当前位置: 仪器信息网 > 行业主题 > >

纳米涂料测试仪

仪器信息网纳米涂料测试仪专题为您提供2024年最新纳米涂料测试仪价格报价、厂家品牌的相关信息, 包括纳米涂料测试仪参数、型号等,不管是国产,还是进口品牌的纳米涂料测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米涂料测试仪相关的耗材配件、试剂标物,还有纳米涂料测试仪相关的最新资讯、资料,以及纳米涂料测试仪相关的解决方案。

纳米涂料测试仪相关的论坛

  • 纳米材料在隔热涂料中的应用

    当前,节能和新能源探索已经成为世界的重要课题。建筑能耗在人类整个能源消耗中所占的比例一般在30%~40%,它们绝大多数是采暖和空调造成的能耗,而通过门窗散失的热量约占整个建筑采暖及空调耗能的50%。因此,提高门窗的保温隔热性能是降低建筑能耗的有效途径。为节约能源,人们发明了多种节能方法,都是为了阻隔太阳光中多余的热辐射而达到降温的目的。但是有些产品有的隔热效果不佳,有的价格过于昂贵等多种原因在应用推广上有些困难。纳米材料由于具有宏观尺寸物体所没有的性质,能为新型涂料的研制带来意想不到的效果而成为研究的热点。透明隔热宝(UG-C06)是由优锆纳米新研发出的一种水性陶瓷类隔热保温涂料,采用最新复合陶瓷隔热技术和纳米二氧化钛材料,设计用来反射光能和辐射热能。在炎热的季节降低表面温度和内部温度;在寒冷的季节更好地保持室内温度;在使用空调的环境中降低能源消耗。不仅如此,透明隔热宝(UG-C06)独特的环保成分――液体纳米ATO,纳米二氧化钛更能消除周围环境中的异味,解甲醛和其他有害物质。透明隔热宝(UG-C06)中的4种陶瓷微珠能够产生魔术般的功效!第一种陶瓷微珠能够有效地阻隔紫外线达99%;第二种陶瓷微珠能反射90%以上的可见光;第三种陶瓷能够阻隔红外线达92.5%,而神奇的第4种陶瓷分子能够防止超量的水蒸汽进入,而允许正常数量的水分子的通过。由此极大增加整个建筑表面的防晒绝热能力。该产品采用先进的生产工艺将纳米超活性ATO ,TIO2做成适合在玻璃,瓷砖,金属,水泥、PE,PET,PC,PP,PVC等表面涂覆的纳米涂层材料。其透明性的超活性ATO,起到吸收红外线和阻隔紫外线功能。超活性ATO化学性稳定的对热,湿度等外部环境引起的物性变化小,所以能保持半永久性导电性质,能有效地阻止红外辐射和紫外线辐射,阻隔红外效果达95%,阻隔紫外效果达90%,该涂层材料与基材有极好的相容性,铺展,流平性能好,附着力强,持久不脱落。纳米隔热涂料(优锆纳米)不仅能够兼顾隔热与透光性,而且具有机械性能优异、耐老化、耐腐蚀等优点。纳米透明隔热涂料的开发应用能够很好地解决对采光玻璃既透明又隔热节能的技术要求,加上其自身的结构特点保证了该涂料的使用寿命长,因而纳米透明隔热涂料在普通玻璃、有机玻璃等透明载体表面的开发应用,不但环保节能,而且经济实用。在当今社会能源危机和环保压力日益增大的情况下,隔热涂料将具有很好的应用前景。

  • 【资料】纳米碳酸钙在涂料行业中的应用现状与展望

    中国化工网2007年3月13日报道:纳米材料是指晶体粒径为纳米级的多晶体材料,具有小尺寸与高浓度晶界两个重要特征,通常大晶体的连续能带分裂成接近分子轨道的能级,产生了小尺寸的量子隧道效应,同时由于其高浓度晶界及界面原子受力不均衡性增加产生了界面效应,这两种效应导致材料在力学性能、磁性能、光学性能、电性能及热力学特征发生突变。将纳米材料应用于涂料中,由于成膜基料、颜填料及助剂等分子中存在着诸多的活性点,这些活性点可能会与纳米粒子表面的活性点之问发生强烈的相互作用,从而有可能形成致密而稳定的涂层,使涂膜的物理化学性能显著提高。碳酸钙是一种无毒、无刺激、无气味的白色软质填料,在涂料工业中,其易于与各类聚合物相容,热稳定性好,是最常用的原料之一,在成膜物中起着骨架作用。近年来随着纳米技术的兴起,将纳米碳酸钙应用于涂料中以期改善涂料性能是涂料界关注的热门话题之一,尤其是国内众多万吨级的纳米碳酸钙生产线的建成,更是迫切需要寻找包括涂料在内的一系列领域中获得应用,然而纳米碳酸钙直接应用于涂料中,存在以下缺陷:颗粒表面能高,处于热力学不稳定状态,极易团聚;碳酸钙表面亲水疏油,极性很高,在有机介质中难以分散,与基料的结合力差,易形成界面缺陷,导致涂膜性能下降。[

