当前位置: 仪器信息网 > 行业主题 > >

水质流速流定仪

仪器信息网水质流速流定仪专题为您提供2024年最新水质流速流定仪价格报价、厂家品牌的相关信息, 包括水质流速流定仪参数、型号等,不管是国产,还是进口品牌的水质流速流定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水质流速流定仪相关的耗材配件、试剂标物,还有水质流速流定仪相关的最新资讯、资料,以及水质流速流定仪相关的解决方案。

水质流速流定仪相关的论坛

  • 【求助】急!恒流泵流速不稳定,求解决方法和性价比高低速恒流泵

    我们实验室进行层析试验,用的是琼脂糖4B凝胶,需要提供15~20ml/h的恒流,之前采用的是GE的pump p-50型泵,用了3年,最近发现流速有点不正常:设定流速为0.3ml/min,运行1天后流速降为0.18左右,咨询供货商,用低浓度酸、碱以较大流速反复冲洗2~3次,每次半小时,再用水冲洗,流动相经抽虑并脱气,,流速调回0.3ml/min,经测定流速,流速正常,可是运行1天后流速又下降了,经检查,泵内密封圈等密封性没有问题,也没有盐析出。有没有人遇到过这样的问题呢?有没有性价比高,流速稳定的泵介绍呢?要求:流速15~20ml/h,恒流,流速稳定,能持续运行。

  • 【求助】纳流泵的流速测量

    突然想到一个问题,纳流泵的流速怎么测试啊。称重的话岂不是要接好久,还是长时间的平均流速,误差会不会太大。有测试过这个老师么?

  • 旋杯式流速仪的原理如何?

    旋杯式流速仪的旋转阻力很小,低、中速时v~n直线性能很好。[url=http://www.ic37.com]中国IC交易网[/url] 但高速性能比不上旋浆式流速仪。旋杯的旋转轴是垂直于水流的,所以也称之为垂直轴式流速仪。 旋杯式流速仪的上、下支承和信号产生部分同样有防水防沙和润滑要求。因为其旋转轴是垂直的,其上部的偏心筒等部件好像是一潜水钟,防水防沙性能比较好。 但其下部的顶针式顶窝支承系统就没有什么防水防沙的有效措施,甚至无法保证润滑油的存在。所以旋杯式流速仪不适用于多沙水流,适于飘浮物少,流速不大的河流。 本仪器灵敏度高,适用于一般河流、湖泊、水库测量低流速,对深水低流速测量特别适用。 工作原理 当水流作用到仪器的感应元件——旋杯时,由于左右两边的杯子具有凹凸形状的差异,因此压力将不等,其压力差即形成了一转动力矩并促使旋杯旋转。 水流的速度越快,旋杯的转速也越快;它们之间存在着一定的函数关系,此关系是通过检定水槽的实验而确定的。每架仪器检定的结果均附有检定公式,其形式如下: V=Kn+C 式中 V—流速(m/s); n—旋杯转率,等于旋杯总转数“N”与相应的测速历时“T”之比,即n=T(N)(1/S) K —水力螺距(m) C—仪器常数(m/s)。 K和C是表征仪器性能的系数,与旋杯的大小、形状、旋轴的轴向间隙,顶针与宝石轴承的圆弧、光洁度等因素有关。因此,对该部分的配合关系必须严格地遵照技术要求进行检查。

  • 【原创大赛】水质中农药残留检测与分离

    【原创大赛】水质中农药残留检测与分离

    水质中农药残留检测与分离 为了我们身体健康和生活美好,对这些农药残留的检测是非常必要的,也是现在水质检测所必须的,是国标强制要求的。下面我们就介绍下水质中残留农药呋喃丹、甲萘威的检测方法,高效液相色谱法。实验部分原理:试样经提纯、净化、浓缩、定容、微膜过滤,后进样,经C18高效液相色谱柱分离,紫外检测器检测,根据色谱峰的保留时间定性,外标法定量计算。仪器:高效液相色谱仪(紫外检测器);旋转蒸发仪;超纯水机;试剂:呋喃丹标准品溶液,甲萘威标准品溶液,二氯甲烷,甲醇(色谱纯),丙酮,乙酸乙酯,环己烷,氯化钠,无水硫酸钠,硫代硫酸钠色谱条件:色谱柱:Venusil XBP C18高效液相色谱柱;流动相:甲醇:水=60:40;流速:1.0ml/min;检测波长:280nm;柱温:35℃;进样量:20ul。色谱图:如果使用该方法,同时检测呋喃丹、甲萘威,色谱图如下:http://ng1.17img.cn/bbsfiles/images/2013/09/201309151717_464490_2369266_3.png在这个色谱条件下,呋喃丹、甲萘威的分离度达到2.25,完全分离,效果非常好。 小结:高效液相色谱法,紫外检测器检测呋喃丹、甲萘威,重现性、稳定性好,准确度高。 建议:多组分测定时,如果等度洗脱可以达到分离效果,尽量采用等度洗脱。等度洗脱配置相对简单,操作相对方便,重现性、稳定性相对好,准确度相对高。

  • 【求助】请问如何判定水质类别

    请问大家,我们对一河流监测了几个项目,如何判断这个河流是几类水质呢?是根据GB3838-2002吗?可是这几个项目,有的在二类水质,有的在三类水质,有的在四类,那这个河流到底属于几类水质呢?大家都是如何判定的呢?

