名 称:宜国发项目管理有限公司            地 址:哈尔滨市道里区群力第四大道399号汇智广场中楼401            联系方式:佟龙、王金丹、朱国凤0451-55671212            3.项目联系方式项目联系人:佟龙、王金丹、朱国凤电 话:  0451-55671212
  • EI中国行-暨爱丁堡稳态/瞬态荧光光谱技术全国巡讲及回访
    每年春季,天美(中国)科学仪器有限公司为了回馈用户会在全国举办一系列的巡讲及用户回访活动,带你畅游发光光谱应用世界,帮你解决令人困惑应用问题。   4月伊始,天美(中国)科学仪器有限公司携荧光爱丁堡仪器在全国开始了一系列的技术应用研讨会及用户回访活动,由北京出发,北至长春,南至广东,期间途径天津、郑州、杭州、武汉、南昌五座城市,横跨中国大陆,是真正的千里行。   会议由天美各大分公司经理主持,并对天美公司和爱丁堡公司的发展历程及服务体系进行了介绍,由英国爱丁堡公司Johnny Bray先生和天美应用工程师张轩先生分享了爱丁堡稳态和瞬态荧光光谱、瞬态吸收光谱的最新技术以及荧光光谱仪的应用技巧。 4月10日,长春站-吉林大学 4月11日,天津站-天津师范大学 4月13日,郑州站-郑州中州国际酒店 4月14-15日,杭州站-浙江大学量子点化学、物理与应用研讨会(2018) 4月17日,武汉站-武汉大学 4.18日,南昌站-南昌大学 4.20 广州站-华南师范大学  各站研讨会参与老师,均来自相关领域各大高校及科研单位,精彩的内容分享引起了参会人员的极大兴趣和热烈讨论,现场交流和讨论的气氛非常热烈。通过本轮的全国巡回研讨会,各位老师增强了对于荧光技术的了解,拓展了仪器的应用空间,解决了一些实际应用中的问题,期待在以后工作中更多合作。全国性的应用技术巡讲体现了爱丁堡仪器对中国市场的重视,也体现天美公司作为国内知名科学仪器供应商,始终把对用户的技术服务作为立足之本的理念,天美公司将继续秉承客户至上的原则,为客户提供更多更好的服务。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡sgx主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 froilabo公司、瑞士precisa公司、美国ixrf公司、英国 edinburgh instruments公司等多家海外知名生产企业和布鲁克公司scion气相和气质产品生产线,加强了公司产品的多样化。
  • 首台中国版高端原子吸收光谱正式下线交付用户
    今天,是上海光谱发展历程中一个值得纪念的日子,我国第一台在国内市场销售的高性能全自动火焰/石墨炉原子吸收光谱仪正式下线。  该产品是上海光谱在国际版产品基础上,在产品质量,可靠性和产品性能与功能经过国际市场检验,被广泛认可的情况下,根据国内市场特点进行汉化的中国版高端原子吸收产品,产品一经介绍即被国内用户所接受,并在国内的几次招投标中,连续很多次击败国外品牌产品,中标赢得产品供应权。  该产品是上海光谱实施科技部十二五重大专项和上海市科委支撑项目取得的成果,也是上海光谱面向国际,引进国际知名专家,以国际化标准和要求打造国际化产品的成果。它不仅标志着我国的高端大型仪器已经走向世界,与国际知名品牌同台竞技,也意味着在国内高端产品市场,拉开与国际知名品牌同台竞的序幕。  今天既是我国第一台高性能全自动火焰石墨炉原子吸收光谱仪下线的日子,也是交付用户的日子,上海光谱将以此为新的起点,向着新的目标,共圆全体光谱人共同的梦。
  • 气相分子吸收光谱技术交流会成功召开
    pstrong  仪器信息网讯/strong 2015年10月30日,由中国仪器仪表行业协会分析仪器分会主办,上海安杰环保科技有限公司(以下简称:安杰科技)承办的“气相分子吸收光谱技术应用交流会”在北京召开。来自中国仪器仪表行业协会、中国环境监测总站、中国农业科学院、北京市理化分析测试中心的多位专家和安杰科技的用户参加了此次会议。安杰科技还在会议上发布了其新产品—AJ4000气相分子吸收光谱仪。/pp style="TEXT-ALIGN: center"img title="IMG_0746.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/58b46c34-2fa1-49db-8a59-70c8618aef64.jpg"//pp style="TEXT-ALIGN: center"strong会议现场/strong/pp style="TEXT-ALIGN: center"img title="IMG_0757.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/f33dd09a-3116-48ce-a1da-98184892c306.jpg"//pp style="TEXT-ALIGN: center"strong嘉宾致辞/strong/pp  中国农业科学院仝乘风教授、中国仪器仪表行业协会闫增序先生和安杰科技郝俊董事长分别致辞,希望安杰科技越来越好。闫增序先生表示,在BCEIA2015上看到我国仪器行业还是各大外国厂商占主体,感到很不安。但今天能看到像安杰科技这样可以在分子光谱领域取得自己独特进展的企业还是很高兴。