  • 新品解析:一种低成本高效重防腐无机纳米涂料

    [align=center][b][color=#ff0000]新品解析:一种低成本高效[/color][color=#ff0000]重防腐[/color][color=#ff0000]无机纳米[/color][color=#ff0000]涂料[/color][/b][/align] 长期以来,防腐涂料作为简单、经济、有效的防腐手段,广泛应用于国民经济各个领域。但是,随着现代工业的发展,人们对防腐涂料承受环境的能力和使用寿命提出了更高的要求。而常规的防腐涂料已不能满足这些要求。于是,标志着防腐涂料先进技术和一个国家科技发展水平,使用更为简便、经济性更好的重防腐涂料应运而生,并迅速在中外许多领域得到广泛应用:新兴的海洋工程——海上设施、海岸和海湾构造物及海上石油钻井平台等;现代化的交通运输——桥梁、船舶、集装箱、火车和汽车等;重要的能源工业——油管、油罐、输变电设备、核电设备及煤矿矿井等;大型的工矿企业——化工、钢铁、石油化工厂的管道、贮槽、设备及大型矿山冶炼设备等。 杭州九朋新材料所生产的重防腐涂料,具有十分优异的耐候、耐酸、耐碱、耐盐、耐水、耐油等特性,是重防腐涂料中的理想品种。现以该系列产品为例,阐述重防腐涂料与常规防腐涂料的区别与重防腐涂料的主要特点。[b][color=#ff6600]1 能在苛刻条件下使用,并具有长效防腐寿命。[/color][/b] 重防腐涂料在化工大气和海洋环境里,一般可使用10年或15年以上,即使是在酸、碱、盐和溶剂介质里,并在一定温度条件下,一般也能使用5年以上。 九朋新材料针对重防腐涂料的应用环境的特殊性,用耐强腐蚀的纳米氧化物粉体,配合改性剂,分散剂,形成了耐候涂料、耐酸涂料、耐碱涂料、耐水涂料、耐油涂料,耐高温等系列品种,以满足不同环境与要求的需要。[b][color=#ff6600]2 厚膜化是重防腐涂料的重要标志。[/color][/b][color=#ff6600] [/color]常规防腐涂料的涂层干膜厚度为100μm或150μm左右,而重防腐涂料干膜厚度则在200μm 或300μm以上,还有500μm~100μm的,甚至高达2000μm(2mm)的。厚的防腐涂层为涂料的长效寿命提供了可靠保证。同时,也给重防腐涂料的制造和施工提出了新的课题。 九朋新材料为了满足重防腐涂料涂装涂层较厚的需要,依据需要,可以多次涂布增厚,形成的九朋牌系列重防腐涂料在厚膜,并可以预制防腐配件,省去现场涂布的麻烦,不但减少了施工工作量,缩短了施工周期,提高了施工效率,环境污染轻,是施工与环保性能均有的品种。[b] [color=#ff6600]3 高性能的合成树脂和颜料、填料是促使重防腐涂料发展的关键[/color][/b][color=#ff6600]。[/color][color=#ff6600] [/color]为达到严酷环境下长效防腐的目的,对重防腐涂料的主要成膜物质合成树脂和次要成膜物质颜料和填料有很高的要求,主要为;(1) 对金属基体的良好附着力,有良好的物理机械性能,如底的收缩率、适当的硬度、韧性和耐磨性、耐温性等。(2) 对各种介质有优良的耐蚀性,这些介质包括:化工大气、水、酸、碱、盐和其它溶剂等。(3) 能有效地抵抗各种介质对涂层的渗透。(4) 能在各种条件下进行方便的施工并达到对涂层厚度和涂层结构的设计要求。 重防腐涂料的发展与现代工业技术的综合发展是密切相关的,它涉及到新型材料的开发、涂料配方的设计、防锈颜料、填料和高效助剂的应用、表面处理技术等多方面技术的发展。其中,高性能的耐蚀性合成树脂及新型的颜料、填料的开发应用,是关键。为此,九朋新材料重点在纳米材料的应用上下了较大功夫,进行了逐一实验与突破,成功地开发出九朋牌重防腐涂料所需的各类高性能新型材料。利用纳米材料颗粒微小,使之成膜后形成具有致密结构,高阻隔各种腐蚀成分,形成防腐涂层,并根据不同的腐蚀环境要求,形成常见环境条件下与特殊环境条件下应用纳米重防腐涂料产品。[b][color=#ff6600]4 严格的表面处理决定重防腐涂层寿命的首要因素。[/color][color=#ff6600] [/color][/b]表面处理不但要形成一个清洁的表面,以消除金属内部腐蚀的隐患,而且应使表面粗糙度适当,增加涂层与基体间的附着力;高性能树脂较油性成膜物质对各金属基体的渗透性较小更需要清洁和粗糙的表面,以增加附着力。金属表面往往有油污、氧化皮和锈蚀层。氧化皮是钢铁在高温扎制过程中生成的鳞片,膨胀系数比钢小,经冷热循环易开裂,附着力差,日久会剥落,应此在涂装前应彻底清除;钢铁表面的锈蚀层常含有能水解生成硫酸的硫酸亚铁和氯化钠,这些杂质都会进一步加速钢铁的腐蚀。这些不利因素都应在涂装前予以彻底消除。[color=#ff6600] [/color]优质的重防腐涂料与金属基材的严格表面处理相结合,是获得优异重防腐涂层缺一不可的两个因素。 大量实践证明,涂层防腐失效的原因及其影响程度为表面处理差,占40%;涂料选择不当,占20%;涂层厚度不足,占20%;涂层制备工艺不当,占20%。可见,表面处理质量的高低是决定重防腐涂层寿命诸因素中的首因,重防腐涂料必须与严格的表面处理相结合才能获得满意的结果。 而提高重防腐涂层与基材附着力的途径,仅有以下三种: ①重防腐涂料配方中各组分(主要是成膜物的分子结构),必须与基体有着良好的结合力。 九朋新材料的重防腐涂料经过特殊工艺处理,使之与基底的附着力极强,进而较好地解决了这个问题。 ②与基体严格的表面处理。这是获得优质重防腐涂层的重要条件。九朋新材料系列重防腐涂料的说明书中均对表面处理作了明确规定,除了对喷砂、抛丸处理规定外,还对其它处理方法、处理结果作了明确,以便顾客施工时注意。 ③正确的施工工艺操作。重防腐涂料的不少质量问题都与此相关。针对这一情况,九朋新材料系列重防腐涂料的说明书中均有建议干膜厚度和施工道数、施工条件、施工注意事项等。此外,还针对不同的设备和腐蚀条件,在本手册中作了说明。[b][color=#ff6600]5 实现重防腐涂层设计规程和目标的重要环节。[/color][/b] 这就是重防腐涂料的正确施工与维修管理。除了合理的设计和严格的表面处理外,确保重防腐涂层施工过程中每一个环节的质量是一个十分重要的因素。可以说,施工、检测和维修过程中的任何一个环节的疏忽,都可能对重防腐涂层的整体质量带来重大影响。针对这一情况, 九朋新材料系列重防腐涂料的说明书和有关资料及本手册,都对施工过程的注意事项和常见涂装缺陷及其解决方法作了说明。[b][color=#ff6600]CY-T[/color][color=#ff6600]系列[/color][color=#ff6600]耐高温[/color][color=#ff6600]强[/color][color=#ff6600]酸碱纳米[/color][color=#ff6600]防腐[/color][color=#ff6600]涂料产品特点:[/color][color=#ff6600](九朋新材料)[/color]1、耐多种强酸、强碱、盐类、油类。 2、耐磨、耐压、耐冲击。3、具有极高的隔绝性,极低的渗透性。4、涂层耐久性好,方便修补。5、环保无污染、无毒副。6、成本低,基础方案原料成本每平米约80元。订制加厚涂层相应增加成本。[color=#ff6600]CY-T[/color][color=#ff6600]系列耐高温强酸碱纳米防腐涂料相对于搪瓷、衬塑、四氟乙烯、铁氟龙的优[/color][color=#ff6600]点:[/color][/b]1、耐多种强酸、耐强碱、耐热。可用于反应釜、管道等防酸碱。2、耐酸碱好过搪瓷,热导性好于搪瓷。具有搪瓷材料的耐温性,没有搪瓷易碎性。有损伤方便快速修补。搪瓷破了整个报废。3、耐热耐酸耐碱性能好于衬塑釜,没有衬塑釜不耐温、热导性差的缺点。可以耐温到400度或更高。a、抗温变性能更佳,涂层平整、饱和,具有陶瓷感,较衬塑釜美观高档。b、能耐得住30%硫酸300天以上,涂层无损伤,而衬塑不耐热酸碱。C、没有衬塑釜不耐磨缺点。硬度高到6-7H,耐磨。4、同时具有耐酸、耐碱、耐热、不易碎、易修补、易施工,是搪瓷材料的更佳替代品。5、既有比四氟乙烯、铁氟龙等更强抗腐蚀性能,且热传导性好、耐高温、耐磨、耐候、易修补。6、使用成本低于衬塑、四氟乙烯、铁氟龙、和搪瓷,且可以调各种颜色。[b][color=#ff0000]九朋新材料[/color][color=#ff0000]重防腐涂料涂装前表面处理操作控制要点[/color][/b]任何重防腐涂料涂装中,除了首先选择优质的重防腐涂料外,还必须把基体表面处理作为更重要的工作。因为任何涂料包括重防腐涂料都不可能在涂装前处理质量不佳的工件上发挥最佳效果。[color=#ff6600]一、 [/color][b][color=#ff6600]除锈标准[/color][/b][color=#ff0000] [/color] 根据国家标准GB/T8923-1998《涂装前钢材表面锈蚀等级和除锈等级》(等效采用ISO8501-1:1988)将钢材表面锈蚀等级分为A、B、C、D四级,除锈方法分别以Sa、St、F1表示。Sa和St为常用的除锈方法。 [b]常用处理方法及标准等级[/b][table][tr][td=2,1]表面质量等级[/td][td]标 准[/td][td]处理方法[/td][/tr][tr][td=4,1]喷射或抛射除锈前,厚的锈层应铲除。可见的油脂和污垢也应清除。喷射或抛射后,钢材表面应清除浮灰和碎屑。[/td][/tr][tr][td=1,4]Sa[/td][td]Sa1[/td][td]钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物,[/td][td]轻度的喷射或抛射除锈[/td][/tr][tr][td]Sa2[/td][td]钢材表面应无可见的油脂和污垢,并且氧化皮、铁锈和油漆层等附着物已基本清除,其残留物应是牢固附着的。[/td][td]彻底的喷射或抛射除锈[/td][/tr][tr][td]Sa2 1/2[/td][td]钢材表面应无可见的油脂和污垢、氧化皮、铁锈和油漆涂层等附着物,任何残留的痕迹应仅是点状或条纹状的轻微色斑。[/td][td]非常彻底的喷射或抛射除锈[/td][/tr][tr][td]Sa3[/td][td]钢材表面应无可见的油脂和污垢、氧化皮、铁锈和油漆涂层等附着物,该表面应是显示均匀的金属色泽。[/td][td]使表面洁净的喷射或抛射除锈[/td][/tr][tr][td=4,1]手工或动力工具除锈前,厚的锈层应铲除。可见的油脂和污垢也应清除。手工或动力工具除锈后,钢材表面应清除浮灰和碎屑。[/td][/tr][tr][td=1,2]St[/td][td]St2[/td][td]钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物,[/td][td]彻底的手工和动力工具除锈[/td][/tr][tr][td]Sa3[/td][td]除锈应比St2更为彻底,底材显露部分的表面应具有金属光泽[/td][td]彻底的手工和动力工具除锈[/td][/tr][/table][b] [/b][color=#ff6600]二、 [/color][b][color=#ff6600]方法和设备确定[/color][color=#ff6600] [/color][/b]涂装前处理的方法和设备的选择一般需要考虑如下因素:1、表面锈蚀程度如何?2、那种设备适用?3、表面结构如何?4、重防腐涂料如何配套?5、所要达到的标准?6、施工方法?[b][color=#ff6600]三、操作要点[/color][/b]1、 去油污、脂和污物;2、 去除铁锈和氧化皮;3、 去除不需要的涂层,如旧涂层过厚已无弹性,或需要更换使用较高一级的涂层配套,或原涂层配套质量较差。4、 磨光尖锐边缘;5、 磨毛有光涂层表面;6、 彻底去除灰尘;7、 铝质和镀锌表面的特殊处理(脱脂和磷化底漆的处理)。[b][color=#ff6600] [/color][color=#ff6600]四、要有严格的涂装前处理,并达到规定的表面处理标准[/color][/b] 任何一种重防腐涂料都必须同基体的严格表面处理相结合,才能达到预期的重防腐目标,两者缺一不可。严格的表面处理是决定重防腐涂料涂装寿命的首要因数。 九朋新材料系列重防腐涂料,虽然附着力强,防腐性能优,也同样要求达到规定的表面处理标准。对于钢铁基材表面处理必须达到国标Sa2 1/2级或以上等级。如果现场不具备喷砂、抛丸条件,采用手工或动力工具除锈,则应达到St2级以上。[b][color=#ff0000] [/color][color=#ff0000] 涂装和维护注意要点[/color][color=#ff6600]一、涂装方式的选择与要点[/color][/b]1、 底漆涂装:表面处理工序完成后,应在4小时内涂装上九朋新材料底层,以防止出现二次生锈喷砂除锈后,钢铁表面若出现黄斑,即使很少,也可能对涂层产生严重的不良影响。因此,一旦产生而次生锈,则须用轻微喷砂扫射或人工去除,以保证涂装质量。2、 高压无气喷涂是九朋新材料重防腐涂料施工的最佳方式,其涂层厚度可以确保,其主要注意事项为:A:喷涂方向应先上下后左右,或先左右后上下的纵横方式;B:喷枪与被涂物在同一个水平距离上成直角,距离在45cm~60cm之间,高于25℃时,距离为30cm~40cm,喷雾扇面应尽量狭窄;C:操作时防止喷枪长距离或弧形挥动;D;喷嘴的选择十分重要,最好多选择几种喷嘴试喷,高于25℃时,应选用较大孔径的喷嘴。注意:刷涂方式得到的每道涂层厚度较薄,其涂装道数一般要比高压无气的涂装道数多,才能达到同样的厚度。做到决不在潮湿表面或雨天施工,也决不在高于露点3℃以下施工。3、 人工涂刷。应主意:A:涂刷方向应取先上下后左右且漆刷不能蘸漆料过多;B;漆刷距离不能拉得过大,以免涂层过薄;C:最好在粗糙边缘,弯角处和凸处等部位先予涂一道。D:辊涂:适用于面积大,表面平坦的部位,对于结构复杂的部位和螺栓、铆钉分布较多的部位、焊缝部位和粗糙部位和辊筒不宜达到的部位不宜用。[b][color=#ff6600] [/color][color=#ff6600]二、[/color][color=#ff6600]九朋新材料防腐[/color][color=#ff6600]涂装注意事项[/color][/b][align=center] [b]CY-T系列耐高温强酸碱纳米防腐涂料使用说明[/b][/align][b]九朋新材料推荐施工和使用方法:[/b] 为保证涂装质量,请仔细阅读使用说明和产品对应的涂装规范。 底层涂层要薄涂,起过渡作用,目的使涂层与基体附着力更好。[b]1、环境条件[/b] 基体表面温度和环境温度一般不低于5℃,空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]对湿度不超过85%。[b]2、基体处理:[/b] 涂装作业前,应去除基体表面的油污、残锈、氧化皮等。推荐使用具有中度碱性的水性清洗剂清除油污,然后用清水冲净。 所有待涂钢材表面最好达到Sa2.5级要求。局部修补涂层时,钢材表面最好打磨到St3级。表面粗糙度要求最好控制在25~40μm范围内。[b]3、混合[/b] 配比:A液(主漆):B液(固化剂)=6∶1(重量比),混合后并搅拌约2~5分钟至混合均匀,即可涂。 混合后的涂料密闭有效期1小时(25℃),请根据施工进度安排使用。[b]4、涂装[/b] 本涂料可以使用喷涂方法施工。施工涂覆两遍,第二遍在底层表干后约2-4小时后涂装,可根据实际气温湿度略微延长和缩短时间。 可根据施工,干燥方式:涂刷,或喷涂一遍。自然干燥5至10h,90度烘2小时,160度烘2小时,180度烘2小时,再涂刷或喷涂第二遍。自然干5--10h,90度烘干2小时,160度烘干2h,190-200度烘干2小时。[b]干膜厚度:[/b] 35-50μm/道[b]理论用量:[/b] 120-150 g/m2/道[b]5、A、B在使用后[/b],未使用的部分应立即将其盖紧,避免里面的物质挥发或凝结,使其变稠,缩短有效期。

