当前位置: 仪器信息网 > 行业主题 > >

纳米力学压痕仪

仪器信息网纳米力学压痕仪专题为您提供2024年最新纳米力学压痕仪价格报价、厂家品牌的相关信息, 包括纳米力学压痕仪参数、型号等,不管是国产,还是进口品牌的纳米力学压痕仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米力学压痕仪相关的耗材配件、试剂标物,还有纳米力学压痕仪相关的最新资讯、资料,以及纳米力学压痕仪相关的解决方案。

纳米力学压痕仪相关的论坛

  • 推荐讲座:见微知著:纳米压痕用于混凝土等建筑材料研究(2018年1月30日)

    网络讲座:见微知著:纳米压痕用于混凝土等建筑材料研究举行时间:2018/01/30 10:00报名链接:[url]http://www.instrument.com.cn/webinar/meeting_3334.html[/url]报告人:魏岳腾博士,1982年10月出生。2011年毕业于清华大学材料学院,并获得博士学位。毕业后进入中国科学院高能物理研究所工作。2013年3月加入Bruker纳米表面仪器部担任应用科学家。主要从事改性材料的设计、表征和应用研究。报告内容:包括混凝土在内的建筑材料的力学性能、摩擦磨损性能对这些建筑材料的应用具有关键作用。更高性能的建筑材料才能实现更复杂的建筑结构的设计。传统力学和摩擦磨损研究方法仅能得到材料的平均性能。而像混凝土在内的多数建筑材料都具有多相结构和相界面,这些微观结构的力学性能限制了材料的最终性能。布鲁克纳米表面部提供了最新一代纳米压痕测试设备,可以快速获得多相材料表面力学性能成像及纳米摩擦磨损性能,为更高性能的材料设计和表征提供指导。本次讲座主要内容包括:建筑材料特点及研究方法,应用布鲁克纳米压痕研究成果实例等。

  • 混凝土纳米压痕仪器求助

    我想做混凝土材料:骨料与水泥砂浆之间、以及新旧砂浆之间的界面过度区的纳米压痕试验。我查了一下资料,这个界面过度区的宽度大概在50微米宽度左右。然后加载的最大加载力为1200微牛。。我先请教一下前辈们:1 纳米压痕仪器: 海思创hysitron TI 950与海思创hysitron TI 900之间有什么区别,我目前联系的大都是海思创TI 900?能够满足要求吗2 制样时,怎样打磨抛光?抛光选取的是水基金刚石悬浮液吗?3 水泥基试验的结果是否离散性比较大4 还有其他要注意的吗?5 大家还知道有哪些学校有海思hysitron创纳米压痕仪(买不起)

  • 【原创】纳米压痕仪用途

    【原创】纳米压痕仪用途

    我们实验室的纳米压痕仪(CSM公司),加载载荷在25uN-30N.分辨率可达1nN.光学显微镜最大屏幕可放大4000倍。 对硬质合金, 纳米材料, 动植物组织等等都可以进行硬度弹性模量的测量。 下次传点漂亮的图片和大家分享http://simg.instrument.com.cn/bbs/images/brow/em09507.gifhttp://ng1.17img.cn/bbsfiles/images/2011/01/201101081218_272687_2224533_3.jpg

  • 【原创大赛】【开学季】+纳米压痕仪对材料蠕变的研究

    【原创大赛】【开学季】+纳米压痕仪对材料蠕变的研究

    许多材料的室温蠕变能力很低,用传统的拉伸方法很难准确测量蠕变应力指数(与蠕变机制密切相关)纳米压痕仪具有极高的载荷和位移分辨率,能够方便的用于微小载荷的性能测量,为研究材料的室温压痕蠕变提供了一种有效的测试手段。纳米压痕仪具有很高的位移和载荷的分辨率,它为考察材料的局部蠕变行为提供了一种新的手段。用该法测量蠕变应力指数,不但方法简单,对样品尺寸要求不高,而且测量精度高。 压痕蠕变时,材料受到的是三维的复杂应力,变形区形状由材料的硬度、模量和加工硬化能力决定,蠕变过程与材料中弹塑性区边界向材料内部扩展的速率有关。压痕测量研究的是衡载荷下的应力弛豫过程,通过单次测量就可得到应变速率敏感指数。 本文以单晶Cu做为实验材料,通过瑞士CSM公司纳米压痕仪进行蠕变测试。测试条件:最大载荷20mN,加卸载速率40mN/min,保载时间600s图1http://ng1.17img.cn/bbsfiles/images/2014/09/201409301557_516567_2224533_3.jpg基于纳米压痕数据,有效压痕应变速率和应力可从下列公式计算http://ng1.17img.cn/bbsfiles/images/2014/09/201409301558_516568_2224533_3.jpg其中ε应变率,σ应变,hi瞬间压痕深度,Ac接触面积,R压头半径基于实验所得纳米压痕数据作图图2(a)t-Pd曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301601_516569_2224533_3.jpg图2(b)t-strain rate曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301603_516571_2224533_3.jpg图2(c)stress-strain rate 曲线http://ng1.17img.cn/bbsfiles/images/2014/09/201409301606_516580_2224533_3.jpg[/font

