当前位置: 仪器信息网 > 行业主题 > >

阴极发光仪

仪器信息网阴极发光仪专题为您提供2024年最新阴极发光仪价格报价、厂家品牌的相关信息, 包括阴极发光仪参数、型号等,不管是国产,还是进口品牌的阴极发光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阴极发光仪相关的耗材配件、试剂标物,还有阴极发光仪相关的最新资讯、资料,以及阴极发光仪相关的解决方案。

阴极发光仪相关的资讯

  • 荷兰delmic公司本月喜获两个重要订单-阴极发光系统
    2018年3月, 我们成功获得阴极发光系统SPARC的重要订单。在丹麦,联合TESCAN公司获得南丹麦大学(University of Southern Denmark)的订单。南丹麦大学使用我们的先进阴极发光系统,应用于纳米光子学的研究。纳米光子学(Nanophotonics)是研究光在纳米范围内行为的科学。它是光工程的一分支。它研究光学,光和粒子或物质在亚波长长度范围的相互作用。另外一台订单来自德国Braunschweig University of Technology,这套系统除了基本系统功能外, 还特别配置了time-resolved时间分辨功能,包含超快扫描相机。时间分辨阴极发光系统,是delmic今年最新发布的产品,全球领先。项目开发来自delmic公司、赛默飞FEI和Hamamatsu战略合作。
  • 国家重点研发计划——“高强度高稳定空心阴极灯的研究”项目启动会在京召开
    仪器信息网讯:9月26日上午九点,作为“2016重大科学仪器设备开发专项”中“核心关键部件开发与应用”任务方向的子项目之一“高强度高稳定空心阴极灯的研究”项目启动会在北京远望楼宾馆第七会议室召开。 本次会议的参会人员有科技部高技术研究发展中心刘进长研究员,北京有色金属研究总院科技开发部副主任朱宝宏教授,项目专家组以及北京有色金属研究总院等项目承担单位的项目组关键人员等。启动会由北京有色金属研究总院分析测试技术研究所副所长刘英教授主持。会议现场(一) 朱宝宏教授和刘进长研究员首先分别代表项目主要承担单位和项目上级管理单位致辞。从有关领导的讲话中,笔者了解到此次“重大科学仪器设备专项”的实施方案具有如下三个特点:一、坚持企业牵头,鼓励企业结合国家和自身发展需要,联合科研院所和高等学校的优势力量参与项目研发工作,构建“仪器原理验证—关键技术研发—系统集成—应用示范—产业化”的链条;二、重视非技术因素对成果产业化的影响,组织专家对企业工程化和产业化措施和方案、企业的资质和能力,以及知识产权和利益分配等进行评审把关;三、结合科学仪器开发的特点,强化利益共享、风险分担机制,对企业牵头的项目,实施专项经费后端资助政策。 随后,项目负责人李继东教授向参会人员详细汇报了项目基本情况及启动准备情况。据李教授介绍,作为本项目的牵头单位——北京有色金属研究总院具有空心阴极灯光源研究生产的悠久历史,50余年来致力于原子吸收分析技术仪器和方法的研究,尤其空心阴极灯的研究,开发,生产和应用,已形成有一定实力的科研-生产-应用联合体。李继东教授在讲话中特别指出,北京有色金属研究总院曾经承担过多项国家项目,取得国内专利 14 项,国外专利2项,建立技术标准1项,拥有完整的生产线,可以生产元素周期表中大多数元素各种型号的空心阴极灯,年生产能力达数万只,占有国内90%以上高端市场份额。李教授表示,本次“重大科学仪器设备开发”重点专项将为空心阴极灯的研究和产业化提供新的契机。项目组将在以往技术积累的基础上,从优化空心阴极灯结构设计、研究新型阴极材料、改善生产工艺等方向着手,找到影响关键指标的因素及改善方法;开展工程化和产业化开发,形成工程化和产业化能力。项目组预期项目完成时,指标将达到或部分超过指南要求,获得高强度、高稳定空心阴极灯光源,为原子吸收和原子荧光光谱仪等仪器提供可靠的核心部件。 在谈到本项目在研究过程中将体现哪些优势时,李教授表示,首先本研究将充分利用北京有色金属研究总院人员、设备和技术等方面的优势,根据金属材料的不同特性研究采用相应方法进行阴极材料制备,这也是空心阴极灯的关键技术。其次,本研究将发挥北京有色金属研究总院在无机材料成分和组织结构分析方面的优势,对空心阴极灯阴极材料进行原子尺度的微结构分析,从研究材料微观组织结构和化学成分的方向入手分析阴极材料变化导致空心阴极灯寿命终结的原因,以及对发光稳定性、噪音的影响。 会议现场(二) 在会议的专家指导及交流环节,专家们表示,鉴于北京有色金属研究总院在空心阴极灯的研制方面历史悠久、基础雄厚、且目前的市场占有率高,拿下这个项目应当说是实至名归。同时,大家对于空心阴极灯的未来市场也持较为乐观的态度(据了解,目前国内空心阴极灯市场大概是9万只/年,而且绝大多数是国产产品)。以空心阴极灯的主要应用仪器之一原子吸收光谱仪为例,由于原子吸收光谱仪的一些独特优势,譬如所需耗材较之ICP仪器容易获得(这一点对于偏远地区尤为有利);对操作人员的要求低,特别适合于企业使用等。因此在可预见的未来,原子吸收光谱仪将会继续发展,而不会为其他仪器所取代。很自然,作为原子吸收光谱仪的重要部件之一——对于空心阴极灯的需求未来也将会继续增长。而开发出寿命更长,发光同心度更优的空心阴极灯反过来也会进一步促进原子吸收光谱仪的应用普及。
  • 苏州德尔微仪器喜获西安电子科技大学阴极射线荧光系统订单
    苏州德尔微仪器喜获西电阴极射线荧光系统订单按照招投标流程,经过系列流程严格论证,西安电子科技大学2017年7月7日发布中标公示:先进材料与纳米学院最终选择delmic公司创新研发的阴极发光成像系统sparc,服务于该校郝越院士团队在宽禁带半导体材料的研究。用户认为该产品具有独特的先进性,在灵敏度,系统高度集成性,硬件模块化设计和软件开源对于先进材料研究有重大帮助,尤其在优化的紫外波段的分析。系统还有全球独有的角分辨功能,后续在需要的时候可以灵活升级。该套系统由著名的nanophotonics方面的研究专家,来自荷兰amolf 的polman教授团队超过10年的研究, 荣获2014年mrs材料表征创新大奖。后经荷兰delmic商用服务于先进材料研究、纳米光子学、光子晶体、表面等离激元、光伏、半导体材料、药物活性等多种领域。sparc阴极发光系统具有收集镜自动精准对准,高效率光传输和灵敏度、光路系统模块化设计灵活可选、多种探测器对应不同应用、全球独创的角分辨解析功能、软件完全开源等独特优点。 目前已经得到欧美数十家著名学府和公司的认可和使用,中国区域目前为止已有两家客户购买,意向客户快速增长。苏州德尓微仪器作为delmic公司中国代理商, 致力于引进先进技术产品和服务科研团队。 关于德尓微 苏州德尔微仪器有限公司,位于苏州生物纳米园。创新服务于电镜实验室,致力于创新样品制备工艺和装备、极致探测手段和表征方法。创造和引进先进的实验方法和表征手段,为中国电镜在纳米科技,先进材料和生命科学等领域的突破提供最有力的高端设备。 作为荷兰delmic公司中国授权代理商,我们提供集成光电联用(iclem)和高性能角分辨荧光成像(angle-resolved cl)电镜附件和服务。 同时,公司创新推出超微加工服务和自主开发制样仪器设备,服务科研群。 助力科学,探索致发现!
  • 天美-爱丁堡仪器倾力支持第四届长余辉与光激励发光国际研讨会
    2018年4月5日-2018年4月7日,第四届国际长余辉与光激励发光国际研讨会在北京航空航天大学举行,天美(中国)科学仪器有限公司及英国爱丁堡仪器作为大会赞助方参加会议并参展。  最近几年长余辉与光激励发光材料发展迅速,本会议的主要目的是报道和研讨发光材料最新的实验和理论进展,展望未来的发展方向。另外,本次会议将促进和加强研究人员之间的合作。  各类与长余辉、光激励发光、电致发光、阴极射线发光的方向都是本次会议的议题。在众多科研议题中,爱丁堡荧光光谱仪扮演了重要的角色,很多学者非常信赖这款仪器,作为世界领先的单光子计数和时间相关单光子计数(TCSPC)荧光光谱仪的制造商,爱丁堡仪器在为用户提供个性化定制的仪器上已经有超过30年的历史并致力于提供最具灵活性和高品质的荧光光谱仪。  通过此次会议中的交流,更多的新老用户也增进了对天美公司以及爱丁堡产品的了解,天美公司作为国内主要的科学仪器供应商,将一直致力服务于科研领域。为广大用户提供更专业的仪器和技术服务。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡sgx主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 froilabo公司、瑞士precisa公司、美国ixrf公司、英国 edinburgh instruments公司等多家海外知名生产企业和布鲁克公司scion气相和气质产品生产线,加强了公司产品的多样化。
  • 世界首例!西湖大学实验室发现首个“光阴极”量子材料
    近期,西湖大学理学院何睿华课题组连同研究合作者一起,发现了世界首例具有本征相干性的光阴极量子材料,其性能远超传统的光阴极材料,且无法为现有理论所解释,为光阴极研发、应用与基础理论发展打开了新的天地。3月8日,相关论文“Anomalous intense coherent secondary photoemission from a perovskite oxide”,已提前线上发表于Nature期刊。西湖大学博士研究生洪彩云、邹文俊和冉鹏旭为共同第一作者,西湖大学理学院长聘副教授何睿华为通讯作者。全部实验和理论工作都在西湖大学完成。摄影师镜头下,首例具有本征相干性的光阴极量子材料:钛酸锶。光阴极:辉煌的出身,沉寂的领域,现代科技的基石之一1887年,德国物理学家赫兹在实验中意外发现,紫外线照射到金属表面电极上会产生火花。1905年,爱因斯坦基于光的量子化猜想,提出了对该现象的理论解释。这标志着量子力学大门的正式开启,因为这个贡献,爱因斯坦于1921年被授予诺贝尔物理学奖。由此,将“光”转化为“电”的“光电效应”,以及能够产生这个效应的“光阴极”材料,正式进入了人类的视野。伴随着对光电效应理解的加深,人们后来发展出了更完善的理论,能够解释所有光阴极材料的基本性能,并成功预言了当时未知的光阴极材料。这些光阴极材料基本上都是传统金属和半导体材料,大多数在60年前被发现。它们已经成为当代粒子加速器、自由电子激光、超快电镜、高分辨电子谱仪等尖端科技装置的核心元件。这类高精尖设备除了常见于实验室,还被应用在大众生活中,如粒子加速器已被用于治疗癌症、杀灭细菌、开发包装材料、改进车辆的燃料注入等。简单说来,光阴极材料是否“好用”,直接关系着这类设备的性能。然而,这些传统的光阴极材料存在固有的性能缺陷——它们所发射的电子束“相干性”太差,也就是电子束的发射角太大,其中的电子运动速度不均一。这样的“初始“电子束要想满足尖端科技应用的要求,必须依赖一系列材料工艺和电气工程技术来增强它的相干性,而这些特殊工艺和辅助技术的引入极大地增加了“电子枪”系统的复杂度,提高了建造要求和成本。钛酸锶:量子材料之光,光阴极领域的潜在重启者尽管基于光阴极的电子枪技术最近几十年来有了长足的发展,但它已渐渐无法跟上相关科技应用发展的步伐。许多前述尖端科技的升级换代呼唤初始电子束相干性在数量级上的提升,而这已经不是一般的光阴极性能优化所能实现的了,只能寄望于在材料和理论层面上的源头创新。长期深耕材料物理性质研究的西湖大学理学院何睿华团队,意外在一个同类物理实验室中“常见”的身影——钛酸锶上实现了突破。近年来兴起的一大类新的材料——量子材料,以其复杂多变的性质和丰富多样的功能而著称。具有钙钛矿结构的钛酸锶(SrTiO3)是这类材料的重要代表之一。被誉为“钛酸锶之父”、高温超导发现人、诺贝尔物理学奖获得者K. A. Muller教授称钛酸锶为“固体物理中的果蝇”,因为很多重要的固体物理现象都是首先从该材料上发现的,其中还包括许多尚未被理解的现象。然而,以钛酸锶为首的氧化物量子材料研究,其主流是将这些材料当作硅基半导体的潜在替代材料来研究,主要关注的是它们独特的电子学相关性质。但何睿华团队却在实验中发现,这些熟悉的材料竟然同样承载着触发新奇光电效应的能力——它有着远超于现有光阴极材料的光阴极关键性能:相干性(见图1说明),从而极大地弥补了现有光阴极材料的缺憾。图1. 钛酸锶和其他材料的初始电子束能谱分析对比。前者具有更高的初始电子束相干性,具体体现为:电子发射动能能量发散度小于0.01 eV(a),发散角小于2°(b),相比普通材料的约0.5 eV和20°有了数量级上的提升。Nature论文匿名审稿人指出:“与类似实验条件下的其他现有光阴极相比,钛酸锶光阴极最重要的性质是它所发射的初始电子束所具有的相干性有了数量级上的提升。这种性能上的巨大飞跃允许(人们)完整获得具有本征相干性的电子束,而无需为了提高相干性而牺牲电子束流强度。这一发现可能会导致光阴极技术发生范式转变,该技术长期以来一直受困于(电子枪)电子束不能同时具有高相干性和高束流强度的矛盾,(这个矛盾的)根源就在于初始电子束的本征非相干性。”超快电镜专家、论文合作者、西湖大学理学院研究员郑昌喜认为,合作团队发现的重要性“不在于往钛酸锶的神奇性质列表增添了一个新的性质,而在于这个性质本身,它可能重启一个极其重要、被普遍认为已发展成熟的光阴极技术领域,改变许多早已根深蒂固的游戏规则”。