  • 【转帖】未来纳米材料的发展方向

    5.纳米科学与技术 (1)研究方向:研究物质在纳米尺度上表现出的物理、化学和生物特性,单分子的特性和相互作用,为以原子、分子为起点,设计和构筑新的纳米结构、材料和器件,提供科学基础和理论准备。加强对纳米结构新的测试和表征方法的研究和探索,加深对纳米科技理论和方法的理解。 (2)应用方向,纳米技术的发展有5个主要方向:   以纳米材料(颗粒、C60、碳纳米管)为代表的方向;以从微电子向纳电子转化为代表的方向;以微光、机、电集成系统向纳光、机、电集成系统为代表的方向(MEMS――NEMS);以纳米生物学、系统为代表的方向;以纳米物理化学性质、制备、表征等为代表的方向。 (3)纳米技术在纺织领域的应用:   目前,纳米技术在纺织方面的应用主要表现在纳米复合纤维及纳米技术在纺织后整理等方面。   ①纳米复合纤维:化学纤维中加入纳米级添加剂,可以制造出新一代功能性更强的、不同用途的优良复合化学纤维。这种方法的技术难度比直接制造纳米纤维的难度要低,是近期内纳米技术在纺织领域中应用的主导方向。结合当前的实际情况,应考虑发展以下几类纤维:   ●抗紫外纤维   纳米TiO2和纳米ZnO等陶瓷粉,由于小尺寸效应,对光的吸收性很强。以它们为无机紫外线屏蔽剂制成的抗紫外线型纤维或织物,不仅可全面抵御UV-A、UV-B对人体皮肤的伤害,而且还能反射可见光和红外线,具有遮热功能,以此类纤维制成的织物,便于印染整理,手感柔软,透气凉爽,服用性好。目前从国内外研制生产的品种来看,涉及到涤纶、维纶、腈纶、锦纶、丙纶和粘胶纤维等。   ●抗菌、抑菌和除臭纤维   纳米级TiO2和ZnO等光催化无机抗菌剂可应用于超细纤维等特殊场合,是前景广阔的新型抗菌材料。它们可作为添加剂加到涤纶、丙纶、锦纶、腈纶、粘胶等化纤中,赋予各类纤维及其织物抗菌、抑菌、除臭功能,从而起到保健和美学作用,所制成的纤维不仅具有疏水导湿性、快干性、抗污性、密度小和手感柔软等特点,且抗菌性能持久。   ●导电纤维   将二氧化锡和氧化锌等白色纳米粉体与纤维高聚物混合纺丝或通过吸附法及浸渍化学反应使其覆盖于纤维表面上,制成白色导电纤维,可用来制作防护服、工作服和装饰性导电材料。   ●远红外纤维   此类纤维可以吸收太阳光和人体辐射的远红外线,也可以发射出波长和功率与其温度相适应的远红外线,因而使织物具有更好的保暖效果;它还能吸引人体自身向外散发的热量,并再向人体反射易吸收的远红外线。同时,由于特殊的物理效能刺激人体生理发生变化,还能达到保健和抑菌的作用。远红外纤维除了具有反射功能外,还兼有抗可见光、近红外线和抗紫外线的功能,可用来制作夏日服装、野外工作服、遮阳伞及装饰用布等,孕育着十分广阔的市场。   ●空气负离子纤维   奇冰石纳米复合粉是将多种天然矿石进行深度加工,并添加纳米TiO2等纳米粉体制成的性能奇特的超细粉体。添加了奇冰石的丙纶、涤纶纤维,可以产生空气负离子,发射远红外电磁波,还可以释放人体需要的微量元素,因此可制作保健服、内衣、室内装饰布、窗帘、家用纺织品、汽车装饰布等。它还可以为人体随时补充所需要的微量元素,实现了医药工程和纺织工程的完美结合,易被广大消费者接受,具有较大的市场潜力。   ●高强高模量纤维   纳米碳管的强度极高,弹性模量也很高,甚至可以弯曲后再弹回,可用于制备高强高弹性纤维。另外,粘土与聚合物的复合能够大大提高材料的强度和模量,北京服装学院利用纳米粘土的这种功能,与聚酰胺插层聚合开发尼龙纳米功能纤维,使纤维的强度和模量有很大的提高,尤其是模量,可以提高2倍,但纤维的纺丝性能没有明显的改变。   除了上述功能纤维以外,采用纳米粉体对纤维进行改性,还可以开发多种功能纤维,如变色纤维、耐热纤维、芳香纤维、磁性纤维、储能纤维、发光纤维、阻燃纤维、吸水吸湿纤维、防水拒油纤维等。   ②纳米技术在织物后整理中的应用   ●直接涂层法获得功能性涂层   先将纳米微粒直接加入到织物整理剂中,使其均匀分散,然后使织物通过包含纳米微粒的整理液,在粘合剂作用下直接涂覆在织物表面,形成功能性涂层。   ●接枝技术法获得功能性涂层   对于某些涂层牢度不够、功能性不持久的情况,可采用接枝技术。具体可采用两条技术路线:一是将对纳米材料有很强的配位能力的有机化合物接枝到棉纤维上,制成简单的有机分子模板,再将纳米团簇组装到纤维上;二是在制备纳米微粒时,用可接枝到纤维上的化合物作为捕获剂,使纳米微粒通过捕获剂进行表面修饰形成"团簇",再把"团簇"接枝到纤维上。   (4)纳米改性涂料   实验研究表明,在各类涂料中添加纳米材料,如纳米TiO2,可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,广泛应用于医院和家庭内墙涂饰;防紫外线涂料,用于生产防紫外线阳伞;吸波隐身涂料,用于隐形飞机、隐形军舰等国防工业领域及其他需要电磁波屏蔽场所的涂敷。在涂料中添加纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍提高,涂料的质量和档次大大升级。纳米二氧化钛超亲水性和超亲油性的开发应用将为涂层材料带来革命,使表面具有自清洁功效,防污、防雾、易洗、易干。纳米材料改性外墙涂料的耐洗刷性可由原来的1000多次提高到1万多次,老化时间延长2倍多,利用纳米材料的光学性能改性后的颜料色彩艳丽、保持持久且极易分散。   (5)纳米稀土   纳米稀土是目前国内纳米材料发展的热点之一。目前正在重点开发纺织纤维用纳米稀土材料、PDP\\LED用稀土发光材料、稀土荧光粉和高性能稀土合金。   纳米稀土的主要应用方向为汽车尾气催化剂(如纳米CeO2)、纺织纤维添加剂、高性能稀土发光材料、陶瓷及涂层等。   (6)纳米陶瓷   氧化钇锆是一种应用广泛的陶瓷材料,用纳米氧化钇和氧化锆能在较低温度下烧结成氧化锆陶瓷,具有很高的强度和韧性,可用作刀具和耐磨零件,也可制成陶瓷发动机部件。此外,稀土氧化物等纳米材料可以掺入普通陶瓷粉,喷涂在陶瓷基体上形成无机陶瓷腊(膜),代替聚四氟乙烯有机膜,做成耐热、无铅、不粘的日用陶瓷炊具。

  • 利用高速分散机分散太阳能电池耐刮涂层的纳米复合型材料

    工作原因,最近翻译了一份稿件,发出来分享一下,原文附在最后,欢迎大家批评斧正!摘要柔性太阳能电池的表面涂层要求是高性能的紫外固化丙烯酸酯纳米复合材料。他们的合成不仅是一个微调的化学步骤,同时要求分散和研磨的过程。已申请专利的气相二氧化硅原位硅烷化在德国VMA公司的TORUSMILL®研磨分散机的帮助下表现得最好。从VMA实验室系列分散研磨机参数的可比性更简单方便的帮助从实验室试样放到规模生产。简介非凡的挑战要求非凡的解决方案:柔性太阳能电池要受到阳光、风力和各种外界因素几十年的摧残。要承受这些极端的要求,表面涂层必须柔韧,耐磨和耐划伤。当然,高透明度,成本效益和避免底材温度过高这些性能也是需要的。由于同时要求高的生产效率和低的工艺温度,优异性能的紫外光固化丙烯酸酯系统是首选。通过加入无机粒子,可使得丙烯酸酯配方的耐刮性和耐磨性可以进一步提高。只要填充度低于的阈值为25%体积(大约与40%质量百分比一致,因为无机颗粒的密度更高)则被认为是表面硬度与填充度呈线性过程。涂料表面硬度的提高比期望的颗粒硬度要低(图1)。直到超过渗流阈值,即颗粒不能再滑动,总硬度成为颗粒和基体的加权和。超过了渗流阈值,另一方面也就意味着这个系统不再搅动。插图1很明显地显示了理论状况,这就是众所周知的冶金过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061742_165.gif图1: 提高填充度的紫外光固化纳米复合材料的微硬度的改善随质量百分比显示。插图显示了硬度和填充度的体积百分比在整个范围内的理论关系。突出的区域对应于主图中显示的数据。分散技术如果不是粒子本身的硬度,那是什么决定了不同填充度的硬度变化呢?这是由颗粒与基体之间的相互作用及矩阵,这受到粒子的表面处理,也即分散技术相互作用的控制。最不理想的情况是,微硬度随填充度的增加而降低,我们最近在实验室研究的一个水性纳米粒子丙烯酸酯系统(数据未显示)就是这种情况。另一方面,为了实现最大的颗粒基质相互作用的原位表面改性的硅烷化是在莱布尼茨研究所研发的。这一专利的概念是基于著名的化学反应与一个新过程的组合。颗粒表面硅烷化包括前体步骤(通过相应的烷氧基硅烷的水解形成的硅醇基取代)和硅烷醇与表面羟基缩合来结合扩散,从而提供表面活性。因为这些过程是丙烯酸酯基的自身反应,并不需要不确定的反式扩散。最后,每个颗粒都有了自己的硅烷均匀包裹,再交联与基体形成坚硬的质膜。如太阳能电池所用的透明薄膜,就需要非常精细的纳米颗粒。操作会产生气相二氧化硅纳米粒子(Degussa的气相二氧化硅比表面积至少200m2/g,即Aerosil200和Aerosil380)未经表面处理的这些粒子通常作为一种触变剂,百分之几的质量足以将清漆变成高粘度的腻子。这种效果当然也发生在中纳米复合材料的合成过程:纳米颗粒必须计量并慢慢加到有丙烯酸酯的TORUSMILL® 研磨分散机 中,该型号的分散机具有高扭矩力的引擎,并能满负荷运转。随着分散的开始并在表面反应的辅助下,纳米复合材料的粘度再次下降。当降低转矩力,机器上会显示出综合数值,告知操作员什么时候恢复供给二氧化硅纳米颗粒。一个完全自动化的耦合转矩控制和粒子计量已经应用在TORUSMILL® TM500中。透明清澈的纳米复合材料——使用TORUSMILL®使用传统的分散机是不可能得到完全透明清澈的清漆而且完全没有附聚物的。这就是TORUSMILL®专利系统的关键之处,分散机的预分散与研磨砂的创新结合,能有效地对基料先作预分散,之后用高性能的珠磨作研磨,不再需要转移基料:已经合成了纳米粒子超过20%质量百分比的透明清澈的纳米复合材料。透明清澈的意思是通过半米厚的纳米复合材料,仍能看到放在桶底的硬币上的字母。TORUSMILL®系列为纳米复合材料的合成线路的发展提供了极大的便利。 TORUSMILL® TM 10已经大批量运用在10L的规模原料下,也已经有了一些经验,更大的机器通常需要用更多的时间。很快将会大批量生产100L的型号 (图2是TM100) 或者是半吨规模的(TM500)。这种方式就是购买原材料从实验室小样到试生产到扩大规模生产的时理步骤。最终的产品通过在TORUSMILL®上的IOM系统生产的丙烯酸酯纳米复合材料表现出令人惊讶的低粘度,使我们制造出高填充度且涂层柔韧耐磨的太阳能电池。柔性太阳能电池还在试生产阶段,而丙烯酸酯纳米复合材料已经由莱比锡的Cetelon Nanotechnik成吨大批量生产并由WKP Unterensingen进一步加工成了耐受性极强、超细克拉级的箔。VMA TM砂磨分散机http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_427.gif图2: 来自VMA Getzmann的TORUSMILL®TM100安装在能在IOM研制纳米合成材料的AFM扫描仪前面,这台扫描仪能展示颗粒被碾磨成坚硬骨料(70nm)的合成过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_367.gifFig. 3:柔性电池和尺子比较.

  • 水性涂料密度测定

    水性涂料密度测定

    请问水性涂料密度是怎么测定的?可以用液体密度计直接测定吗?我看到GB/T23985里面密度测定方法根据样品类型用GB/T6750。GB/T21862.2、GB/T21862.3、GB/T21862.4。我们的水性涂料有双组分的,那测密度取样是取整体混合样品的吧,粘度有点大,测试密度的时候是不是不能稀释后测的吗?请各位老师指教,多谢!