同时也很高兴看到有一批老同志为国产仪器的技术进步在努力,同时有一批年轻人也开始致力于国产仪器的成长,希望安杰科技不断发展提升,踏踏实实地努力,产品能从环保领域向农业等其他领域扩展。最后,闫增序先生希望与会的用户多关注国产仪器,多给国产仪器机会。/pp  随后中国环境监测总站齐文启研究员与仝乘风教授、闫增序先生和郝俊董事长共同为安杰科技新产品AJ-4000气相分子吸收光谱仪揭幕。/pp style="TEXT-ALIGN: center"img title="IMG_0764.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/57e8b0a1-f5aa-48bb-ba55-758fc6a9821c.jpg"//pp style="TEXT-ALIGN: center"strongAJ-4000气相分子吸收光谱仪揭幕/strong/pp  安杰科技孙璐总经理为大家介绍了此款新产品。气相分子吸收光谱仪是将被测成分通过化学反应,定量分解成气体,利用气液分离装置将反应气体转入气相载入吸光管,依据气体分子对特征光谱的吸收来测定被测成分含量。目前,已经比较成熟的测定项目包括硝酸盐氮、亚硝酸盐氮、氨氮、凯氏氮、总氮和硫化物。AJ-4000气相分子吸收光谱仪与前三代产品相比有以下特点:1)一体化设计,AJ-4000将样品综合处理模块和在线稀释模块内置,产品外形更简洁,试剂瓶五位一体,放置更加规范化;2)模块化设计,将样品综合处理、在线稀释、双气路、液位自动监测、电路液路光路气路、尾气回收、软件功能等都进行了模块化设计;3)功能升级,可以实现总氮在线消解、氨氮在线氧化、硝酸盐氮在线还原,一次设定多种检测项目等。/pp  本次交流会还安排了四个专家报告,安杰科技臧平安总工程师介绍了安杰科技气相分子吸收光谱仪十四年的发展历程,齐文启研究员、北京市理化分析测试中心陈舜琮研究员和仝乘风教授分别就气相分子吸收光谱技术在环境监测、农业和饮用水监测方面的应用进行了探讨。/pp style="TEXT-ALIGN: center"img title="IMG_0784.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/aa5b796e-3ec9-405f-b27f-5065662e505d.jpg"//pp style="TEXT-ALIGN: center"strong上海安杰环保科技有限公司臧平安总工程师/strong/pp  气相分子吸收光谱技术兴起于20世纪70年代,臧工于1988年开始研究此技术,并于1990年和1992年先后获得“亚硝酸根离子的测定方法”和“硝酸盐氮的测定方法”两项发明专利。2001年,臧工成立安杰科技并推出第一代气相分子吸收光谱仪AJ2100,随后分别于2007年和2013年推出第二代AJ2200/2500和第三代AJ3000/PLUS产品,今天推出的AJ4000为安杰科技的第四代产品。而且在臧工的推动下,2005年环保部颁布了气相分子吸收光谱法测定水中硝酸盐氮、亚硝酸盐氮、氨氮、凯氏氮、总氮和硫化物的六个环保标准。/pp style="TEXT-ALIGN: center"img title="IMG_0794.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/2a281088-e889-4002-9730-5b3635a08627.jpg"//pp style="TEXT-ALIGN: center"strong中国环境监测总站齐文启研究员/strong/pp  齐文启研究员详细分析了气相分子吸收光谱法与其他方法测定硝酸盐氮、亚硝酸盐氮、氨氮、凯氏氮、总氮和硫化物的优缺点,尤其是对水质检测中出现的氨氮大于总氮的现象给予了详细的解释。在纳氏试剂法测定氨氮过程中,由于空白样品在410nm处也有吸收,如果空白扣除不好,氨氮实际测定值很容易偏大;在碱性过硫酸钾紫外分光光度法测定总氮消解过程中,如果密封不好或者消解后太早或者太晚打开消解管,很容易使铵态氮溢出,造成总氮测定值偏小,因此就会出现氨氮大于总氮的现象。而采用气相分子吸收光谱法则会避免上述现象的发生。/pp style="TEXT-ALIGN: center"img title="IMG_0815.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/fc32f98f-23ea-42bf-b2b2-14a7e9e72812.jpg"//pp style="TEXT-ALIGN: center"strong北京市理化分析测试中心陈舜琮研究员/strong/pp  陈舜琮研究员认为目前高锰酸盐指数的测定方法存在不易测定较高浊度和色度的样品、人工操作误差大、样品和试剂消耗量大、操作步骤繁多、难以实现高精度的自动化操作等缺点,而气相分子吸收光谱法可以有效解决上述问题。陈研究员将水样经过定量硫酸和高锰酸钾消解后,加入定量的亚硝酸钠溶液代替草酸钠溶液,之后使用气相分子吸收光谱法测定剩余亚硝酸钠的量。/pp style="TEXT-ALIGN: center"img title="IMG_0827.