角分辨光电子能谱:以子之矛,攻子之盾图片设计师:林晨科学探索常常在意外中触碰出新的火花。为什么何睿华团队能在“常见”的材料上获得新的发现?这得归功于一种强大的、但很少被应用于光阴极研究的实验手段:角分辨光电子能谱技术。以往,由于大部分具有较高性能的传统光阴极材料其表面具有多晶或非晶结构,光阴极领域的主流研究方法依赖的主要是光电流探测,这个135年前已开始使用的实验手段。这也使得一大类新近发展出来的研究单晶量子材料的实验利器无用武之地,其中包括角分辨光电子能谱技术。究其本质,角分辨光电子能谱技术这个技术的工作原理,就是光电效应。它被用于探测材料的电子结构,即了解电子如何在材料里运动。在过去的几十年里,角分辨光电子能谱技术主要用于研究跟材料的光学、电学和热学性质相关的那部分电子结构。受这种强烈的科学关注的驱使,现有大多数实验设施针对相关能量区域内的电子结构测量进行了相应的配置和优化。谁能想到,这个运用了光电效应原理的技术,竟然能“以子之矛,攻子之盾”,挖掘出光电效应中新的物理——在实验中,西湖大学何睿华团队使用了这个源自光电效应的量子材料研究利器,出乎意料地捕捉到了单晶量子材料的独特光电发射特性。通过对角分辨光电子能谱仪进行“非常规”配置,以实现对非常规能量区域内、与光电效应相关的电子结构测量,他们发现钛酸锶优越的光阴极性能来自于其独特的光电发射性质(图2),而这些性质明显不同于所有已知的光阴极材料。可以说,它们几乎在每个主要方面都超出了已有光电发射理论的预期。图2. 普通光阴极材料(a)和光阴极量子材料钛酸锶(b)所发射的初始电子束的区别。关于西湖大学团队的以上结论,角分辨光电子能谱理论权威、论文合作者、美国东北大学教授Arun Bansil进行了理论确认,他指出:“(这个发现)表明我们对光电效应相关物理过程的完整理解缺少一些很基本的东西,而这个缺失的元素可能成为开启整个光阴极量子材料家族之门的钥匙,(这些材料)具有独特的、不为现有材料所具有的光阴极性能。”展望:从理论到应用的待解之谜而发现,往往只是驶向未知浩瀚海洋的第一步。在激动人心的发现过后,何睿华实验室立刻投身于下一步的探索之中。据本成果的第一作者、西湖大学理学院2019级博士生洪彩云介绍,接下来,他们将进一步在理论和应用方面展开对钛酸锶材料的研究工作。在理论方面,既然现有理论失灵了,那就意味着需要建立新的理论,来解释观察到的钛酸锶光阴极性能。何睿华对此给出了一个非常大胆的猜想,跟Bansil组合作提出了一个全新的光电发射机制。按照这个新的理论,他们预测了一大类由此新机制主导的候选光阴极量子材料,实验团队正计划对这些材料预测进行一一验证。在应用方面,既然钛酸锶材料比已有的光阴极材料表现都要更理想,团队也计划与相关领域的团队合作,挖掘这种材料的实际应用价值。何睿华在西湖大学的个人介绍页面上,写着对这所学校的心愿:“希望西湖大学能成为一个具有独特定位,鼓励学科交叉和大胆创新的冒险家乐园”。事实上,首个光阴极量子材料钛酸锶的发现,也正开花于他带领团队进行的长达数年的沉浸式“冒险”探索之中。原本,实验室所进行的一个“小”研究项目是研究量子材料的逸出功(注:在光电效应中,电子跃出材料表面需要付出一定的能量“代价”,即逸出功)。依托物质科学平台的超高真空互联系统,以“高通量”手法批量测量各材料的逸出功时,他们偶然发现钛酸锶有些“与众不同”,并且抓住了这个“意外”,这才得以有了后面的发现。有趣的是,何睿华实验室“无心插柳柳成荫”的发现,似乎在冥冥中,也呼应了人类与光电效应意外“相遇”的起始点——1887 年,赫兹为了证明麦克斯韦的电磁波预言,进行了火花放电实验,而偶然发现了这种神奇的现象。探索前人未达之境。热爱“冒险”的西湖科学家们,将进一步挖掘光阴极材料的更多奥秘。
  • “高强度高稳定空心阴极灯的研究”2017年度进展报告会在京举办
    p  strong仪器信息网讯/strong 2017年7月21日,国家重点研发计划“高强度高稳定空心阴极灯的研究”项目2017年度进展报告会在北京举办,科技部高科技中心领导、重大科学仪器设备开发专项总体专家组专家、项目咨询专家组专家、项目(课题)负责人和课题主要骨干及仪器信息网编辑近20人参加了本次会议。此次会议的目的是加强项目组织管理,促进项目各参加单位的沟通交流,协调研发工作进度,严格经费管理,尽早发现并解决项目进展中存在的问题,切实推动项目总体工作进展。/pp style="text-align: center "img title="01.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/3f902819-8d81-49cb-b119-24ee2674d004.jpg"//pp style="text-align: center "strong会议现场/strong/pp  本次会议由国标(北京)检验认证有限公司副总经理马通达主持,有研总院科技开发部副主任朱宝宏致欢迎词,科技部高技术中心赵亮进行了重大科学仪器设备开发重点专项项目过程管理及中期检查要求的宣讲。/pp style="text-align: center "img title="02.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/cac5df33-dc9a-493b-b5f7-3523e10a630e.jpg"//pp style="text-align: center "strong国标(北京)检验认证有限公司副总经理 马通达/strongstrongbr//strong/pp style="text-align: center "img title="03.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/b080e8ea-ecc7-4b71-8bf0-4f4d832602d2.jpg"//pp style="text-align: center "strong有研总院科技开发部副主任 朱宝宏/strong/pp style="text-align: center "img title="04.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/7544e463-46c9-4dfe-9b91-a846e8571c2d.jpg"//pp style="text-align: center "strong科技部高技术中心 赵亮/strong/pp  项目负责人李继东介绍了项目年度进展情况及下一步工作安排,包括项目基本情况、年度任务与考核指标、项目进展情况及问题、经费使用情况、下一步计划等多个方面。/pp style="text-align: center "img title="05.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/1b3460f2-8e49-4bbf-8e2b-0322c3cdb7bd.jpg"//pp style="text-align: center "strong项目负责人 李继东/strong/pp  国家重点研发计划“高强度高稳定空心阴极灯的研究”(2016YFF0100100)项目所属专项为重大科学仪器设备开发专项,总经费1300万元,其中中央财政专项经费500万元,项目执行期从2016年7月至2019年6月。据介绍,截至目前,各课题分别完成了技术设计方案和设备改造方案,根据方案进行试验研究,装置调试、测试,软件编制等,并完成了2016年度技术进展报告。此外,为了更好的实施想任务,达成目标,设计生产出高强度高稳定空心阴极灯,课题承担单位之间也进行了多次技术交流活动,及时反馈测试结果。/pp  该项目设有4个任务(课题):空心阴极灯制作工艺及阴极材料加工制备研究、空心阴极灯的产业化研究、原子荧光空心阴极灯检测装置的研发与应用、原子吸收空心阴极灯的性能测试技术研究和测试仪器开发,分别由北京有色金属研究总院,国标(北京)检验认证有限公司、北京吉天仪器有限公司、北京锐光仪器有限公司承担。会议过程中,4个课题负责人也分别介绍了各自负责课题的年度进展情况及下一步工作安排。/pp style="text-align: center "img title="06.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/15b0afbd-7f3f-4dba-942f-3efa77d9bc70.jpg"//pp style="text-align: center "strong空心阴极灯生产线主任、课题1负责人 李中建/strong/pp style="text-align: center "img title="07.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/990ea6b2-9dc5-4ad5-8ecd-88d2cdaa697c.jpg"//pp style="text-align: center "strong国标(北京)检验认证有限公司/strongstrong、/strongstrong课题2负责人 潘元海 /strong/pp style="text-align: center "img title="08.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/cc0639a3-05cf-47c7-85e9-c0c8d9bfd83f.jpg"//pp style="text-align: center "strong北京吉天仪器有限公司产品总监、课题3负责人 赵富荣/strong/pp style="text-align: center "img title="09.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/eb2b6b12-b575-495e-9b60-f6f1a22f50c4.jpg"//pp style="text-align: center "strong北京锐光仪器有限公司总经理、课题4负责人 李毅/strong/pp  据介绍,自2016年7月立项实施以来,各个课题已经取得了一系列的进展。课题1:完成了高强度高稳定性空心阴极灯结构设计方案、云母片与瓷件设计方案、管基装备工程设计等 课题2:在北京有色金属研究总院怀柔基地完成了高强度高稳定空心阴极灯厂房的选址与设计,初步拟定项目所需设备与装置的规划、预算及改造方案,经过调研与询价,确定了拟购置的重要设备等 课题3:对空心阴极灯的发光特性进行了研究,并形成研究报告。此外,还进行了需求分析,形成需求报告,并完成了初版样机加工及装调、样机试用及小批量试测等 课题4:完成了总体设计方案的制定,对单元模块功能、接口进行规划,明确了接口协议、要求,并进行了原理样机装配、走线、调试、测试等。/pp  当然在介绍业绩的同时,各位负责人也介绍了项目进行过程中遇到的一些问题,如厂房建设速度不可控、生产设备需要设计定制,要求高、周期长、费用高等。下一步,各课题将按照计划,完善空心阴极灯的整体及产业化设计方案,并进行样机的进一步改进,进行指标测试,输出测试方案等,并针对前期遇到的问题给出针对性的解决方案,以保障项目研究工作按计划顺利进行和完成。/pp  会议过程中,与会的领导专家肯定项目取得的阶段成果的同时,也就经费管理、技术细节以及各承担单位之间的合作等多方面的问题给出了切实可行的建议。/pp style="text-align: center "img width="500" height="333" title="10.jpg" style="width: 500px height: 333px " src="http://img1.17img.cn/17img/images/201708/insimg/20851dfd-b46b-423f-a386-4538ef3ed1aa.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong与会代表合影/strong/pp /p
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 2016重大科学仪器专项之“空心阴极灯”