  • 【原创大赛】【开学季】+纳米压痕仪对材料蠕变的研究

    【原创大赛】【开学季】+纳米压痕仪对材料蠕变的研究

    许多材料的室温蠕变能力很低,用传统的拉伸方法很难准确测量蠕变应力指数(与蠕变机制密切相关)纳米压痕仪具有极高的载荷和位移分辨率,能够方便的用于微小载荷的性能测量,为研究材料的室温压痕蠕变提供了一种有效的测试手段。纳米压痕仪具有很高的位移和载荷的分辨率,它为考察材料的局部蠕变行为提供了一种新的手段。用该法测量蠕变应力指数,不但方法简单,对样品尺寸要求不高,而且测量精度高。 压痕蠕变时,材料受到的是三维的复杂应力,变形区形状由材料的硬度、模量和加工硬化能力决定,蠕变过程与材料中弹塑性区边界向材料内部扩展的速率有关。压痕测量研究的是衡载荷下的应力弛豫过程,通过单次测量就可得到应变速率敏感指数。 本文以单晶Cu做为实验材料,通过瑞士CSM公司纳米压痕仪进行蠕变测试。测试条件:最大载荷20mN,加卸载速率40mN/min,保载时间600s图1http://ng1.17img.cn/bbsfiles/images/2014/09/201409301557_516567_2224533_3.jpg基于纳米压痕数据,有效压痕应变速率和应力可从下列公式计算http://ng1.17img.cn/bbsfiles/images/2014/09/201409301558_516568_2224533_3.jpg其中ε应变率,σ应变,hi瞬间压痕深度,Ac接触面积,R压头半径基于实验所得纳米压痕数据作图图2(a)t-Pd曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301601_516569_2224533_3.jpg图2(b)t-strain rate曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301603_516571_2224533_3.jpg图2(c)stress-strain rate 曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301606_516580_2224533_3.jpg[/font

  • 离心场场流仪在纳米材料领域的应用简介

    离心场场流仪,简称CF3,是在空心的分离通道内施加一个垂直于样品流动方向的离心力,使样品分离并分析测试其尺寸及分布。这款仪器与超速离心有相似之处,但是分离能力、分辨率等要高出很多。像热场具有两个分离原理一样,离心场也具有两个分离原理:1 尺寸分离,包括聚合物/生物大分子材料的流体力学体积、纳米材料的体积与尺寸;2 按照密度分离。离心场是最早商品化的场流分离仪,在人工合成/制造的纳米材料领域有着广泛的应用,在国际纳米材料科研领域享有极高声誉。许多归国留学科学家都曾经在国外学习期间使用过、了解过离心场CF3。目前,国内不少科研单位都对离心场产生了浓厚兴趣。由于具有按照密度分离的能力,离心场可以把尺寸相同或相近的、但是化学性质不同的纳米材料分离开来。附件的文件中,就介绍了尺寸基本相同的纳米金与纳米银颗粒的混合材料,被离心场分离开来并分别测试其含量和尺寸分布。注意,场流仪的分离,是先馏出小尺寸/小分子量样品,再馏出大尺寸/大分子量样品的,其顺序与GPC的分离顺序相反。具体到离心场,小尺寸/小密度的样品先馏出,因此,纳米银颗粒在前、纳米金颗粒在后。离心场可以分离分析各种纳米材料:金属、非金属、有机与无机材料等等,既可以使用水做流动相,也可以使用各种有机溶剂做流动相。

  • 【转帖】无机纳米粒子复合乳液的研究进展!

    无机纳米粒子复合乳液的研究进展 王玉玲,邓宝祥 (天津工业大学材料科学与化学工程学院,天津300160) 摘要:对纳米SiO2复合乳液的合成制备作了详细的综述,介绍了共混法、插层法、溶胶-凝胶法和原位分散聚合法,概述了纳米SiO2对复合材料性能的影响及其特性和发展。 关键词:纳米粒子 SiO2 聚丙烯酸 复合乳液 0引言 乳液型复合材料具有价廉、安全无污染及使用方便等特点,在胶粘剂、涂料、皮革、纸张、纤维、纺织等领域已得到广泛应用。但是乳胶膜在某些性能上存在缺点,例如,耐候性差、硬度低、胶膜冷脆热粘等,这样其应用性就会受到限制。如果在聚合物乳液中加入无机纳米粒子制成无机纳米粒子复合乳液,利用纳米材料的特性制备性能优异的复合乳液,则在乳液性能上会有很大的提高,使这种复合乳液比单纯的有机乳液具有更好的应用前景。 这种复合乳液属于有机-无机复合材料,它并非是无机相与有机相的简单加合,而是由无机相与有机相在纳米范围内结合而成,在这两相的界面上有着或强或弱的各种物理键和作用(范德华力、氢键等),这种作用赋予材料各种优异的特性。纳米级材料本身具有的特性效应,SiO2表面具有不饱和的残键及不同键合状态的—OH,促使分子呈现出三维结构形态。同时,也是由于这种三维硅石结构,庞大的比表面积和纳米效应,表面严重的配位不足,表现出极强的活性,所以,对色素粒子的吸附力很强,紧紧包裹在色素粒子的表面,形成屏蔽作用,大大降低了因紫外光的照射而造成的色素衰减,这样就能大大提高涂料的附着力与耐候性。 1纳米粒子的分散方法 纳米粒子由于颗粒小,其表面原子比率很高,比表面积大,所以颗粒间往往会通过范德华力、氢键以及一些共价键的作用而互相吸引,形成二次粒径,三次粒径,即团聚体。这种团聚现象就会使纳米粒子失去其独特性,因此合理经济的分散方法十分重要。 1.1物理机械分散法 利用机械搅拌或超声波的方式使纳米粒子均匀分散。 1.2化学试剂添加法 通过加入表面活性剂等化学试剂降低界面之间的张力,添加吸附稳定剂形成界面膜包覆纳米颗粒,即立体保护作用。 2纳米粒子复合乳液的合成方法 有关纳米复合乳液的制备方法,文献报道最多的有:共混法、插层法、溶胶-凝胶法和原位分散聚合法。 2.1共混法 这种方法是先制备出各种形态的纳米粒子,再通过各种方法(例如机械搅拌、超声波等)将其与制备好的乳液直接共混,是制备纳米杂化材料最简单的方法。为防止纳米粒子团聚,需对其表面进行处理。张宝华等通过超声分散仪将纳米SiO2直接与制备好的PUA离聚物乳液共混制得了复合乳液。用激光粒度分布仪检测表明SiO2在复合乳液中呈现纳米尺寸分布,且发现共混法制得的复合乳液能显著改善涂膜的紫外光吸收性能、热学性能及机械性能。曾丽娟等以无机系硅溶胶为主,有机高分子乳液为辅,二者共混改性硅溶胶苯丙复合涂料,所得的涂料具有无机涂料和有机涂料的特性,又弥补了两者的不足,是非常有前途的环保涂料。并在这篇文章中介绍了最佳共混条件的优化选择,以及颜填料、助剂的选用对涂料性能的影响。 2.2插层法 插层复合法是制备聚合物基无机杂化材料的一种重要方法。利用层状无机物(如硅酸盐类粘土、石墨、V2O5、Mn2O3、二硫化物等)作为无机相主体,将单体或聚合物作为客体插入主体的层间,制得插层型杂化材料。用这种方法制备无机纳米粒子复合乳液主要又分为下面3种。 2.2.1嵌入原位聚合方法 先将高分子单体和层状无机物分别溶解到某一种溶剂中,然后单体在外加条件(如氧化剂、光、热、电、引发剂等)下发生原位聚合,利用聚合时放出的热量克服硅酸盐片层间的库伦力而使其剥离,从而使纳米尺度硅酸盐片层与高分子物基体以化学键的方式结合。王一中、李同年分别以此法制备了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)和聚苯乙烯(PS)/蒙脱土(MMT)嵌入混杂材料 LeewookJang和范宏制备了苯乙烯-丙烯腈(SAN)/MMT纳米复合材料 官同华等合成了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)纳米材料,并对其性能进行了表征 金星等采用双-苯基二甲基十八烷基溴化铵(TBDO)作为有机插层剂对钠基蒙脱土进行了有机化处理,该有机化的蒙脱土粒子在苯乙烯单体中很容易地分散并形成稳定的胶体溶液。通过对分散由蒙脱土的苯乙烯进行自由基聚和制备了聚苯乙烯-蒙脱土纳米复合材料,X衍射和透射电镜研究表明形成了原位插层型和部分插层部分剥离型纳米复合材料。且其与纯聚苯乙烯相比,具有更高的相对分子质量,较低的玻璃化转变温度(Tg)和优良的热稳定性。

  • 推荐讲座:见微知著:纳米压痕用于混凝土等建筑材料研究(2018年1月30日)

    网络讲座:见微知著:纳米压痕用于混凝土等建筑材料研究举行时间:2018/01/30 10:00报名链接:[url]http://www.instrument.com.cn/webinar/meeting_3334.html[/url]报告人:魏岳腾博士,1982年10月出生。2011年毕业于清华大学材料学院,并获得博士学位。毕业后进入中国科学院高能物理研究所工作。2013年3月加入Bruker纳米表面仪器部担任应用科学家。主要从事改性材料的设计、表征和应用研究。报告内容:包括混凝土在内的建筑材料的力学性能、摩擦磨损性能对这些建筑材料的应用具有关键作用。更高性能的建筑材料才能实现更复杂的建筑结构的设计。传统力学和摩擦磨损研究方法仅能得到材料的平均性能。而像混凝土在内的多数建筑材料都具有多相结构和相界面,这些微观结构的力学性能限制了材料的最终性能。布鲁克纳米表面部提供了最新一代纳米压痕测试设备,可以快速获得多相材料表面力学性能成像及纳米摩擦磨损性能,为更高性能的材料设计和表征提供指导。本次讲座主要内容包括:建筑材料特点及研究方法,应用布鲁克纳米压痕研究成果实例等。

  • 对于纳米TiO2你了解多少?

    纳米TiO2(优锆纳米)具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米二氧化钛还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中1.杀菌功能在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米二氧化钛(TG01)可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米纳米二氧化钛(TG01)能净化空气,具有除臭功能。苏州优锆纳米二氧化钛具有很高的表面活性,抗菌能力强,产品易于分散。经试验证明该产品对大肠杆菌、金黄色葡萄球菌、沙门氏菌和曲霉菌等具有很强的杀菌能力,已广泛应用于纺织、陶瓷、橡胶、医药等领域的抗菌产品,深受广大用户的欢迎。2.防紫外线功能纳米氧化钛(同VK-T25)的强抗紫外线能力是由于其具有高折光性和高光活性。其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫外线的反射、散射性不明显,而对中波区紫外线的吸收性明显增强。其防晒机理是吸收紫外线,主要吸收中波区紫外线。苏州优锆纳米二氧化钛由于粒径小,活性大,既能反射、散射紫外线,又能吸收紫外线,从而对紫外线有更强的阻隔能力。与同样剂量的一些有机紫外线防护剂相比,万景牌纳米氧化钛在紫外区的吸收峰更高,更可贵的是它还是广谱屏蔽剂,不象有机紫外线防护剂那样只单一对UVA或UVB有吸收。它还能透过可见光,加入到化妆品使用时皮肤白度自然,不象颜料级TiO2,不能透过可见光,造成使用者脸上出现不自然的苍白颜色。3.光催化功能---清洁空气,PM2.5分解环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。纳米二氧化钛通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。苏州优锆纳米二氧化钛因粒径非常小,而且不团聚,分散性能好,没有任何沉淀,不含任何添加剂(香精),催化活性高:本款纳米光触媒的催化活性经过测试,比目前市场所有的催化性能最好的纳米二氧化钛的催化活性还高20-50倍。可以迅速的捕捉并分解室内的甲醛,苯,氨等有害气体,除味效果好。对PM2.5的分解清除有良好的效果。

  • 【求助】粉末涂料粒度测试仪器选择

    想买台仪器来测喷粉的粉末涂料的粒度分布,哪位行家有好的推荐:另:干法分散好还是湿法分散好?用什么分散介质合适?涂料的主要基质是树脂,还有一些填充料及消光料,如硫酸钡、碳酸钙等,估计粒度范围0~120μm,希望最佳分布范围10~70μm,中位粒径希望大约35μm。