  • 低流速梯度洗脱保留时间不稳定

    HPLC方法: 乙腈-水系统; 2.1mm*100mm的小直径的柱子; 流速=0.2mL/min; 梯度: 0-5min: 10%-20% 乙腈; 5-10min: 20%-90%乙腈结果发现化合物保留时间变化很大,而且系统压力不稳定. 工程师来校准后,高流速(1mL/min) 压力稳定,但是低流速压力和保留时间还是很差.难道是5-10min梯度变化太大,低流速时泵的梯度精度不够?!请有经验的朋友给解释一下啊!

  • 水质硫化物碘量法回收率低的问题

    各位大侠,我最近在用碘量法做水质硫化物,配制的水样浓度为1.0mg/L,水浴温度为65度,氮气流速调整过多个方案,测出的结果要么偏高,要么偏低,做不出标准上的90%多的回收率啊,各位大侠有做过的吗,给个指点!!

  • 恒流模式高温时流速低于设置值

    我们实验室用的是Thermo的Trace GC 2000,使用的是横流模式。设置的流速是1.0ml/min,氦气。等柱温升到300℃以上后,载气流速就会降低到0.9ml/min。如果初始设置的流速是0.9ml/min,就会一直正常。高于1.0ml/min,到高温阶段也是和设定值差0.1ml/min。把钢瓶减压阀调大之后,还是存在类似的问题。出现这种症状是进样口漏气,还是其他原因?先谢了

  • 气相色谱仪的计量检定(八):载气流速稳定性

    [font=微软雅黑, sans-serif]1 [/font][font=微软雅黑, sans-serif]引言[/font][font=微软雅黑, sans-serif]在计量检定规程《JJG 700-2016 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]》中,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的计量性能要求主要包括载气流速稳定性、柱箱温度稳定性、程序升温重复性、基线噪声、基线漂移、灵敏度/检测限、定性重复性和定量重复性等。其中,基线噪声、基线漂移、灵敏度/检测限用以表征检测器的性能指标;载气流速稳定性、柱箱温度稳定性、程序升温重复性、定性重复性和定量重复性则用以表征仪器整体性能。[/font][font=微软雅黑, sans-serif]载气流速稳定性一方面影响色谱峰的流出时间,影响定性重复性;另一方面会影响进样时的样品汽化和分流过程,影响定量重复性;再则,对于热导池检测器(TCD)、电子捕获检测器(ECD)等浓度型检测器,载气流速会影响峰面积,也会影响定量重复性,因此尤其需要进行测定。本文介绍依据《JJG 700-2016 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]》测定[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]载气流速稳定性的方法、工具和结果分析。[/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif]载气流速稳定性的测定[/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]载气流速稳定性的测定要求[/font][font=微软雅黑, sans-serif]依据《JJG 700-2016 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]》的要求,在仪器安装有热导池检测器(TCD)、电子捕获检测器(ECD)时需要测定载气流速稳定性。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d6/f5/bd6f5114b371f075b851307475b87bf4.png[/img][/align][font=微软雅黑, sans-serif]测定方法和要求为[/font][font=微软雅黑, sans-serif]:选择适当的载气流速,待稳定后,使用流量计在10min内连续测量7次,以7次测量平均值的相对标准偏差为载气流速稳定性的测定结果;使用热导池检测器(TCD)和电子捕获检测器(ECD)时,测定的载气流速稳定性数值,均要求≤1%。[/font][font=微软雅黑, sans-serif]在仪器检定的不同情况下是否需要进行载气流速稳定的测定,可以参考《JJG 700-2016 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]》5.3项,下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/90/4c/7904cbf5c04a614f8acbafd95a2ca01d.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.2 [/font][font=微软雅黑, sans-serif]载气流速稳定性的测定工具[/font][font=微软雅黑, sans-serif]测定时,需要使用经过计量检定过的皂膜流量计(或者其他类型流量计),以及秒表,下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/8c/5c/08c5cf17306605cebb27fe93fc18938c.png[/img][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b7/31/6b731651e2d07427de82f3319ab7c593.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.3 [/font][font=微软雅黑, sans-serif]载气流速稳定性的测定步骤[/font][font=微软雅黑, sans-serif]以测定热导池检测器(TCD)为例,介绍载气流速稳定性的过程:[/font][font=微软雅黑, sans-serif]1[/font][font=微软雅黑, sans-serif]) 准备好[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和秒表、皂膜流量计和记录本;设定合适的载气流量从TCD检测器中通过(建议20 ml/min -30ml/min);[/font][font=微软雅黑, sans-serif]2[/font][font=微软雅黑, sans-serif]) 将皂膜流量计连接在TCD检测器载气出口处,测量载气流速;点击链接,了解皂膜流量计的使用方法:[url=https://ibook.antpedia.com/x/541772.html][color=#7030a0]如何使用皂膜流量计测量[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的相关流量[/color][/url]。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b7/f3/0b7f3455f7602d622070d94b7b45ed11.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]3[/font][font=微软雅黑, sans-serif])按照步骤2)的操作方法,连续测量七次,记录数据,填入下表;并以7次测量平均值的相对标准偏差为载气流速稳定性的测定结果:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/26/90/b26908d25524c8a0ea12f50835b81974.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]小结[/font][font=微软雅黑, sans-serif]载气流速稳定性的测定较为简单,其关键是设定合适的载气流速从检测器中流过,并掌握皂膜流量计的正确使用方法[/font]