    p  2月19日,科技部网站发布关于发布重大科学仪器设备开发专项2016年度指南的通知,本指南共设置了关键核心部件、高端通用科学仪器和专业重大科学仪器3类任务,下设10个重点方向。其中核心关键部件开发与应用中包括:源部件、探测器与传感器、分析分离与控制部件。而空心阴极灯项目列于源部件项目的第一位, 为原子吸收光谱仪和原子荧光光谱仪等仪器提供核心部件。据业内人士说,该考核指标稍高于进口产品的指标,对于目前国产空心阴极灯相关企业来说,具有一定难度,但是,是完全可以达到的(具体指标详见文后)。/pp  回顾历史,在上世纪60年代,中国已经研制出自己的空心阴极灯,与国外基本同时起步。如今,HCL国产厂商主要是有色金属研究院、曙光明、河北衡水宁强光源等,国外厂商主要有贺利氏、珀金埃尔默、安捷伦(原瓦里安)等。近年来,中国市场HCL年销售量约为10万支,其中国产产品占据了95%左右的市场份额。/pp  但是,在高端空心阴极灯方面,国产产品还存在一定差距。“与进口HCL比较,国产HCL在外观、一致性方面有一定的差距,但是,性能方面的差距非常之小,而长期稳定性已经完全没有问题。” 生产工艺或生产技术方面是否还存在一些难点?对此,有色院李中建说,“HCL生产过程中手工作业的比例较大,但是,我们已经在不断改进,尝试投入更多的自动化生产设备。在生产工艺上还需要继续提高,以克服一致性、噪音问题,以及整体的设计工艺。所以说,今年国家科学仪器重大专项支持的到来,对于促进国产HCL产业发展是一个非常好机遇。”/pp  strong空心阴极灯产品概况/strong/pp  空心阴极灯(HCL)是原子吸收、原子荧光光谱仪必不可少的组成部分。原子荧光的灯和原子吸收的灯原理是一样的,但是结构上有一定的区别。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/37ad5e5a-c896-45ae-826f-65e38938e022.jpg" title="HCL.jpg"//pp  原子吸收的空心阴极灯有单元素灯、多元素灯、高性能灯和多阴极灯。最常用的空心阴极灯由一个钨(W)棒阳极和含金属元素或其合金的空心圆柱杯阴极组成。两极之间充满低压的惰性气体(Ne或Ar气),密封在一种特性玻璃筒里,应用辉光放电和阴极溅射原理将HCL点亮。充Ne气的HCL呈橘红色,充Ar气的HCL呈浅蓝色。/pp  单元素灯阴极由1种金属元素或其合金构成。多元素灯阴极由2~7种金属元素合金或混合物构成 优点是可以在不换灯情况下连续测定多种元素,缩短预热时间和换灯的麻烦 缺点:比单元素发射强度弱,有些元素搭配不当会造成相互影响,并可能降低寿命。多阴极灯由一个阳极放置中间位置,其周围放置6种金属元素6个阴极。其原理与单元素(HCL)相同,其价格昂贵。/pp  高性能灯除了和普通HCL一样有1个阴极和1个阳极外,还增加了一对辅助电极。辅助电极间通过几百mA的低压直流电,使其产生电离的气体原子流,使从空心阴极溅射出来的金属原子与之碰撞后进一步激发,从而提高共振线的强度。这种灯光强度比普通HCL强几倍到几十倍,不产生谱线变宽,适用于As、Sb、Bi、Se、Ag、Cd、Pb或某些稀土元素。/pp  strong难以替代的空心阴极灯/strong/pp  空心阴极灯是原子吸收、原子荧光光谱仪的关键核心部件,而原子吸收、原子荧光光谱仪的市场规模都相对较大,仪器生产商数量非常多。其中,原子吸收光谱仪器是现代分析检测实验室必备的重要检测手段,有着广泛的应用。据现有不甚完整的资料显示,近年来中国市场原子吸收光谱仪器年销售量约为5000多台。据初步统计,目前全国有AAS生产厂家达20家,国外在华厂商近10家。如普析通用、东西分析、上海光谱、北京海光、北京瑞利,岛津、珀金埃尔默、德国耶拿、安捷伦、赛默飞、日立等。/pp  而原子荧光光谱仪是我国少数具有自主知识产权、技术水平超过进口的分析仪器。目前国内外生产AFS的主要仪器厂商有10多家,有北京海光、北京吉天、北京瑞利、普析通用、廊坊开元、东西分析、金索坤、江苏天瑞、卓信博澳、欧罗拉等。近年来,原子荧光光谱仪每年销售量大致在2500~3000台。/pp  原子吸收、原子荧光光谱法是元素分析领域现行标准方法的主力军。现有各国颁布各类原子吸收光谱分析的标准共计2600多个,中国颁布的国家标准和行业标准近800个。原子荧光光谱法在各个领域中先后建立了相关的国家标准、行业标准和地方标准,截至2011年5月为止已建立的各项标准己达111项。正是这些标准的建立,有力推动了原子吸收、原子荧光光谱仪的推广和普及,现已成为众多实验室常规的分析仪。/pp  未来对HCL的需求与国家经济的发展状况息息相关。“目前,采购、使用原子吸收、原子荧光光谱仪的用户多是基层单位和工业企业。”对于基层单位和工业企业,日常检测的元素比较固定,且数量不多,对这样的用户原子吸收光谱仪器具有最好的性价比。而对于As、Hg等元素的检测,原子荧光具有ICP-MS都不具有的优势,方法简便、灵敏度高,并且在仪器价格和使用成本上具有很大的优势,适合地级市等小型实验室及检测中心的使用,符合中国经济发展的现状,是元素分析非常必要的补充仪器。/pp  由于原子吸收、原子荧光光谱仪在未来的不可替代性,这样大的一个‘用户群’也为HCL打下了坚实的基础,使得HCL也同样具有了不可替代性。可预见,未来20年内HCL行业都会平稳发展。/pp style="text-align: right "撰稿:刘丰秋/p
  • Multiwave7000助力OLED显示及发光材料的研究
    高清超大屏幕说到显示面板,大家几乎就会想到LCD和OLED,前者是一项已经相当普及的技术,广泛应用在各种显示设备上。后者则是近几年才逐渐普及的新显示技术,也被称为下一代显示技术。OLED将成为下一个消费电子应用风口。OLED有机发光二极管3OLED全称为有机发光二极管,又称为有机电激光显示、有机发光半导体,OLED显示技术是继LCD以后新一代平板显示技术,相比与上两代显示技术(CRT、LCD),OLED显示面板真正拥有了“未来科技”材料的轻、薄、快响应、透明显示、柔性可折叠的特点。同时,OLED具有更广的色域、更大的视角、更宽的工作温度区间且更低的功耗。我国作为全球最大的消费电子产品生产国、消费国和出口国,广大的终端应用市场是我国OLED产业发展最大的推动力量;但OLED面板供应主要集中在韩国,国内OLED面板处于供不应求的状态。目前OLED产业链上游关键材料基本被国外企业垄断,随着产能增加及良品率提升,国内OLED产业的进一步发展将面临关键材料供应“卡脖子”的风险及高成本的压力,使得上游关键材料供应的国产化势在必行。作为OLED性能关键基础的发光材料更具发展前景和投资价值。发光材料的特性影响元件之光电特性。在阳极材料的选择上,材料本身必需是具高功函与可透光性,具有4.5eV-5.3eV的高功函数、性质稳定且透光的ITO透明导电膜,便被广泛应用于阳极。在阴极部分,为了增加元件的发光效率,电子与电洞的注入通常需要低功函数的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属来制作阴极(例如:Mg-Ag镁银)。在生产OLED光电材料的过程中,会引入一些金属元素。因此,OLED发光材料对其中10多种金属元素残留要求特别高,金属残留一般高于400个ppb会影响发光性能。伴随着行业发展,法律法规的健全,越来越多的生产企业开始重视这些金属元素方法开发检验检测并验证,使其能够生产出合格的产品。目前普遍采用ICP-MS检测OLED光电材料中的金属残留,但由于发光材料基质比较复杂,传统消解方法无法实现溶解,需要高性能的超级微波消解仪进行制样,来确保含量测试的准确度。Multiwave 7000实验方案消解/稀释3消解方法:称取发光材料样品,加入硝酸等消解液于Multiwave 7000超级微波消解仪18 mLPTFE反应管中:按以下程序消解样品:步骤温度[℃]爬坡[min]保持[min]12802030消解效果:见下图:图1溶液消解后效果图图2 稀释后效果图消解结束后,查看结果,溶液澄清透明,稀释后无析出,金属残留物已溶解。因此,Mutiwave 7000超级微波解决了显示材料中金属残留检测的一大难题。Multiwave 7000超级微波消解系统3Multiwave 7000 将众所周知的安东帕 HPA-S 概念与现代性能优越的微波技术相结合,代表了微波消解的新高度。新型加压消解腔 (PDC),温度高达 300 °C,压力可达200Bar。确保所有种类的样品消解完全,如食品、环境、聚合物、化妆品、药品、地质、化学和石化样品。可节省宝贵的时间并降低运营成本的出色特性。为您提供不同尺寸的经济型样品管,样品管塞和多达28位的样品管支架。集成水冷却装置,最大化样品处理量的同时将冷却时间降到最短。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 全球首台套冷阴极无损检测
    2024年2月1日,中科盈德(泰州)测控技术有限公司为交通部绿通快速检测项目研发生产的全球首台套冷阴极无损检测交通专用设备已顺利完成,即日将前往青岛高速集团灵珠收费站完成现场交付。中科盈德(泰州)测控技术有限公司聚焦于激光超声、冷阴极无损检测等多种世界领先的高端创新无损检测技术设备的设计开发、成果转化与生产制造,是全球唯一一家掌握自主知识产权,能够提供全系列激光超声、冷阴极无损检测等技术做为工业系统全方位无损检测解决方案的企业。中科盈德一直用更安全、更方便、更有效的创新技术引领世界无损检测行业的发展方向、开拓新领域、开发新市场,并以走向世界为企业的发展目标。高速公路绿色通行是指在高速公路收费站设立专用通道,对鲜活农产品车辆实行优惠政策的安全、快捷的便利通道。自2005至2023年,交通部、国务院、财政部、国家发改委等相继印发了一系列关于全国高效率鲜活农产品流通“绿色通道”建设实施方案的通知,运载符合绿通目录内鲜活农产品的流通车辆,经道路部门检测后,装载率达到80%以上的,可以享受国家给予的相关道路免费通行的绿通优惠政策。2021年10月交通运输部路网监测与应急处置中心印发了收费公路联网收费预约通行服务规程,明确指出了使用数字自动检验设备的查验方式。规划了将逐步建立以自动检测为主、人工查验为辅的鲜活农产品运输绿色通道的规范检测体系。目前各地交通部门主要的绿通检测方式,仍然是以收费站工作人员的人工检测为主,存在着效率低、风险大、偏差大、争议大、易勾结逃费、高投诉等各种棘手问题,在部分地区虽有进行数字自动检验设备的试点工作,但因其技术原理上的缺陷,存在诸多问题,无法做进一步的推广。这样的现状既影响了国家惠民政策的具体落实,又给交通管理部门的声誉带来了负面的影响,也给国家形成了长期可观的经济损失。因此多年以来,国家相关部门一直亟待能有更先进的数字自动检测设备出现,需要更好的创新技术为绿通快速检测项目带来更安全、更高效、更可靠的系统解决方案。中科盈德基于自有知识产权、自主研发完成了世界首台套冷阴极无损检测交通专用设备,领先使用世界最先进的创新型冷阴极无损检测技术生产的绿色通道快速检测系统,通过颠覆百年未变的热阴极无损检测的产生原理,很好的解决和提升了安全、效率等多个原有的卡脖子疑难问题,比较起传统的热阴极无损检测产品,具有诸多的革命性的优点:更加安全、小型轻便、无需预热、节能高效、更长期限使用寿命等等。因其采用先进的数字脉冲技术,响应速度快、对外部影响小、更加安全可靠,对于检测工作人员和广大物流驾驶员来说,这是更安全、更高效的创新型无损检测技术手段。产品采用数字图像分析系统,检测结果比传统人工检查更方便、更快捷,也更少产生争议,且节能省电、绿色环保,即时检测,即时出结果,使得绿通快速检测的通过流程更快速、更高效、更安全!中科盈德的新一代冷阴极无损检测技术,可以较好的解决交通部门长期以来最为关心的安全性等诸多技术痛点和社会关切问题,具有较好的经济效益和社会效益。中科盈德创新型冷阴极无损检测技术在以安全性、可靠性为代表的多个重要方面,已经有了革命性的提升和进步,未来还可以通过不断的开发,做进一步的迭代增强,如增强穿透功能、多角度立体成像功能、AI智能识别功能、大数据分析等,使中科盈德的绿通系列产品具有持续迭代升级的能力,始终走在无损检测技术发展的创新前沿。中国具有全世界最多的高速公路里程,各地交管部门对于绿通快速检测产品普遍具有较大的需求,随着绿通快速检测产品的逐步推广,每年将会为国家挽回上百亿的道路通行费损失,也能够为企业带来进一步践行创新型科技发展的机遇。2024年1月山东省高速首先启动了绿通快速检测项目的试点工作。山东省首批计划改造收费站点约825个,交通部计划自2024年起,开始向全国逐步推广,全国共有近5万对收费站点需要逐步进行安装,产品每五年进行一次强制性更换,绿通快速检测产品每年约有400亿元的市场规模。现在已有数个省份的交通部门计划加入今年的推广之中,目前各省交通部门的订单意向汇总已接近4000台套,价值近80亿元人民币。高速公路绿通快速检测项目的研发完成,是中科盈德创新型冷阴极无损检测技术成长历史上的一个里程碑,这也是企业自主知识产权的冷阴极无损检测技术在进入航空航天、半导体行业、核能核电、国家电网、船舶制造、医疗等领域之后,新进入的又一个重大应用领域,是对热阴极无损检测技术的一次产业迭代革命,让自主知识产权、世界领先的冷阴极工业无损检测装备得到进一步的推广和普及,用创新科技解决原有的各种卡脖子难题,这对于助力中国从工业制造大国向工业制造强国的进一步提升,具有重大的积极意义和良好的社会效益!此次中科盈德绿通快速检测项目的交付,将有机会让我国的冷阴极无损检测技术,从技术原理、专利发明、到实际应用,再到商业价值,都能够走在全世界的最前沿,未来有机会彻底地改变世界无损检测技术的面貌与行业市场的格局!中科盈德的冷阴极无损检测产品,既是照出万物的智慧之光,也是企业自身的发展之光,更会是一束迈向世界,今后让国人都能够引以为自豪的希望之光!展望未来的创新发展之路,冷阴极无损检测产品的前景无限!