  • 常用防腐涂料种类及特点详述

    [align=center][b]常用防腐涂料种类及特点详述[/b][/align]防腐涂料是现代工业、交通、能源、海洋工程等部门应用极为广泛的一种涂料。按其涂料膜层的耐腐蚀程度和使用要求,通常分为常规型和重防腐型两类。我国每年仅因金属材料腐蚀造成的损失高达5000亿元,约占国民生产总值的5%。防腐涂料在涂料工业中占有越来越重要的地位,其规模仅次于建筑涂料位居第二位。因此,防腐涂料的对我国的发展具有重大意义。  我国的防腐涂料主要应用在化工和石油行业、铁路、公路桥梁、冶金行业、电力和能源工业、机械及纺织行业、工业产品领域、汽车、船舶及集装箱行业。其中,最大的行业为化工和石油行业,它包括油田设施、输油管道、海上平台、石油化工厂的钢结构和钢筋混凝土结构的防腐;与此同时,铁路及公路桥梁的新建和维护也是防腐涂料应用的领域;此外,工业产品领域以及汽车、船舶等海洋防腐领域也是防腐涂料市场的最大需求点。  中国防腐涂料市场,伴随着中国基础设施建设、工业机构调整和新兴产业的发展,防腐涂料无疑成为涂料产业与市场体系中的一个重要领域与分支,重防腐涂料经过几十年的发展在我国已经形成了渤海湾地区、珠江三角洲、长江三角洲三大区域格局。一、防腐蚀涂料的主要类型1.油脂涂料  油脂涂料是以干性油为主要成膜物的一类涂料。其特点是易于生产,涂刷性好,对物面的润湿性好,价廉,漆膜柔韧;但漆膜干燥慢,膜软,机械性能较差,耐酸碱性、耐水性及耐有机溶剂性差。干性油常与防锈颜料配合组成防锈漆,用于耐蚀要求不高的大气环境中。2.生漆  生漆又称为国漆、大漆,是我国特产之一。生漆是从生长着的漆树上割开树皮流出来的一种乳白色粘性液体,经细布过滤除去杂质即是。它涂在物体表面上后,颜色迅速由白变红,由红变紫,时间较长则可变成坚硬光亮的黑色漆膜。  漆酚是生漆的主要成分,含量达30%~70%。一般讲,漆酚含量越高生漆质量越好。  生漆附着力强、漆膜坚韧、光泽好,它耐土壤腐蚀,较耐水、耐油。缺点是有毒性,易使人皮肤过敏。此外它不耐强氧化剂,耐碱性差。现在有不少改性的生漆涂料,不同程度上克服了上述缺点。3.酚醛树脂涂料  主要有醇溶性酚醛树脂、改性酚醛树脂、纯酚醛树脂等。醇溶性酚醛树脂涂料抗腐蚀性能较好,但施工不便,柔韧性、附着力不太好,应用受到一定限制。因此常需要对酚醛树脂进行改性。如松香改性酚醛树脂与桐油炼制,加入各种颜料,经研磨可制得各种磁漆,其漆膜坚韧,价格低廉,广泛用于家具、门窗的涂装。纯酚醛树脂涂料附着力强,耐水耐湿热,耐腐蚀,耐候性好。4.环氧树脂涂料环氧涂料附着力好,对金属、混凝土、木材、玻璃等均有优良的附着力;耐碱、油和水,电绝缘性能优良。但抗老化性差。环氧防腐蚀涂料通常由环氧树脂和固化剂两个组分组成。固化剂的性质也影响到漆膜的性能。常用的固化剂有:①脂肪胺及其改性物。特点是可常温固化,未改性的脂肪胺毒性较大。②芳香胺及其改性物。特点是反应慢,常须加热固化,毒性较弱。③聚酰胺树脂。特点是耐候性较好,毒性较小,弹性好,耐腐蚀性能稍差。④酚醛树脂、脲醛树脂等其它合成树脂。这些树脂和环氧树脂并用经高温烘烤后交联成膜,漆膜具有突出的耐腐蚀性,并有良好的机械性能和装饰性。环氧树脂是最常用的热固性树脂之一,广泛应用于先进复合材料树脂基体、耐高温胶黏剂、电子封端材料、耐高温隔热涂料等高新技术领域中,由于环氧树脂加入固化剂固化后交联密度高,存在内应力大、质脆,耐冲击性和耐湿热性较差等缺点。  环氧酯树脂涂料是以环氧酯树脂作为成膜物的一种单组分涂料体系。环氧酯树脂由环氧树脂和植物油脂肪酸酯化合而成。该涂料与一般环氧涂料相比成本较低,耐碱性较差。常用作各种金属底漆和化工厂室外设备防腐蚀漆。5.聚氨酯涂料  用于防腐蚀涂料的聚氨酯树脂常含有两个组分:异氰酸酯基――NCO和羟基。使用时将双组分混合而反应固化生成聚氨基甲酸酯(聚氨酯)。  聚氨酯涂料的特点:①物理机械性能好。漆膜坚硬、柔韧、光亮、耐磨、附着力强。②耐腐蚀性能优异。耐油、酸、化学药品和工业废气。耐碱性稍低于环氧涂料。③耐老化性优于环氧涂料。常用作面漆,也可用作底漆。④聚氨酯树脂能和多种树脂混溶,可在广泛的范围内调整配方,以满足各种使用要求。⑤可室温固化或加热固化,温度较低时(0℃)也能固化。⑥多异氰酸酯组分的贮藏稳定性较差,必须隔绝潮气,以免胶冻。聚氨酯涂料价格高,但使用寿命长。6.乙烯树脂涂料  乙烯树脂防腐蚀涂料主要是指以氯乙烯、醋酸乙烯、乙烯、丙烯等单体制成的树脂为成膜物的涂料。其中的过氯乙烯涂料已大量生产和应用。  过氯乙烯涂料能形成致密的漆膜,耐化学腐蚀性能好,但对光、热的稳定性差,长期使用不宜超过60℃,对金属附着力较差。该涂料原料来源丰富,在防止化工大气腐蚀方面已大量使用。7.呋喃树脂涂料  呋喃树脂涂料耐各种非氧化性无机酸、电解质溶液、各种有机溶剂,耐碱性也很突出,但抗氧化不好。  呋喃树脂系列防腐蚀涂料包括糠醇树脂涂料、糠醛丙酮甲醛树脂涂料和改性呋喃树脂涂料等。8.橡胶类涂料  橡胶类防腐蚀涂料以经过化学处理或机械加工的天然橡胶或合成橡胶为成膜物质,加上溶剂、填料、颜料、催化剂等加工而成。(1)氯化橡胶涂料。该涂料耐水性好,耐盐水和盐雾;有一定的耐酸、碱腐蚀性,50℃以下能耐10%HCl、H2SO4、HNO3、不同浓度的NaOH及湿Cl2。但不耐溶剂,耐老化性和耐热性差。该涂料广泛用于船舶、港湾、化工等场合。(2)氯丁橡胶涂料。该涂料耐臭氧、化学药品,耐碱性突出,耐候性好;耐油和耐热,可制成可剥涂层。缺点是贮存稳定性差;涂层易变色,不易制成白色或浅色漆。(3)氯磺化聚乙烯橡胶涂料。由聚乙烯树脂与氯气及二氧化硫(或氯磺酸)反应制得。涂层抗臭氧性能优良,耐候性显著,吸水率低、耐油、耐温,可在120℃以上使用,-50℃也不发脆。9.沥青涂料  沥青是重要的防腐蚀涂料之一。尤以煤焦沥青为最佳,煤焦沥青涂料价格低廉,具有下列优点:①耐水,浸入水中10年其吸水率仅0.1%~0.2%;②耐一些化学介质的侵蚀;③对未充分除锈的钢铁表面仍有良好的润湿性;④固含量高,可获厚膜;⑤价格低廉。其缺点是寒冬发脆,夏暑发软,曝晒后有些成分挥发逸出会使漆膜龟裂。这些缺点可通过加入一些其它树脂得到改善。例如加入氯化橡胶可提高沥青涂料的干性,改善冬脆夏软的缺点;加入环氧树脂制得的环氧沥青涂料,可兼具沥青涂料和环氧涂料的优点,在防腐蚀中获得非常满意的效果。沥青涂料已在集装箱底、船底、船坞闸门、围堰等场合使用,防腐蚀效果很好。10.重防腐蚀涂料  重防腐蚀涂料是相对一般防腐蚀涂料而言的。它是指在严酷的腐蚀条件下,防腐蚀效果比一般腐蚀涂料高数倍以上的防腐蚀涂料。其特点是耐强腐蚀介质性能优异,耐久性突出,使用寿命达数年以上。主要用于海洋构筑物和化工设备、贮罐和管道等。  目前常用的重防腐蚀涂料主要有:(1)作为底漆的重防腐蚀富锌涂料。分厚膜型有机富锌涂料、富锌预涂底漆和无机富锌涂料三个系列。(2)重防腐蚀中间层涂料和面漆。这类涂料可直接涂在富锌底漆上,主要有氯化橡胶系、乙烯树脂系、环氧系、聚氨酯系、氯磺化聚乙烯系、环氧焦油系等重防腐蚀涂料。(3)玻璃磷片重防腐蚀涂料。(4)环氧砂浆重防腐蚀涂料。(5)含氟涂料。如聚三氟氯乙烯涂料,氟橡胶涂料等。此外,市场中出现了一种新型纳米涂料,防腐效果更好。CY-T系列耐高温强酸碱纳米防腐涂料,是杭州九朋新材料开发,由纳米氧化铝、 纳米氧化锆、纳米氧化钛、纳米氧化硅等组成的一种新型耐酸碱涂层材料。该防腐涂料具有优异的耐高温、耐强酸(盐酸、 硫酸、 硝酸、有机酸等)、耐强碱(氢氧化钠、氢氧化钾等)、耐强腐蚀、耐高盐份、耐油浸、耐磨、耐压、耐冲击、等优点。非常适合用于要求耐强酸、强碱、腐蚀物多的场所。纳米基料具有强隔离效果,具有致密特性,使得光和各种腐蚀分子都无法渗入涂层,极度耐腐蚀耐候。纳米粒子本身具有高硬度,从而提高了纳米涂层的耐磨性。并且可以快捷方便修补涂层各种原因的破损,极大延长设备的使用寿命。然而,优秀的纳米涂层,要求纳米粒子均匀分散,并且对纳米粒子表面改性,提升粒子间的表面吸附性能。这两点,是纳米涂料的难点。杭州九朋新材料正是很好的解决了这两个难题,从而开发出了CY-T系列耐高温强酸碱纳米防腐涂料,给了防腐界一个性能更优的选择。成本更低,这也是杭州九朋新材料CY-T系列耐高温强酸碱纳米防腐涂层的一个优势。极高的防腐耐磨性能,使得涂层必须厚度大大下降,从而节省涂布时间和成本,也大大节省了涂料的用量。杭州九朋新材料CY-T系列耐高温强酸碱纳米防腐涂层既可以用作底漆,也可以用作中层漆和面漆,适用极其广泛,其广泛使用,将会产生巨大的经济价值和社会效应。二、防腐蚀涂料的选择与施工1.涂料品种的选择  防腐蚀涂料品种繁多,其性能和用途各有不同,正确选用对涂层的防蚀效果和使用寿命至关重要。选用时应考虑:(1)被涂物体表面材料性质。如黑色金属可选择铁红、红丹底漆,而红丹底漆对铝等有色金属不仅不起保护作用,反而会起破坏作用。(2)被涂物体的使用环境。防腐蚀涂料对环境针对性很强,要根据具体使用环境,如介质的类型、浓度、温度,设备运转情况等因素来选用最适宜的涂料品种。(3)施工条件。应根据施工现场实际状况选择适宜的涂料品种。如在通风条件差的现场施工宜采用无溶剂或高固体份或水性防腐蚀涂料。在不具备烘烤干燥的现场只能选用自干型涂料。(4)技术、经济综合效果。不仅要考虑技术性能是否优异,还要考虑经济的合理性。在进行经济核算时要将材料费用、表面处理费用、施工费用、涂层性能及使用寿命、维修费用等综合考虑。2.防腐蚀涂料的施工原则  涂料施工质量好坏对涂层的性能影响极大。在实际涂装过程中由于施工方法不当而达不到预期防蚀效果的例子很多。特别是许多性能优异的防腐蚀涂料对施工方法极为敏感,只有严格按照其各自的施工条件进行施工才可形成正常的涂层,达到预期的防蚀保护作用。(1)底材必须进行严格的表面处理。钢铁基材必须经除锈、除油处理,磷化处理则可根据具体情况而定。(2)要保证必要的涂层厚度。防腐蚀涂层厚度必须超过其临界厚度,才能发挥保护作用,一般为150μm~200μm。(3)控制涂装现场的温度、湿度等环境因素。室内涂装温度应控制在20℃~25℃;相对湿度视品种而异,一般以65%左右为宜。在室外施工时应无风沙、细雨,温度不低于5℃,相对湿度不高于85%。应避免未完全固化的涂层上结霜、降露、下雨和降落砂尘。(4)控制涂装间隔时间。如底漆涂装后放置过久才涂面漆,将难以附着而影响整体防护效果。  此外,还必须加强施工人员培训和施工质量管理。要求施工人员了解涂料的性质、用法、施工要点和技术要求。管理人员要加强质量监控,保证每道工序都符合技术要求,以便最终得到一个性能优异的防腐蚀涂层。还要加强劳动安全防护,注意溶剂挥发,加强通风,以免中毒。CY-T系列耐高温强酸碱纳米防腐涂料使用说明九朋新材料推荐施工和使用方法:为保证涂装质量,请仔细阅读使用说明和产品对应的涂装规范。底层涂层要薄涂,起过渡作用,目的使涂层与基体附着力更好。1、环境条件基体表面温度和环境温度一般不低于5℃,空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]对湿度不超过85%。2、基体处理:涂装作业前,应去除基体表面的油污、残锈、氧化皮等。推荐使用具有中度碱性的水性清洗剂清除油污,然后用清水冲净。所有待涂钢材表面最好达到Sa2.5级要求。局部修补涂层时,钢材表面最好打磨到St3级。表面粗糙度要求最好控制在25~40μm范围内。3、混合配比:A液(主漆):B液(固化剂)=6∶1(重量比),混合后并搅拌约2~5分钟至混合均匀,即可涂。 混合后的涂料密闭有效期1小时(25℃),请根据施工进度安排使用。4、涂装本涂料可以使用喷涂方法施工。施工涂覆两遍,第二遍在底层表干后约2-4小时后涂装,可根据实际气温湿度略微延长和缩短时间。可根据施工,干燥方式:涂刷,或喷涂一遍。自然干燥5至10h,90度烘2小时,160度烘2小时,180度烘2小时,再涂刷或喷涂第二遍。自然干5--10h,90度烘干2小时,160度烘干2h,190-200度烘干2小时。干膜厚度: 35-50μm/道理论用量: 120-150 g/m2/道5、A、B在使用后,未使用的部分应立即将其盖紧,避免里面的物质挥发或凝结,使其变稠,缩短有效期。