  • 多普勒流速仪的原理和技术参数

    多普勒流速仪是应用声学多普勒效应原理制成的测流仪,采用超声换能器,用超声波探测流速。测量点在探头的前方,不破坏流场,具有测量精度高,量程宽;可测弱流也可测强流;分辨率高,响应速度快;可测瞬时流速也可测平均流速;测量线性,流速检定曲线不易变化;无机械转动部件,不存在泥沙堵塞和水草缠绕问题;探头坚固耐用,不易损坏,操作简便等优点。多普勒流速仪适用于江河、海洋、岸边观测站、船只和浮标等场合的流速和水温测量,尤其适合于泥沙含量高、水草杂物多的江河水域测量使用。多普勒流速仪技术参数1.测流范围:0.02~7.00m/s 测量准确度:±1.0%±1cm/s   2.水温测量范围:0~40° 测温准确度:±1℃   3.工作水深:0.5~80m   4.测量方式:自动、手动   5.负重电缆:直接负重或悬挂两种方式   6.测量间隔:   自动方式:分0~90分钟选择值,以5分钟为最小递增或递减间隔单位   手动方式:可单次或连续多次测量,间隔任意   7.测速历时:自动方式:60秒、100秒二种 手动方式:10~120秒,键盘选择   8. 显 示 屏:128×64位汉字液晶显示   9.探头壳体耐密封压力:大于12个大气压   10.工作电源:AC220V、50Hz, ±10%; DC12V ±10%;内可增设蓄电池   11.存储:本机可以存储8100多组测量数据   12. 接 口:USB接口或串口;可提供GPRS、GSM无线远程通信功能   13.时钟:带年月日时分

  • 【分享】流速仪原理

    流速仪                科技名词定义中文名称:流速仪英文名称:current meter定义:用于测定水流速度的仪器。应用学科:水利科技(一级学科);水文、水资源(二级学科);应用水文学(水利)(三级学科)概述  MGG/KL型便携式明渠流速/流量计是一种专为水文监测、江河流量监测、农业灌溉、市政给排水、工业污水等行业明渠流速/流量测量的一种便携式测量仪表。它采用了特殊的超微功耗设计方案,全数字信号处理技术,使得仪表测量更加稳定可靠,测量精度高,可广泛用于水文、水利、农灌、给排水等需要经常移动测量且现场无电源的场合。  特点  微功耗设计,二节3.6V锂电池,连续工作3年。     测量传感器无可动部件,不会产生缠绕、堵塞,长期可靠连续工作。     显示器采用高清晰背光源LCD显示器,全汉字菜单显示,操作简单,使用方便。     仪表可同时显示流速、瞬时流速、累积总量、水位等多项测量参数。     功能强大,仪表可做流速计使用,也可做明渠流量计使用(接入水位信号或输入水位深度,再将渠道或河道的断面数据输入即可实现流量测量);可作便携式仪表使用,也可做固定式仪表使用。可满足不同断面的明渠、暗渠、河道的流速和流量的测量。     各种信号输出型式:脉冲输出、RS-232、RS-485、GSM/GPRS远程无限通讯等可选。     数据保存功能,最多可保存1000组数据,而且数据存贮时间间隔可任意设置以及数据查询。主要技术参数    测量范围:流速测量0.000m/s~10m/s,渠宽≤20m,渠深≤20m,边坡系数0~10。     测量精度:±1.0%。     供电方式:3.6V内置锂电池2节,连续工作时间为3年。     显示方式:LCD大屏幕液晶显示器,全中文显示,可显示流速、瞬时流量、累积总量、水位等测量数据。     输出信号:脉冲输出0.00001~1m³ /P,可任意设置(无源光耦输出);频率输出1~1000Hz,可任意设置。     通讯方式:RS-232、RS-485,GSM无线数据远传(可选)。外型尺寸  显示仪外型尺寸:127×114×80(mm)     流速传感器外形尺寸:Ø 32×390     流速插杆长度:常规1500mm× 节数     常规1000mm× 节数     (流速杆长可根据用户要求制作)操作规程准备工作  根据委托方的要求和实测地的具体情况,确定测流断面、测点数目、流量计算方法和坏点修补办法。     2.1.1 测流断面选择     适用于流速仪法的测流断面有:封闭式管道或压力钢管;引水建筑物;断面规则的人工明渠. 测流断面的选择应符合ISO3354。     2.1.2 测点数目选择     流速仪测点数目应足以保证可以精确地确定整个测流断面上的流速分布,不允许只在一个测点进行测量。详见ISO3354,IEC41。     2.1.3 流量计算方法     流量计算方法一般有:双重图解积分法、平均流速的数值积分法、对数-线性法、对数-契比雪夫法(Log-Tehebycheff method)和直接积分法。在试验中只采用一种合同双方都认可的计算方法,若存在较大分歧则由试验负责人决定。     2.1.4 坏点修补办法     同一个测流断面上相邻测点的流速拟合后应比较光滑,否则就说明存在坏点,要用合同双方都认可的修补办法进行差值。安装装置  2.2.1 流速仪安装装置     流速仪安装装置的结构应有足够的刚度,以防止产生振动。另外要求该装置在使用过程中对流速仪产生的稳定阻力和干扰降低至最小。     2.2.2 流速仪     流速仪的数量应是测点数目的(1.1~1.2)倍。从叶轮后缘到安装装置支持杆头部的距离不得小于150mm。     2.2.3电缆线     电缆线的根数应是测点数目的1.1倍,并且每根线两头都要贴上一致的编号。标定流速仪  2.3.1 要求     一般情况下试验前均需经法定计量单位对流速仪进行专门标定,如果定期标定流速仪并显示出稳定的结果,试验前也可不要求进行标定。标定按ISO3455进行。     2.3..2 范围     流速标定的范围应尽可能包括试验过程中的局部流速范围。正常的标定范围为0.4m/s~6m/s,甚至8 m/s,其上限通常取决于振动情况。如果需要把标定曲线外推到最大流速的20%以外使用时,则必须由有关各方达成协议,并对由此增加的测量误差予以理解。流速仪的安装检查  3.1 流速仪安装前应逐个检查流速仪是否旋转灵活、有无故障等内容。     3.2 安装流速仪应注意水流流速矢量与流速仪轴线之间的夹角不得超过±5°当此夹角大于5°而又无法避免时,应采用自补偿旋桨式流速仪,直接测量流速的轴向分量,但其夹角必须在设计和标定的范围内。     3.3 流速仪安装后应确保在试验中不发生任何破坏,特别是冲击、腐蚀或磨损引起的破坏。如果发现有可能发生破坏,试验后必须对流速仪进行标定。     3.4 将流速仪与电缆线接好,把流速仪编号和电缆线编号记录下来,再电缆线的另一端与数据采集仪接好,然后逐个转动流速仪的叶轮,在数据采集仪上检查该通道的信号是否正常,若不正常应马上查找原因,及时处理。     3.5 检查全部正常后,将流速仪及其安装装置一同吊入测流断面。流量测量  4.1 试验前,应对至少两种典型工况,观察(10~15)min流速仪的转速变化,以决定波动的持续时间。如果流速存在波动,则每个测程至少应包括四个波动周期。     4.2 调节流量,稳定3min后,用数据采集仪同步采集每一个流速仪的转速,时间应至 少持续2min。     4.3 按流速仪的标定系数计算出该测点的流速,然后按事先约定的计算方法计算出该测 流断面的流量。     4.4 试验结束后应所有流速仪是否完好,其桨叶上是否有杂物缠绕等内容。若存在以上现象,应按事先约定的修补办法对该测点修整。

