当前位置: 仪器信息网 > 行业主题 > >

玉米验水机

仪器信息网玉米验水机专题为您提供2024年最新玉米验水机价格报价、厂家品牌的相关信息, 包括玉米验水机参数、型号等,不管是国产,还是进口品牌的玉米验水机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合玉米验水机相关的耗材配件、试剂标物,还有玉米验水机相关的最新资讯、资料,以及玉米验水机相关的解决方案。

玉米验水机相关的资讯

  • 世界粮食日,关注粮食安全丨玉米、大米、小麦和玉米油中的玉米赤霉烯酮的测定
    介绍01为加快粮食产业经济发展,推进粮食产业供给和结构性质改革,国家粮食局推出“优质粮食工程”,并开展“中国好粮食”行动。睿科集团积极响应政策的同时,凭借丰富的实验室经验,针对相关政策标准制定了系列解决方案,并将各种自动化设备应用于前处理过程,尽可能地帮助实验员提高工作效率,保证粮油产品检测的准确性。值此世界粮食日(2021年10月16日)来临之际,我们分享用Fotector Plus高通量全自动固相萃取仪分析粮油中玉米赤霉烯酮的解决方案。试样经过90%乙腈水溶液提取,提取液经离心、稀释后用含有玉米赤霉烯酮特异抗体的免疫亲和柱自动净化。用5 mL水淋洗柱子将免疫亲和柱上的杂质除去,以甲醇洗脱免疫亲和柱。将洗脱液在55°C条件下氮吹干,用1 mL初始流动相定容,经高效液相色谱仪上机分析。图-1玉米赤霉烯酮结构式本应用文章参考GB5009.209-2016《食品中玉米赤霉烯酮的测定》第一法,采用免疫亲和柱净化,高效液相色谱检测,建立了复杂粮油样品基质中玉米赤霉烯酮高灵敏度的前处理和分析方法,得到四种常见粮油基质中玉米赤霉烯酮的加标回收率在88.0%-112.0%之间,RSD值小于5%。仪器与耗材02Auto Prep 200全自动液体样品处理工作站;Fotector Plus高通量全自动固相萃取仪 ;Auto EVA 80 全自动平行浓缩仪;玉米赤霉烯酮免疫亲和柱 (Romer,1500ng/3mL);高效液相色谱: Waters ACQUITY UPLC I-Class配备大体积流通池;甲醇(Merck,色谱纯);乙腈(Merck,色谱纯);吐温-20(Sigma,试剂纯);超纯水(Waston);PBS盐包配标净化浓缩标准曲线配制03使用Auto Prep 200全自动液体样品处理工作站可实现标准品的全自动化配制,将单标母液(1000 mg/L)通过工作站的直接稀释模式,配制成浓度为10 mg/L的工作中间液,紧接着可通过程序设置,吸取该工作液,配制一条浓度分别为0.01 mg/L,0.02 mg/L,0.1 mg/L,0.2 mg/L和0.5 mg/L的标准工作曲线。图-2. Auto Prep 200 液体工作站配标程序样品提取与前处理04大米、玉米、小麦样品准确称取5 g粉碎过的样品于50 mL离心管中,加入20 mL乙腈-水溶液(9:1)(v/v),涡旋震荡提取20 min,以7000 r/min的转速离心5 min;取5 mL上清液于试管中,加入20 mL 0.1%吐温-20的PBS缓冲液混匀,以7000 r/min的转速离心5 min,取10 mL上清液于80 mL上样管中,待用。玉米油样品准确称取5 g样品于50 mL离心管中,加入20 mL乙腈-水溶液(9:1)(v/v),涡旋震荡提取20 min,以5000 r/min的转速离心5 min;余下步骤同上。固相萃取净化条件全自动固相萃取仪Fotector Plus高通量全自动固相萃取仪固相萃取柱玉米赤霉烯酮免疫亲柱 (1500ng/3mL)淋洗超纯水洗脱甲醇表-1 固相萃取净化条件以2 mL/min的速度精确上样10 mL待测液,5 mL水清洗样品瓶,5 mL水淋洗免疫亲和柱,气推30 mL吹干免疫亲和柱,推速为80 mL/min。