  • 【分享】微孔分布测试仪的主要特性

    微孔分布测试仪主要应用领域:催化剂,广泛用于石化、化工、医药、食品、农业、精细化工等领域;吸附剂,如活性炭、分子筛、活性氧化铝等,广泛用于环保领域;颜填料,无机颜料、碳酸钙、氧化锌、氧化硅、矿物粉等;陶瓷材料原料,氧化铝、氧化锆、氧化钇、氮化硅、碳化硅等;炭黑、白炭黑、纳米碳酸钙等用于橡塑材料的补强剂等;新型电池材料,如钴酸锂、锰酸锂、石墨等电极材料;发光稀土粉末材料;磁性粉末材料,如四氧化三铁、铁氧体等;纳米粉体材料,包括纳米陶瓷材料、纳米金属材料,纳米银粉、铁粉、铜粉、钨粉、镍粉等;其他,如超细纤维、多孔织物、复合材料、沉积物、悬浮物等  微孔分布测试仪的主要特性:  测试时间:多点BET法比表面积平均每个样品15分钟,孔径分布测试、孔隙度测试平均每个样品100分钟  主要功能:可实行BET比表面积(多点及单点)测试,Langmuir比表面积测试,炭黑外比表面积测定,吸附、脱附等温曲线测定,BJH孔径分布、总孔体积和平均孔径测定;  真空系统:极限真空度6×10-2Pa  微孔分布测试仪测量范围:比表面积≥0.01M2/g至无规定上限,孔尺寸0.7~400nm;  样品数量:可同时测定1-4个样品;  测量精度:≤±2%;  微孔分布测试仪的压力控制:高精度压力传感器,数字显示,精度0.2%,独特的充气与抽气速度自动控制系统  运行方式:高度自动化,智能化,长时间运行可以无人看管自行测试  测试气体:高纯氮气(不用氦气),氮气消耗量极小  微孔分布测试仪的吸附过程:样品不需要频繁从液氮杜瓦瓶中进出,液氮消耗极少  软件系统:在Windows平台上,提供过程控制和数据采集、处理、报告系统,多种测试方法可自由方便选择,在计算机屏幕上,同步显示吸、脱附,比表面积及微孔分布测量仪测试过程、可随时查看已完成部分的测试数据;本机软件功能强大、界面友好、兼容性高、使用方便;

  • 【转帖】纳米材料研究的现状、特点和发展趋势

    一、纳米材料研究的现状  自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。从研究的内涵和特点大致可划分为三个阶段。第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,基保包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。纳米颗粒、丝、管可以是有序或无序地排列。如果说第一阶段和第二阶段的研究在某种程度上带有一定的随机性,那么这一阶段研究的特点更强调人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。著名诺贝尔奖金获得者,美国物理学家费曼曾预言“如果有一天人们能按照自己的意愿排列原子和分子…,那将创造什么样的奇迹”。就像目前用STM操纵原子一样,人工地把纳米微粒整齐排列就是实现费曼预言,创造新奇迹的起点。美国加利福尼亚大学洛伦兹伯克力国家实验室的科学家在《自然》杂志上发表论文,指出纳米尺度的图案材料是现代材料化学和物理学的重要前沿课题。可见,纳米结构的组装体系很可能成为纳米材料研究的前沿主导方向。  二、纳米材料研究的特点  1、纳米材料研究的内涵不断扩大第一阶段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象又涉及到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶),例如气凝胶孔隙率高于90%,孔径大小为纳米级,这就导致孔隙间的材料实际上是纳米尺度的微粒或丝,这种纳米结构为嵌镶、组装纳米微粒提供一个三维空间。纳米管的出现,丰富了纳米材料研究的内涵,为合成组装纳米材料提供了新的机遇。  2.纳米材料的概念不断拓宽1994年以前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构的材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间的基体,因此,纳米结构材料内涵变得丰富多彩。   3.纳米材料的应用成为人们关注的热点 经过第一阶段和第二阶段研究,人们已经发现纳米材料所具备的不同于常规材料的新特性,对传统工业和常规产品会产生重要的影响。日本、美国和西欧都相继把实验室的成果转化为规模生产,据不完全统计,国际上已有20多个纳米材料公司经营粉体生产线,其中陶瓷纳米粉体对常规陶瓷和高技术陶瓷的改性、纳米功能涂层的制备技术和涂层工艺、纳米添加功能油漆涂料的研究、纳米添加塑料改性以及纳米材料在环保、能源、医药等领域的应用,磨料、釉料以及纸张和纤维填料的纳米化研究也相继展开。纳米材料及其相关的产品从1994年开始已陆续进入市场,所创造的经济效益以20%速度增长。  三、纳米材料的发展趋势  1.加强控制工程的研究  在纳米材料制备科学和技术研究方面一个重要的趋势是加强控制工程的研究,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。国际上近一两年来,纳米材料控制工程的研究主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效应和渗流效应;三是通过设计纳米丝、管等的阵列体系(包括有序阵列和无序阵列)来获得所需要的特性。   2.近年来引人注目的几具新动向   (1)纳米组装体系蓝绿光的研究出现新的苗头。日本Nippon 钢铁公司闪电化学阳极腐蚀方法获得6H多孔碳化硅,发现了蓝绿光发光强度比6H碳化硅晶体高100倍:多孔硅在制备过程中经紫外辐照或氧化也发蓝绿光;含有Dy和Al的SiO2气凝胶在390nm波长光激发下发射极强的蓝绿光,比多孔Si的最强红光还高出1倍多,250nm波长光激发出极强的蓝光。  (2)巨电导的发现。美国霍普金斯大学的科学家在SiO2一Au的颗粒膜上观察到极强的高电导现象,当金颗粒的体积百分比达到某临界值时,电导增加了14个数量级;纳米氧化镁铟薄膜经氢离子注入后,电导增加8个数量级;  (3)颗粒膜巨磁电阻尚有潜力。1992年,纳米颗粒膜巨磁电阻发现以来,一直引起人们的关注,美国布朗大学的科学家最近在4K的温度下,几个特斯拉的磁场,R/R上升到50%,目前这一领域研究追求的目标是提高工作温度,降低磁场。如果在室温和零点几特斯拉磁场下,颗粒膜巨磁阻能达到10%,那么就将接近适用的使用目标。目前国际上科学家们正在这一领域努力。  (4)纳米组装体系设计和制造有新进展。美国加利福尼亚大学化学工程系成功地把纳米AU 颗粒组装到DM的分子上形成纳米晶分子组装体系;美国利用自组装技术将几百支单壁纳米碳管组成晶体索"Ropes",这种索具有金属特性,室温下电阻率小于10-4W/cm;将纳米三碘化铅组装到尼龙(nylon-11)上,在X射线照射下具有强的光电导性能,利用这种性能为发展数字射线照相奠定了基础。