  • 水质 采样技术指导---GB 12998-91

    水质 采样技术指导http://boaozixun.ep.net.cn/cgi-bin/dbbz/doc.cgi?id=126GB 12998-91Water quality-Guidance on sampling techniques本标准是水质采样标准的第二部分。 本标准参照采用国际标准ISO 5667-2:1982《水质——采样——第2部分:采样技术指导》。1 主题内容与适用范围本标准是采样技术的基本原则指导,不包括详细的采样步骤。 本标准适用于开阔河流、封闭管道、开阔水体、底部沉积物及地下水采样。 本标准是为质量保证控制、水质特征分析、底部沉积物及污泥在内的采样技术指导,是为水污染鉴别得到可靠的数据而设计的。2 水样类型2.1 概述为了说明水质,要在规定的时间、地点或特定的时间间隔内测定水的一些参数。如无机物、溶解的矿物质或化学药品、溶解气体、溶解有机物、悬浮物以及底部沉积物的浓度。某些参数,例如溶解气体的浓度,应尽可能在现场测定以便取得准确的结果。由于化学和生物样品的采集、处理步骤和设备均不相同,样品应分别采集。采样技术要随具体情况而定,分类在第3章中叙述。2.2 瞬间水样从水体中不连续地随机(就时间和地点而言)采集的样品称之瞬间水样。瞬间水样无论是在水面、规定深度或底层,通常均可手工采集,也可以用自动化方法采集。在一般情况下,所采集样品只代表采样当时和采样点的水质,而自动采样是相当于在预定选择时间或流量间隔为基础的一系列这种瞬间样品。下列情况适于瞬间采样:a.流量不固定、所测参数不恒定时(如采用混合样,会因个别样品之间的相互反应而掩盖了它们之间的差别);b.不连续流动的水流,如分批排放的水;c.水或废水特性相对稳定时;d.需要考察可能存在的污染物,或要确定污染物出现的时间;e.需要污染物最高值、最低值或变化的数据时;f.需要根据较短一段时间内的数据确定水质的变化规律时;g.需要测定参数的空间变化时,例如某一参数在水流或开阔水域的不同断面和(或)深度的变化情况;h.在制定较大范围的采样方案前;i.测定某些参数,例如溶解气体、余氯、可溶性硫化物、微生物、油脂、有机物和pH时。2.3 在固定时间间隔下采集周期样品(取决于时间)通过定时装置在规定的时间间隔下自动开始和停止采集样品。通常在固定的期间内抽取样品,将一定体积的样品注入各容器中。手工采集样品时,按上述要求采集周期样品。2.4 在固定排放量间隔下采集周期样品(取决于体积)当水质参数发生变化时,采样方式不受排放流速的影响,此种样品归于流量比例样品。例如,液体流量的单位体积(例如:10 000L),所取样品量是固定的,与时间无关。2.5 在固定流速下采集连续样品(取决于时间或时间平均值)在固定流速下采集的连续样品,可测得采样期间存在的全部组分,但不能提供采样期间各参数浓度的变化。2.6 在可交流速下采集的连续样品(取决于流量或与流量成比例)采集流量比例样品代表水的整体质量、即便流量和组分都在变化,而流量比例样品同样可以揭示利用瞬间样品所观察不到的这些变化。因此,对于流速和待测污染物浓度都有明显变化的流动水,采集流量比例样品是一种精确的采样方法。2.7 混合水样在同一采样点上以流量、时间、体积或是以流量为基础,按照已知比例(间歇的或连续的)混合在一起的样品,此样品称之混合水样。混合水样可自动或手工采集。混合水样是混合几个单独样品,可减少分析样品,节约时间,降低消耗。混合样品提供组分的平均值,因此在样品混合之前,应验证这些样品参数的数据,以确保混合后样品数据的准确性。