最后用2 mL甲醇以0.5mL/min的速度洗脱样品,收集洗脱液用Auto EVA 80 全自动平行浓缩仪于55°C、1 L/min条件下吹干,用初始流动相定容至1 mL,过滤膜上机分析。详细步骤见图-3。图-3. Fotector Plus 玉米赤霉烯酮免疫亲和柱净化方法检测条件05色谱柱Waters BEH-C18(2.1×100 mm,1.7 um)流速0.200 mL/min流动相水:甲醇:乙腈=46:8:46柱温35°C进样体积10 μL梯度洗脱等度洗脱荧光检测器激发波长303nm,发射波长440nm表-2 玉米赤霉烯酮液相色谱检测条件样品测试06分别取大米、玉米、小麦样品各5g,添加20 ug/kg的玉米赤霉烯酮标准品,进行上述步骤的前处理净化。取空白玉米油样品5 g,添加20 ug/kg的玉米赤霉烯酮标准品,进行上述步骤的前处理净化。样品回收率如下表-3所示:表-3添加水平为20 ug/kg样品回收率结果结果与讨论071.样品提取液pH对回收率的影响只用纯水稀释样品提取液进行上述净化步骤,样品中的加标回收率只有71-78%;若采用0.1%吐温-20的PBS缓冲液进行样品提取液稀释,样品回收率为88-112%。2.洗脱速度的影响采用1 mL/min的洗脱速度,洗脱效果不佳,回收率在72%-81%;降低洗脱速度至0.5 mL/min,洗脱效果有明显提升,回收率在88-112%。因此洗脱速度不宜设置得过快。3.乙腈提取液用PBS缓冲液稀释后容易变浑浊,用滤纸过滤混合液效果不佳,因此建议采用高速离心的方式使混合液变澄清以利于后续的过柱。4.谷物中离心完成后,不可放置过长时间,否则谷物容易重新吸水,可能导致提取液的浓度过高,使样品的回收率偏高,影响测试结果。5.固相萃取进行提取液净化前,特别对于偏酸或偏碱性样品,应用PBS缓冲溶液(pH=7.4)进行稀释后上机,否则可能会导致回收率偏低。总结1. 采用高通量全自动固相萃取仪法,准确性、重复性、再现性均满足符合GB 5009.209-2016 要求。2. 采用Fotector Plus高通量全自动固相萃取仪对样品进行检测能同步进行6个样品净化,连续自动处理60个样品,做样通量高;同时可无人值守,提高了工作效率。此外还可避免工作人员因操作失误导致的检测偏差。3. 睿科 Auto Prep 200全自动液体工作站可实现混标、标准曲线的自动配制,全程无需人为值守,让实验人员远离有毒有害的化学物质。4. 睿科Auto EVA 80 全自动平行浓缩仪处理通量高,80个样品可同时进行氮吹,实验平行性好;采用氮吹针自动追随液面的设计,无需手动调节氮吹针且耗气量小,省时省力。
  • 湖北发现三聚氰胺严重超标乳酸玉米奶
    日前,湖北襄樊市工商部门紧急要求排查湖北远山乳业有限公司生产的50件有毒乳酸玉米奶。检测结果表明,这批乳酸玉米奶每公斤含了4.8毫克三聚氰胺,含量严重超标。而厂家的出货记录显示,这50件产品有可能销到襄樊。(中央人民广播电台)  襄樊日报早前报道:50件有毒玉米奶疑流入襄樊市  11月15日,襄樊市工商部门下发紧急通知,要求在全市范围内排查湖北远山乳业有限公司生产的乳酸玉米奶,共计50件,批号为20100615,包装容器为塑料瓶。  据检测结果表明,这批有毒乳酸玉米奶每公斤三聚氰胺含量高达4.8毫克,严重超标。而厂家的出货记录显示,在这批次产品中,有50件通过一名姓周的人销到襄樊。市工商部门得到该消息后,急忙和周某联系,希望彻底查清这批货是在襄樊进行分销,还是已中转到其他城市,但是打电话时发现,周某留在厂家的电话是空号。这个线索断掉后,市工商部门决定组织执法人员在全市各大批发市场、超市进行全面排查。