面上温度传感器

仪器信息网面上温度传感器专题为您提供2024年最新面上温度传感器价格报价、厂家品牌的相关信息, 包括面上温度传感器参数、型号等,不管是国产,还是进口品牌的面上温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合面上温度传感器相关的耗材配件、试剂标物,还有面上温度传感器相关的最新资讯、资料,以及面上温度传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

面上温度传感器相关的厂商

  • 安徽天光传感器有限公司创建于1991年,占地面积22000平方米。主要研发、生产、销售:称重传感器,电力覆冰检测传感器,扭矩传感器,拉力传感器,轴销传感器,压力传感器,拉压力传感器以及相配套测控仪表等产品。二十多年来天光不断吸取国内外的先进技术,引进国外领先的设备与工艺,学习与吸收现代企业管理理念,先后研发、生产了百余种测力传感器及配套仪器仪表,产品广泛应用于军工、航空航天、油田、交通、医药、冶金建材、教学等行业的计量与自动化过程中的检测等方面,其半导体应变计的生产工艺、设备及产量为国内领先,已申报发明专利。2008年我公司荣幸为北京奥运会主体育场鸟巢提供专用传感器,并获得好评。 陈圆圆180 5523 0933
    留言咨询
  • 福建省莆田市衡力传感器有限公司是一家集专业高精度传感器研发、设计、生产、销售为一体的传感器制造厂家。 公司位于中国海峡西岸经济中心地,素有东方“夏威夷”之称,海上女神妈祖故乡——福建莆田。公司主要以生产称重、非标等数字传感器为主,目前产品已销往全国各省市地区,在河南、河北、山东等地设有办事处,打开东南亚、南亚等国际市场,为进一步实现以技术创市场的目标,公司与国内著名院校结成研发队伍,实现了“销售一代、试制一代、研发一代”的技术成建设,为衡力发展国内市场,走向国际市场,成为数字化传感器专家型企业,奠定了雄厚的技术基础。 十年来福建省莆田市衡力传感器有限公司严格依照国际计量组织(OIML)相关建议组织生产,在生产上建立起以ISO为标准的基础质量体系,并积极引进CE认证、5S管理,不但保证了产品品种全,性能好,还具有防腐、防水、防震等持久耐用特点,产品近年来在机械、衡器、化工、钢铁、科研等行业广受好评,在市场上获得了衡力“以优质创市场,技术创品牌”的良好口碑。 规范化、数字化、专业化、国际化、服务化是衡力走向国际化一流传感器企业的五大战略标准,当公司初步达成专业化、数字化、规范化三大目标时,下一个目标就是向国际化、服务化迈进,为向客户提供一个具有专业技术、一流服务、高附加值专业数字化传感器品牌进军.....
    留言咨询
  • 合肥力智传感器系统有限公司,专门从事传感器、变送器、智能仪器、仪表等方面的科研开发与制造。公司成立十多年来,力智测控以雄厚的技术、科技开发力量及精湛的生产工艺水平,研制、开发、制造上百种力敏传感器、压力变送器、智能仪表及计算机控制系统。广泛应用于冶金、化工、油田、军工、航空航天、各大科研所、院校、汽车、交通、能源、机械制造、建材等行业的计算机和自动化过程控制。产品遍布全国,创新、诚信、奋进为企业精神,坚持以优质的产品,真诚的服务和卓越的信誉,共同创造和见证您我共同的辉煌历程。你的需要就是我们的服务。我们愿和国内外客商真诚合作、共同发展。我们等待着你的到来。
    留言咨询