样品在混合其中待测成分或性质发生明显变化时,则不能采用混合水样,要采取单样储存方式。下列情况适于混合水样:a.需测定平均浓度时;b.计算单位时间的质量负荷;c.为估价特殊的、变化的或不规则的排放和生产运转的影响。2.8 综合水样为了某种目的,把从不同采样点同时采得的瞬间水样混合为一个样品(时间应尽可能接近,以便得到所需要的数据),这种混合样品称作综合水样。下列情况适干综合水样:a.为了评价出平均组分或总的负荷,如一条江河或河川上,水的成分沿着江河的宽度和深度而变化时,采用能代表整个横断面上各点和它们的相对流量成比例的混合样品;b.几条废水渠道分别进入综合处理厂时。因为几股废水相互反应,可能对可处理性及其成分产生明显的作用。对其相互作用的数学预测可能不正确或不可能时,综合水样能提供更加有用的资料。天然和人工湖泊或江河常显示出空间分布的变化,在多数情况下,总值或平均值的变化都不特别明显,而局部的变化显得更为重要。在这种情况下检验单样比检验综合水样更为有效。3 采样类型3.1 开阔河流的采样监测开阔河流水质采样时,应包括下列几个基本点:a.用水地点的采样;b.污水流入河流后,应在充分混合的地点以及流入前的地点采样;c.支流合流后,对充分混合的地点及混合前的主流与支流地点的采样; d.主流分流后地点的采样;e.根据其他需要设定的采样地点。各采样点原则上规定横过河流不同地点的不同深度采集定点样品。采样时,一般选择采样前连续晴天,水质较稳定的日子(特殊需要除外)。采样时间是在考虑人们的活动、工厂企业的工作时间及污染物质流到的时间的基础上确定的。另外,在潮汐区,应考虑潮的情况,确定把水质最坏的时刻包括在采样时间内。3.2 封闭管道的采样在封闭管道中采样,也会遇到与开阔河流采样中所出现的类似问题。采样器探头或采样管应妥善地放在进水的下游,采样管不能靠近管壁。湍流部位,例如在“T”形管、弯头、阀门的后部,可充分混合,一般作为最佳采样点,但是对于等动力采样(即等速采样)除外。3.3 开阔水体的采样开阔水体,由于地点不同和温度的分层现象可引起水质很大的差异。在调查水质状况时,应考虑到成层期与循环期的水质明显不同。了解循环期水质,可采集表层水样;了解成层期水质,应按深度分层采样。在调查水域污染状况时,需进行综合分析判断,抓住基本点(如废水流入前、流入后充分混合的地点,用水地点,流出地点等有些可参照开阔河流的采样情况,但不能等同而论),以取得代表性水样。采样时,一般选择采样前连续晴天,水质稳定的日子(特殊需要除外)。3.4 底部沉积物采样沉积物可用抓斗、采泥器或钻探装置采集。典型的沉积过程一般会出现分层或者组分的很大差别。此外,河床高低不平以及河流的局部运动都会引起各沉积层厚度的很大变化。采泥地点除在主要污染源附近、河口部位外,应选择由于地形及潮汐原因造成堆积以及底泥恶化的地点。另外也可选择在沉积层较薄的地点。在底泥堆积分布状况未知的情况下,采泥地点要均衡地设置。在河口部分,由于沉积物堆积分布容易变化,必须适当增设采样点。采泥方法,原则在同一地方稍微变更位置进行采集。混合样品可由采泥器或者抓斗采集。需要了解分层作用时,可采用钻探装置。在采集沉积物时,不管是岩芯还是规定深度沉积物的代表性混合样品,必须知道样品的性质,以便正确地解释这些分析或检验。此外,如对底部沉积物的变化程度及其性质难予预测或根本不可能知道时,应适当增设采样点。采集单独样品,不仅能得到沉积物变化情况,还可以绘制组分分布图,因此,单独样品比混合样品的数据更有用。第5章提供的样品容器也适用于沉积物样品的存放,一般均使用广口容器。由于这种样品含有大量的水分,因此要特别注意容器的密封。