目前,尚未发现这批有毒乳酸玉米奶的踪影。  襄樊市工商部门提醒市民,如果发现这种玉米奶,请不要购买,最好拨打12315举报,工商部门将以最快的速度将其查封。  湖北襄樊:尚未发现含三聚氰胺乳酸玉米奶  中广网襄樊11月21日消息 有媒体报道“湖北发现三聚氰胺乳酸玉米奶,有可能销往襄樊”。11月21日下午,湖北省襄樊市工商局迅速启动食品安全紧急预案,经查,尚未发现含三聚氰胺乳酸玉米奶。  11月10日,湖北省工商局接到湖南省工商局协查通报称,湘潭远山乳业有限公司生产的“乳酸玉米奶”三聚氰胺含量严重超标。据湖南省有关部门初查,有50件该批次产品有可能销往襄樊,请帮助清查。襄樊市工商局接到湖北省工商局的清查通知后,迅速启动食品安全紧急预案,组织工商干部对全市食品经营户进行全面清查,先后出动1280人次,清查各类市场、超市及食品经营户5750户次,截止目前,尚未发现湖南湘潭远山乳业有限公司生产的乳酸玉米奶。  此前媒体误写为“湖北远山乳业有限公司”,经工商部门核查,湖北没有“湖北远山乳业有限公司”这一企业。襄樊市委市政府要求公安、食品药品监督管理等相关部门继续积极配合工商管理部门,全市开展拉网式清查,一经发现有毒有害食品,立即销毁,确保市民食品卫生安全。
  • 检出非法转基因成分 5万吨美国进口玉米被拒
    11月29日,深圳出入境检验检疫局披露,一批从美国进口的5.4万吨的转基因玉米被作出退货决定,原因是被检出我国不允许的转基因成分MON89034。11月30日,国家农业转基因生物安全委员会副主任委员杨晓光表示,进口转基因农作物须遵循严格的程序,未获得中国批准的绝对不允许进入。  这是中国首次拒绝美国饲料(粗)谷物通关。遭到质疑的MON89034已获美国批准,但中国在2008年末开始对该成分进行检验,审批至今未完成。此前,美国农业部发言人称,美国谷物行业代表正与中方交涉。  针对此事,11月30日,国家农业转基因生物安全委员会副主任委员杨晓光表示,这是属于转基因监管的问题,“不管它是不是真的不安全,只有国家批准的才允许进口。无论是在中国或美国,没有当地安全证书的,肯定都不允许进入。”  杨晓光供职的国家农业转基因生物安全委员会,是为农业部提供专业咨询的机构,它参与我国所有转基因生物的审批过程。  据杨晓光介绍,进口转基因农作物须遵循严格的程序。“首先,在国外上市的这些产品要有当地的安全证书 然后我们会按照中国的标准对它进行评价。为了确认结果,我们还要对国外已经做过的实验进行确认,包括对环境安全、食用安全和关键成分的分析。”杨表示,“无论在国外是否做过这些实验,在国内都要由具有资质的实验室再次进行评价。”  按照世界贸易组织议定书的有关规定,目前我国每年发放玉米进口关税配额720万吨,其中40%为非国营贸易配额,主要分配给一定规模以上的饲料企业 另外60%为国营贸易配额,主要分配中粮集团。今年以来,国内玉米价格的高涨,让中粮等企业数次从国外进口玉米。  对于转基因农作物管理,中国农业大学食品科学与营养工程学院院长罗云波也表示,“中国属于偏严格的国家之一。”目前,国际上转基因玉米有20多种,通过我国转基因安全审查、已经证明安全并允许进口的只有11种。且进口玉米不仅要通过农业和检验检疫部门审查和检验,还要在检验检疫部门的全程监管下进行储存、运输和定点加工,加工剩余的部分也要销毁,严格禁止原粮在市场上流通。
  • 中国首个转基因玉米种子产品将卖给美国