  • 【原创】纳米压痕制样须知

    常有人问我,做纳米压痕对样品有什么要求,现在我谈谈我的看法:.其实纳米压痕制样不是很难,1.根据压痕深度测量原理,样品的表面粗糙度对测量尤为重要,影响着接触深度的确定。表面粗糙度的要求依赖于压入深度和接触面不确定的容忍度。如果粗糙度的特征波长和接触深度可比,当压针在波谷时从载荷-深度数据中可获得的接触面积会低估真正的接触面积,当在波峰时会高估真正的接触面积。误差的大小依赖于与接触尺寸相关的粗糙度的波长和幅值。所以应该精心磨制样品,尽量将粗糙度的波长减小到接触尺寸以下。2. 由于测试时的压入深度较小,样品表面的准备应特别注意。3.样品厚度要求,至少大于10倍压入深度或10倍压入接触半径。4.一般用胶牢固粘在金属块上,然后紧固在样品的定位平台中。要求样品表面要尽量与压针垂直,倾斜程度小于1度http://simg.instrument.com.cn/bbs/images/brow/em09511.gif

  • 【原创】纳米压痕帖

    http://simg.instrument.com.cn/bbs/images/brow/em09502.gif有点紧张...先发个笑脸抖擞一下... 下面进入正文: 由于纳米压痕测试主要在微/纳米尺度,所以影响结果的因素很多。测试结果的不确定有测试过程中一系列因素的不确定度共同决定。ISO 14577将这些因素分成两大类:A类包括接触零点的确定、载荷和深度的测量(主要指环境的振动和磁场强度的变化)、卸载曲线的拟合、热漂移、表面粗糙度影响下的接触面积;B类载荷和深度测量的误差,机架柔度的确定、压针面积函数的校准、热漂移的修正、测试面的倾斜等。1, 样品制备由于测试时的压入深度较小,样品表面的制备应该特别注意。机械抛光可能引起样品表面的硬化,电解抛光粗糙度又较大,应该根据样品特性具体选择抛光方式。样品厚度要求,至少大于10倍压入深度或10倍压入接触半径。2, 样品安装.......3, 环境控制.......4, 间距选择......5, ....... 哈哈,先发这些,看看大家的回帖如何...http://simg.instrument.com.cn/bbs/images/brow/em09511.gif版主要推荐噢.....

  • 【网络讲座】:3月30日 薄膜材料的纳米力学行为表征

    【网络讲座】:3月30日 薄膜材料的纳米力学行为表征

    【专家讲座】:薄膜材料的纳米力学行为表征【讲座时间】:2016年03月30日 14:00【主讲人】:宋双喜 毕业于上海交通大学材料学,2005年进入田纳西大学诺克斯维尔分校深造,2009年获得材料学博士并进入Hysitron公司担任Application Scientist,2013年受聘上海交通大学特别副研究员,2014年获得上海市浦江人才计划。研究领域包括材料力学行为,金属玻璃等,以第一作者发表SCI论文10篇,总引用400多次。【会议简介】纳米压痕技术的诞生与薄膜材料的发展密不可分。上世纪80年代,随着薄膜技术的不断发展以及在半导体领域的广泛应用,厚度在微米级甚至纳米级的薄膜有着大量的市场需求,而这些薄膜的微观力学行为表征备受关注。传统的力学性能测试方法已无法满足微米、纳米尺度薄膜材料的表征,因此纳米压痕技术的出现弥补了这一领域的空白,之后的二十多年有关纳米压痕理论及利用纳米压痕来进行纳米力学行为表征的相关研究呈指数增长,相关技术也相继应用于各种新兴工业领域。而不断出现的纳米力学表征新技术,与人类不断推进探究材料微观性能的极限,两者相辅相成,成为当今科研前沿领域的一种新模式。本次Hysitron公司举办的网络研讨会主要针对薄膜材料领域介绍相关的纳米力学行为表征方法如薄膜材料的基底效应、残余应力、硬度与弹性模量表征、含时塑性表征、粘附力表征及其他先进纳米力学行为表征及其主要应用范例。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年03月30日 13:304、报名参会:http://www.instrument.com.cn/webinar/Meeting/meetingInsidePage/18895、报名及参会咨询:QQ群—171692483http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668519_2507958_3.jpg