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/a42c3ba4-57d7-44e4-a231-1268a22f5157.jpg"//pp style="TEXT-ALIGN: center"strong中国农业科学院仝乘风教授/strong/pp  仝乘风教授为我们介绍了利用气相分子吸收光谱法测定土壤中氮元素含量的可能性。目前,农业领域土壤氮的测定主要存在的问题是浸提液较混浊,而分光光度法对样品浊度要求高,速测仪灵敏度和精度低,间断或流动注射仪设备昂贵。气相分子吸收光谱法测定样品可浑浊,过程简单,速度快,人员要求低,设备价格低,灵敏度和精度高,试剂便宜,因此是一种有效的测定土壤氮的方法。当然要想能在农业领域真正应用,此方法还需要验证和标准化。/pp  最后,安杰科技还热情地邀请了与会人员参观了其位于北京的生产基地。/pp style="TEXT-ALIGN: center"img title="IMG_0773.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/255c7e09-1979-4496-af5c-1474e2de6943.jpg"//pp style="TEXT-ALIGN: center"strong与会人员合影/strong/pp style="TEXT-ALIGN: right"strong撰稿:李学雷/strong/p
  • 国内原子吸收光谱仪行业现状
    原子吸收光谱仪的可应用于冶金、地质、采矿、石油、轻工业、农业、医药、卫生、食品以及环境监测等。  经过一代科学技术工作者的努力,目前,我国已经成功地掌握了原子吸收光谱仪的设计、生产技术。在火焰分析方面,与国外同类型仪器相比,国产仪器的典型元素检出极限达到相同水平,甚至超过国外。但由于我国在新产品研究开发方面投入不足,使国产仪器在自动化程度和长期工作可靠性方面还有不少差距,尤其是石墨炉分析技术差别更大。为了改变这一落后面貌,北京、上海等地的企业及研究所着重投入资金用于无火焰石墨炉技术的研究开发,在分析重复性与元素检出限等方面取得不少进展,并有新产品推出。  2014年1-5月,我国原子吸收光谱仪行业市场规模达到了8.7亿元,同比增长了11.7%。2013年,我国原子吸收光谱仪行业市场规模达到了17亿元,同比增长了5.6%。  2011-2014年我国原子吸收光谱仪行业市场规模及增长情况    数据来源:国家统计局  2014年1-5月,我国原子吸收光谱仪行业产值达到了6.3亿元,同比增长了11.7%。2013年,我国原子吸收光谱仪行业产值达到了12.1亿元,同比增长了3.4%。  2014年1-5月,我国原子吸收光谱仪行业出口达到了1130万美元,同比增长了5.1%。2013年,我国原子吸收光谱仪行业出口达到了1960万美元,同比减少了19.4%。  2014年1-5月,我国原子吸收光谱仪行业进口达到了4620万美元,同比增长了10.2%。2013年,我国原子吸收光谱仪行业进口达到了9220万美元,同比增长了4%。  分销渠道在市场营销策略中起着关键作用,它们提供了将产品从生产高商转移到工业用户手中的手段,原子吸收光谱仪作为一种特殊的工业品,客户资源相对消费品而言较少。分销渠道以直销营销为主,渠道多为扁平化。  仪器企业一般采用以下几种类型:从生产商到最终用户 从生产商到代理商到最终用户 从生产商到代理商到批发商再到最终用户。  由于教育,政府,科研院所等行业相对集中,采取第一种方式较好。厂矿企业由于分散广,信息难以收集,采用后两种方式相对较好。  分析仪器属于高新技术、集成化较高的产品,在国外高精尖产品闯入中国市场时,国内企业必将面临冲击,实力不足的中国企业在未来的市场竞争中将会被淘汰出局。其实国内很多产品并不弱,但缺乏各个专业化企业间的联合,才造成终端产品与国外产品差距的拉大。  此外,大多国产仪器还不能实现模具化生产,阻碍了其水平的提高。民营企业由于资金不足,相对国企来说,还缺乏国家的支持,又要把生产利润的很大部分投入到研发中去,因此只能是有心无力。要想和国外产品竞争,并且最终胜出,国家的支持很重要。另外,国内众多企业还可以联袂出手。注:以上文中所列观点、数据不代表本网立场,仅供读者参考。
  • 世界首台气相分子吸收光谱仪的诞生——上海安杰环保发展回顾
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  供稿:上海安杰环保科技股份有限公司/span/pp  上海安杰环保科技股份有限公司(简称“安杰科技”),原上海安杰环保科技有限公司,成立于2001年12月29日。公司在成立之初租用了50平方米的工作室,臧平安高级工程师担任总负责人,技术人员有来自上海宝钢仪器修理科、上海分析仪器厂、上海天美仪器厂和上海光学仪器厂的退休和兼职软硬件高级工程师5人,股东2人,总共8人。公司整体技术力量较强,成立初期就设计开发了AJ-2100气相分子吸收光谱仪,也是世界上第一台气相分子吸收光谱仪。/pp style="margin-top: 10px margin-bottom: 10px "  strong一、发明气相分子吸收光谱法,获得环保部认可/strong/pp  安杰科技总工程师臧平安发明了测定亚硝酸根离子和硝酸根离子的方法并申请了发明专利,他是气相分子吸收光谱法(GPMSA)的杰出开拓者。