    中国首个转基因玉米种子产品,将进入世界顶尖农业科技公司的本土主场——美国。据路透社12月6日报道,农业生物技术企业北京奥瑞金种业股份有限公司(NASDAQ:SEED)宣布将试水美国市场。美国市场一直以来被转基因巨头孟山都等企业把持,这是中国企业进入这一高技术产业的又一突破。中国投资了数十亿美元用于相关技术研发,希望确保14亿人口的粮食供应,与此同时,受制于深层次的对转基因食品的抵触情绪,迄今没有一种主要粮食作物品种获批用于种植。奥瑞金公司目前正接洽潜在的合作伙伴。不过,即使是与当地公司合作,中国产品进入美国也需要监管部门批准,耗时可能长达数年。以长远目光来看,进入最高段位的美国市场,意味着如获得成功,将增强市场对中国技术的信心,从而也为中国政府批准更多转基因产品扫清障碍。上海圻明生物科技有限公司专业提供ELISA检测试剂盒。
  • 玉米油品牌长寿花 首建专业研发中心
    伴随市场竞争越来越激烈,科技研发在企业发展中所占的地位越来越重要。科技研发不断使企业焕发新活力,使企业持续保持有利竞争优势,推动企业长久、稳定发展。国内知名玉米油品牌长寿花自创立之初便深知科研对企业发展的重要性,开启了民企研发的先河,在国内民企行业首次建立了研发中心。  据了解,长寿花在发展之初便致力研发符合消费者需求的高品质玉米油。为此,长寿花不断对技术进行创新,不断建设生产线,并首开国家民营企业研发之先河建立了国内领先的专业研发中心,为我国民营企业的研发之路指明了方向。研发中心内配置了先进的研发设备,特聘专业研发人才指导研发工作,不断增强长寿花的自身研发实力 同时研发中心的建立为长寿花持续、稳定走在自主研发道路上提供了可靠保障。    自此之后,长寿花的科技研发之路越来越顺利、越走越宽广,在研发方面所投入的力量越来越大。继首个研发中心之后,长寿花又斥巨资建设了高标准的国家级实验,该实验室总面积2300平方米,主要负责油脂成品的生产检验及出厂检验。经过不断发展,该实验室的设备已达到国际一流水平,拥有高效液相色谱仪、安捷伦气相色谱仪、近红外分析仪、原子吸收光谱仪、可见紫外分光光度计等120余台(套)设备,先进设备为长寿花研发人员快速提供了准确的检测数据,确保玉米油研发工作顺利、稳定进行,为长寿花持续走在行业发展前沿提供了坚实可靠的科技保障。  除此之外,长寿花还为科研提供大力的资金支持,每年以不低于销售收入5%的资金投入到企业技术中心的建设和研发中,保证玉米油各项科研工作有序开展,从而为消费者提供质量安全、品质一流的健康、营养玉米油。  长寿花创新发展在国内民营企业领域首个建立专业研发中心既开创了自己的专业研发之路,同时也为后续研发工作的开展提供了有利保障,使品牌影响力不断提升,稳居国内玉米油行业发展前列。
  • 加拿大对玉米产品中的伏马毒素开展检测
    原标题:加拿大食品检验局对玉米产品中的伏马毒素开展检测  来自加拿大渥太华消息,作为加拿大食品检验局(CFIA)针对多种食品开展的常规检测的一部分,CFIA近日发布的一份调查报告显示,所有经检测的玉米产品中伏马菌毒素(fumonisin,FMN)的毒性水平都是安全的。伏马菌毒素是玉米在田地生长过程中(收割前),以及在玉米原料/玉米成品储藏过程中(收割后)由镰刀霉菌素自然释放的一种毒素。  CFIA对2010至2011年期间276个来自国内及进口的玉米产品样本进行了FMN检测。经分析,大多数样本(57%)含有较低但达到可检测到水平的FMN。只有8个样本超过了既定国际最高限量水平,但加拿大卫生部确定其不会对人类健康造成影响,因此没有要求召回。这项调查提供了基准监控数据,将被加拿大卫生部用于更新加拿大公民对FMN的估计暴露程度。  据悉,FMNs会干扰人体细胞的新陈代谢,被认为可能是致癌物。同时FMNs还被与食道癌和世界上一些区域的神经管缺陷联系在一起。加拿大饮食中FMN的主要潜在来源为受污染玉米产品。  CFIA还公布了指导文件用以帮助行业防止食品污染和减少霉菌毒素,如FMN。目前加拿大食品并未建立FMN最大限量水平。CFIA警告说,当检测到FMN含量提高时,就需要进行进一步的评估。加拿大卫生部的额外评估将帮助决定食品是否构成健康风险。这个评估将基于污染水平、预期暴露频率和在整体饮食中的比重开展。然后CFIA决定是否需要采取进一步的行动,包括产品扣押和/或召回。若发现存在人类健康风险,将立即发布公开召回通知。