  • 淡水发光细菌 2010世博饮用水安全卫士
    在水样中加入微量青海弧菌液体,半小时内就能知道饮用水是否安全——著名发光细菌专家、华东师范大学生命科学学院教授朱文杰和他的团队凭借青海弧菌检测水质的专利技术,承担了保障2010年世博会饮用水安全的检测项目  水是生命之源。即将到来的世博会上,如何保证展览现场的饮用水安全?著名发光细菌专家、华东师范大学生命科学学院教授朱文杰拿出了他的撒手锏——青海弧菌作为生物检测材料。“发光细菌是能自身发出蓝绿色可见光的细菌,青海弧菌这样的发光细菌,一旦接触到有毒物质,发光强度就会受到抑制,它们的发光强度和水样中毒物的浓度、大小相关。”只要在水样中加入微量青海弧菌液体,用便携式监测仪读取相关数据,饮用水是否安全,在半个小时内就能知道答案。  朱文杰教授和他的团队凭借青海弧菌检测水质的专利技术,承担了保障2010年世博会饮用水安全检测项目和上海市科委“登山行动计划”世博科技专项课题。与发光细菌打了40多年交道的朱文杰对这些微小的细菌菌株再熟悉不过了。这些发光细菌,不但会在世博会的饮用水安全检测中担任重要角色,其实在上海的苏州河治理、主要污染源的监测,尤其是在“512”汶川地震灾区水质快速检测中,已经立下过汗马功劳。朱文杰在接受CBN专访时,介绍了这种发光细菌的神奇之处。  众里寻“菌”千百度  “水体里的发光细菌达到一定数量时,就会使这个水体发出绿荧荧的光。海洋中就会有这种现象发生,海水整个都变成绿色的发光体,闪现着绿荧荧的波浪,这就是所谓的‘海火’。当然,毕竟发光细菌所发光的亮度是很低的,因此只有在黑暗的环境中才能看到,在白天光线较亮的地方是看不到的。”关上灯,拉上厚实的窗帘,在生物实验室中,朱文杰小心翼翼地从培养箱里拿出了刚培养好的青海弧菌。在黑暗的背景中,锥形瓶里的液体发出了幽幽的蓝绿色荧光。为了寻找这种发光细菌,朱文杰在上世纪80年代走遍了全国各大湖泊。“太湖、鄱阳湖、洞庭湖、鬲湖、洪泽湖、巢湖,我们都走遍了,最后终于在青海省的青海湖里发现了青海弧菌。”在青海湖盛产的唯一一种没有鳞片的鱼——裸鲤身上,朱文杰找到了梦寐以求的淡水型发光细菌。  “其实,海洋才是发光细菌的主要栖息地,绝大部分的发光细菌无论从数量还是种类来看,均是海洋性的,仅少数在淡水或陆地上生存。”目前已经命名的发光细菌共18种,其中霍乱弧菌和青海弧菌为淡水发光细菌。为什么朱文杰他们除了研究海洋发光细菌外,会将注意力集中于菌种稀少的淡水湖泊呢?“海洋发光细菌必须有一定浓度的钠离子存在,才能生长和发光,而淡水型发光细菌就没有这种要求。”上世纪80年代末,科学家发现,如果要用海洋发光细菌进行检测,为了满足海洋发光细菌的生理需要,必须在淡水样品中添加食盐达到3%。但如此高浓度的Na+或Cl-离子,会影响某些有毒物质的生物学毒性表现,因此根据细菌的发光情况来判断水质就会产生偏差。这是海洋发光细菌的一个“死穴”。而利用淡水型发光细菌检测,就可以轻而易举地避免这样的偏差。从另一方面来说,不少发光细菌本身就是致病菌。比如哈维氏弧菌可致虾生病死亡,Photorhabdus asymbiotica 能导致人类身体疾患,寄生于线虫体内的发光杆菌则会感染毛虫、蛾子、蝴蝶等鳞翅目昆虫,致它们于死地。朱文杰他们当时发现的青海弧菌,是罕见的淡水型发光细菌,也不是致病菌,因此是难得的水质检测好材料。  培养发光细菌是一件比较麻烦、专业的事情,这个因素会阻碍发光细菌检测技术的普及和应用。于是上世纪90年代中期,朱文杰开始把青海弧菌由液态的保存方式转变为冻干粉的形式。“就像把面条做成方便面,开水一泡就能食用那样。”检测人员拿到冻干粉后,可以保存在-10℃以下的冰箱中,使用前只要加入复苏液,几分钟之后冻干粉中的青海弧菌就自动恢复了活力。“使用青海弧菌进行检测,要比使用进口发光细菌价格上便宜三分之二。”朱文杰说。  发光细菌应用潜力无穷  “如果有某一条河流受到污染,或者出现某种化学物质突然泄漏的事故,判断污染来源和污染物的主要成分,可以用物理—化学的监测方法很快得到结果,但要回答对流经区域周围的生物或居民的健康有什么影响,这些监测是无能为力的。”朱文杰介绍说,当下使用较多的检测污染物毒性的方法,是从医学毒理学引用过来的小鼠或是鱼类或是溞、藻类等的毒性试验,以受试生物的死亡数来判断毒性的大小,一般需几天时间才能有结果。“每条鱼、每只小鼠对毒物反应都不相同,为减小个体差异的影响,每次用大量的鱼或小鼠用于试验,这不仅造成检测工作量的增加,而且用成百上千的小鼠或鱼来用于一些普通样品的检测是不可能实施的,因为成本太高。”  “而用发光细菌来检测环境污染毒性,不仅灵敏,而且成本低廉,在一刻钟到一小时内便可以有结论。其检测结果跟鱼类、小鼠毒性试验结果是吻合的。”朱文杰举了去年“512”汶川地震灾后水体检测的例子,“工作人员不但要检测当地河流的水质,很多农民也拿出自家的井水样本要求检测,如果用传统的检测方法,成本就是天文数字,时间也不允许。”而工作人员利用青海弧菌这样的发光细菌,在半小时内就知道了结果。上世纪90年代,有科学家提出利用发光细菌快速综合评价苏州河水质的方法,并得以实施。朱文杰回忆说:“苏州河治理是上海的一件大事。最近,浙江环保部门为了加强对蓝藻爆发的预警监测,也使用了我们研制的发光细菌急性毒性监测仪。”  “发光细菌在应用方面还有很大的潜力。”朱文杰说,“现在,科学家对发光细菌利用技术的开发依旧如火如荼,比如食品卫生的快速检测、化学合成物及其降解物的毒性检测、分析有机合成化合物分子结构中不同取代基对毒性的影响等等,也有科学家在基因克隆的实验用细菌发光基因作为报告基因。”现今,朱文杰仍然继续着他每日的科研和教学工作,“希望有关方面能够多采用我们国家研究人员自己研发的发光细菌检测技术和仪器。”
  • 贵冶中心化验室成功制备阴极铜标样
    经过为期半年的实验,近日,贵冶中心化验室成功制备出了阴极铜标样,成为全国为数不多可以制备阴极铜标样的化验室,不仅为工厂节省了大量成本,也为《阴极铜直读光谱分析方法》的修订做足了准备。  贵冶中心化验室是英国伦敦金属交易所认证的国内注册铜化验分析检测单位之一。在日常检测及高精度检测中,需要使用精密分析仪器——直读光谱仪和原子荧光光谱仪,而这类仪器又要用到标样作为检测的基础参照。贵冶每年都要投入一定成本外购样标。  2015年初,国家标准委员会要求贵冶对2003年主起草的《阴极铜直读光谱分析方法》进行修订。按照规定,贵冶需要准备一套18种杂质元素且含量呈阶梯段递增的阴极铜标样给同行做验证检测。  能不能自己动手制备符合要求的标样?这样不仅可以省下外购标样花费的成本,还可以锻炼队伍。贵冶中心化验室负责阴极铜检测的成品一班接受了这一挑战。  标样制备工作从2015年3月开始,经过集思广益,成品一班最终制定出制备方案:先参照阴极铜浇铸方法浇铸出涵盖18种高杂质含量的铜样品(母样),然后从母样中切削出需要的质量,配以不同比例的阴极铜制作出5个不同含量段的子样,最后,再确认子样的准确含量。  项目启动后,大家遇到的困难远比想象的要大得多,可大家没有气馁,碰到困难就克服困难:没有方法,大家就借鉴工厂阴极铜样品浇铸制备的方法 没有浇铸设备,大家就到铜材公司、贵冶原料部和一车间借来磷铜原料、石墨坩埚等。2015年8月份,所有的设备材料都准备齐全,标样制作实验开始实施。浇铸、加工成屑、混匀、再浇铸,经过连续上百次的反复实验,最终成功制出符合要求标样。2015年10月份,成品一班通过原子荧光法、ICP光谱法、直读光谱法等多方法进行比对实验,结果显示:样品杂质元素含量及均匀性,均达到标样要求。
  • 我国学者发现首例具有本征相干性的光阴极量子材料
    在国家自然科学基金项目(批准号:12274353、11874053)等资助下,西湖大学理学院何睿华教授团队发现了首例具有本征相干性的光阴极量子材料,其性能远超目前已知的所有光阴极材料,突破了现有理论框架,为下一代光阴极的基础理论、研发与应用奠定了基础。研究成果以“一种钙钛矿氧化物的反常高强度相干二次光电子发射(Anomalous intense coherent secondary photoemission from a perovskite oxide)”为题,于2023年5月18日在《自然》(Nature)期刊正式发表。文章链接:https://www.nature.com/articles/s41586-023-05900-4。  光阴极是一种能够利用光电效应将入射光子转化为出射电子的电极。它是当代粒子加速器、自由电子激光、高分辨超快电子显微镜等前沿技术的核心元件。早在六十多年前,大部分现有的光阴极材料(传统金属或半导体)已经被发现,它们的光电性能也可以被当时已建立的光电发射理论完美解释。长久以来,光阴极领域的发展缓慢,科学家们主要依靠材料工程技术来改善基于既有材料所制作的光阴极的性能。然而,这些光阴极所产生的电子束都存在着“相干性”差(电子发射的方向不一致和能量不均一)的内秉缺陷,由此要获得尖端科技应用所需的高相干性电子束,就必须牺牲光阴极的发射效率。这个限制因素极大地制约了光阴极电子源亮度的提升空间,使之日益难以满足相关前沿技术升级换代的要求。因此,找到具有高相干性的新型光阴极材料将有助于打破当前的困局。  近年来,具有复杂多变的性质和丰富多样功能的量子材料已成为物理和材料领域的研究热点之一。然而,此前科学家们从未考虑过将这类新型材料应用于光阴极。在本工作中,何睿华教授团队突破了光阴极领域的常规研究对象(具有多晶表面的材料)和常规研究手段(光电流探测),采用角分辨光电子能谱(ARPES)技术探索了具有最简单结构的量子材料SrTiO3单晶的光阴极特性。与量子材料领域的常规ARPES测量不同,团队采用了非常规ARPES配置以测量光电子能谱中跟材料的光阴极性能相关的低动能区域。实验结果表明,具有2×1重构的SrTiO3单晶表面所发射的光电子束,其相干性远高于已知的光阴性材料。研究团队同时发现SrTiO3单晶表现出的优异光阴极性能来源于其表面奇特的光电发射机制——自发相干二次光电子发射,该特性不能被已知的光电发射理论所解释。  本工作不仅首次发现了一种具有本征相干性的新型光阴极材料,更为重要的是,它对未来探索性能优异的光阴极材料开辟了新视角,有望推动该领域研究范式的变革。此外,该发现本身也清楚地表明在目前光电发射理论框架之外可能存在一种未知的物理过程,有望增进人们对光电发射物理的理解,进一步完善其理论框架。
  • 南开大学团队:研制出世界首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统