气相分子吸收光谱法是“节能环保”的分析监测手段,它不仅抗干扰性能强、测定样品速度快、节约化学试剂,而且不使用有毒有害的化学试剂,因而受到了广大分析检测工作者的欢迎。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/5d3e3ebf-88d0-478c-ba4c-bf05151d54c8.jpg" title="安杰环保1_副本.jpg" alt="安杰环保1_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "臧平安“亚硝酸根离子的测定方法”发明专利证书/span/pp  经过多年努力,氨氮、硝酸盐氮、亚硝酸盐氮、凯氏氮、总氮及硫化物测定方法于2002年被纳入了“水和废水监测分析方法(第四版)”。为更容易推广这一节能环保的分析监测手段,应广大分析监测者及监测站等的要求,并在中国环境监测总站领导齐文启研究员的支持和指导下,该系列监测方法于2004年正式获得国家环保部科技标准司的批准,以安杰科技生产的AJ-2100气相分子吸收光谱仪作为指定验证仪器,组织了全国范围内6家环境监测站,对“氨氮等6项气相分子吸收光谱法”进行了方法验证,将取得的验证数据进行了“数理统计”、起草了“标准编制说明书”,并按照行业标准格式编制了“氨氮等6项气相分子吸收光谱法”标准。随即于2005年7月,由国家环保部科技标准司在全国范围内召集了9位环境监测系统的知名、权威专家,在上海召开了“氨氮等6项气相分子吸收光谱法”的标准审定会议,与会专家一致认为:/pp  (1)“氨氮、硝酸盐氮、亚硝酸盐氮、凯氏氮、总氮、硫化物的气相分子吸收光谱法均通过简单的化学反应产生相应的气态分子,通过测定气态分子对特征谱线的吸收达到测量目的。/pp  (2)方法选择性好、操作简单、快速、测定结果准确。/pp  (3)所编制的标准方法避免了汞、酚二磺酸、对氨基二甲基苯胺、对氨基苯磺酰胺、N-(1-萘基)-乙二胺等有毒试剂的二次污染。/pp  (4)方法编写用语规范、整体结构清晰、操作性强。/pp  (5)可以作为HJ/ T195-200(2005)国家环境保护保行业标准”。/pp style="margin-top: 10px margin-bottom: 10px "  strong二、世界第首台气相分子吸收光谱仪的诞生/strong/pp  臧平安高级工程师从1986年开始研究气相分子吸收光谱法。他所属的宝钢环境监测站一直在使用原子吸收分光光度计进行气相分子吸收光谱法的测定,由于其灵敏度达不到要求,因此臧平安的理想是退休后研发一种专用的气相分子吸收光谱仪器。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/e0ed24dd-281e-409e-ae72-ded31104ed90.jpg" title="安杰环保2_副本.jpg" alt="安杰环保2_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "一九九三年十二月,中国科技信息杂志社编著的“国家级科技成果研制功臣名录”中第64页中,了收录了“亚硝酸根离子的测定方法”/span/pp  臧平安高级工程师自参加工作直至1996年退休,一直是从事仪器分析方面的工作,先是做极谱分析,之后就是原子吸收分析。臧平安爱好电子技术,参加过电子技术培训班,连续订购了多年的“无线电”杂志,买了许多“电子技术”参考书,孜孜不倦地学习电子技术。他工作认真、细心严谨 做仪器分析久了,不但会使用仪器测定样品,还能修理和改装极谱仪,他曾经花了近3年时间,于1979年独自设计组装了一台YXF-79型原子吸收分光光度计,使用了13年时间仍然好用。由于有装配仪器的功底,他在1994年将要退休的时候就着手谋划研发气相分子吸收光谱仪样机的准备工作。/pp  但是,他于1996年退休后并未马上开始研发仪器,而是在宝钢“退管会”参加了“太极拳”和“交谊舞”两期学习班,期间还炒过股票。休整了两年的时间,直到1998年才正式研发样机。仅用了一年多的时间就研发出了首台气相分子吸收光谱仪样机。/pp  在研发样机时并未明确要将仪器推向市场。样机研制成功后退掉了租的房子,将仪器搬到家里摆放在茶几上。不时地测试着仪器的性能,以其能够测出卓越的技术指标而感到心情愉悦。有时竟然把这台样机当做玩具消磨时间,还不时地为同事测试家里自来水中的亚硝酸根离子。他曾经测试对比过“活性炭水质净化器”消除亚硝酸根离子的效果。/pp  在一天傍晚,他将烧水壶灌满了自来水,放置一个晚上,到第二天早晨从水壶倒出一杯水,打开水龙头放出一杯新鲜的自来水,再从净水器中放出一杯净化的水。将这3杯水分别用这台样机进行了测定。测定结果竟然是早晨放出的新鲜自来水中亚硝酸根离子含量最低,头一天放在烧水壶里的水含量次之,而净化器放出来的净化水含量特别高。/pp  通过这个试验说明,放在水壶里未烧开的水所含的铵离子受到细菌的作用,一部分转化成了亚硝酸根离子 从自来水龙头放出来的水是密闭在管道路里的,没有氧气,细菌很难将其转化成亚硝酸根离子 而水质净化器出来的水含量高的原因是净化器使用时间过长,其中的活性炭吸附了过量的亚硝酸根离子正在脱落阶段,早就应该更换滤芯中的活性炭了。这说明使用水质净化器一定要及时更换滤芯,这正是人们容易忽略或者是为了省钱想多用些时间反而喝了许多污染严重的水。