  • 【求助】求助!! 2010总压与总流速不稳定

    公司的岛津2010为04年购买,一直运行比较正常,09年年后,发现总压与总流速不稳定,上下总流速偏差1ml/min,,导致同样的进样量之下,峰面积的偏差很大。 我自己认为三种可能比较大1. 进样口漏气 我把分流模式改为不分流模式后进行试漏,没有发现泄露2. 分流过滤管有点小堵 我把隔垫吹扫上的过滤管与分流管上的过滤管进行交换,开机后,依然压力流速不稳定3. 电磁阀有问题 这点我没有能力去判断大家帮我看看可能是什么问题造成的,非常感谢!!

  • 关于流速低于5.0m/s时采样的求助

    刚接触监测行业 总是能遇见现场工况不稳定流速低于5m/s的时候 问一下 这种情况应如何进行采样 可不可以在增加采样点位的同时设置成恒流采样 恒流采样的流量如何设置 应该怎么根据实际工况流速计算恒流采样的流速

  • 【讨论】水质采样保存固定

    很多水质检测项目对水样保存有作出要求,比如COD加入硫酸固定,石油类加入盐酸固定,但是没有阐明固定剂浓度,一般理解肯定是浓溶液对结果影响较小,但是如果用弄溶液的话,一个是现场操作和运输的安全性,一个是现场固定如果用到浓盐酸、浓硝酸这类液体的话那肯定是有烟而且又呛,所以我们现在都是配置50%浓度的溶液,但是感觉这样子对结果还是有一点点影响,虽然很小,不知道有没更好的解决办法,想请问各位同行是怎么做的

  • 【资料】水质采样技术指导

    1 主题内容与适用范围 本标准是采样技术的基本原则指导,不包括详细的采样步骤。 本标准适用于开阔河流、封闭管道、开阔水体、底部沉积物及地下水采样。 本标准是为质量保证控制、水质特征分析、底部沉积物及污泥在内的采样技术指导,是为水污染鉴别得到可靠的数据而设计的。 2 水样类型 2.1 概述 为了说明水质,要在规定的时间、地点或特定的时间间隔内测定水的一些参数。如无机物、溶解的矿物质或化学药品、溶解气体、溶解有机物、悬浮物以及底部沉积物的浓度。 某些参数,例如溶解气体的浓度,应尽可能在现场测定以便取得准确的结果。 由于化学和生物样品的采集、处理步骤和设备均不相同,样品应分别采集。 采样技术要随具体情况而定,分类在第3章中叙述。 2.2 瞬间水样 从水体中不连续地随机(就时间和地点而言)采集的样品称之瞬间水样。 瞬间水样无论是在水面、规定深度或底层,通常均可手工采集,也可以用自动化方法采集。 在一般情况下,所采集样品只代表采样当时和采样点的水质,而自动采样是相当于在预定选择时间或流量间隔为基础的一系列这种瞬间样品。 下列情况适于瞬间采样: a.流量不固定、所测参数不恒定时(如采用混合样,会因个别样品之间的相互反应而掩盖了它们之间的差别); b.不连续流动的水流,如分批排放的水; c.水或废水特性相对稳定时; d.需要考察可能存在的污染物,或要确定污染物出现的时间; e.需要污染物最高值、最低值或变化的数据时; f.需要根据较短一段时间内的数据确定水质的变化规律时; g.需要测定参数的空间变化时,例如某一参数在水流或开阔水域的不同断面和(或)深度的变化情况; h.在制定较大范围的采样方案前; i.测定某些参数,例如溶解气体、余氯、可溶性硫化物、微生物、油脂、有机物和pH时。 2.3 在固定时间间隔下采集周期样品(取决于时间) 通过定时装置在规定的时间间隔下自动开始和停止采集样品。通常在固定的期间内抽取样品,将一定体积的样品注入各容器中。 手工采集样品时,按上述要求采集周期样品。 2.4 在固定排放量间隔下采集周期样品(取决于体积) 当水质参数发生变化时,采样方式不受排放流速的影响,此种样品归于流量比例样品。例如,液体流量的单位体积(例如:10 000L),所取样品量是固定的,与时间无关。 2.5 在固定流速下采集连续样品(取决于时间或时间平均值) 在固定流速下采集的连续样品,可测得采样期间存在的全部组分,但不能提供采样期间各参数浓度的变化。 2.6 在可交流速下采集的连续样品(取决于流量或与流量成比例) 采集流量比例样品代表水的整体质量、即便流量和组分都在变化,而流量比例样品同样可以揭示利用瞬间样品所观察不到的这些变化。因此,对于流速和待测污染物浓度都有明显变化的流动水,采集流量比例样品是一种精确的采样方法。 2.7 混合水样 在同一采样点上以流量、时间、体积或是以流量为基础,按照已知比例(间歇的或连续的)混合在一起的样品,此样品称之混合水样。 混合水样可自动或手工采集。 混合水样是混合几个单独样品,可减少分析样品,节约时间,降低消耗。 混合样品提供组分的平均值,因此在样品混合之前,应验证这些样品参数的数据,以确保混合后样品数据的准确性。样品在混合其中待测成分或性质发生明显变化时,则不能采用混合水样,要采取单样储存方式。 下列情况适于混合水样: a.需测定平均浓度时; b.计算单位时间的质量负荷; c.为估价特殊的、变化的或不规则的排放和生产运转的影响。 2.8 综合水样 为了某种目的,把从不同采样点同时采得的瞬间水样混合为一个样品(时间应尽可能接近,以便得到所需要的数据),这种混合样品称作综合水样。 下列情况适干综合水样: a.为了评价出平均组分或总的负荷,如一条江河或河川上,水的成分沿着江河的宽度和深度而变化时,采用能代表整个横断面上各点和它们的相对流量成比例的混合样品; b.几条废水渠道分别进入综合处理厂时。 因为几股废水相互反应,可能对可处理性及其成分产生明显的作用。对其相互作用的数学预测可能不正确或不可能时,综合水样能提供更加有用的资料。 天然和人工湖泊或江河常显示出空间分布的变化,在多数情况下,总值或平均值的变化都不特别明显,而局部的变化显得更为重要。在这种情况下检验单样比检验综合水样更为有效。