面上温度传感器相关的仪器

  • LT-1T 叶面温度传感器 400-860-5168转3476
    LT-1T叶面温度传感器  LT-1T叶面温度传感器是一个微型接触式探头,测量植物叶面的-概温度。传感器上比较轻的不锈钢导线夹包住一个高精密的玻璃包装热敏电阻,热敏电阻的直径为毫米级。探头的小尺寸和特殊设计对叶面的自然温度几乎不会产生任何干扰。通过0.15mm的薄导线将热敏电阻连接至导线夹,最小地化了热导和响应时间。所有的导体都受到了保护,防止在潮湿环境中被腐蚀。  通过一根标准1米长度的电缆,探头被连接至一个安装有信号调节器的盒子中。用户根据自己的需要,可以选择输出的电缆长度。每一个传感器都已近被调整并标定到自己的测量范围,公差分为为±0.08℃。 安装 ※ 打开导线夹,把传感器附着到叶面上面。热敏电阻应当被放置到叶面比较低的阴暗面位置。 ※ 通过粘连带,把传感器电缆固定到植物杆茎上,目的是为了防止传感器的偶尔的微小移动。 ※ 该型号没有输出电缆,用户选择外径为3 – 6毫米的四芯电缆即可。 技术性能参数测量范围:0~50℃分辨率:0.01℃准确度:0.15℃公分差:±0.08℃热敏电阻接触面积:~1mm2电源:10~30V DC功耗:1W尺寸:50W*20H*10Dmm重量:16g防护等级:IP64线缆长度:4m长,可选择10m
    留言咨询
  • LT-1M/LT-1Mi叶面温度传感器  LT-1M传感器是一个微型接触式探头,测量植物叶面的-概温度。传感器上比较轻的不锈钢导线夹包住一个高精密的玻璃包装热敏电阻,热敏电阻的直径为毫米级。探头的小尺寸和特殊设计对叶面的自然温度几乎不会产生任何干扰。通过0.15mm的薄导线将热敏电阻连接至导线夹,*小化了热导和响应时间。所有的导体都受到了保护,防止在潮湿环境中被腐蚀。  通过一根标准1米长度的电缆,探头被连接至一个安装有信号调节器的盒子中。用户根据自己的需要,可以选择输出的电缆长度。每一个传感器都已近被调整并标定到自己的测量范围,公差分为为±0.08℃。 安装※ 打开导线夹,把传感器附着到叶面上面。热敏电阻应当被放置到叶面比较低的阴暗面位置。※ 通过粘连带,把传感器电缆固定到植物杆茎上,目的是为了防止传感器的偶尔的微小移动。※ 该型号没有输出电缆,用户选择外径为3 – 6毫米的四芯电缆即可。   电压输出*大电缆长度为10米,4 – 20毫安或0 – 20毫安电流输出*大电缆长度位200米。标定表格U,VI,mAT,℃0.0014.0080.00.1955.5605.00.4007.20010.00.6158.92015.00.83010.64020.01.04612.36825.01.25814.06430.01.46115.68835.01.65517.24040.01.83518.68045.02.00020.00050.0标定方程*佳适配:LT-1M型:T=1.8649×U3 – 4.5048×U2 + 26.542×U – 0.0099LT-1Mi型:T=0.0036×I3 – 0.1137×I2 + 4.0587×I – 14.679近似误差:±0.06℃线性适配:LT-1M型:T=24.477×U – 0.1352LT-1Mi型:T=3.0605×I – 12.384近似误差 ±1℃这里,U为输出电压,单位伏;I为输出电流,单位毫安 技术性能参数测量范围0 - 50 ℃输出LT-1M0 - 2 VDCLT-1Mi4 - 20 mA仪器精度 0.15℃公差±0.08 ℃探头重量1.6 g热敏电阻接触面积大约1 mm2Supply voltage10 - 30 VDC功率LT-1M*大0.5 WLT-1Mi*大1 W探头尺寸,毫米50 W × 20 H × 10 D保护等级IP 64探头与信号调节器之间电缆1 m