这个试验也说明,用气相分子吸收光谱仪能够非常容易地在家里测定水中的有害物质,因为测定用的化学试剂仅仅是无毒的柠檬酸和无水乙醇。/pp  亚硝酸根离子是公认的诱发致癌物质,通过这次试验,臧平安拆除了这个水质净化器。免得使用不当,花了钱还要受毒害。上海自来水的水质还是比较清洁的,所以从此就直接使用自来水一直到今天。/pp  虽然不曾想到要将研发的仪器推向市场,但当上海分析仪器厂的吴洪池总工程师到中国环境监测总站找到齐文启研究员询问:“环境监测方面有没有新的仪器要研发”时,齐文启研究员立刻说:“你去找宝钢的臧平安,他有新东西”。/pp style="margin-top: 10px margin-bottom: 10px "  strong三、成立上海安杰环保科技有限公司/strong/pp  那是1999年的7月份,以当时上海分析仪器厂的“三产”——自立仪器厂为甲方、上海分析仪器厂以吴洪池为首的6人为乙方、臧平安作为技术股为丙方。三方合作进行了气相分子吸收光谱仪的生产。在臧平安研发的样机基础上,采用了电脑控制和数据处理。所以于2000年非常顺利地组装好了三台商品样机,命名为GMA-2000型气相分子吸收光谱仪。/pp  三台样机由上海市技术监督局鉴定合格后,全部由臧平安销售并为用户进行了安装调试。/pp  生产和销售了三台样机后,由于合作的乙方人员调离和吴洪池的退休,“三产”已不具备生产能力。另外,在合作期间臧平安体会到,采用大规模集成电路装配气相分子吸收光谱仪远比组装YXF-79型原子吸收分光光度计来得容易。在这种情况下,成立了上海安杰环保科技有限公司,专业研发生产AJ-2100型的气相分子吸收光谱仪。/pp  AJ-2100型的气相分子吸收光谱仪虽然是手动操作的仪器,但是比起已有的光度法,操作十分简单,比较容易得到较好的分析结果 测定速度之快前所未有。例如,测定一个样品的硝酸盐氮只需2分钟,与酚二磺酸光度法相比测定速度提高了60倍,与戴氏合金蒸馏光度法相比,提高了180倍。再如硫化物的测定,与对氨基二甲基苯胺光度法相比,测定速度也高了约15倍,但是气相分子吸收光谱法测定硫化物操作极其简便,测定结果的相对标准偏差在2%左右,远远高于光度法的12%。/pp  尽管如此,随着环境水质污染日益严重、监管要求提高,检测样品越来越多,手工操作的气相分子吸收光谱仪越来越不能满足环境监测的要求。在这种情况下安杰科技相继研发出了半自动化AJ-2200和全自动化AJ-2500气相分子吸收光谱仪。但是,全自动化的仪器在一段时间内存在着不稳定和不可控的质量问题,不能满足环境监测的需求。/pp style="margin-top: 10px margin-bottom: 10px "  strong四、适应时代发展,改革重组/strong/pp  直至2008年,安杰科技是气相分子吸收光谱仪的唯一供应商。为了适应发展要求,在技术力量相对不足的情况下,公司于2013年进行了改革重组扩大了规模,注入和加强了新的技术力量,壮大了技术队伍。逐步确立和完善了仪器的研发方向以及要突破的关键技术,在保证分析结果的准确性和满足水环境监测工作要求的基础上,实现整机自动化、检测流程优化 集中力量开发具有自主知识产权、更加智能化、更加自动化的快速检测仪器。期间陆续推出了AJ-3000、AJ-3000Plus、AJ-3700等最新产品,产品在稳定性和自动化方面有了大幅度的提升。/pp style="margin-top: 10px margin-bottom: 10px " strong 五、成为科技创新板首家分析仪器挂牌企业/strong/pp  2016年,上海安杰环保科技有限公司正式更名为上海安杰环保科技股份有限公司,成功挂牌上海科技创新版(股票代码300089),实现资本对接,成为国家科技创新板首家分析仪器制造挂牌上市企业。/pp  通过不懈的努力,安杰科技的气相分子吸收光谱仪以其优异的性能逐渐获得了市场的关注和认可,分别获得了中国仪器仪表行业协会颁发的自主创新金奖、中国分析测试协会颁发的CAIA二等奖和BCEIA金奖、仪器信息网颁发的科学仪器优秀新产品奖、和中国仪器仪表学会分析仪器分会颁发的朱良漪青年创新奖。公司首席科学家臧平安先生被授予2018年度“中国科学仪器研发特别贡献奖”。为进一步提升产品的品质和鼓励创新,安杰科技获得了2018国家科技部“重大科学仪器设备开发”重点专项的支持。/pp  上海安杰环保科技股份有限公司,以拥有专利的气相分子吸收光谱法为核心技术,在水质检测领域走出了一条国产高端科学仪器研发自主创新之路,产品拥有完全自主知识产权,为国家打造“青山、绿水、蓝天”的目标正在做出不懈的努力。/p
  • 气相分子吸收光谱仪的计量校准方法