  • 论坛资深专家又来直播啦——水质六价铬国标检测方法存在问题及修订建议(2018/03/15 10:00 )

    [b]网络讲座:[/b]水质六价铬国标检测方法存在问题及修订建议[b]举行时间:[/b]2018年03月15日 10:00[b]报告人:[/b][color=#ff0000]赖永忠 [/color]高级工程师,从事水质六价铬的检测,个人已有6年的经验积累,日常工作中追求更好地完成检测任务。针对水质六价铬检测方法中存在问题,提出了一些解决方案,在核心期刊上发表了6篇论文。[color=#333333][/color][b]报告内容:[/b]简单介绍了现行用于水质中六价铬检测的国家/行业标准方法;结合个人的实际工作经验,总结了“GB 7467-87”中存在的问题;针对检测步骤,及随机误差、浊度和复杂基体带来的干扰,提出了实用、可行的修订建议;探讨了需进一步研究的内容、检测方法发展方向。[b]免费报名链接:[/b][url]http://www.woyaoce.cn/webinar/meeting_3311.html[/url]各位友友,这是我要测网络讲堂的第一期,由论坛的资深专家“生活所迫”主讲哦,大家多多支持哦[img]http://simg.instrument.com.cn/bbs/images/default/em09505.gif[/img][img]http://simg.instrument.com.cn/bbs/images/default/em09505.gif[/img][img]http://simg.instrument.com.cn/bbs/images/default/em09505.gif[/img]

  • 水质硫化物的测定 亚甲基蓝分光光度法方法验证报告

    水质 硫化物的测定 亚甲蓝分光光度法方法验证报告检测标准:GB/T16489-1996仪器设备:硫化物氮气吹脱系统型号:STEBP-201A仪器条件:以300ml/min的氮气流速吹脱30min,水浴温度60℃方法提供:济南盛泰电子科技有限公司一、方法验证步骤1.1 试剂配制:按 GB/T16489-1996 配制。1.2 标准曲线绘制:按 GB/T16489-1996 规定的操作步骤绘制。1.3 精密度实验:取硫化钠标准使用液浓度高、中、低 3 个梯度的水样,各平行测定六次,计算各浓度 6 个样品的相对标准偏差。1.4 准确度实验:用硫化物标准样品(环境保护部标准样品研究所,标准物质编号 205528)进行试验。取 10mL 标准物质溶液至预先加有适量乙酸锌/乙酸钠混合溶液和纯水的 250ml棕色容量瓶中,用纯水定容至刻度,混匀后立即使用。分别取稀释后标准样品溶液 15mL 配制成 6 个平行样品,按照 GB/T16489-1996 实验步骤进行实验。计算出标准样品浓度,并判定是否在误差允许范围内。1.5 样品测定:按 GB/T16489-1996 进行测定,具体步骤如下:1.5.1 通氮气检测装置的气密性后,关闭气源。1.5.2 取 20ml 乙酸锌-乙酸钠溶液于 100ml 比色管中。1.5.3 取一定体积的硫化钠标准使用液加入三口烧瓶中,加 5ml 抗氧化剂溶液,加无氧水至总体积约 200ml。装上通氮管,接通氮气,以 200~300ml/min 的速度预吹气 2~3min 后,关闭气源。1.5.4 水浴升温至 60℃。1.5.5 打开加酸刻度管活塞,向烧瓶内加入 10ml 磷酸溶液,关闭加酸刻度管活塞。1.5.6 接通氮气,以 300ml/min 的流度连续吹气 30min,以 400ml/min 流速吹气 5min,赶尽最后残留在装置中的硫化氢气体。以少量水冲洗插入吸收液的部分管路,取下比色管,关闭气源,加水至约 60ml,缓慢加入 10mlN,N-二甲基对苯二胺溶液,立即加塞,再加入 1ml 硫酸铁铵溶液,立即密塞并充分振荡,放置 10min。1.5.7 将溶液用水定容至 100ml,摇匀。用 1cm 比色皿以水为参比,在波长为 665nm 处测量。