    近日,南开大学物理科学学院超快电子显微镜实验室付学文教授团队成功研制并报道了国际首套超快扫描电子显微镜(SUEM)与超快阴极荧光(TRCL)多模态载流子动力学探测系统。该系统在飞秒超快电子模式下实现了空间分辨率优于10 nm,SUEM成像和TRCL探测的时间分辨率分别优于500 fs和4.5 ps,各项技术性能和参数指标达到国际领先水平。该团队利用该多模态载流子动力学探测系统在飞秒与纳米时空分辨尺度直接追踪了n型掺杂砷化镓(n-GaAs)半导体中的光生载流子的复杂动力学过程,结合SUEM成像和TRCL测量成功区分了其表面载流子和体相载流子的动力学行为,全面直观地给出了其光生载流子动力学的物理图像。该仪器系统的成功研制填补了我国在该技术领域的空白,为研究和解耦半导体中复杂的光生载流子动力学过程提供了一个强有力的高时空分辨测量平台,将为新型半导体材料与高性能光电功能器件的开发提供重要支撑。该研究近日以“A femtosecond electron-based versatile microscopy for visualizing carrier dynamics in semiconductors across spatiotemporal and energetic domains”(一种基于飞秒电子的可用于跨时空和能量维度可视化半导体载流子动力学的多功能显微镜)为题,发表于重要国际学术期刊《Advanced Science》。半导体光电材料与器件的功能和性能主要取决于其材料表/界面的载流子动力学过程,例如光伏与光电探测器件需要增强其界面光生载流子的分离与传输,抑制载流子的复合,而发光器件则要增强其界面载流子的辐射复合,抑制非辐射复合。这些载流子的动力学过程多发生在表/界面处,且动力学过程快至皮秒乃至飞秒量级,因此以超高的时间、空间以及能量分辨率测量半导体材料表/界面载流子不同类型的动力学过程对于现代半导体器件的研发及应用起着至关重要的作用,尤其是对于一些低维、高速、超灵敏的半导体光电器件。当前,研究半导体光生载流子动力学的时间分辨探测技术主要有瞬态吸收显微镜(TAM)及光谱、时间分辨近场扫描光学显微镜(NOSM)、时间分辨阴极荧光(TRPL)、时间分辨光发射电子显微镜(TR-PEEM)等。然而,光学衍射极限限制了这些技术的空间分辨率,并且激光较大的作用深度使得测得的动力学信号主要来自材料内部的平均载流子动力学信息,很大程度上掩盖了来自表面或界面载流子的贡献,且单一的探测手段难以同时给出载流子不同类型的动力学信息。因此,为了全面表征半导体材料的载流子动力学,特别是表/界面载流子的动力学,亟需发展一种在时空间和能量维度上同时具有超高分辨率并且兼具高表面敏感特性的超快探测手段。图1. 仪器系统的示意图和时空分辨性能表征。(a)超快扫描电镜与超快阴极荧光多模态载流子动力学探测系统的示意图。其中包含飞秒光学系统、扫描电镜系统、阴极荧光收集系统、条纹相机以及液氦低温台。图中左上角分别为金刚石微晶的扫描电镜图、阴极荧光强度分布图像、阴极荧光光谱以及n型GaAs在77 K下的条纹相机图像 (b)传统模式下锡球标样的SEM图 (c)和(d)不同放大倍数下锡球标样的飞秒脉冲电子图像,表明飞秒脉冲电子模式下良好的成像质量,其空间分辨率优于10 nm。(e)初始红外飞秒激光脉冲的脉宽;(f)超快扫描电子成像的时间分辨率测试,其仪器相应函数(IRF)大约为500 fs;(g)超快阴极荧光探测的时间分辨率测试,其IRF约为4.5 ps。随着超快电子显微镜技术的蓬勃发展,超快扫描电子显微镜(SUEM)和超快阴极荧光(TRCL)技术也迅速兴起,两者都同时兼具超短脉冲激光的超快时间分辨率和电子显微镜的超高空间分辨率。其中SUEM技术是基于泵浦-探测原理,用一束可见波段飞秒激光激发样品表面产生光生载流子,另一束同步的紫外飞秒激光激发扫描电子显微镜的光阴极产生飞秒脉冲电子进行扫描成像。由于扫描电子显微镜主要收集来自距离样品表面几个纳米范围内的二次电子信号,使得超快扫描电子显微镜技术具有表面敏感特性,能够直接对半导体材料表面或界面光生载流子(电子和空穴)的时空演化动力学进行成像。然而,该技术无法直接区分辐射复合与非辐射复合动力学过程。TRCL技术是用聚焦的飞秒脉冲电子束激发样品产生瞬态荧光,用条纹相机或时间相关单光子计数器对瞬态荧光进行测量,具有能量敏感特性,且信号绝大部分来源于材料体内,可直接反映载流子的辐射复合行为。因此,SUEM和TRCL在功能上形成良好的互补,将两者有机结合有望实现在超高的时空和能量分辨下全面解析半导体材料表/界面和体相载流子的动力学信息。鉴于此,付学文教授团队将飞秒激光、场发射扫描电子显微镜和瞬态荧光探测模块相结合,研制出了国际首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统(如图1示意图和图2实物图所示),实现了对半导体材料表/界面和体相载流子动力学过程的高时空分辨探测和解析。图2. 超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统实物照片。图3. 利用该系统对n型GaAs单晶表面的SUEM成像和TRCL测量结果。(a)n型砷化镓表面测量得到的随时间演化的SUEM图像;(b)从图(a)中光激发区域提取的二次电子强度演化及相应的载流子演化时间常数;(c)表面载流子的空间分布随时间的演化;(d)从297 K到77 K的变温时间积分CL光谱;(e)和(g)在图(a)的SUEM测试区域中分别探测得到的297 K和77 K下的条纹相机图像;(f)和(h)分别从(e)和(g)中提取的带边发射的衰减曲线及相应的荧光寿命。为展示SUEM成像与TRCL探测在超高时空和能量分辨率下直接可视化并解耦半导体中复杂激发态载流子动力学过程上的独特优势,该团队利用该自主研发的多模态实验装置研究了n型GaAs中的载流子动力学。如图3所示,SUEM图像表明由于表面能带弯曲效应,飞秒激光作用后表面光生载流子发生快速分离使空穴向表面富集。通过分析随时间变化的SUEM图像,提取出了光生载流子不同阶段的衰减时间常数;同时通过计算表面空穴分布的均方根位移,揭示了对应不同阶段表面空穴随时间的超扩散、局域化和亚扩散过程。通过进一步分析室温和液氦温度下测量的条纹相机图像中相应的非平衡载流子复合动力学过程和寿命,不但区分出了体相和表面载流子动力学过程的差异,还揭示了上述表面载流子的空间演变过程分别对应于能量空间热载流子冷却、缺陷捕获和带间/缺陷辅助辐射复合过程。该工作阐明了表面态和缺陷态对半导体表/界面载流子动力学的重要影响,展示了超快扫描电子显微镜和超快阴极荧光多模态动力学探测系统在超高时空尺度解耦半导体表/界面和体相载流子动力学中的独特优势。南开大学为该项工作的第一完成单位及通讯单位。南开大学物理科学学院博士生张亚卿和博士后陈祥为该论文共同第一作者,南开大学付学文教授为通讯作者。该研究得到了国家自然科学基金委、国家科技部、天津市科技局、中央高校基础研究经费等的大力支持。文章链接:https://doi.org/10.1002/advs.202400633
  • 新品上市:ChemiDoc Go荧光及化学发光成像系统
    点亮蛋白条带,赋能科学研究 — StarBright完美搭档全新ChemiDoc Go成像系统。全新 ChemiDoc Go 荧光及化学发光成像系统采用先进的互补金属氧化物半导体(CMOS)感光元件和高强度LED光源,并使用背照式传感器技术,在灵敏度和动态范围方面与传统CCD成像相比毫不逊色。您可以在ChemiDoc Go系统上实现传统的化学发光、比色检测等应用,也可使用StarBright Blue荧光二抗进行蛋白印迹的多重检测。在蛋白印迹实验中,您还可使用免染凝胶归一化总蛋白,实现更为精准可靠的蛋白内参定量。先进的CMOS传感器技术经过多年发展,CMOS传感器技术现已能满足生命科学成像的苛刻要求,与电荷耦合器件(CCD)检测相比,其具有更高的效率和更大的像素密度(超2000万像素)。另外,ChemiDoc Go成像系统的新型高灵敏度背照式CMOS传感器所需的冷却要求及功率也更低,从而增强了系统的可靠性。全LED光源ChemiDoc Go系统中新增了用于透照和落射照明的全LED光源。多个光源可为对应应用提供精确的激发或照明,全LED光源设计提升了系统性能,并具有超长使用寿命。兼容StarBright荧光标记抗体ChemiDoc Go系统现在支持使用StarBright Blue 520和700荧光二抗进行成像,实现多重荧光蛋白印迹检测。安全云存储ChemiDoc Go系统是首款与BR.io云平台连接的Bio-Rad成像系统,其可简化图像上传到云端安全文件夹中后的数据存储、共享和分析程序。三步触控实验流程使用Image Lab Touch软件,选择适合您应用的优化预设、选择“Acquire(获取)”、选择多种文件格式保存图像,即可完成实验操作。您可将图像保存到所在机构的网络、U盘或BR.io云账户,也可使用专用打印机打印图像。可使用Mac或PC版Image Lab软件随时随地分析数据。可使用PC安全版本Image Lab软件维护电子记录,以符合美国FDA 21 CFR Part 11的规定。申请试用:本产品仅用于科研,不可作临床诊断使用。Bio-Rad 是 Bio-Rad Laboratories, Inc. 在特定区域的商标。
  • 进口原装AA用空心阴极灯诚征各地区分销商
    澳洲Photron公司进口原装原子吸收光谱仪用空心阴极灯诚征各地区分销商如有兴趣经销请将公司简介发至max@dhsi.com.cn
  • 稳态瞬态荧光光谱仪在力学存储/可视化行为的自充能、可持续力致发光的应用研究
    自充能、可持续力致发光力致发光是指材料在力学刺激下产生的一种发光行为。由于其独特的力学-光学响应特性,力致发光为实现力学传感及其可视化提供了新思路和新途径。目前发现的力致发光材料多数仅表现出动态力学刺激下的瞬态发射行为,极大地限制了其在力学的可视化显示和成像方面的应用。可持续力致发光材料能够在力学刺激停止后继续保持发光行为,对可持续力致发光材料的开发是应对上述问题的有效方式。此前,研究人员通过陷阱工程设计,在特定材料体系中获得了力学刺激后可持续的力致发光现象。然而,该类可持续力致发光材料在使用前必须经历预辐照,在其结构内部预先储存能量,这不仅增加了实际应用时操作的难度,也难以实现该类材料的循环稳定使用。因此,实现无需预辐照的自充能、可持续力致发光成为当前研究的热点之一。中国科学院兰州化学物理研究所王赵锋团队在国际知名期刊Advanced Science上发表的题为“Self‐charging persistent mechanoluminescence with mechanics storage and visualization activities”的研究论文。本文研制出一种自充能、可持续力致发光材料——Sr3Al2O5Cl2:Dy3+/PDMS(SAOCD/PDMS),该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光,有效避免了此前材料在使用时的预辐照需求,极大提升了长寿命力致发光材料的应用便利性。本工作通过将SAOCD (SAOCD) 粉末复合到PDMS基质中,创建了一种新型的力致发光材料,即自充能、可持续力致发光材料。无需任何预辐照,所制备的SAOCD/PDMS弹性体可以直接在力学刺激下表现出强烈且持久的力致发光,这极大地促进了其在力学照明、显示、成像和可视化中的应用。通过研究基体效应以及热释光、阴极发光和摩擦电特性,界面摩擦起电诱导的电子轰击过程被证明是机械刺激下SAOCD中自充能能量的原因。基于独特的自充电过程,SAOCD/PDMS进一步展现出力学存储和可视化读取行为,为机械工程、生物工程和人工智能领域 处理力学相关问题带来了新颖的思路和方法。 自激活、长寿命力致发光材料的设计制备与性能研究 图1 SAOCD/PDMS复合弹性体的制备流程、性状及力致发光性能 当施加拉伸、摩擦、压缩等力学刺激时,复合弹性体呈现出直接的自激活力致发光,不需要额外的预辐照(图1c)。复合弹性体的力致发光性能随SAOCD颗粒中Dy的含量增加呈现出先增后减的趋势(图1d)。随着施加应变的增加,SAOCD/PDMS弹性体的ML强度随之增加,其在应力/应变传感方面表现出良好的应用价值。此外,该复合弹性体的力致发光还表现出良好的热稳定性(图1f)。图2 (a)SAOCD的力致发光和余辉示意图;(b)SAOCD/PDMS复合弹性体在拉伸、摩擦、压缩条件下的力致发光和余辉照片;(c)不同浓度Dy离子掺杂SAOCD/PDMS复合弹性体的摩擦余辉光谱图。 该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光(图2),有效避免了此前材料在使用时的预辐照需求,极大提升了可持续力致发光材料的应用便利性。图3 SAOCD的自激活力致发光及余辉机理明确了SAOCD/PDMS的自激活力致发光和余辉的物理过程,即在外力刺激下SAOCD与PDMS产生界面摩擦电作用,SAOCD的电子转移到PDMS表面,SAOCD与PDMS间形成高能电场,PDMS表面电子被加速,轰击SAOCD,使得SAOCD中的电子受激从价带跃迁至导带,一部分直接和发光中心结合产生力致发光,另一部分被陷阱捕获,外力撤除后自发释放转移至发光中心产生余辉。机械力学信息的存储与可视化读取器件研究图4 (a)力致发光复合材料的应力存储和可视化读取示意图;(b)SAOCD/PDMS复合弹性体对机械力学信息的存储、读取原理及功能展示。 