    p  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"建立一种科学合理且可操作性强的气相分子吸收光谱仪校准方法。从仪器的工作原理及结构入手,对该类仪器提出了检出限、线性相关系数、定量重复性等性能评价参数。利用国家相关标准物质对其检出限的测量不确定度进行了评定,统一了校准方法,有力地保证了测量数据的准确性、溯源性。对计量技术机构开展该类仪器的校准工作规范的制定有一定的指导意义。/span/pp  气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段,利用基态的气体分子吸收特定紫外光谱进行定量的一种测量方法。在水质监测领域中,主要是对水中亚硝酸盐氮、硝酸盐氮、总氮、硫化物、氨氮等物质的测量,通过在特定的分析条件下,将待测成分转变成气体分子载入测量系统,测定其特征光谱吸收[1–3]。这种分析技术在国内发展逐渐成熟,已有不少报道和国家标准的发布[4–7]。/pp  气相分子吸收光谱仪的技术性能优劣直接影响测量的准确性,但是至今国家还没有气相分子吸收光谱仪的校准规范。笔者通过开展对气相分子吸收光谱仪校准方法的研究,将测量数据进行量值溯源,并对仪器检出限进行不确定度的评定,保证测量数据的量值溯源与传递的唯一性,为各类标准和方法的制定提供技术保障。/pp  1.气相分子吸收光谱仪工作原理及特点/pp  气相分子吸收光谱仪是基于被测成分转变成气体分子对特定波长的辐射光具有选择性吸收,且光的吸收强度与被测成分浓度的关系遵守朗伯–比耳定律从而实现对待测成分进行定量分析的仪器。气相分子吸收光谱仪主要由光学系统、进样系统、在线加热及反应分离器系统、检测系统组成,具有分析速度快、抗干扰能力强、自动化程度高、测量范围宽等特点。/pp  2.校准用主要仪器与试剂/pp  气相分子吸收光谱仪:GMA3202C,上海北裕分析仪器有限公司 /pp  盐酸溶液:4.5mol/L,取81mL盐酸,注入200mL水中,摇匀 /pp  柠檬酸溶液:0.3mol/L,称取64g柠檬酸,溶解于水,转移至1000mL容量瓶中定容,摇匀 /pp  磷酸:10%水溶液 /pp  过氧化氢:30% /pp  实验所用试剂均为分析纯 /pp  实验用水为高纯水 /pp  校准物质:选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,各标准物质信息见表1。/pp  /pp style="TEXT-ALIGN: center"img title="01.png" src="http://img1.17img.cn/17img/images/201807/insimg/01ea0712-b51b-4afa-a85d-f49f59c1a166.jpg"/ /pp  3.校准条件/pp  3.1环境条件/pp  环境温度:15~35℃ 环境相对湿度:≤85%。/pp  室内不得存放与实验无关的易燃、易爆和强腐蚀性的物质,无强烈的机械振动和电磁干扰。/pp  3.2仪器安装及工作条件/pp  仪器:气相分子吸收光谱仪应平稳而牢固地安置在工作台上,电缆线接插件紧密配合,接地良好。/pp  工作条件:针对3种不同的标准物质及不同系列的仪器,按照国家相关标准[8–10]和仪器操作手册进行优化设定,参考工作条件如表2所示。/pp  /pp style="TEXT-ALIGN: center"img title="02.png" src="http://img1.17img.cn/17img/images/201807/noimg/13cf2d6f-2ccc-4f44-ae6b-1ebda5617034.jpg"//pp  4.校准项目和校准方法/pp  每次测定之前,将反应瓶盖插入装有约5mL水的清洗瓶中,通入载气,净化测量系统,调整仪器零点。测定后,水洗反应瓶盖和砂芯。/pp  参考国家标准及测量仪器特性评定方法[8–11],根据仪器的基本性能及以往的校准经验,选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,初定被校仪器的主要计量性能应满足表3的推荐值。/pp /pp /pp style="TEXT-ALIGN: center"img title="03.png" src="http://img1.17img.cn/17img/images/201807/noimg/34d662bd-2657-4cff-bd09-b38fed491846.jpg"//pp  4.1检出限/pp  将仪器各参数调至最佳工作状态,并把标准溶液配制成0,0.5,1,2,5mg/L系列标准使用液。对每一浓度点分别进行3次重复测定,取3次测定的平均值,按线性回归法求出工作曲线的斜率。连续做11次空白样,并计算所得值的实验标准偏差。/pp  检出限按式(1)计算:/pp  cL=3s/b(1)/pp  式中:b——工作曲线的斜率 /pp  s——空白样测定值的标准偏差,mg/L /pp  cL——测量检出限,mg/L。/pp  4.2校准曲线绘制/pp  4.2.1亚硝酸盐氮的测定/pp  用微量移液器逐个移取0,12.5,25,50,125μL亚硝酸盐氮标准溶液于样品反应瓶中,加水至2.5mL,再加2.5mL柠檬酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的亚硝酸盐氮的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.2硫化物的测定/pp  用微量移液器逐个移取0,25,50,100,250μL硫化物标准溶液于样品反应瓶中,加水至5mL,加2滴过氧化氢。