  • 奥地利安东帕(中国)有限公司刚刚发布了销售工程师(纳米压痕仪)- 杭州-杭州市职位,坐标杭州市,敢不敢来试试?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-85522.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]销售工程师(纳米压痕仪)- 杭州-杭州市[b]职位描述/要求:[/b]职责描述:在所负责的区域内,有效开发纳米压痕、摩擦磨损、纳米划痕等仪器的客户;制定并完成客户拜访计划,建立和强化客户关系;完成销售计划、业绩指标;协调合同实施、回款;熟练使用CRM系统追踪潜力商机;追踪行业市场发展动态,收集和整理市场状态和竞争者信息;任职要求:具备纳米压痕、摩擦磨损、纳米划痕等材料力学仪器的相关知识以及实际操作经验;本科及以上学历,材料、高分子、化学、物理等相关专业;两年以上相关产品行业经验,有一定的行业客户基础;有独立开发业务的能力,积极主动地开拓市场;有出色的内外部沟通协调能力;良好的团队配合;有较强的抗压力,能适应长期出差的工作;[b]公司介绍:[/b] 安东帕(Anton Paar)是一家以研制工业及科研专用之高品质测量和分析仪器为主导的企业.我们在测量技术方面的多个领域处于世界领先地位.自企业成立以来,公司员工的创新精神及其对产品质量锲而不舍的追求就一直是我们发展的源动力与基础.我们开发新产品的构想源于直接面对用户需求和密切关注市场的发展状况.将这样的构想实现成为应用最新技术的仪器,则是靠本公司强大的研发部门以及与公司外学术机构伙伴的合...[url=https://www.instrument.com.cn/job/position-85522.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:纳米尺度下的力学性能:见微知著【讲座时间】:2015年09月23日 14:00【主讲人】:魏伯任学历:成功大学机械工程学博士,现职:海思创公司应用科学家研究领域。【会议介绍】纳米尺度下力学性质的测试一直是科研界与工业界关注的重要问题。随着测试技术往与其他性质相互串连的方向发展,其应用层面更是不断地朝不同领域扩展。今日的纳米压痕早已不再只是硬度与弹性模量的测试,在结合相对应技术架构的搭配之下,已经能够针对接口特性、破裂韧性、高温蠕变、残余应力等进行高精度与高分辨率的测试。 现阶段的复合技术已经够在多方面获得进展,如接口附着能、表面能、多层膜的破裂韧性等等。除了在学术理论技术方面的进展之外,在工业应用方面也因应各种生产需求,朝针对产品整体面向的质量管控与良率监控的自动化方向发展。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月23日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16665、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 哪里有卖带载荷-深度曲线的微米压痕啊?

    在这里,首先祝各位同行,2014年身体健康,工作顺利!我们单位想买一台带载荷-深度曲线的微米压痕(micro-indenter with the capability of recording the load - depth curve so that mechanical properties (e.g., hardness, Young's modulus) of phases in a material can be evaluated),但不知道哪里有卖的,请各位指点一二!另外,还想买一台可在高温下测试的宏观硬度仪,不知道各位有没有相关的销售信息?先谢谢各位了!

