当前位置: 仪器信息网 > 行业主题 > >

纳米技术检测仪

仪器信息网纳米技术检测仪专题为您提供2024年最新纳米技术检测仪价格报价、厂家品牌的相关信息, 包括纳米技术检测仪参数、型号等,不管是国产,还是进口品牌的纳米技术检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米技术检测仪相关的耗材配件、试剂标物,还有纳米技术检测仪相关的最新资讯、资料,以及纳米技术检测仪相关的解决方案。

纳米技术检测仪相关的方案

  • FluorCam叶绿素荧光成像技术:纳米技术的植物/农业研究应用
    现在的纳米技术能够在微观纳米尺度构建特定的新型纳米材料。这些纳米材料具备独特的物理化学性质。而将纳米技术应用于植物研究与农业生产并由此发展出的新技术phytonanotechnology,甚至有潜力改变传统的农业生产体系。比如控制农业化学品的释放(包括肥料、杀虫剂和除草剂);靶向释放生物分子(包括核苷酸、蛋白质和催化剂);或者从外部改变植物的生长微环境。同时还需要另一种技术,来评估这些纳米新材料对植物的效用或损伤。FluorCam叶绿素荧光成像技术无疑是最佳的选项之一。植物学家、农学家与材料学家合作,已经利用这两项技术开展了大量的工作。本文简单介绍其中一些杰出的研究。
  • 香港环球分析:超临界CO2流体技术与纳米颗粒制备
    纳米技术是21世纪最为活跃的研究领域之一。目前,对纳米的研究主要停留在对纳米材料制造方法的探索和纳米材料物性的表征水平上,其中超临界流体技术成功地被应用于纳米颗粒的制备尤为引人关注。
  • 【设备更新】MST技术在纳米颗粒检测中的解决方案
    纳米抗体具有分子小、水溶性好、亲和性和稳定性高、特异性强、易于表达生产且能进一步修饰等优点,在多个领域内都有极大的应用前景。但不同表面特性的纳米粒子与蛋白质之间的相互作用的亲和力等指标,仍然缺乏相关研究。MST 技术是通过激光在溶液中产生精确而短暂的温度变化从而检测配体结合引起的荧光强度变化,结合检测不受由配体结合引起的粒径和分子量变化限制。对于纳米颗粒与蛋白间的亲和力检测也能轻松应对!
  • 单颗粒ICP-MS测定铁纳米粒子:利用通用池技术消除光谱干扰
    随着纳米颗粒兴趣的增加,各种测试方法正被应用。采用单颗粒模式电感耦合等离子体质谱法(SP-ICP-MS)分析金属纳米粒子成为最有前途的技术之一。由于其高灵敏度、易用性和分析速度快等特点,ICP-MS是一种理想的技术,用于检测纳米颗粒的特性:无机成分、浓度、尺寸大小、粒度分布和聚集等。ICP-MS分析挑战之一为干扰导致错误的分析结果。然而,这并非是一个问题,因为迄今为止大多数SP-ICP-MS应用均没有涉及到基体干扰或常规光谱干扰问题。例如,金和银纳米粒子在工业中应用较广,未受到常规干扰。另外,大多数纳米颗粒存在简单基体中,该基体几乎不产生干扰。随着纳米技术领域的拓展,分析需求增加,尤其是需要测定纳米颗粒中受干扰的元素,如扩展为其它受干扰的金属纳米粒子,如钛,铬,锌或硅。例如,由于零价铁纳米(ZVI)颗粒具有独特的化学特性和相对大的比表面积,使之更广泛应用于环境修复项目中。由于他们独特的性质,ZVI纳米粒子具有以下作用:去除有机溶剂中氯,转化肥料中有害化合物,降解杀虫剂和固定金属。然而,为监测ZVI颗粒,铁需被测定,因为存在基于等离子体产生的信号ArO+对同样质量数(56)铁的最高丰度同位素(56Fe+丰度91.72%)形成严重干扰。消除这种干扰的最有效方式是采用氨气作为反应气的反应模式ICP-MS。至今为止,已有的大多数SP-ICP-MS报道聚焦于无干扰的纳米粒子,而这种反应模式SP-ICP-MS还未被广泛使用。本工作将专注于证明在反应模式SP-ICP-MS下,NexION通用池技术应用于测定纳米粒子。