通过利用SAOCD/PDMS材料中特有的自充能物理过程,进一步发展出了一种力学信息的存储与可视化读取技术(图4)。在机械刺激下,力学信息将会以陷阱捕获载流子的方式在材料内部进行存储,随后,在热刺激下,所存储的力学信息将以可视化的形式得到读取,所存储和读取的力学信息主要包括力学强度、发生时间及其空间分布等。作者简介王赵锋简介:中国科学院兰州化学物理研究所研究员,博士生导师,2006年毕业于兰州大学材料化学专业,获理学学士学位,2011年毕业于兰州大学材料物理与化学专业,获工学博士学位。2011年至今,先后于中国科学院兰州化学物理研究所固体润滑国家重点实验室、美国德克萨斯州立大学化学与生物化学系、美国康涅狄格大学材料科学研究所进行科学研究。主要研究方向为摩擦/力致发光材料及应用,在Nat. Commun., Angew. Chem. Int. Ed., Adv. Funct.Mater., Nano Energy, Mater. Horiz., Adv. Sci.等期刊发表论文100余篇(被引用5000余次,h因子40),编写书籍章节两部,申请/授权国家发明**10余项,研究成果被国内外知名媒体如中国科学报、中国科普博览、人民日报、中科院之声、New Scientist、Nanowerk、Science Trends等专题报道。现为国内知名期刊《稀土学报(英文版)》、《材料导报》、《发光学报》青年编委,以及中国机械工程学会表面工程分会青年学组特邀专家。2015年获美国环境保护署P3提名奖,2017年获甘肃省自然科学二等奖,2018年获中科院高层次人才计划择优支持,2020年获甘肃省杰出青年基金支持,所带领的研究团队获2021年度甘肃省“青年安全生产示范岗”荣誉称号,2022年获中科院区域发展青年学者称号。相关产品推荐 本研究的力致发光光谱数据采用卓立汉光搭建的组合荧光系统采集,配置Omni-λ300i系列“影像谱王”光栅光谱仪对光谱进行分光。目前,该组合荧光系统已经升级为OmniFluo900 系列稳态瞬态荧光光谱仪,如需了解该产品,欢迎咨询。 免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会*一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 河北北方学院199.50万元采购酶标仪,荧光显微镜,PCR,化学发光
    详细信息 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院竞争性磋商公告 河北省-张家口市 状态:公告 更新时间: 2022-12-16 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院竞争性磋商公告 发布时间: 2022-12-16 一、项目基本情况 项目编号: HBZJ-2022N1753 项目名称: 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院 采购方式: 竞争性磋商 预算金额: 1995000.00 最高限价: 1955000 采购需求: 全自动蛋白印迹处理系统2套、全自动化学发光分析仪1台、全自动一体式微滴式数字PCR仪1台、倒置荧光显微镜1台、多功能酶标仪1台。 #detail# 合同履行期限: 详见采购文件 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2022年12月19日至 2022年12月23日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 登录“招标通电子招投标交易平台”(http://www.hebztb.com/)自行下载磋商文件,并及时查看有无澄清和修改。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年12月30日09点00分(北京时间) 地点: 招标通电子招投标交易平台 四、响应文件提交 截止时间: 2022年12月30日09点00分 五、开启 时间: 2022年12月30日09点00分 地点: 招标通电子招投标交易平台 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1.本项目不接受进口产品投标。 2.本项目采用全流程电子招投标形式,供应商无须到达开标现场。电子招标、投标、开标的流程详见“招标通电子招投标交易平台”操作手册,“招标通电子招投标交易平台”联系方式:400-0311-616。请供应商及时办理河北CA数字证书,以免影响本次磋商,联系方式:400-707-3355。 3. 因供应商自身的原因未能在有效期内完成注册,将会导致报名不成功,其后果由供应商负责。潜在供应商如未在“招标通电子招投标交易平台”下载磋商文件及相关资料,或未获取到完整资料,导致投标被否决,自行承担责任。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 河北北方学院 地址: 张家口市经开区钻石南路11号 联系方式: 张磊 0313-4029197 2.采购代理机构信息 名 称: 河北中机咨询有限公司 地 址: 石家庄市跃进路3号天元商务大厦12楼 联系方式: 郝建伟、霍海东 0311-86063928 3.项目联系方式 项目联系人: 郝建伟、霍海东 电 话: 0311-86063928 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:酶标仪,荧光显微镜,PCR,化学发光 开标时间:2022-12-30 09:00 预算金额:199.50万元 采购单位:河北北方学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河北中机咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院竞争性磋商公告 河北省-张家口市 状态:公告 更新时间: 2022-12-16 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院竞争性磋商公告 发布时间: 2022-12-16 一、项目基本情况 项目编号: HBZJ-2022N1753 项目名称: 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院 采购方式: 竞争性磋商 预算金额: 1995000.00 最高限价: 1955000 采购需求: 全自动蛋白印迹处理系统2套、全自动化学发光分析仪1台、全自动一体式微滴式数字PCR仪1台、倒置荧光显微镜1台、多功能酶标仪1台。 #detail# 合同履行期限: 详见采购文件 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2022年12月19日至 2022年12月23日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 登录“招标通电子招投标交易平台”(http://www.hebztb.com/)自行下载磋商文件,并及时查看有无澄清和修改。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年12月30日09点00分(北京时间) 地点: 招标通电子招投标交易平台 四、响应文件提交 截止时间: 2022年12月30日09点00分 五、开启 时间: 2022年12月30日09点00分 地点: 招标通电子招投标交易平台 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1.本项目不接受进口产品投标。 2.本项目采用全流程电子招投标形式,供应商无须到达开标现场。电子招标、投标、开标的流程详见“招标通电子招投标交易平台”操作手册,“招标通电子招投标交易平台”联系方式:400-0311-616。请供应商及时办理河北CA数字证书,以免影响本次磋商,联系方式:400-707-3355。 3. 因供应商自身的原因未能在有效期内完成注册,将会导致报名不成功,其后果由供应商负责。潜在供应商如未在“招标通电子招投标交易平台”下载磋商文件及相关资料,或未获取到完整资料,导致投标被否决,自行承担责任。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 河北北方学院 地址: 张家口市经开区钻石南路11号 联系方式: 张磊 0313-4029197 2.采购代理机构信息 名 称: 河北中机咨询有限公司 地 址: 石家庄市跃进路3号天元商务大厦12楼 联系方式: 郝建伟、霍海东 0311-86063928 3.项目联系方式 项目联系人: 郝建伟、霍海东 电 话: 0311-86063928
  • 贺利氏授权上海汉尧为其空心阴极灯产品中国独家代理商
    仪器信息网讯 2013年4月28日,中国上海,贺利氏特种光源公司(下简称,贺利氏)和上海汉尧仪器设备有限公司(下简称,上海汉尧)签署3年期独家合作协议。  该协议声明:上海汉尧成为2013至2015年贺利氏空心阴极灯(元素灯)及相关产品的中国大陆地区独家代理商。此项协议的签署,将进一步密切贺利氏特种光源与上海汉尧的合作,双方均对合作的前景充满信心。  德国贺利氏集团至今已有超过160年的历史。作为全球领先的特种光源研发制造商,HERAEUS研发制造的空心阴极灯产品品种和技术规格齐全,不同型号规格的空心阴极灯产品,可以适用于几乎所有的原子吸收光谱仪。  上海汉尧专注为中国实验室用户提供高品质产品和技术服务,与HERAEUS特种光源的友好合作超过5年,今后,上海汉尧将与HERAEUS特种光源继续携手,将更多更好的优质分析光源产品和服务,提供给国内用户。(编撰:萧然)
  • 北京工商局检测发现“发光猪肉”因含“荧光假单胞菌”
    工商局称与猪肉安全无关,未检出荧光增白物质 专家称加热数秒能杀死细菌  ■ “市场买回猪肉 半夜发出蓝光”追踪  猪肉为何会在黑夜里发出荧荧蓝光?昨天下午,北京市工商局对外揭晓“谜底”:通过抽检发现,这是一种叫荧光假单胞菌的细菌在“作祟”,与猪肉安全无关。  专家介绍称,该细菌并不可怕,对正常人群不具有致病性。  抽检未发现荧光增白物  近期,有几位消费者反映在建欣苑菜市场、八里桥市场等处购买的猪肉,夜晚会发出荧光,担心吃了可能对身体有害。而这些肉都是从正规屠宰场批发,且肉身上有检验检疫章(本报12月12日曾报道)。  近日,北京工商部门组织了抽检,由北京市食品安全监控中心对送检样本进行荧光增白物质和荧光假单胞菌检测,结果显示,送检样本均未检出荧光增白物质,不过都检出了荧光假单胞菌。  猪肉煮熟可杀灭该细菌  “荧光假单胞菌能产生黄绿色荧光色素而使猪肉发光”,中国农业大学微生物系教授王贺祥介绍,这种细菌在肉及肉制品、禽蛋类等蛋白质丰富的食品中,易生长繁殖。  王贺祥说,荧光假单胞菌属于革兰氏阴性嗜冷菌,广泛存在于土壤、水、植物、动物活动环境中,也是存在于人类肠道的正常细菌,对正常人群不具有致病性,不必对其恐慌。  如何杀灭猪肉上的细菌呢?王贺祥介绍,该菌在42℃就会停止生长,超过70℃,只需数秒即可杀死。  市工商局也表示,消费者购买到的“发光猪肉”,可能在屠宰、储存、运输、销售等过程中污染了荧光假单胞菌,只要猪肉本身没有腐败变质,可以通过焯、炒、煮等方式将猪肉熟制后食用,不会对人体健康产生影响。
  • 531万!贵州医科大学蛋白转印、PCR仪、化学发光仪等仪器设备采购项目