  • 关于水质硫化物的一些疑问

    这两天要做一个水质硫化物的盲样,以前从来没做过。我看了看GB/T016429-1996的标准,上面对于硫化物标液的配置是要用pH在10~12的水中,并且加乙酸锌乙酸钠溶液,定容至500ml。那么我们单位买的硫化物标液(1000mg/L,基体为氢氧化钠)和硫化物盲样,稀释也必须要按照这个步骤来吗。另外在其他操作步骤上面还有什么需要注意的。求各位老师解答一下,谢谢了

  • 水质中六价铬测定

    最近在做水质六价铬测定,用的事二苯碳酰二肼分光光度法,标曲什么的都很正常,就是采集的水样不显色,不知道为什么,我做了一个小测试,就是直接在水样中加入显色剂会有显色反应,只要加入硫酸溶液,颜色就没有了,其中水样采集完利用氢氧化钠固定了,这是什么原因导致的呢大家遇到过这种情况吗,求解答

  • 【原创大赛】河流水质分析中采样必须注意的几点注意事项

    【原创大赛】河流水质分析中采样必须注意的几点注意事项

    http://ng1.17img.cn/bbsfiles/images/2017/10/2015072910094391_01_2328678_3.jpg 《水污染防治行动计划》简称水十条,已经于2015年4月2日由国务院颁布,尤其是主要指标:到2020年,长江、黄河、珠江、松花江、淮河、海河、辽河等七大重点流域水质优良(达到或优于Ⅲ类)比例总体达到70%以上,地级及以上城市建成区黑臭水体均控制在10%以内,地级及以上城市集中式饮用水水源水质达到或优于Ⅲ类比例总体高于93%,全国地下水质量极差的比例控制在15%左右,近岸海域水质优良(一、二类)比例达到70%左右。京津冀区域丧失使用功能(劣于V类)的水体断面比例下降15个百分点左右,长三角、珠三角区域力争消除丧失使用功能的水体。因此,下步水质监测采样尤其是河流采样势必会成为监测工作的重点和难点。 结合《水质 河流采样技术指导》HJ/T52-1999要求,纵观市县级监测部门采样现状分析,发现问题主要表现在: 1、采样点选择不规范 A、制定全年河流监测采样断面一经确定,例行采样时去繁从简,不再进行现地调查,是否存在支流或者污水的混合,s会否存在流速突然增大或者减小的情况,仅仅做到有水采样,即无水即认为断流; B、执行月或季例行断面监测时,常常选择省时省力的位置,尽量在车辆能够到达器材容易就位少徒步的地方,而往往忽略采样断面的规则要求,从而导致水质不能真实反映河流的现状; C、在采集有代表性的样品,不布设适当多的垂线和采样点,仅仅把采集的单个样品混合,得到一个混合样,有时候,分析溶解性气体和挥发性组分时也使用混合样。 2、采样频率和采样时间没有严格按照导则要求执行; 目前,据观察地方尤其是市县级监测部门,任务比较繁重,而且交叉重叠,人员配备、车辆器材配备严重不足,工作压力比较大,如何在有效的时间内完成各级赋予的任务摆在了每一个监测人员面前,势必会出现”偷工减料“的现象,减少采样频率、缩短采样时间的现象时有发生,如此操作,难免会出现不能够真实反映河流水质的真实变化。 3、采样方法的选择有待优化; 据观察,部分监测部门采样工具"一个桶、一根绳 一个舀子“走天下,基本上没有其余的采样工具,基本不会考虑采样系统之间的污染,更不会考虑深水采样器中材质的污染等等,从而极易导致交叉污染,数据失真,影响决策。 4、样品的的运输固定和保存做的不好; 这个环节主要存在固定剂有时候没有按照规定加入,运输过程中没有低温保存,没有按照规定时限及时分析样品等等。 诸如上述问题,在监测部门时有发生,必须引起高度重视,否则水十条指标任务的完成就会成为海市蜃楼空中楼阁。 笔者认为应该从以下几方面着手解决此类问题: 1、认真学习各种采样导则、技术规范和相关要求,做到底数清、法规明、心中有数。 2、严明纪律约束,制定奖惩措施,依规依纪严格监督检查,必要时候采取同一断面抽检。 3、做好队伍建设和人员储备,加快器材仪器的更新换代和培训学习,做到齐装满员’ 总之,水十条已经颁布,各项指标已经明确,要真正面对机遇、迎接挑战,实干加苦干,才能真正实现青山绿水的庄严承诺,真正过上宜居的生活。期盼那一天的如期到来!

  • 【求助】流速大出峰面积就大

    六通阀进样问题导师让我们调试一台新的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],是六通阀进样的,由于我们是新手,所以没什么经验。我们发现气体进样的多少与气体流速有关系,流速大出峰面积就大,流速小出峰面积就小,因此我们做标样时一人做出来一个样,麻烦哪位高受帮帮我们定个标准啊

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制