  • 纳米技术及应用

    信息产业科技、生物科技和纳米技术是现在世界上前沿科学领域的三大主要方向。 纳米是一个长度计量单位,它是一米的十亿分之一。纳米材料就是在纳米量级范围内调控物质结构研制而成的新材料。纳米技术就是 指在纳米尺度范围内,通过操纵原子、分子、原子团和分子团,使 其重新排列组合成新物质的技术。其最终目标是直接以原子、分子的变化,使物质在纳米尺度上表现出新颖的物理、化学和生物学特性,制造出具有特定功能的产品。因为纳米材料的粒度非常微小,一般的显微镜是不能观察到的,所以纳米技术是在扫描隧道显微镜发明之后,才出现以0.1至100纳米尺度为研究对象的前沿科学。这可能改变几乎所有产品的设计和制造方式,实现生产方式的飞跃, 是新工业革命的核心。纳米技术也是信息和生命科学技术能够进一步发展的共同基础,将对人类产生深远的影响,甚至改变人们的思维方式和生活方式。有人曾经预言说,七十年代搞微米技术的国 家,现在已成为发达国家;现在从事纳米技术研究的国家,将是二 十一世纪的先进国家。 纳米材料粒度非常微小,具有良好的表面效应,一克纳米材料的表 面积达到几百平方米,因此用纳米材料制成的产品,其强度、柔韧 度、延展性都十分优越,就象一种有成千上万对脚的毛毛虫,当它 吸附在光滑的玻璃面上时,由于接触面积大,12级台风也吹不掉 它。因此,在化纤中加入少量的金属纳米颗粒,就可摆脱磨擦引起的静电现象;在食品中采用纳米技术,可提高肠胃的吸收功能;在 涂料中运用纳米技术,可使外墙涂料的耐洗刷性从一千多次提高到一万多次,老化时间延长两倍多;许多化妆品因为加入纳米微粒, 而具备防紫外线功能;利用纳米技术可生产出色彩鲜艳、抗折性极 高的彩色轮胎;利用纳米粉末,可使废水变清。另外,纳米在医药 保健、计算机、化学和航天等领域都会引起新的、技术性革命。 作为纳米技术重要方面的碳纳米管,是1991年被人类发现的。它是由石墨碳原子层卷曲而成的碳管,管的直径一般为几个纳米到几十纳米,管壁厚度仅几个纳米,象铁丝网卷成的空心圆柱状的“笼形 管”。5万个“笼形管”排列起来,才有人的一根头发丝那么宽,长度和直径比非常高的纤维小。作为石墨、金刚石等碳晶体家族的新成员,碳纳米管的韧性很高,导电性极强,场发射性能优良,兼具 金属性和半导体性。其强度比钢高100倍,比重只有钢的1/6,称之 为未来的超级纤维,成为国际研究的热点。碳纳米管的用途十分诱 人。它可制成极好的微细探针和导线、加强材料及储氢材料。它使壁挂电视成为可能,并在将来可替代硅芯片。纳米芯片体积更小、 容量更大、重量更轻,将在纳米电子学中扮演极重要角色,并引发计算机行业的革命。不久前我国研制出的碳纳米管显示器样本,不但体积小,重量轻,而且显示质量好,从-45℃~80℃皆能正常工 作,而耗电只有现在的显示器的1%。 另外,作为纳米技术的应用之一,在我国西安已研制出的“纳米服 装”,不仅能阻隔95%以上的紫外线,还能阻隔同量的电磁波,且无毒、无刺激,不受洗涤、着色、磨损的影响,能有效地保护人体皮 肤不受辐射的影响。还有小鸭集团研制出的纳米洗衣机,就是利用 纳米抗菌材料研制出的自我清洁的洗衣机。它能够有效地抑制细菌 滋生,无论使用多长时间,都能够保持“净水洗涤”的状态。 目前,纳米技术在电线电缆中的应用已在开始。有人曾设想,能否运用纳米技术来提高绝缘材料的性能,从而提高电缆的绝缘、耐热 和抗老化等性能,减少电缆的外径,减轻电缆的重量。另外能否利 用碳纳米管的韧性高、导电性强的特点,制成超细电磁线,使微型 电机的体积象米粒那样大,甚至更小。 现在“纳米热”已遍及全球,从大西洋到太平洋,从日本到欧洲,各国都把它作为重要的未来发展战略。美国总统克林顿曾经发表过 一篇关于前沿科学技术的前瞻性的讲话,提出了美国今后要大力发 展纳米技术。美国已于2000年10月1日启动“国家纳米计划”,投资1997年的1.16亿美元增加到4.97亿美元。目前全球纳米技术的年 产值已达到500亿美元,预计到2010年,市场容量将达到14400亿美 元。我国已建立了10多条纳米材料和技术的生产线,以此为基础的企业已达100多家。预计在今后二、三十年内,它将远远超过计算机工业,并成为未来信息时代的核心。纳米技术导致的微形化趋势从根本上改变人类的处境,从而引起二十一世纪的又一次产业革命。

  • 纳米材料综述

    1,概述一纳米等于十亿分之一米,相当于人的头发丝直径的八万分之一。纳米材料被誉为“21一世纪最具有前途的材料”,与信息技术和生物技术并成为21世纪社会经济发展的三大支柱之一和战略制高点。材料的结构决定材料的性质,纳米材料的特殊结构决定它具有一些特异性质,从而纳米材料具有常规材料没有的性质,从而使纳米材料得到更广泛的应用。纳米材料在化工,工程材料,信息,生物医学,军事等领域都得到了充分的应用。现在纳米技术尚在初期阶段,但于社会效益与经济效益都产生的巨大的影响,在未来纳米材料必定大显身手。纳米科技是研究结构尺度在1(0.1)~100nm范围内材料体系的运动规律,相互作用及实际应用的科学技术。其基本内涵是在纳米尺寸范围内认识和改造自然,通过直接操作原子,分子创造新的物质。纳米技术在材料学,生物学,电子学,化学,物理学,测量学,力学的若干领域得到应用。纳米技术是许多基础理论,专业工程理论与当代高新技术的结晶。以物理学,化学的微观理论为基础,以现代高精密检测仪器和先进的分析技术为手段。美国IBM首席科学家曾经说到:“正像微电子技术产生了信息革命一样,纳米技术将成为下一代信息的核心。”我国著名科学家钱学森也指出:“纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而引发21世纪的一次新的产业革命。”纳米技术具有极大的战略意义,世界上许多国家都将其纳入重点发展项目。本文将从纳米材料的现状,发展趋势及应用三方面加以主要叙述。2,定义 纳米材料是指特征尺寸在纳米数量级(1~100nm)的极细颗粒组成的固体材料。广义上讲,纳米材料指三维空间尺寸中至少有一维处于纳米量级的材料。发展历史纳米材料的概念可以追溯到1959年,诺贝尔奖获得者理查德·费曼(Richard Phillips Feynman)_在一次名为“There is plenty of room at the bottom”演讲中提到的。他构想人类可以使用宏观上的机器制造比其体积小的机器,进而制造更小的机器,这样一步步缩小生产装置,逐步达到分子尺度,到最后人类可以按照自己的意愿来排列原子,制造产品。尽管当时的科学界抱以普遍的怀疑态度,但不久之后,他的理念得以证实, 1980年H·Gleiter教授在一次穿越澳大利亚的沙漠旅行时引发的构想,他不同于当时的常规想法,即具有完整空间点阵结构的实体即晶体视为主体,而将空间点阵中的空位,置换原子,间隙原子,相界,位错和晶界视为晶体材料中的缺陷。他将“缺陷”视为主体,制造出一种晶界占有极大体积比的材料。1984年,他领导的研究组用惰性气体凝聚法制备了具有具有清洁表面的黑色纳米金属粉末粒子,并以它为结构单元制成了纳米块体材料。 1987年美国国家实验室的西格尔(Siegel)等人使用气相冷凝法制备纳米陶瓷材料TiO2,并观察到纳米材料在室温和低温下具有良好的韧性。1990年7月,在美国巴尔的摩召开国际第一届纳米科技学术会议,正式把纳米材料科学作为材料科学的一个新的分支公布于世,表明了纳米材料科学已经成为一个比较独立的学科。1994年在美国波士顿召开的MRS秋季会议上正式提出了纳米材料工程。是纳米材料的新领域,是纳米材料研究的基础上通过纳米合成,纳米添加发展新型的纳米材料,并通过纳米添加对传统材料进行改性,扩大纳米材料的应用范围,开始形成了基础研究与应用研究并行的局面。纳米材料发展有三个阶段:第一阶段(1990年之前)主要是在实验室探索,用各种手段制造各种材料纳米颗粒粉体,合成块体,研究表征方法,探索纳米材料的性能。第二阶段(1990~1994年)。人们

  • 【转帖】纳米材料几个热点领域的新进展

    纳米材料几个热点领域的新进展  一、纳米组装体系的设计和研究  目前的研究对象主要集中在纳米阵列体系;纳米嵌镶体系;介孔与纳米颗粒复合体系和纳米颗粒膜。目的是根据需要设计新的材料体系,探索或改善材料的性能,目标是为纳米器件的制作进行前期准备,如高亮度固体电子显示屏,纳米晶二极管,真空紫外到近红外特别是蓝、绿、红光控制的光致发电和电子发光管等都可以用纳米晶作为主要的材料,国际上把这种材料称为“量子”纳米晶,目前在实验室中已设计出的纳米器件有Si-SiO2的发光二极管,Si掺Ni的纳米颗粒发光二极管,用不同纳米尺度的CdSe做成红、绿、蓝光可调谐的二极管等。介孔与纳米组装体系和颗粒膜也是当前纳米组装体系重要研究对象,主要设计思想是利用小颗粒的量子尺寸效应和渗流效应,根据需要对材料整体性能进行剪裁、调整和控制达到常规不具备的奇特性质,这方面的研究将成为世纪之交乃至下一个世纪引人注目的前沿领域。纳米阵列体系的研究目前主要集中在金属纳米颗粒或半导体纳米颗粒在一个绝缘的衬底上整齐排列的二维体系。   纳米颗粒与介孔固体组装体系近年来出现了新的研究热潮。人们设计了多种介孔复合体系,不断探索其光、电及敏感活性等重要性质。这种体系一个重要特点是既有纳米小颗粒本身的性质,同时通过纳米颗粒与基体的界面隅合,又会产生一些新的效应。整个体系的特性与基体的孔洞尺寸,比表面以及小颗粒的体积百分比数有密切的关系。可以通过基体的孔洞将小颗粒相互隔离,使整个体系表现为纳米颗粒的特性;也可以通过空隙的连通,利用渗流效应使体系的整体性质表现为三维块体的性质。这样可以根据人们的需要组装多种多样的介孔复合体。目前,这种体系按支撑体的种类可划分为:无机介孔和高分子介孔复合体两大类。小颗粒可以是:金属、半导体、氧化物、氮化物、碳化物。按支撑体的状态也可分为有序和无序介孔复合体。  二、高性能纳米结构材料的合成  对纳米结构的金属和合金重点放在大幅度提高材料的强度和硬度,利用纳米颗粒小尺寸效应所造成的无位错或低位错密度区域使其达到高硬度、高强度。纳米结构铜或银的块体材料的硬度比常规材料高50倍,屈服强度高12倍;对纳米陶瓷材料,着重提高断裂韧性,降低脆性,纳米结构碳化硅的断裂韧性比常规材料提高100倍,n-ZrO2+Al2O3、n-SiO2+Al2O3的复合材料,断裂韧性比常规材料提高4-5倍,原因是这类纳米陶瓷庞大体积百分数的界面提供了高扩散的通道,扩散蠕变大大改善了界面的脆性。  三、纳米添加使传统材料改性  在这一方面出现了很有应用前景的新苗头,高居里点、低电阻的PTC陶瓷材料,添加少量纳米二氧化铣可以降低烧结温度,致密速度快,减少Pb的挥发量,大大改善了PTC陶瓷的性能,尺度为60nm的氧化锌压敏电阻、非线性阀值电压为100V/cm,而4mm的氧化锌,阀值电压为4kV/cm,如果添加少量的纳米材料,可以将阀值电压进行调制,其范围在100V~30kV之间,可以根据需要设计具有不同阀值电压的新型纳米氧化锌压敏电阻,三氧化二铝陶瓷基板材料加入3%--5%的27nm纳米三氧化二铝,热稳定性提高了2——3倍,热导系数提高10%——15%。纳米材料添加到塑料中使其抗老化能力增强,寿命提高。添加到橡胶可以提高介电和耐磨特性。纳米材料添加到其他材料中都可以根据需要,选择适当的材料和添加量达到材料改性的目的,应用前景广阔。  四、纳米涂层材料的设计与合成   这是近1—2年来纳米材料科学国际上研究的热点之一,主要的研究聚集在功能涂层上,包括传统材料表面的涂层、纤维涂层和颗粒涂层,在这一方面美国进展很快,80nm的二氧化锡及40nm的二氧化钦、20nm的三氧化二铬与树脂复合可以作为静电屏蔽的涂层,80nm的BaTiO3可以作为高介电绝缘涂层,40nm的Fe3O4可以作为磁性涂层,80nm的Y2O3可以作为红外屏蔽涂层,反射热的效率很高,用于红外窗口材料。近年来人们根据纳米颗粒的特性又设计了紫外反射涂层,各种屏蔽的红外吸收涂层、红外涂层及红外微波隐身涂层,在这个方面的研究逐有上升的趋势,目前除了设计所需要的涂层性能外,主要的研究集中在喷涂的方法,大部分研究尚停留在实验室阶段,日本和美国在静电屏蔽涂层、绝缘涂层工艺上有所突破,正在进入工业化生产的阶段。  五、纳米颗粒表面修饰和包覆的研究   这种研究主要是针对纳米合成防止颗粒长大和解决团聚问题进行的,有明确的应用背景。美国已成功地在ZrO2纳米颗粒表面包覆了Al2O3在纳米Al2O3表面包覆了ZrO2,SiO2表面的有机包覆,TiO2表面的有机和无机包覆都已在实验室完成。包覆的小颗粒不但消除了颗粒表面的带电效应,防止团聚,同时,形成了一个势垒,使它们在合成烧结过程中(指无机包覆)颗粒不易长大。有机包覆使无机小颗粒能与有机物和有机试剂达到浸润状态。这为无机颗粒掺入高分子塑料中奠定了良好的基础。这些基础研究工作,推动了纳米复合材料的发展。美国在实验室中已成功的把纳米氧化物表面包覆有机物的小颗粒添加到塑料中,提高了材料的强度和熔点。同时防水能力增强,光透射率有所改善。若添加高介电纳米颗粒,还可增强系统的绝缘性。在封装材料上有很好的应用前景。