  • 湿法珠磨制备米诺地尔纳米颗粒实现高效靶向毛囊
    Oaku团队致力于通过纳米技术,特别是通过珠磨法制备了5%MXD纳米颗粒制剂(MXD-NPs)。该配方既具有MXD纳米颗粒的分散性,又通过使用靶向毛囊的纳米颗粒来增强毛发生长效果,从而解决MXD治疗AGA中的疗效和安全性之间的平衡问题。
  • 赛诺普Xenocs小角X射线散射仪研究湿度对木材纳米结构的影响
    在过去数十年里,人们的气候保护意识有所提高,生物纳米技术也取得了重大进展。因此,考虑到迫切的可持续性需求,木基纳米材料已在能源、生物医学、建筑等众多领域得到应用,或作为石油基聚合物的替代品[1]。尽管如此,更详细地了解植物细胞壁的纳米尺度结构将极大地提高这些材料的性能[2]。
  • 超细纳米颗粒粒度检测面临的挑战及解决方案之一 ——纳米颗粒检测技术概述
    纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100 nm)或由它们作为基本单元构成的材料。由于它的尺寸很小,会产生很多特殊的效应,比如小尺寸效应、隧道效应以及大的比表面积效应等,因此使得纳米材料表现出不同的物理化学特性,例如熔点、磁性、光学、导热、导电特性等等,因而现在纳米材料被广泛应用于医药、化工、冶金、电子、机械、轻工、建筑及环保等行业。但由于其颗粒非常小,因此颗粒大小的检测也就成为了挑战,国际上对于超细颗粒的粒度测试一般有三种方法,即电子显微镜、动态光散射以及激光衍射。
  • 使用 Agilent BioTek Synergy Neo2 Hybrid 多功能微孔板检测仪测定脂质纳米颗粒表观 pKa
    脂质纳米颗粒 (LNPs) 已被用作各种有效载荷的递送系统。本应用简报展示了 Agilent BioTek Synergy Neo2 Hybrid 多功能微孔板检测仪用于测定 mRNA LNPs 表观 pKa 的实用性。
  • 单粒子-ICPMS分析血中金和银纳米粒子
    纳米技术及其潜在应用在临床研究中的快速发展,引起了纳米粒子(NPs)对人类健康方面负面影响的顾虑。小尺寸的纳米粒子由于其单位体积里具有更大的表面积而意味着具有增强的反应性。在这种属性可以加强预期效果的同时,也有引入新的、未知的有害的影响的可能性。两种金属纳米粒子--金和银粒子,金粒子由于其具有高化学稳定性、易于控制颗粒大小和实现表面功能化被广泛应用于研究,银粒子具有抗菌效果经常被用于伤口灭菌、医学部件和假体涂层,以及商品化的纺织品、化妆品和日用商品2。由此,越来越多的银纳米粒子将经过绷带或医疗部件被引入开放性创口,直至迁移进入血液循环系统。近期的论文已经开始考虑纳米粒子被暴露性接触的器官直接吸收,并经由血液系统至第二级器官,例如中枢神经系统,可能影响到胚胎神经前驱细胞的生长特性3。因此,科研人员需要检测和测量血中纳米粒子的分析方法。本文研究了单粒子ICP-MS(SP-ICP-MS)测定血中金和银纳米粒子的分析能力。
  • 低场核磁共振技术在制备纳米铜颗粒过程中的监测应用
    纳米铜的制备方法多种多样,随着科技的发展,不断有更多制备成本进一步降低、质量进一步提高的方法衍生。有必要对纳米铜的制备过程进行监测,来衡量制备方法的优劣性,比如使用低场核磁、动态光散射、红外光谱、X射线、电镜扫描的方法来测量纳米铜颗粒的形状、直径、流动性等物性参数以及制备过程的动态监测。其中低场核磁共振技术弥补了其他各类测试方法的不足,低场核磁共振技术对样品的测试前处理要求简单、测试速度快、可以定量定性的完成对纳米铜制备过程各个阶段的表征。
  • 纳米材料折射率检测丨ATAGO(爱拓)阿贝折光仪 NAR-1T