将反应瓶盖与样品反应瓶密闭,再加入5mL磷酸,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的硫化物的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.3氨氮的测定/pp  用微量移液器逐个移取0,10,20,40,100μL氨氮标准溶液置于样品反应瓶中,加水至2mL,再加3mL盐酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的氨氮的质量浓度/pp  x(mg/L)绘制校准曲线y=a+bx,并计算相关系数。/pp  4.3定量重复性/pp  将仪器参数调至最佳工作状态,选取分析物的工作曲线中2mg/L的浓度点,重复测量6次。按式(2)计算测得值的相对标准偏差(RSD),即为该物质的仪器定量重复性。/pp  /pp style="TEXT-ALIGN: center"img title="04.png" src="http://img1.17img.cn/17img/images/201807/noimg/189ec940-56dc-40fa-8903-39f43c437e82.jpg"/ /pp  5.不确定度评定/pp  气相分子吸收光谱仪性能的重要指标为检出限,但是其针对其检出限的测量结果不确定度评定84化学分析计量2014年,第23卷,第3期却鲜有报道。笔者依据《实用测量不确定度评定》要求,利用国家相关标准物质,对仪器检出限并进行了不确定度评定,为从事仪器检出限性能比对的技术人员提供参考。/pp  5.1实验数据/pp  3种标准物质的实验数据列于表4、表5。/pp style="TEXT-ALIGN: center"img title="05.png" src="http://img1.17img.cn/17img/images/201807/noimg/f613da10-63cb-41ce-9ece-30dcc8392398.jpg"//pp  5.2不确定度评定/pp  仪器检出限的测量不确定度uc主要由重复性测量、标准曲线引入的不确定度分量构成。下面以测量亚硝酸盐氮检出限为例来进行不确定度评定。/pp  5.2.1重复性测量引入的标准不确定度u(s)/pp  输入量s为亚硝酸盐氮11次空白溶液的标准偏差,故测量平均值的不确定度:/pp  /pp style="TEXT-ALIGN: center"img title="06.png" src="http://img1.17img.cn/17img/images/201807/noimg/e0a734fb-d213-47ef-b70d-aed76db1a14c.jpg"//pp /pp /pp  5.2.2校准曲线引入的标准不确定度u(b)/pp  校准曲线引入的标准不确定度主要来自标准溶液质量浓度定值引入的标准不确定度u1、校准曲线斜率引入的标准不确定度u2。/pp  /pp style="TEXT-ALIGN: center"img title="07.png" src="http://img1.17img.cn/17img/images/201807/noimg/e38c30d1-0393-4f5a-8928-94cec66d0e19.jpg"//pp /pp /pp  式中2%为标准物质的定值不确定度。/pp  /pp style="TEXT-ALIGN: center"img title="08.png" src="http://img1.17img.cn/17img/images/201807/noimg/65345203-b8e4-4538-a1ef-8560756db3d9.jpg"/ /pp  5.2.3合成标准不确定度的评定/pp  由式(2)求得s的灵敏度系数:/pp  c1=3/b=3/0.0625=48(mg/L)/pp  同样斜率b的灵敏度系数:/pp  c2=–3s/b2=–0.0819(mg/L)/pp  根据式(2)求得检出限测量的不确定度:/pp style="TEXT-ALIGN: center"img title="09.png" src="http://img1.17img.cn/17img/images/201807/noimg/4afd3e68-846d-4d49-beae-fbc37134e19c.jpg"//pp  5.2.4扩展不确定度的评定/pp  取k=2,从而求得测量亚硝酸盐氮检出限的扩展不确定度:/pp  U=kuc=2× 0.0032=0.0064(mg/L)/pp  参照测量亚硝酸盐氮检出限的不确定度评定,求得测量硫化物、氨氮二种标物检出限的测量结果不确定度,结果见表6。/pp style="TEXT-ALIGN: center"img title="10.png" src="http://img1.17img.cn/17img/images/201807/noimg/2a35f1b7-cc9a-4ce5-a653-ff41734cb469.jpg"//pp  6结语/pp  结合仪器的工作原理,提出了仪器的校准方法,并通过建立数学模型对仪器检出限进行了合理的不确定度评定,为今后气相分子吸收光谱仪的校准提供了技术参考。建议气相分子吸收光谱仪的校准周期为1年,首次使用前和维修后均应进行校准,以确保水质监测数据的准确、可靠。/pp  参考文献/pp  [1]方肇伦.流动注射分析法[M].北京:科学出版社,1999./pp  [2]臧平安.气相分子吸收光谱法简介[J].