    留言咨询
  • Teros54土壤剖面水分温度传感器TEROS 54土壤剖面水分温度传感器是一款测量精度高,且安装简单的传感器,可以实现准确测量,并避免了安装时大规模挖掘。大多数剖面传感器都要在易于安装和拆卸、传感器精度、测量体积和耐用性之间做选择,METER开发的这款TEROS54可以全部满足这些要求,不用再做取舍。TEROS 54的水分和温度传感器位于15、30、45和60cm深度的位置,提供了根系区域的测量,不用挖坑或者在较浅土层频繁寻找合适的安装位置。TEROS 54安装只需要一个2cm钻孔,然后将一个坚固的四翼剖面传感器插入土壤中,传感器和土壤有更好的接触,能够实现更准确的测量;TEROS 54非常适合用于一年生植物的测量,通过专用的提取工具,可以轻松完成多次安装和拆卸工作。TEROS 54的四翼设计比典型的圆柱形传感器拥有更大的测量体积,可以提供更全 面的土壤水分情况。TEROS 54只需一根线缆连接ZL 6,即插即用,无需编程和布线,相同数量的数采仪可以连接更多传感器。主要特点ü 同时测量多个深度土壤剖面的水分和温度ü 安装仅需一个2cm钻孔,不需要导向管ü 直接插入土壤中,与土壤直接ü 接入ZENTRA Cloud远程可查看、共享和管理数据ü 使用专用拆卸工具,一次性拆卸全部传感器ü 一根导线接入ZL6,即插即用ü 非常适合需要季节性安装和拆卸传感器的一年生植物和土壤ü 每个数采仪端口可获得更多测量结果ü 更大的测量体积ü 减少安装和拆卸的工作ü 高精度、研究级的土壤水分测量ü 传感器在大部分根系区域及其周围提供剖面测量ü 坚固的设计,保证了安装过程中以及在恶劣环境下运行时的耐用性技术指标测量范围体积含水量(VWC)矿质土校准0.00-0.70m3/m3表面介电常数(εα)1-50(土壤范围)1(空气)-80(水)注意:VWC范围取决于传感器校准的介质,自定义校准适用于大多数测量。分辨率0.001m3/m3精度一般校准±0.05m3/m3(溶解状态EC<8dS/m的矿质土壤中)特定介质校准±0.02-0.03m3/m3(任何多孔介质中)表面介电常数(εα)1-40(土壤范围),±1(εα)40-80, 读数的15% 测量频率70MHz温度-20℃……+60℃分辨率0.03℃精度±0.35℃(-20℃……0℃)±0.25℃(0℃……+60℃)数据传输输出DDI串口和SDI-123线电缆版本4线电缆版本RS-485 Modbus RTU和tensioLINK串口4线电缆版本数据采集METER ZL6和EM60数采或任何带有4.0到24.0VDC电源的数据采集系统,接口为SDI-12串口,和/或RS-485串口,Modbus RTU 或tensioLINK通讯。其他参数规格75L×6D×11W(cm)工作温度-20℃……+60℃线缆长度5m,可定制其它长度,最长可达75m供电电压最小4.0 VDC,最大24.0 VDC数字输入电压(逻辑高)最小2.8V,典型3.6V,最大5.0V数字输入电压(逻辑低)最小-0.3V,典型0V,最大0.8V数字输出电压(逻辑高)3.6V电源线转化率最低1.0V/ms电源损耗(500ms测量期间)最低3mA,典型35mA,最高50mA电源损耗(休眠时)最低0.03mA,典型0.1mA启动时间DDI串口最短500ms,最长800msSDI-12典型1000msSDI-12,DDI关闭最短500ms,典型600ms,最长800ms测量时间(4深度)最短500ms,最长800ms遵循标准EM ISO/IEC 17050:2010 (CE 标志)产地与厂家:美国METER公司
    留言咨询