    项目基本情况项目编号:TXZB4208-2254项目名称:贵州医科大学蛋白转印、PCR仪、化学发光仪等仪器设备采购项目项目序列号: P52000020230001I9预算金额(元):5316300最高限价(元):5020950采购需求: 标项名称: 贵州医科大学蛋白转印、PCR仪、化学发光仪等仪器设备采购项目 数量: 1 预算金额(元): 5316300 简要规格描述或项目基本概况介绍、用途:贵州医科大学蛋白转印、PCR仪、化学发光仪等仪器设备采购项目招标项目的潜在投标人应在贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/) 获取招标文件 。贵州医科大学蛋白转印、PCR仪、化学发光仪等仪器设备采购项目于2023年4月24日 11时0分0秒(北京时间) 前递交投标文件。 备注:无 合同履约期限:标项 1,详见招标文件 本项目(否)接受联合体投标。 对本次采购提出询问,请按以下方式联系1. 采购人信息名称:贵州医科大学地址:贵安新区大学城内联系方式:0851-884160992.采购代理机构信息名称:贵州天信招标有限公司地址:贵阳市花果园中央商务区中心 1号楼2单元4208号联系方式:0851-858277633.采购代理机构信息项目联系人: 陈燕电 话:0851-858277633.30.2254采购文件.pdf
  • 中国化学发光产业图谱
    p  中国体外诊断市场生化诊断、免疫诊断、分子诊断、POCT的竞争格局已经形成,2010-2014年,生化诊断市场份额由27%降低至19%,免疫化学的市场份额由33%增加至38%,分子诊断由5%增加至15%。化学发光为最先进的免疫诊断技术,2015年国内市场规模达160亿元,近年来维持20%-25%的增速,为IVD企业必争之地。/pp  免疫诊断经历了同位素放射免疫(RIA)、胶体金、酶联免疫(ELISA)、时间分辨荧光(TRFIA)、化学发光(CLIA)等技术的演进。目前我国酶联免疫和化学发光并存,近年来化学发光市场份额越来越大,已经逐渐替代酶联免疫成为免疫诊断的主流。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/05d34011-007a-4823-9b1d-bef2db81ac1c.jpg"//pp  化学发光免疫分析(chemiluminescence immunoassay,CLIA)广泛应用于肿瘤标记物、传染病、内分泌功能、激素等方面的诊断。目前,在大多数三甲医院,化学发光已经取代酶联免疫(ELISA)成为主流。检测内容涵盖肿瘤标志物、心脏标志物、甲状腺能、胰岛素、糖尿病、感染性疾病、细胞因子、激素、过敏反应和治疗药物浓度监测等。/pp  酶促化学发光、直接化学发光、电化学发光是目前主流化学发光技术,国内目前化学发光市场渗透率依然较低,市机市场愿为得到满足。2015年国内化学发光市场份额预计为69亿人民币,远未达到测算的230亿市场容量。/pp  中国263家化学发光相关企业分布相对集中,形成以北京、广东、江苏、山东、上海、浙江为主的产业集聚区。/pp  从企业成立时间来看,中国化学发光企业主要企业已经基本进场完毕,化学发光产业新成立公司数量下降,产业新进入者活跃度降低。新产业、安图生物、迈克生物为国内化学发光产业佼佼者,到2017年7月为止化学发光领域超过20家上市/新三板企业进行相应布局。/pp  从一级市场资本层面,近年来化学发光领域投资几乎绝迹,在行业龙头已经出现的情况下,早期投资机会基本丧失。国际化学发光产业资本整合已经完成,格局已定,以罗氏、雅培、西门子、贝克曼为首的龙头企业地位难以撼动,通过资本整合,拓展企业化学发光上下游产品线,中国企业才刚刚起步。/pp  中国化学发光产业图谱分为仪器、试剂两部分,仪器包括半自动化学发光仪、全自动化学发光仪、便携化学发光仪,试剂包括微孔板化学发光是机、磁微粒化学发光是集以及其他试剂(蛋白芯片、杂交捕获、酶免疫点印迹等)。/pp  化学发光仪经历了半自动、全自动、到便携化的发展过程,截止2017年6月底,共有51家企业的80个未过期仪器批件在市场流通、销售。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/3c7d1ad2-7a59-49db-b6b8-ed0d8a4e9902.jpg"//pp  国内化学发光仪市场,罗氏诊断占据中国化学发光29.8%市场份额,专利到期给国内企业带来机会。罗氏以电化学发光为核心产品,由宝灵曼1996年研发而成,具有核心专利保护,被称为第四代化学发光。罗氏公司1997年收购宝灵曼公司后,产品不断升级换代,目前以170 T/H的E170和86T/H的E411为主要产品。2016年罗氏电化学发光专利正式过期,为国内企业带来发展机遇。新产业、迈克、安图等国内化学发光领军企业快速发展。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/6fc56e0f-3750-44f2-8863-55a092eda967.jpg"//pp  国内化学发光试剂市场则经历了由微孔板到磁微粒主导的技术更新,到2017年6月底共有91家企业2313个未过期试剂批件在市场销售。其中激素、抗体、蛋白类化学发光检测试剂占据批准产品83%。安图生物是国内化学发光试剂企业的翘楚,公司已掌握了酶联免疫、微孔板化学发光、磁微粒化学发光、胶体金等多个免疫诊断技术,其中磁微粒化学发光技术是公司重要收入来源。2016年上半年化学发光产品销售收入占公司56.5%,达到2.3亿元人民币。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/ccc69d5e-376f-411f-abe1-31a2a11fadd8.jpg"//pp  无论试剂还是仪器,进入2017年国内化学发光相应产品审批数量均明显减少。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/1bc95e47-566d-442f-b7ae-111172ae7bea.jpg"/  /pp  从化学发光检测项目来看,甲功、肿瘤检测是化学发光企业必争之地。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/28af80ca-8f62-418b-8f0d-13f80108e7c7.jpg"//pp  从行业发展趋势来看,技术突破、分级诊疗、价格优势等加速进口替代,2015年化学发光国产化10%左右,与生化诊断70%市场占有率有巨大差距,进口替代空间巨大。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/ef86d8bc-0489-44ca-9a9e-9d3eb761d4d7.jpg"//pp  另外一方面国家分级诊疗战略的大力推进,不断快速增加的基层医疗、诊断需求也在推动我国化学发光产业的进一步发展。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/43312dd4-fe25-4c0e-9fc6-c302ecedb3bd.jpg"/  /p
  • “吞下”微激光器让活细胞发光
    最近,英国苏格兰圣安德鲁大学一个研究小组开发出一种新奇的方法,把一种微小的共振器放入人体活细胞内,一经照射就会发出荧光。研究人员指出,这一技术在细胞传感、医疗成像等领域有着广泛应用。相关论文发表在最近出版的《纳米快报》上。  据物理学家组织网7月24日(北京时间)报道,研究小组多年来一直在探索以单细胞为基础的激光,希望在活组织内造出会发荧光的细胞,以便在这些细胞工作时跟踪它们,深入揭示身体内部机制,比如癌症是如何开始的。  以往他们所用的光学共振器都比细胞要大,而新研究所用的共振器非常小,能放在细胞内。科学家曾把水母细胞中的绿色荧光蛋白引入到人类细胞中,然后用共振腔增强发光。新研究是对这一研究的扩展。  研究人员诱导细胞“吞下”一种“回音廊式”的共振器,在细胞内部形成一个微小的泡泡——当用一束激光照射时,光会在泡泡内部反射而增强,共振器内的荧光染料就会发光。发出的光波长不同,其颜色取决于泡泡的大小和折射率,就像一个微小的植入式激光器。  通过这种技术处理可以修改大量细胞。由于细胞发光可以持续一个较长的周期(几天或几周),可以在较长时间里识别和跟踪活组织内的细胞,有望为研究人员提供一种很有潜力的手段,执行细胞内传感,自适应成像,还可能真正看到肿瘤细胞的生长过程。  研究人员指出,目前这一技术还只用在实验室培养的活细胞中,但他们希望进一步研究能带来用于动物实验的细胞跟踪系统,并最终用于人类。
  • GE Amersham ECL prime化学发光试剂新推出150ml大包装
    自从1990年进入市场以来,增强化学发光(ECL)蛋白印记系统产品库不断丰富,以适应从常规蛋白检测到采用基于荧光Amersham ECL&trade plex进行多道分析的各种应用。 通过选择ECL检测系统,研究人员不仅可以避开对人有危害的放射性同位素操作,同时还拥有了另外的分析工具,正是由于这种分析具有一次性的特点,使得蛋白分析比以前变得更加快速,更加敏感,也更加地灵活。Amersham ECL家族最近加入的成员是ECL prime,它至少具有ECL plus两倍的敏感性,其最低检测限(LOD)可达低皮克量级。该试剂的特点在于大幅增加了信号的稳定性,这使得反复曝光变成可能,并使其能在一个试验中轻松地进行多个印记处理。此外,ECL prime所发射的信号强度提高了3到5倍,这也就意味着ECL prime也采用比ECL plus低3倍的一抗和二抗进行检测,这不仅降低了背景,并使抗体试剂的费用得到降低。 ECL Prime保留并增强了Amersham ECL plus和AmershamECL Advance&trade 的优势,提供出一套敏感、稳定、在很宽蛋白动态水平范围内能精确定量并在节省昂贵的抗体试剂成本的检测系统.详细信息,请参见:http://img1.17img.cn/17img/old/NewsImags/files/201286161229.pdf
  • 700万!山东大学阴极荧光显微表征系统采购项目
    项目编号:SDDX-SDLC-GK-2022017项目名称:山东大学阴极荧光显微表征系统购置预算金额:700.0000000 万元(人民币)最高限价(如有):700.0000000 万元(人民币)采购需求:阴极荧光显微表征系统,亟需购置,具体内容详见招标文件。标段划分:划分为1包合同履行期限:质保期国产产品3年,进口产品1年本项目( 不接受 )联合体投标。20230106山东大学阴极荧光显微表征系统购置招标文件(定稿).docx
  • 光阴极直流高压电子枪和驱动激光系统研制成功
    近日,大连化物所大连光源科学研究室(二十五室)杨学明院士团队成功研制了光阴极直流高压电子枪和驱动激光系统,标志着大连先进光源预研项目研制工作攻克了又一项关键核心技术。直流高压电子枪系统与驱动激光系统是大连先进光源预研项目中的两大核心系统,其主要用途在于获得高品质电子束源,从而为产生高亮度、高重复频率极紫外自由电子激光提供支撑。经过3年多的协同攻关,团队成功完成了这两大系统的研制,并开展了初步调试工作,顺利实现了连续波模式下一兆赫兹(1MHz)重复频率、100皮库(pC)单脉冲电荷量、330千电子伏特(keV)能量的预期目标。这两大系统的研制和调试成功,不仅打通了技术壁垒,还锻炼了技术队伍,为未来基于连续波超导加速器技术的大连先进光源项目建设打下了坚实的基础。   该成果得到了大连先进光源预研项目的支持。
  • 我国新型有机发光二极管应用前景广阔