    ATAGO(爱拓)阿贝折光仪NAR-1T,又称:阿贝折射仪,折射率检测仪测量各类纳米材料、复合材料折射率(nD),帮助企业研发中心进行材料分析、产品研发。
  • 使用配备单纳米颗粒应用模块的Agilent 7900 ICP-MS 实现单个纳米颗粒的自动化高灵敏度分析
    纳米技术的发展将对各个行业领域产生重要影响。由于纳米颗粒 (NP) 的理化性 质较为新颖,它们的许多环境归宿和毒理学性质仍然不为人知。因此,人们对一 种能够快速、准确而灵敏地完成各种类型样品中纳米颗粒表征与定量的技术的需 求也日益增长。ICP-MS 技术中称作单颗粒 ICP-MS (sp-ICP-MS) 的方法可用来 测定单个纳米颗粒。该方法在一次快速分析中可同时测定纳米颗粒的粒径、粒径 分布、元素组成和计数浓度 [1-3]。我们对 ICP-MS 硬件和软件的最新升级进一 步改善了这一技术。 安捷伦针对 ICP-MS MassHunter 软件开发出一种专用的单纳米颗粒应用模 块 (G5714A),可简化使用 Agilent 7900 ICP-MS 进行 sp-ICP-MS 分析的过程。 7900 ICP-MS 系统使用短驻留时间(1 ms 以下)和快速时间分辨分析 (TRA) 模式,能够在快至 100 μs 的采样速率下完成单元素采集,且 无需稳定时间。该方法在单颗粒信号脉冲期间可进行多次 测定,显著降低了相邻颗粒信号重叠的风险。该方法的另 一优势在于可使用较低的样品稀释比例和更短的样品采集时 间。sp-ICP-MS 分析产生的海量数据可由单纳米颗粒应用 模块管理并处理 [4]。 本文利用金 (Au) 和银 (Ag) 纳米颗粒参比标样对配备单纳 米颗粒应用模块的 Agilent 7900 ICP-MS 性能进行了评估。
  • 使用配备了单纳米颗粒应用模块的 Agilent 7900 ICP-MS 对单纳米颗粒进行自动化、高灵敏度的分析
    纳米技术的发展将对各个行业领域产生重要影响。由于纳米颗粒 (NP) 的理化性质较为新颖,它们的许多环境归宿和毒理学性质仍然不为人知。因此,人们对一种能够快速、准确而灵敏地完成各种类型样品中纳米颗粒表征与定量的技术的需求也日益增长。ICP-MS 技术中称作单颗粒 ICP-MS (sp-ICP-MS) 的方法可用来测定单个纳米颗粒。该方法在一次快速分析中可同时测定纳米颗粒的粒径、粒径分布、元素组成和计数浓度。我们对 ICP-MS 硬件和软件的最新升级进一步改善了这一技术。安捷伦针对 ICP-MS MassHunter 软件开发出一种专用的单纳米颗粒应用模块 (G5714A),可简化使用 Agilent 7900 ICP-MS 进行 sp-ICP-MS 分析的过程。7900 ICP-MS 系统使用短驻留时间(1 ms 以下)和快速时间分辨分析 (TRA) 模式,能够在快至 100 ?s 的采样速率下完成单元素采集,且无需稳定时间。该方法在单颗粒信号脉冲期间可进行多次测定,显著降低了相邻颗粒信号重叠的风险。该方法的另一优势在于可使用较低的样品稀释比例和更短的样品采集时间。sp-ICP-MS 分析产生的海量数据可由单纳米颗粒应用模块管理并处理。本文利用金 (Au) 和银 (Ag) 纳米颗粒参比标样对配备单纳米颗粒应用模块的 Agilent 7900 ICP-MS 性能进行了评估。
  • 天津兰力科:改性纳米SiC粉体强化奥氏体不锈钢力学性能和耐腐蚀性能的研究