面上温度传感器相关的资讯

  • 宁波材料所在柔性应变-温度双模态传感器研究方面取得进展
    人体活动所产生的包括应变和温度等生理信号是医疗健康、运动监测的重要数据来源,利用柔性可穿戴设备实现应变和温度的感知意义重大。柔性传感器是柔性可穿戴设备的核心部件,其发展趋势是集成化和多功能化。发展柔性应变-温度双模态传感器,实现应变和温度等信号的监测以及区分,同时兼具高的分辨率仍是一个难点。   Co基磁性非晶丝具有优异的软磁性能和巨磁阻抗效应(GMI),可以实现对磁场的高灵敏探测,是发展柔性多功能传感器的理想材料之一。前期,中国科学院宁波材料技术与工程研究所研究员李润伟、刘宜伟基于磁性非晶丝设计与发展了仿生触觉传感器与自供电弹性应变传感器,并在机器人假肢的触觉感知、运动捕捉的智能服装方面实现应用(Science Robotics. 2018, 3, eaat0429;Nano Energy, 2022, 92, 106754)。在此基础上,研究人员以磁性非晶丝为敏感材料,通过设计具有管状异质结构的双模态传感器实现了单一传感器对应变和温度的灵敏监测和实时区分。   该传感器具有独立的应变和温度感知机制。一方面,结合磁弹性体的磁弹效性和Co基非晶丝的巨磁阻抗效应可以实现应变灵敏探测;另一方面,用于阻抗输出的热电偶线圈具有显著的塞贝克效应,可以同时实现温度的检测。基于独立的感应机制,温度和应变信号之间不存在相互耦合,后续通过信号读取电路可实现温度和应变信号的实时区分和输出。   该研究中双模态传感器的应变-磁转换单元中具有磁弹效应的磁弹性体提供随应变而变化的磁场,通过内置的Co基磁性非晶丝,能够灵敏感知微小变化的磁场,从而输出变化的阻抗,实现应变的感知。此外,该工作设计了具有双功能的Cu-CuNi热电偶线圈,不仅可以实现阻抗的输出,而且本身具有的塞贝克效应可以实现对温度的感知。   进一步地,通过调控应变-磁转换单元的不同区域的相对模量,即磁弹性管和非磁性弹性管的相对模量,可以控制磁场变化快慢,从而能够实现应变灵敏度的可调。该传感器可实现0.05%的应变和0.1℃的低探测极限,5.29和54.9μV/℃的较高应变和温度感知灵敏度。   此外,该研究也从模拟和实验上对该双模传感器的应变-温度信号输出的耦合和相互干扰进行了验证。研究人员分别测试了双模传感器在不同应变下的温度输出信号和不同温度下的应变输出信号,发现该传感器具有的管状异质结构能够有效避免应变对温度的干扰,且磁性非晶丝和磁粉的磁性能在低于居里温度下具有良好的温度稳定性,可以确保温度对应变感知几乎没有影响。   该研究将所设计的管状线型双模传感器与织物集成,可以同时用于人体微小应变的探测,比如呼吸和吞咽等检测,也可用于膝盖弯曲等较大应变的探测,同时能实现体温或环境温度的实时监测,在健康监测、智慧医疗以及人机交互领域具有良好的应用前景。   相关成果近期以Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables为题在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金重大仪器研制项目、国家自然科学基金项目、国家自然科学基金委中德交流项目、中科院国际合作重点项目、浙江省自然科学基金等项目的支持。图1(a)双模传感器的感应机制,(b)具有管状异质结构的双模传感器传感器制备流程,(c)应变-磁转换单元中磁弹性管的微观形貌,(d-i)具有磁弹效应的磁弹性管不同磁化方向磁化具有不同的磁性能,(j-m)双模传感器外观和柔性展示图2 双模传感器的应变感知性能
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 柔性温度传感器实现高温测量新突破