  • 【原创大赛】扫描探针显微镜在纳米力学测试中的应用

    【原创大赛】扫描探针显微镜在纳米力学测试中的应用

    [b] [/b][color=windowtext][b] 扫描探针显微镜在纳米力学测试中的应用[/b][/color][b] [/b][color=windowtext][b] [/b][/color][b] [/b][color=windowtext][b]一、什么是扫描探针显微镜[/b][/color][b] [color=windowtext] 扫描探针显微镜([/color][color=windowtext]Scanning Probe Microscope, SPM[/color][color=windowtext])是在扫描隧道显微镜基础上发展起来的各种新型探针显微镜的统称。是国际上近年发展起来的表面分析仪器,其分辨率高、实时、实空间、原为成像,对样品无特殊要求,可在大气、常温环境甚至溶液中成像,同时具备纳米操纵及加工功能等。广泛应用于纳米科技、材料科学、物理、化学和生命科学等领域,并取得许多重要成果。[/color][color=windowtext] [/color][color=windowtext]二、扫描探针显微镜特点[/color]1、 [color=windowtext]SPM[/color][color=windowtext]具有极高的分辨率[/color]2、 [color=windowtext]SPM[/color][color=windowtext]得到的是实时的、真实的样品表面的高分辨三维图像。[/color]3、 [color=windowtext]SPM[/color][color=windowtext]可以观察单个原子层的局部表面结构。而不是体相或整个表面的平均性质。[/color]4、 [color=windowtext]SPM[/color][color=windowtext]使用环境宽松,可在大气、低温、常温、高温下工作。[/color] [/b][color=windowtext][b]三、扫描探针显微镜在纳米力学测试中原位成像的应用[/b][/color][b] [/b][color=windowtext][b]下面以某系非晶材料为例,说一说扫描探针显微镜的具体应用[/b][/color][b] 1、 [color=windowtext]采用某公司超纳米压痕仪对非晶样品表面纳米压入[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b]压入参数:[/b][/color][b] [/b][table][tr][td][b] [/b][color=windowtext][b] [/b][/color][b] [/b][/td][td][b] [color=windowtext]加载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]保载时间[/color][color=windowtext](S)[/color] [/b][/td][td][b] [color=windowtext]卸载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]最大载荷([/color][color=windowtext]mN)[/color] [/b][/td][/tr][tr][td][b] [color=windowtext]点[/color][color=windowtext]1[/color] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]10[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]30[/b][/color][b] [/b][/td][/tr][/table][b] [color=windowtext]加卸载曲线[/color][color=windowtext]图[/color][color=windowtext]([/color][color=windowtext]一[/color][color=windowtext])[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][img=,690,563]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_01_2224533_3.jpg[/img][/b][/color][b][color=windowtext]通过[/color][color=windowtext]SPM[/color][color=windowtext]原位成像[/color][color=windowtext]图(二、三)[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][img=,401,470]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_02_2224533_3.jpg[/img][img=,690,442]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300951_03_2224533_3.jpg[/img][/b][/color][b] [/b][color=windowtext][b] [/b][/color][b] [color=windowtext] SPM[/color][color=windowtext]原位成像压痕图明显看到三角形边出现似有规律性台阶堆积现象,然而加载曲线比较光滑,丝毫没有异像。于是通过改变在加载速率[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b]压入参数:[/b][/color][b] [/b][table][tr][td][b] [/b][color=windowtext][b] [/b][/color][b] [/b][/td][td][b] [color=windowtext]加载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]保载时间[/color][color=windowtext](S)[/color] [/b][/td][td][b] [color=windowtext]卸载速率[/color][color=windowtext](mN/min)[/color] [/b][/td][td][b] [color=windowtext]最大载荷([/color][color=windowtext]mN)[/color] [/b][/td][/tr][tr][td][b] [color=windowtext]点[/color][color=windowtext]2[/color] [/b][/td][td][b] [/b][color=windowtext][b]3[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]10[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]60[/b][/color][b] [/b][/td][td][b] [/b][color=windowtext][b]30[/b][/color][b] [/b][/td][/tr][/table][b] [color=windowtext]加载曲线[/color][color=windowtext]图(四)[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][img=,690,567]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300952_01_2224533_3.jpg[/img][/b][/color][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][b] [color=windowtext]SPM[/color][color=windowtext]原位成像[/color][color=windowtext]图(五、六)[/color][img=,401,469]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300953_01_2224533_3.jpg[/img][img=,690,437]http://ng1.17img.cn/bbsfiles/images/2017/09/201709300953_02_2224533_3.jpg[/img][/b][color=windowtext][b] [/b][/color][b] [color=windowtext]四、结论[/color][color=windowtext] 图(五、六)图(二、三)现象基本一致,然而采用低速率的加载曲线,出现了明显小平台,在排除外界震动等因素的情况下,我认为在采用仪器压入法研究材料的纳米力学性能时,常规加载速率很可能由于仪器的灵敏度导致无法捕捉到更多的微观信息,如果没有借助[/color][color=windowtext]SPM[/color][color=windowtext]成像(为什么没有推荐扫描电镜的原因,因为扫描电镜属于二次电子成像,无法得到样品表面凹凸高度信息)很可能就发现不了非晶材料的这种滑移等微观信息,不能更深入的研究材料的纳米力学性能。这就是为什么在仪器压入法进行纳米力学性能测试的时候引入[/color][color=windowtext]SPM[/color][color=windowtext]原位成像技术。[/color] [color=windowtext]SPM[/color][color=windowtext]在纳米尺度上是人类观察、改造世界的一种新工具,目前被广发应用于教学、科研及工业领域,特别是半导体集成电路、光盘工业、胶体化学、医疗检测、存储磁盘、电池工业、光学晶体等领域;随着[/color][color=windowtext]SPM[/color][color=windowtext]的不断发展,它正在进入食品、石油、地质、矿产及计量领域。[/color][/b][color=windowtext][b][/b][/color][color=windowtext][b][/b][/color][color=windowtext][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制