    本文在生产条件下采用冲入法制备改性纳米SiC粉体强化奥氏体不锈钢材料,研究了纳米SiC粉体对不锈钢的组织、力学性能和耐腐蚀性能的影响及其作用机理。试验用的纳米SiC粉体预先经过表面改性处理,粒径为20-80nm。在细化晶粒方面,其作用机理与孕育剂相类似,但与常规孕育剂不同的是,该纳米SiC粉体与飞速发展的纳米技术相结合,相同质量的改性纳米SiC粉体,能够提供更多的结晶核心,从而以微量的纳米SiC粉体便能明显地细化铸造不锈钢的组织,提高其性能。对自然冷却后得到的不同纳米SiC粉体含量的不锈钢试样进行固溶处理。采用金相检验、布氏硬度检测、拉伸试验、冲击试验、化学浸泡试验、电化学分析等方法检测了不锈钢的晶粒组织、力学性能和耐腐蚀性能,并进一步讨论了不同纳米SiC粉体加入量对不锈钢的组织、力学性能和耐腐蚀性能的影响。研究结果表明:经改性纳米SiC粉体强化处理后的不锈钢组织明显细化,力学性能、耐点蚀性能和耐晶间腐蚀性能均得到有效提高,当纳米SiC粉体加入量为0.1%时,不锈钢的延伸率和断面收缩率分别提高了10.69%和12.30%,硬度、抗拉强度和冲击韧性分别提高了6.33%、4.70%和19.97%,点蚀速率和晶间腐蚀速率分别降低了16.05%和42.39%;断口分析结果表明:经强韧化处理后,不锈钢的断裂方式为典型的韧性断裂;极化曲线表明:当纳米SiC粉体含量为0.1%时,不锈钢的电极电位提高了3倍;能谱分析结果表明,经强化处理后,不锈钢的铬成分偏析减轻,有效改善了晶界等易发生点蚀和晶间腐蚀部位的贫铬现象。该纳米粉体强韧化技术水平先进,设备工艺简单,操作方便,附加值高,能有效提高不锈钢的综合性能,降低能源消耗,可在铸件的生产中广泛应用,并能实现绿色生产和可持续发展。
  • 拉曼光谱+微纳塑料+检测
    表面增强拉曼光谱(SERS)技术是一种结合拉曼散射和纳米技术的超灵敏振动光谱技术,检测水平可低至单分子,可应用于微纳塑料的检测研究。复旦大学张立武课题组之前的研究工作中,首次报道利用 SERS 技术实现了环境纳米塑料的检测(EST,2020, 54(24): 15594)。但是该研究中采用的商业化 Klarite 基底成本昂贵,不适宜广泛大规模的应用。
  • 利用AFM PINPOINT 纳米机械模式定量材料的弹性模量 比力体积谱快两个数量级
    自原子力显微镜发明以来,原子力显微镜通过在纳米尺度上提供精确、可靠、无损的成像,在材料科学和元件工程中产生了革命性的影响。原子力显微镜被广泛用于纳米技术应用当中,像生物医学可植入驱动器、电池超薄阴极材料、光电探测器和存储器和逻辑电路开关。随着元件尺寸的不断缩小,材料的局部特性测量方式方法在提供精确的纳米尺度测量方面已经变得更加有效。局部的机械性能如粘附性和弹性模量是决定这些元件的可靠性和所含性能的关键参数。现有的原子力显微镜是基于纳米机械方法被引入测量机械性能,例如包括力体积谱和纳米压痕。 然而,其中一些技术相当耗时间,有些则具有破坏性,不能满足某些特定应用的高产量监测。 图1展示了Park Systems开发的原子力显微镜PinPoint纳米机械模式。Park Systems专利的PINPOINT技术比传统的力体积谱技术至少快两个数量级,这可以使用户在短时间内能够同时获取材料的定量力学特性和高分辨率形貌图。在操作过程中,探针针尖以接近-缩回的方式移动,确保两者间不会形成摩擦,消除了探针和样品间的持续接触所产生的侧向力,保持了针尖和样品间的良好状态,进而理想的测量软性或硬性样品,如硬盘和生物样品。在图像中的每一点获取力-距离曲线,用于计算被测样品的机械特性。在数据收集期间,XY 扫描器停止,并控制接触时间以给扫描器足够时间去获取精确和准确的数据。在本实验中,成功地定量了具有不同模量范围的4种不同材料。各试验所得结果均接近所测材料的标称值,证明了PinPoint模式在力学特性的定量方面所具备的优越性。此外,它又同时获得了高分辨率图像,显示了样品的表面特征。
  • 提高化妆品功效关键,高效纳米级搅拌分散研磨技术
    在化妆品配方研发上,为让产品发挥效果,功效添加剂粒子纳米化是关键所在,本文将为您介绍一种“高效纳米制备技术”。