光谱仪器与分析,2000(1):1–4./pp  [3]孙成业.气相分子吸收光谱分析法及仪器的应用[J].现代仪器,2002(3):17–20./pp  [4]严静芬.水样中氨氮测定方法比较[J].广州化工,2008,36(2):55–57./pp  [5]臧平安.气相分子吸收光谱分析法测定亚硝酸根离子的研究[J].分析化学,1991,19(2):1364–1367./pp  [6]臧平安.气相分子吸收光谱分析法测定水中硫化物[J].宝钢检测,1997(4):33./pp  [7]国家环境保护总局.《水和废水监测分析方法》[M].4版.北京:中国环境科学出版社,2002./pp  [8]HJ/T195–2005水质氨氮的测定气相分子吸收光谱法[S]./pp  [9]HJ/T197–2005水质亚硝酸盐氮的测定气相分子吸收光谱法[S]./pp  [10]HJ/T200–2005水质硫化物的测定气相分子吸收光谱法[S]./pp  [11]JJF1094–2002测量仪器特性评定[S]./pp style="TEXT-ALIGN: right"  施江焕,李蓓蓓/pp style="TEXT-ALIGN: right"  (宁波市计量测试研究院,浙江宁波315103)/p
  • “AJ-3700气相分子吸收光谱仪”新品鉴定会成功召开
    受上海安杰环保科技股份有限公司委托,中国仪器仪表行业协会于2018年10月16日在上海组织专家,对上海安杰环保科技股份有限公司开发的“AJ-3700气相分子吸收光谱仪”进行了鉴定。出席鉴定会的专家有中国科学院上海生物工程研究中心李昌厚教授,中国计量科学研究院史乃捷高级工程师,中国水利水电科学研究院周怀东教授,南京水利科学研究院李云教授,天津大学黄战华教授,北京市理化分析测试中心陈舜琮研究员。本次鉴定会由李昌厚教授担任主任,中国仪器仪表行业协会郑朝松副秘书长主持会议。安杰科技研发部副总工程师刘丰奎汇报“AJ-3700 气相分子吸收光谱仪”产品研制情况。从项目立项、项目实施、项目成果、综合测评四部分全方面进行了介绍。该新仪器在公司已有产品的基础上,通过功能模块化设计,突破高效连续气液反应分离、多通道稳压恒流气源、高信噪比光电检测等方面进行了二次开发,以满足市场对气相分子吸收光谱仪智能化、自动化的不断需求。与会专家听取了测试、研发人员汇报自检报告、第三方测试报告、查新报告、用户使用报告等鉴定会资料。该仪器的综合技术指标达到同类产品的国际领先水平,鉴定委员会一致同意“AJ-3700气相分子吸收光谱仪”通过新产品鉴定。“AJ-3700气相分子吸收光谱仪”是安杰科技完善公司的产品结构,增强公司的竞争力和生命力,经过市场调研,可行性分析和技术经济分析以及公司自身的生产能力而开发的新产品,在环保、水利、第三方检测、石油化工等行业的水质检测方面有良好的应用前景。
  • 近红外吸收染料的吸收光谱
    |前言近红外吸收染料通常在700~1200nm范围内有最大吸收波长,因其重要的光学性能而应用广泛,如隔热玻璃、激光防护、热写显示、等离子显示器等。为了获取性能优异的近红外吸收染料,需要确定其吸收性能。因此具有近红外波长测定范围的紫外分光光度计必不可少。日立新型紫外分光光度计产品UH5700,检测波长范围190~3300nm波长,同时,标配操作软件UV Solutions Plus具有峰检测功能,可以轻松测定不同近红外吸收染料的吸收光谱。日立紫外可见近红外分光光度计UH5700|应用数据样品制备:将近红外吸收染料粉末溶解于甲苯溶液中,获得待测样品。光谱测定:以甲苯溶液为参比,使用UH5700测定样品的吸收光谱图1 五种近红外吸收染料的吸收光谱1 1纵轴是以每个样品的最大峰值波长归一化后的值UH5700采用连续可变狭缝功能,根据光量大小自动调节狭缝,即使在能量较低的检测器切换波长附近仍然可获得平缓的光谱。如图所示样品约在800~1100nm范围内有最大吸收峰,包含了UH5700的检测器切换波长。 图2 峰检测软件界面2峰高是以每个样品的最大峰值波长归一化后的值图3 峰检测结果UH5700操作软件UV Solutions Plus具有峰检测功能,同时对五种近红外吸收染料进行了峰检测,结果如表所示,可以轻松获取不同样品吸收峰的位置、面积、起始波长等信息。 |总结日立UH5700在近红外波长处获得的数据噪声小,非常适合检测和近红外波长有关的样品。软件中的峰检测功能可以快速分析多个样品的光谱性能,提高工作效率。
  • 千里行-天美公司爱丁堡稳态/瞬态荧光技术研讨会在合肥成功举办
    2017年4月11日,为了答谢广大用户一直以来的支持,天美公司在合肥中国科学技术大学成功举办了天美公司爱丁堡稳态/瞬态荧光技术研讨会,安徽各大高校的多名师生参与了此次研讨会。  本次交流会上,天美公司上海分公司分析产品线经理黄海仙女士向大家介绍了天美公司多年的发展历程,同时来自爱丁堡公司的产品经理Johnny Bray先生以及天美应用工程师张轩先生分享了稳态瞬态荧光光谱及瞬态吸收光谱的原理、特点以及应用。  参会人员对本次研讨会的内容有很浓厚的兴趣,现场积极提问和讨论,学习氛围浓烈,希望我们分享的内容会对老师和同学们日后的科研工作有所帮助,在此也特别感谢中国科学技术大学对天美公司的支持。 关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制