    我国研制的新型有机发光二极管应用前景广阔  最新一期的美国《应用物理杂志》刊登了一项来自中国科研工作者的最新研究成果———中国科学院长春应用化学研究所科学家开发出的一种制造成本较低、发光效率高的叠层型有机发光二极管。  有机发光二极管(OLED)是一种薄膜发光二极管(LED),它的发射层是一种有机复合物。这些器件的加工相比传统的LED成本低很多,它既可以用作电视屏幕、计算机显示屏、便携式系统的显示屏,也可以用于照明设备等。相比传统的LCD显示,OLED显示的一个最大的好处就是它不需要背光,这意味着它需要的电流较小,用同样的电池它能够工作的时间更久,可以广泛地用于小的便携式设备,这些设备大多都采用单色的、低分辨率的显示屏以降低功耗。  有机发光二极管被认为是未来最重要的平板显示技术之一,在背景光源和照明领域也显示了巨大的应用前景,成为当今热门研究领域。通过自身的努力,中国科研工作者在该领域目前已经取得了令人骄傲的成绩。  发光二极管是半导体二极管的一种,可以把电能转化成光能,在日常生活中已有广泛应用。与白炽灯相比,发光二极管具有工作电压和电流小、抗冲击性能好、寿命长等特点。但发光二极管一般由无机半导体材料如镓、砷、磷等制成,工艺复杂,成本较高。此外,普通无机发光二极管为点光源,较难应用于大面积并需要高分辨率的组件,并且不可能做得很薄。  中科院长春应用化学研究所的马东阁研究员领导的研究小组,利用类似于塑料的碳基有机材料制成了有机发光二极管,其加工比较简单,成本较低,而且这种有机发光二极管是一种光源面积较大的面光源。  实验结果还表明,这种有机发光二极管只需要单发光层就能实现高效率,而不需要多个复杂的发光层 把单元有机发光二极管串联起来,就可以实现更高的工作效率。“简单的单发光层,通过叠层结构实现了高效率,110 cd/A(电流效率)效率应该是目前白光器件较高的效率。”马东阁说,他们开发的有机发光二极管在成本、发光模式等方面优势明显,在照明、显示器背光源等领域拥有良好的应用前景。  据悉,自从1987年世界上第一个高效率OLED在美国成功问世以后,OLED的发展引起世界工业界和科技界的广泛重视,开始在全世界迅速发展。“我们从1996年开始OLED的研究,特别是最近几年,我们在该领域做了大量工作,开发出了高效率、长寿命的红、绿、蓝OLED,也开发了高效率的白光OLED,并正在推动其产业化。”马东阁说。  据了解,从OLED的结构、制备工艺、驱动电路和发光性能等方面考虑,它具有许多的优点:厚度薄、质量轻,其核心厚度可小于1毫米,约为LCD的1/3 全固态结构,抗震性好,可以适应巨大加速度、振动等恶劣环境 响应速度快,约为数微秒至数十微秒,比LCD快1000倍,可显示活动图像 材料消耗少,制备工艺简单(一般只需要86道工序,而LCD需要200道工序),成本至少比LCD低20%,易于大规模生产 低直流电压驱动(最低电压仅为3伏特)、功耗低(2.4英寸多晶硅OLED模块的功耗为605微瓦) 无需背光照明,能够在不同材质的基板上制作成可以弯曲的柔软显示器等。  众多优点决定了其广阔的应用前景,目前,日本、英国、德国、美国和荷兰等国家在OLED方面已取得了很大的成就,但基本还处于实验阶段,市场占有率很低,这主要是由于其技术上还存在一些亟待解决的问题。如稳定性差、寿命低、彩色序列组合方面工艺不成熟等。“尽管目前全球还没有OLED产品诞生,但国外预计2010年和2011年后将有产品问世,我们也在跟踪世界前沿,加速产业化进程。”马东阁表示,“白光OLED要得到应用,现在必须解决效率、寿命和成本问题,除了材料成本的降低,简化结构应该是降低成本的最主要的工艺。另外,叠层是实现OLED高效率、长寿命的最主要器件结构,具有重要的应用开发价值”。  业内人士指出,OLED产业之所以吸引了全世界,特别是国内“眼球”的关注,首先是因为OLED是未来极具潜力的平板显示产品,符合超薄、节能、低成本、环保等硬件要求。另外OLED产品处于开发初期,新的应用领域有待开拓,中国有机会在OLED领域处于领先水平。另外就是国家以大力发展平板显示行业为政策导向,众多的投资可以支持OLED事业的发展。  马东阁认为,我国的有机发光二极管产品如果想从技术、质量等方面达到世界先进水平,很好地实现产业化,需要继续改善器件在高亮度下的效率问题,开发新的工艺,降低成本,满足产业化要求,改善大面积化的均匀性问题,继续改善器件稳定性和解决好产业化工艺与技术问题,做好市场开发工作。《中国质量报》
  • 集采之后 化学发光仪器和试剂的市场格局剧变
    从去年11月11日安徽正式执行试剂集采落地到现在,时间已经过去整整7个月。具体执行落地情况怎样?安徽发光仪器和试剂的市场格局发生了哪些变化?与今年3月报道的数据有所不同的是,进口四大家中,除了雅培 ,西门子 也在此次安徽集采中获益颇丰,甚至一跃成为安徽市场份额最大的进口企业。而国产化学发光五小龙迈瑞、安图、迈克、新产业 、亚辉龙 也在部分三甲医院实现了国产替代。01、雅培 、西门子 、迈瑞成安徽集采最大赢家由以上可以看出,安徽发光试剂集采施行从2021年11月11日到2022年6月16日期间,市场一共新换244台化学发光检测平台,其中,雅培 是最大赢家,新装机91台,占据新更换市场占比为37.3%;西门子 紧随其后,装机63台,占据新更换市场占比25.8%。据小编了解,雅培 上新的机器是其最快最新的型号,单机测试速度为200T/H。由于雅培的项目与没有中标的罗氏符合度最高,所以雅培发光仪器和项目本身也是这次集采截止目前的最大获益者。此次数据,迈瑞的装机数与今年3月的报道相比略有出入,当时的数据来源显示,迈瑞取得的单子是104台,当时就已经装机83台。但在此次数据来源中,迈瑞的装机数为54台。随后小编进行了求证,来自迈瑞的官方数据仍为104台。值得一提的是,迈瑞50%的新装机都装在了三甲医院,并且是基本上接替了罗氏掉标的临床检测项目,而且基本装的都是最新款全自动化学发光免疫分析系统CL-8000i,单机测试速度500T/H,截止目前客户使用感受非常好。02、安徽进口IVD市场重新排序另有数据显示,2021年(全年)和2022年(预计),进口四大家的业务变化较大,预计为:可以看出,雅培 和西门子 都实现了较大增长,雅培装机数量由原来的业务量最少一跃超过了罗氏和贝克曼,从0.8亿增加到1.4亿;而西门子成为安徽市场份额最大的进口企业,从1.5亿增加到2.1亿;没有参加集采给罗氏带来的影响较大,在安徽的市场份额从2.8亿急速降到0.8亿,损失惨重。03、部分三甲医院直接选择了国产设备替代进口设备据统计,此前安徽市场的化学发光试剂70%-80%市场份额大都是由罗雅贝西等进口厂商占有。通过此次集采,截止到现在的落地数据可以看出,以迈瑞为首的积极参与配合降价中标的本土试剂市占率得到提升,国产化学发光五小龙有了在三甲医院国产替代的机会,这也符合目前国家倡导的进口替代趋势。因此,安徽集采的操作以及落地过程,将为其他省份效仿并实施试剂的大幅度降价集采带来更多实操经验和促进作用。而且据小编了解,现在集采在安徽的落地实施效果非常好,对临床终端的应用几乎没有任何影响。可见这种集采的方案,不但顺应了国家的大方向,而且是非常正确、可操作、可落地、可执行、可复制,相信未来势必会在全国各地推广。因此,至少从小编观察来看,未来扛价不降价,不顺应国家趋势是最愚蠢的行为。小编相信,那些顺应国家政策导向,积极拥抱并配合政府降价集采要求,快速积极调整自身企业策略,同时主动把握机会,立刻跟上国家脚步的企业,才能在这场大变革中站稳脚步,扩大市场,取得更好的发展。医疗器械ETF(159883)为目前A股规模最大的一只医疗器械行业ETF。该ETF追踪中证全指 医疗器械指数,一指云集 养老、抗疫、医美三大热门概念,前十大权重分别为迈瑞医疗 、爱美客 、欧普康视 、九安医疗 、万泰生物 、健帆生物 、乐普医疗 、金域医学 、达安基因 、华大基因 ,全面表征A股医疗器械行业发展。双创含量约70%。标的指数成分股中包含52只科创板+创业板股票,根据PCF清单测算,占比合计约70%。板块投资门槛高,且高价股较多。相较而言,医疗器械ETF开通证券账户即可进行高效交易,且一手仅需65元出头,免交印花税,更适合普通投资者。医疗新基建大势所趋。医疗新基建是国家医疗系统建设的大趋势,尤其在新冠疫情冲击下国内医疗短板显现(医疗资源紧张)背景下更受重视。后疫情时代,全球加强公共卫生建设,顺应医疗新基建浪潮,也为国内医疗器械产品出海提供发展机遇,医疗器械行业国产替代、国际化进程持续加速。估值处历史低位。随着板块风险持续释放,估值修复行情或可期。截至6月20日,标的指数最新PE估值仅20.38倍,处历史0.00%百分位,低于同类医药医疗类指数,板块布局性价比凸显。场内场外双覆盖。对于普通投资者而言,医疗器械种类繁杂且研究门槛较高,个股波动大,个人投资者研究难度较高,借道指数基金更省心,还可分散个股投资风险。场内用户可通过医疗器械ETF(159883),场外用户可通过联接基金(A份额013415,C份额013416)进行分批布局。
  • 美开发出超快纳米级发光二极管
    据美国物理学家组织网11月16日(北京时间)报道,斯坦福大学工程学院的研究团队研发出一种超快的纳米级发光二极管(LED),能够以每秒100亿比特的速度传输数据,并比当前以激光为基础的系统装置能耗更低。研究人员表示,这是为芯片上的计算机数据传输提供超快、低能耗光源的重要步骤。相关研究报告发表在15日出版的《自然通讯》杂志上。  科研人员表示,低能耗的电控光源是下一代光学系统的关键,这能够迎合计算机行业日益增长的能源需求。传统上,工程师认为只有激光才能以极高的数据传输速率和超低能耗进行通讯。而此次研发的单一模式LED能发射单一波长的光,与激光十分相似,能像激光一样执行相同任务,且消耗的能量更低。  研究人员在新装置的中心,插入了若干座砷化铟“小岛”。当电脉冲通过时,它们能产生光。这些“小岛”的周围包裹着光子晶体(在半导体上蚀刻的微孔阵列),能像镜子一般将光线弹射聚集至装置的中央,使它们囚禁于LED内,并被迫按单一频率产生共鸣,从而形成单模光。  现有设备基本是由激光发光器与外部调制器两个装置构成。两种装置都需要消耗电力,而新款二极管将发光器和调制器的功能整合到一个装置内,大大降低了耗能量。科学家表示,新款设备可达到目前最高效设备能源效率的2000倍至4000倍。平均而言,新款LED装置能以每比特0.25飞焦(10-15焦耳)的耗能量传输数据,而当下典型的低能耗激光设备也需要消耗500飞焦来传输单个比特,其他技术则耗能更多。
  • 免费试用PerkinElmer蛋白免疫印迹试剂盒 亲身体验另类的不同!
    立即免费*试用我们的蛋白免疫印迹试剂盒,亲身体验另类的不同! 我们将在一定期限内提供免费试用装,试用装包括 Western Lightning™ ECL pro 或 Western Lightning™ Ultra 化学发光底物, KODAK 科学胶片,PVDF 杂交转印膜以及 HRP 偶联抗体。 Western Lightning Ultra [ 低至飞克 (femtogram) 级灵敏度,信号稳定时间 8小时 ]最高灵敏度的化学发光底物。蛋白免疫印迹,最佳条件:C2C12 细胞裂解液 4 倍连续稀释,10 微升样品,兔抗总 AKT 1:20,000,抗兔 HRP 1:100,000,1 分钟曝光。Western Lightning ECL Pro 对比 [灵敏度 1 皮克,信号稳定时间 12小时 ]利用 AlphaScreen SureFire 裂解缓冲液,以 HEK 293 细胞制备裂解液。第 2-9 条带:2 倍连续稀释的裂解液。使用 eBlot 半干转印系统进行转印。用封闭液 (PKI) 封闭 1 小时。在 4 摄氏度下,以 1:1000 稀释的抗 AKT 抗体进行过夜孵育(CST)。在室温下,以 1:100,000 稀释的抗兔 HRP 育孵 1 小时 (PKI)。请即点击登记,以便当地销售代表致电给您,评估最符合您具体要求的蛋白免疫印迹试剂试用装。* Western Lightning 产品仅用于化学发光检测,在所有应用中都无法替代 ECL Plus。数量有限。PerkinElmer 有权单方面随时终止试用活动,恕不另行通知。本活动不涉及现金或现金等价物。试剂盒不可退换。活动截止日期:2011 年 12 月 31 日。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制