    近年来,各大品牌的折叠屏手机、柔性可穿戴电子等智能设备层出不穷,成为行业热点。作为柔性电子设备的重要组成部分,柔性传感器用以测量温度,反映人体的各项指标。现有的柔性薄膜温度传感器受柔性衬底、敏感材料等限制,难以实现高温物理场的温度测量。因此,如何继承柔性薄膜传感器优势,实现柔性薄膜传感器在高温环境下的应用是一个值得关注的问题。近日,来自微纳制造领域的一项最新研究成果,为柔性传感器突破高温应用瓶颈提供了新思路。西安交通大学机械工程学院精密工程研究所的刘兆钧博士、田边教授、蒋庄德院士及其合作团队首次制备出了具有良好温度敏感性的高温柔性温度传感器。相关成果发表于工程制造领域期刊《极端制造》。传统柔性温度传感器难以实现高温无损监测柔性传感器是指采用柔性材料制成的传感器,具有良好的柔韧性、延展性,甚至可自由弯曲、折叠,而且结构形式灵活多样,可根据测量条件的要求任意布置,能够非常方便地对复杂表面进行检测。在可穿戴方面,柔性的电子产品适合“人体不是平面”的生理特性,因此更易于测试皮肤的相关参数,其可将外界的受力或受热情况转换为电信号,传递给机器人的电脑进行信号处理,从而实时精准地监测出人体各项指标。“柔性薄膜温度传感器能变形、易附着、轻薄等优点受到了研究人员的广泛关注。”田边说,“热电偶式传感器以结构简单、动态响应快、便于集中控制等优点脱颖而出。”结合二者优势,热电偶式柔性薄膜温度传感器应运而生。“温度传感器主要由两部分组成,由两种不同材料制成的温度敏感层和柔性基板。温度敏感层常由金属以及金属化合物组成,柔性基材则选择已经商业化的聚二甲基硅氧烷、聚酰亚胺等高分子聚合物材料。”田边表示。实际上,柔性传感器的优势使其能运用到多个领域当中,除了可穿戴设备,柔性传感器还在医疗电子、环境监测等领域显示出很好的应用前景。然而,现有的柔性薄膜温度传感器受柔性衬底、温度敏感材料等限制,难以在高温环境场中工作,更无法实现功能化应用。“因为柔性基板的熔点通常低于400℃,在高温环境中发生碳化后会变脆、变硬,因此,很难在高温环境下使用现有的柔性温度传感器。这一点也限制了它们在航空航天、钢铁冶金和爆炸损伤检测等极端环境中的应用。”田边解释道。“现有的高温温度测量手段受限于设备尺寸大、需要破坏结构、破坏气流场、受环境干扰等,难以实现对温度场的无损实时温度监测。”博士生刘兆钧补充道。因此,如何继承柔性薄膜传感器的优势,实现柔性薄膜传感器在高温环境下的安装与应用是亟须解决的关键问题。突破多项柔性温度传感器测量瓶颈为了突破柔性温度传感器的温度测量瓶颈,田边教授团队创新性地选择了具有宽温域的铝硅氧气凝胶毡作为温度传感器的柔性基板。由于柔性基板表面不均匀、粗糙度较大,难以通过传统的微纳制造工艺实现薄膜沉积与功能化,因此团队选用了丝网印刷技术制备厚膜以克服上述困难。在制备传感器的实际操作中,田边、刘兆钧等人使用有机黏合剂混合功能粉末完成浆料配置,利用高温热处理的方法去除薄膜中的多余有机物,如环氧树脂、松油醇等。同时,团队还针对不同应用表面,基于柔性材料可变形、可共形的优势,实现了功能薄膜的特定曲面化制备。“就像球鞋设计者根据球星脚底的尺寸大小来制定码数一样,这种‘独家订制’能有效解决一些问题。”田边表示,这样制备好的柔性温度传感器能够贴附于不同曲率曲面,例如叶片等。同时,其也具有超薄、超轻等优点。这项研究首次实现柔性传感器在零下190℃至零上1200℃这一极广的温度范围内工作,测试灵敏度也达到了可观的226.7微伏每摄氏度(μV/℃)。这是现有所有柔性温度传感器难以实现的。扩大柔性传感器的工作温域,为柔性传感开拓了更广阔的应用领域,它在探险排难、航空航天、钢铁冶金等领域将呈现出巨大的应用潜力。在被问及新型柔性传感器何时能够实现实际应用时,蒋庄德表示:“我们团队的研究人员对制备的柔性温度传感器已经进行了多种实验室级测试与实际测试。其中,包括对航模发动机的尾喷温度进行实时监控,小型物理爆炸场爆炸瞬时温度测量以及对坩埚中金属熔化过程进行温度监测等。传感器在整个测试过程都表现出了优异的测温能力。”在蒋庄德看来,科技发展的目标始终围绕造福人类。他指出:“我们根据柔性温度传感器极轻、极薄的特点,创新性地将其应用于智能穿戴设备,如传感器与环保透明面罩相结合设计出的智能口罩,实现对人体呼吸状态的实时监测,有望惠及长期独居旅行者和慢性病患者。我们的科研成果可以给人们的生活带来便捷,这也让科研有了‘温度’。”目前,柔性传感器许多技术仍停留在研究阶段,柔性传感器产业链整体能力亟待增强。就技术本身而言,传感器本身的稳定性、耐磨损性等还需要进一步提高。而从整个产业链的配套来说,柔性电路、柔性存储,以及软硬连接等环节也需要跟进步伐。在未来,团队也期望将制备的柔性传感器进一步优化,实现飞机表面、涡轮叶片等国之重器上的温度测量,为我国科技进步添砖加瓦。