  • 流场流动分离耦合ICPMS用于检测和表征纳米银粒子
    纳米材料的分析,应该包括其组成和大小的表征。许多技术可以检测纳米大小的颗粒,但还不能提供有关粒子组成的信息,并且比较耗费时间和成本。但是,电感耦合等离子体质谱(ICP-MS)具有多元素同时分析的能力,检出限低且动态范围宽,这使得它非常适合用于无机工程纳米颗粒(ENPs)的测量。虽然可以使用ICP-MS直接获得纳米粒子相关的元素的浓度,而有关ENPs特征的更多信息可以通过耦合一个按粒子大小分离的步骤在进行ICP-MS分析之前优先进行分析。此应用程序中最常用的大小分离技术是场流分离(FFF)技术。由此产生的FFF-ICP-MS的联用技术可以提供十亿分之一数量级水平的纳米粒子的分离,检测和成分分析的能力。这对纳米材料的环境学调查是至关重要的。而且,相似的场流条件需要ICP-MS和FFF的接口相对简单。
  • 六种纳米颗粒粒径表征测量技术
    有一系列的分析技术都可以用来测量纳米颗粒的粒径。下面我们列出了六种方法,它们都可以提供总体层面(E)或者单个纳米颗粒层面(SP)的信息:1. 动态光散射(E)2. 圆盘离心(E)3. 纳米粒子追踪分析(SP)4. 可调谐电阻脉冲传感(SP)5. 原子力显微镜(SP)
  • BeNano检测纳米黑炭黑颗粒的粒径和Zeta电位
    本篇应用报告,我们使用丹东百特仪器公司的BeNano 90 Zeta 纳米粒度及Zeta电位分析仪检测了分散在水性环境中的纳米黑炭黑颗粒的粒径信息和Zeta电位,并得出结论。
  • 微纳米气泡的直观表征方法
    微纳米气泡因其自身体积小、比表面积大、自身增压溶解等特点,具有广泛的应用价值。但微纳米气泡受气泡发生条件的影响很大,需要依靠准确的检测方法去优化气泡发生条件,检测微纳米气泡的性质。本文借助动态图像法和纳米颗粒跟踪分析技术,分别检测了微米气泡和纳米气泡:通过动态图像法,测得微米气泡的粒径分布、气泡数量、球形度等信息,用于表征、鉴别微米气泡;通过纳米颗粒跟踪分析技术,测得纳米气泡的粒径分布、浓度、电位等信息,用于全面表征纳米气泡的性质。
  • BeNano 180 检测脂质纳米粒LNP的粒径
    脂质纳米粒作为一种高效、安全的药物递送体系,被广泛研究和应用,在本篇应用报告中,我们使用BeNano 180纳米粒度分析仪检测了分散在水性环境中的LNP的粒径并得出结论。
  • 使用高效进样系统进行单纳米颗粒样品检测
    近些年来,纳米颗粒材料被越来越广泛的应用于衣食住行等各领域内,由此带来的潜在的纳米颗粒污染问题,逐渐引起了人们的重视。单颗粒电感耦合等离子体质谱(spICP-MS)技术是近年来发展起来的可用于进行纳米颗粒表征的方法。使用此方法,可实现一次进样同时完成颗粒粒径、数量浓度、元素含量及粒径分布的分析。
  • 高分辨纳米粒度检测分析仪解决动态光散射DLS检测准确度不高难题
    动态光散射(Dynamic Light Scattering,简称DLS)技术是粒度检测的一种常见方法,具有检测快速、可重复性好等特点,但毛细管流体分离技术(Capillary hydro dynamic fractionation,简称CHDF)的粒度检测仪由于其检测结果的高度准确性,被广泛应用在科研院所。胤煌科技(YinHuang Technology)通过以下案例,带你了解毛细管流体分离技术和动态光散射检测结果的差别。
  • 高分辨纳米粒度仪助力脂质纳米粒(LNP)精准粒度检测
    脂质纳米粒(Lipid Nanoparticles)作为一种高效、安全的药物递送体系,已经被各大企业及科研院所广泛研究,成为近年来发展最为迅速的制剂剂型之一,由于其制备过程需要进行特殊的工艺化定制,故而脂质纳米粒类制剂也被称为“高端复杂注射剂”。脂质纳米粒的制备过程中,其粒径控制是脂质纳米粒制备过程中的基础,因为粒径的大小和分布情况对药品后续的稳定性、包封率都具有非常重要的影响。