  • 纳米片材料性质

    [font=微软雅黑][size=10.5000pt]由于纳米单元层都是一个动力学独立的片状颗粒,其空间位阻被降到最低,因此可以与任意大小的微粒同纳米层实现组装,进而合成一系列利用常规方法不能抽取的插层化合物,特别是插入体积非常大的客体分子。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]此外,剥离得到的纳米层通过剥离[/font]/重组技术可以制备新的纳米功能薄膜、纳米功能积层材料、有效高比表面积的催化材料材料以及有机-无机复合材料等。[/size][/font][font=微软雅黑][size=10.5000pt]期待合成的纳米材料在磁性材料、选择性催化剂、选择性吸附剂,锂离子二次电池正极材料等方面得到广泛应用。[/size][/font][align=left][b][font=微软雅黑][size=12pt]层状化合物及分类[/size][/font][/b][/align][font=微软雅黑][size=10.5000pt]随着纳米复合材料的深入研究,另一类多功能的无机层状化合物已成为合成功能性复合材料重要的前驱物或基本组成单元。无机层状化合物的各类繁多,一般以层状主体是否带电来进行分类。[/size][/font][font=微软雅黑][size=10.5000pt]阴离子型层状化学物:是指层间具有可交换阴离子或中性分子的层状结构主体,且层状主体构架是带正电荷的。其中比较有代表性的主要是:水滑石、类水滑石。它们的主体成份一般是由两种金属的氢氧化物构成,因此又称其为双金属氢氧化物。[/size][/font][font=微软雅黑][size=10.5000pt]阳离子型层状化合物:是由带负电结构单元通过共用边、角、面形成的层状框架或网络。片层电荷补偿是通过层间可移动的阳离子如钾离子或者纳离子等或中性分子来实现。其中比较有代表性的是蒙脱土、绿土、磷酸盐、硅酸盐、钛酸盐和砷酸盐和铌酸盐。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]中性层状化合物:即层状主体结构是电中性的。这类化合物层与层之间是范德华力维持,研究较多的是石墨、层状双硫氧化物、[/font]V[/size][/font][sub][font=微软雅黑][size=10.5000pt]2[/size][/font][/sub][font=微软雅黑][size=10.5000pt]O[/size][/font][sub][font=微软雅黑][size=10.5000pt]5[/size][/font][/sub][font=微软雅黑][size=10.5000pt]等。[/size][/font]

  • 【原创】液体涂料、油墨产品密度的测定

    液体涂料、油墨产品密度的测定:依据ASTM D1475GP-120G/300G的做法和传统做法之比较GP-120G/300G的做法传统的做法根据阿基米得浮力法1、先测试砝码再空气中重2、再测试砝码再油漆中重3、自动显示油漆的密度根据阿基米得容积置换法1、先求得容器的体积2、利用装满油漆的重量减去空瓶的重量3、所得的重量差除以容器的体积4、计算得出油漆的密度针对传统ASTM D1475-98测验方法,易造成下列误差。使用GP-300G/120G的解决方法1 高黏度物料可能夹带空气,得出密度偏低的错误值。解决方法:可利用真空抽取机、煮沸法排除空气、使高黏度物料更密实。2 涂料、油墨液体可能在仪器部件中的玻璃磨口或金属接头处积留的,得出密度 偏高的错误值。解决方法:我们采用阿基米得浮力法,砝码和涂料、油墨液体是一起存在样品杯中,无重量的影响,无需担忧仪器部件中的玻璃磨口或金属接头处积留。3涂料、油墨和树脂有可能胶结、污染或随着操作而得出密度偏高的错误值。解决方法:阿基米得浮力法,砝码和涂料、油墨液体是一起存在样品杯中,测试液体密度时,只须轻易的将砝码吊起即得出液体密度。

  • 纳米软件之通信设备自动测试系统

    [size=16px][b]系统组成[/b][/size][size=16px]  通信设备自动测试系统由工控机、CMA180无线电综合测试仪、仪器与PC通讯线缆、显示器组成。[/size][align=center][size=16px][img=通信设备自动测试系统拓扑图.jpg,490,514]http://www.namisoft.com/UserFiles/Article/image/6377042825978703629505898.jpg[/img][/size][/align][align=center][size=16px]  通信设备自动测试系统拓扑图[/size][/align][size=16px]  [b]系统功能[/b][/size][size=16px]  1、系统可通过网口或USB口对特定型号的无线电综合测试仪进行控制;[/size][size=16px]  2、系统可进行发射机功率、频率准确度、频率稳定度、调制度、带外抑制比、接收机灵敏度等指标进行测试,可进行测试结果合格范围设定、测试信息录入与测试项目选择。[/size][size=16px]  3、系统可以通过对测试仪器的相关参数配置,完成自动化测试(发射机功率、频率准确度、频率稳定度、调制度、带外抑制比、接收机灵敏度)并同时显示实时测试数据及波形。[/size][size=16px]  4、系统具备数据存储、数据查询、报告生成等功能,可完成对测试数据的存储、查询、智能化分析。[/size][size=16px]  5、系统提供安装部署联调服务。[/size][align=center][size=16px][img=系统使用流程图.jpg,600,264]http://www.namisoft.com/UserFiles/Article/image/6377042829766351827547678.jpg[/img][/size][/align][align=center][size=16px]  系统使用流程图[/size][/align][size=16px]  [b]基于硬件[/b][/size][size=16px]  [color=#4f81bd]1、工控机[/color][/size][size=16px]  [/size][size=16px]主要用于安装测试系统控制软件。[/size][size=16px]  [color=#4f81bd]2、CMA180无线电综合测试仪[/color][/size][size=16px]  [/size][size=16px]CMA180适用于工作在100kHz至3GHz频率范围的无线电系统,可以解调和调制所有常见的模拟射频信号。[/size][size=16px]  [color=#4f81bd]3、仪器与PC通讯线缆[/color][/size][size=16px]  仪器与PC之间的连接线缆,可以实现测试仪器与测试工控机的物理交互、被测典型元器件与测试仪器的物理交互以及测试仪器装置之间的物理交互。[/size][size=16px]  [color=#4f81bd]4、显示器[/color][/size][size=16px]  显示器与工控机连接,用于将测试系统的界面以及数据波形图、数据表显示,用户可以直观的观察测试数据。[/size][size=16px][/size][size=16px]  [b]软件功能[/b][/size][size=16px]  系统通过程控CMA180无线综合测试仪,完成对发射机功率、频率准确度、频率稳定度、调制度、外带抑制比和接收机灵敏度的测试,可以对测试结果合格范围设定、相关测试信息录入,测试数据实时显示并绘制波形。[/size][align=center][size=16px][img=软件流程图.jpg,592,1415]http://www.namisoft.com/UserFiles/Article/image/6377042838406423821412398.jpg[/img][/size][/align][align=center][size=16px]  软件流程图[/size][/align][size=16px]  [color=#4f81bd]软件主界面:[/color]软件主界面包括运行测试、数据查询和关于我们,点击相应的功能后进入到软件相应的功能界面。[/size][align=center][size=16px][img=软件主界面.jpg,600,376]http://www.namisoft.com/UserFiles/Article/image/6377042841196381971732455.jpg[/img][/size][/align][align=center][size=16px]  软件主界面[/size][/align][size=16px]  [color=#4f81bd]仪器连接界面:[/color]点击主界面的仪器连接按钮进入仪器连接和测试项目选择界面。[/size][align=center][size=16px][img=仪器连接界面.jpg,600,377]http://www.namisoft.com/UserFiles/Article/image/6377042845297584328264102.jpg[/img][/size][/align][size=16px]  [color=#4f81bd]参数设置界面:[/color]点击选择测试项目下拉菜单进行波道的选择、频率的设置、业务设置、模式选择、工作类型和抗干扰方式的设置。[/size][align=center][size=16px][img=参数设置界面.jpg,354,504]http://www.namisoft.com/UserFiles/Article/image/6377042851516522224467735.jpg[/img][/size][/align][align=center][size=16px]  参数设置界面[/size][/align][size=16px]  [color=#4f81bd]运行测试界面:[/color]在此界面中可以对已经选择和设置好的项目进行测试,点击开始测试按钮进行测试。[/size][align=center][size=16px][img=开始测试界面.jpg,600,448]http://www.namisoft.com/UserFiles/Article/image/6377042853544322125995734.jpg[/img][/size][/align][align=center][size=16px]  开始测试界面[/size][/align][size=16px]  [color=#4f81bd]测试结果显示:[/color]测量结果会实时显示测试数据和绘制测试波形。[/size][align=center][size=16px][img=测试界面-数据显示图.jpg,600,421]http://www.namisoft.com/UserFiles/Article/image/6377042856322269321516853.jpg[/img][/size][/align][align=center][size=16px]  测试界面-数据显示图[/size][/align][size=16px]  [color=#4f81bd]数据导出:[/color]测试完成后点击生成报告按钮,选择测试数据模板,进行数据的保存。[/size][align=center][size=16px][img=测试数据保存文件选择.jpg,600,338]http://www.namisoft.com/UserFiles/Article/image/6377042858280151821131642.jpg[/img][/size][/align][align=center][size=16px]  测试数据保存文件选择[/size][/align][align=left][size=16px][color=#ff0000][b]*如果您想要了解更多,请搜索 【纳米软件】至官网咨询。[/b][/color][/size][/align]

  • 【特稿】浅谈纳米材料的应用

    有人曾经预测在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行研究,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。  1 力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

  • malvern zetasizer纳米zs仪器结果分析

    用马儿文纳米测试仪测粒径得到这样的图,不知道要怎么看,求大神帮忙解答[img]https://ng1.17img.cn/bbsfiles/images/2019/04/201904131105046866_6983_3889099_3.png[/img]

  • 求助!!!!纳米粒度测不了电位和粒径

    马尔的ZEN3700纳米粒度及zeta电位测试仪,突然测不出粒径和电位,时好时坏,测粒径就提示这个错误,有没有大神知道是啥问题[img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303132043101126_9770_3570445_3.jpeg[/img]

  • 【转帖】欧盟提议将纳米材料纳入Reach系统

    近日,欧盟提议,将纳米材料划入欧盟的“REACH”系统(负责化学物质的注册、评估、批准、限制)中,并要求在纳米产品的使用标签上,标明其含有纳米材料。比利时消费者保护和环境保护的部长PaUL Magnette在本周举行的关于纳米材料的可追溯性会议上称,消费者日常生活中使用的纳米材料的数量正在呈上涨的趋势,但消费者对纳米材料并不了解。当前的法律法规中,并没有关于纳米材料的使用标签要求以及它可能会给消费者带来的潜在危险,这一点是不能被民众接受的。此外,Magnette表示,使纳米材料被人们普遍接受和认可的唯一途径是,减少其使用功效中的不确定因素。据了解,到目前为止,全球并未有任何国家制定出关于纳米科技的详细法规。

  • 纳米材料的应用是怎样的?

    现如今借助于纳米材料的各种特殊性质,科学家们在各个研究领域都取得了性的突破,这同时也促进了纳米材料应用的越来越广泛化。催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒子作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2(优~锆~纳~米),粒径非常小,而且不团聚,分散性能好,没有任何沉淀,不含任何添加剂(香精),催化活性高,可以迅速的捕捉并分解室内的甲醛,苯,氨等有害气体,除味效果好,可以说其既有较高的光催化活性,又能耐酸碱,对光稳定,无毒。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制