面上温度传感器相关的方案

面上温度传感器相关的资料

面上温度传感器相关的试剂

面上温度传感器相关的论坛

  • 热阻抗增加对电偶温度传感器的影响

    在高温下使用的热电偶温度传感器,如果被测介质为气态,那么保护管表面沉积的灰尘等将烧熔在表面上,使保护管的热阻抗增大;如果被测介质是熔体,在使用过程中将有炉渣沉积,不仅增加了热电偶的响应时间,而且还使指示温度偏低。因此,除了定期检定外,为了减少误差,经常抽检也是必要的。例如,进口铜熔炼炉,不仅安装有连续测温热电偶温度传感器,还配备消耗型热电偶测温装置,用于及时校准连续测温用热电偶的准确度。

  • 温度传感器基础知识

    一、温度测量的基本概念(温度传感器有双金属温度计、热电偶、热电阻等)1、温度定义:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度 :数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标:a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。c、ITS-90的定义:第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。三、传感器的选用国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。(二) 测温器:1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(1).热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。(2).热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

面上温度传感器相关的耗材

  • 红外叶表面温度传感器,红外叶表面温度传感器
    红外叶表面温度传感器,红外叶表面温度传感器,试剂,操作,说 明:1、基本参数说明:(在使用本传感器前必须先了解以下参数) 1)RTD温度信号输出: Vt (Td为转换后数字量) 2)RTD环境温度: Ta (单位为℃) 3)红外信号输出电压: Vo (Vd为转换后数字量) 4)红外物体温度: To (单位为℃)2、传感器类型参数: 1)电压型红外叶表面温度传感器: 供电电压范围:5~12V(7~24V供电时需定制,另外功耗将增加4mA) 输出电压信号:0~2.5V 理论测温范围:0~100℃ 平均功耗电流:0.45mA 注意:在此,测温范围与电压信号范围不是线性对应关系! 2)电流型红外叶表面温度传感器: 供电电压范围:7~24V 输出电流信号:0~25mA 理论测温范围:0~100℃ 平均功耗电流:4~25mA 注意:在此,测温范围与电压信号范围不是线性对应关系! 红外叶表面温度传感器,红外叶表面温度传感器,试剂,操作,说 明,功能及特点: .具备环境温度信号采集、输出功能; .采用集成性红外热电堆温度传感器; .测量精度较高,重复性、一致性较好; .采用环氧树脂封装,防水抗震性好; .电压输出式传感器具备低功耗特点。4、适用范围: .可广泛用环境、温室、实验室等的红外温度测量。
  • LWS叶面湿度传感器
    当叶面有一定水汽时,叶面很容易受一些真菌和细菌疾病的感染。叶面湿度传感器能够测定叶面上湿度的存在以及持续的时间,这样研究者或生产者就能预知疾病的发生,从而对植物或农作物采取相关的保护措施。Decagon Devices Inc.制造的叶面湿度传感器(LWS)能够对叶面湿度进行精准的测量,能够监测到叶面的微量水分或冰晶残留。传感器外形采用仿叶片设计,真实模拟页面特性,因而能够更准确地反映出叶面环境的情况。它通过仿叶片介质的上表面介电常数的变化,来测量水或冰的存在量。与基于电阻测量的传感器不同的是,它不要求着色或使用校准,同时还能提供冰的有效监测。LWS耗电量低,可进行长期不间断监测。其安装简便,既可以悬挂在温室的大棚上,也可以气象站的桅杆上。 技术参数:  测量时间:10ms  工作温度:-20~60℃  电源:2.5VDC(2mA),5VDC(7mA)  输出:250~1500mV  操作环境:-20℃~60℃  尺寸:11.2cm×5.8cm×0.075cm  重量:140g(含4.5m电缆) 产地:美国
  • CS225温度链传感器
    概述:CS225 温度链传感器使用 SDI-12 数字技术简单集成,可靠性高。 CS225 包含多个温度传感器,固定在结实的不锈钢加固的线缆上。每个温度感应点都是二次注塑成型,能够长期地耐受所有的测量介质。每一个 CS225 都是根据客户指定的需求定制的。CS225 可在广泛的应用领域和不同的环境中进行温度剖面测量。用途完全密封的线缆允许 CS225被埋设、放置在水下,或者直接集成在某些结构上。既能适合淡水环境,也能适合咸水环境。能够承受弯曲,拉伸,挤压,冰冻、解冻周期循环等恶劣条件。线缆完全密封,可浸没水下,也可如在钻井中、土壤、水下、冰霜或多年冻土中进行温度监测。优点1. 可定制测量间距,可靠性高2. 仅占用一个SDI-12通道,接线简单3. 低功耗,无需校准4. 长期测量稳定5. 高强度和耐受性6. SGB模块防止电涌损坏7. 序列号和安装深度数据存储在每一个传感器的内存上配置包含一个SGB3 3线防浪涌保护模块SGB3为CS225提供防浪涌保护技术参数工作温度-55℃到+85℃精度典型:±0.2℃(-40℃到+85℃)恶略环境:±0.5℃(-55℃到+85℃)分辨率0.0078℃最大压力150PSI通讯方式SDI-12温度点直径2.22cm(0.875in)最大线缆长度152m(500ft)每一个温度链能安装的传感器最大数量36最小间距15cm(5.9in)供电电压9到28Vdc电流消耗每个传感器的电流消耗:1.0mA(最大)活跃状态下的电流消耗:20ma(传感器数目*1.0mA)上电后预热时间10秒产地:美国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制