  • 碳纳米管修饰金电极检测特定序列DNA
    利用化学偶联法将末端修饰氨基的寡聚核苷酸固定在表面修饰有羧基化碳纳米管(CNTs-COOH)的金电极表面,制备新型核酸探针, 可以特异性结合目标单链寡聚核苷酸. 以阿霉素作为嵌合指示剂, 利用示差脉冲法测定杂交的结果. 经过实验条件的优化, 测定DNA 浓度在1.0×10-6~1.0×10-9 mol/L 呈良好的线性关系. 检测限为: 2.54×10-10mol/L. 碳纳米管特有的纳米结构对检测结果的放大作用, 提高了该传感器的检测限和灵敏度
  • 【PalmSens4电化学应用】核壳型纳米酶-氧化酶生物传感器,用于无创同时监测糖尿病和缺氧
    本文报道了先进的纳米酶生物传感器,能够无创地同时监测糖尿病和缺氧。用核壳普鲁士蓝-六氰基高铁酸镍纳米酶浸渍涂层可产生稳定和灵敏的过氧化氢传感器。所得生物传感器的最佳性能特性是由直径为50 nm的纳米颗粒提供的,该纳米颗粒包含35–37 nm(?)普鲁士蓝核。基于流通式多生物传感器,通过连续汗液分析操作的无创监测仪,用于同时检测葡萄糖和乳酸。安装在人体皮肤表面的特制葡萄糖乳酸盐监测仪,可直接测量未稀释人体汗液中葡萄糖和乳酸盐的真实浓度。结合已开发的生物传感器应用于可穿戴设备,显然将为缺氧和血糖的无创连续监测开辟新的视野。
  • BUCHI纳米喷雾干燥仪B-90在纳米药物悬浮液中的应用
    在医药领域中,通过化学合成方法来制备活性药物是药物研发的最常用方法。但通常这些合成药物大约有60%存在溶解性和低生物利用度问题而限制了药物的使用。如抗精神病药物Aripiprazole(阿立哌唑纳)是一种弱碱性物质,药效好,但为pH依赖性溶解,一般口服制剂难以发挥疗效。本研究采用纳米沉降/酸碱中和均质法制备aripiprazole纳米悬浮液,通过B90纳米喷雾干燥技术制备纳米颗粒,提高了aripiprazole药物的溶出度和口服生物利用度。纳米微粒极大的增加了药物的溶解性能,采用B90制备的纳米颗粒粒径分布均一,多分散指数(polydispersion index)值为0.25,平均粒径为357nm
  • 使用珠磨机的超低污染纳米晶体配方制造技术
    减少化学品的污染是纳米晶制剂制备的重要议题之一,我们需要开发一种珠磨加工技术以减少珠磨机对药物的污染。为满足这一需求,我们与 Shionogi Pharmaceutical Co., Ltd.(盐野义) 签订了一项联合研究协议,开发了一种新的珠磨技术,可减少药物污染和缩短珠磨时间。
  • 改性碳纳米管的XPS测定与分析
    碳纳米管以其独特的结构和优异的性能,在纳米、生物、能源、催化、电子材料等领域有很大的应用潜力。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来;目前碳纳米管的合成和应用已经成为材料科学研究的前沿热点。然而,由于其分散性以及与基体材料的相容性问题制约着碳纳米管材料的发展;为解决这两个问题,很多科研工作者致力于碳纳米管表面改性的研究,以提升其分散性和相容性。XPS作为一种表面分析技术,由于其表面敏感性,这就使XPS成为碳纳米管研究过程中一种必不可少的研究手段。本文通过ESCALAB Xi+对改性前后的碳纳米管进行检测分析,探索不同改性工艺获得的改性碳纳米管的结构与组成信息,文章中将详细介绍如何利用XPS准确的获得材料表面组成和化学态信息。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制