  • 守护亿万亩玉米,这场战斗,我们必须打赢
    ——草地贪夜蛾来犯,迅速蔓延云南、广东、广西等多省 不知道大家听说没有,最近草地贪夜蛾频频出现在小托的朋友圈,为了提升大家的防范意识,小托在此整理了一些资料,帮助大家理解一下这件植保领域的大事。生物入侵!“妖蛾子”来了! 2019年1月11日,我国云南省发现并确认草地贪夜蛾侵入为害,随后在云南省西南部地区草地贪夜蛾继续蔓延为害。4月24日,农业农村部新闻办公室通报,草地贪夜蛾已在云南、广东、广西等3省(区)67县(区、市)见虫,发生面积为7万亩左右,农业农村部要求各地严防草地贪夜蛾蔓延。 据悉,草地贪夜蛾俗称秋粘虫,食性杂,繁殖能力强,迁飞扩散快,原产美洲的热带和亚热带地区,是玉米上的重大迁飞性害虫,玉米苗期受害一般可减产10%-25%,严重危害田块可造成毁种绝收。2016年初,草地贪夜蛾首次被发现入侵非洲西部并暴发成灾,2018年在非洲造成的经济损失高达10-30亿美元,玉米毁种面积占总播种面积的5%-6%。2018年7月,草地贪夜蛾首次传入亚洲地区。 据专家介绍,截至1月29日,缅甸在9个邦(市)已经发现草地贪夜蛾,发生面积80多万亩;斯里兰卡玉米发生为害面积120多万亩,可见草地贪夜蛾在境外建立起数量较大的种群虫源。中国农科院植保所吴秋琳博士风温场分析结果显示,3-4月,以玉米种植为主的缅甸东部虫源可依靠自身飞行能力,通过连续多个夜晚进入我国云南西双版纳州、普洱市、临沧市、红河州以及玉溪市等西南部;5月份开始,缅甸虫源可远距离迁入广东、海南、贵州、湖南等南部省份,也可波及四川、重庆、江西、福建等地。夏季缅甸草地贪夜蛾将集中往东北方向迁移,主要进入云南和广西,也有可能迁飞入侵贵州、广东、海南、湖南,或通过连续迁飞进入四川、江西与福建等地区。春季缅甸草地贪夜蛾随东亚季风可能的迁飞路径 以上便是草地贪夜蛾虫情的发展态势,预计未来的虫情将会进一步恶化,如何有效遏制虫情的蔓延呢?我们需要先了解虫情扩散背后的原因。“妖蛾子”为何能够大肆作妖?●天敌少,气候适宜生长 草地贪夜蛾原产于美洲,进入亚洲、非洲的现象属于生物入侵,在传入地缺乏天敌,而气候又适合其生长,因而得以大肆繁衍,四处为害。●迁飞能力强 草地贪夜蛾属于迁飞性害虫,在原产地美洲即可进行长距离的迁飞,在美国,成虫可借低空气流在30小时内从密西西比州扩散到加拿大,可谓是迁飞能力惊人,强大的迁飞能力让草地贪夜蛾可以“打一枪换一地”,进行大规模的游击战转移。●意识不够,防治不到位 草地贪夜蛾就虫情测报防治而言,其实技术难度不算大,但为何能够在非洲等地区为非作歹,导致部分地区颗粒无收呢?主要是因为草地贪夜蛾的主要传播是靠蔬菜里的幼虫与成虫迁飞进行传播的,而非洲部分国家的监管意识与防治技术不够成熟,导致前期未对虫源检测,中期未能有效进行防治灭杀,因此才让虫患成灾,并且持续蔓延。草地贪夜蛾成虫(左为雌蛾,中、右为雄蛾)如何歼灭“妖蛾子”大军? 既然事情已经发生了,那我们如何有效防治草地贪夜蛾呢? 其实,农业农村部已经早就开始关注国际上的草地贪夜蛾的发展态势,提前进行了谋划部署。2018年12月即下发通知,及时组织各地技术人员加密监测预警,在云南、广西等边境省(区)设立重点监测点,架设测报灯和黑光灯,开展灯诱成虫系统监测,力争做到早发现、早报告、早预警。 而在后续工作当中,农业农村部也组织专家研究制定了《草地贪夜蛾测报调查方法》,制定发布了《2019年草地贪夜蛾防控技术方案》,确定采取生态调控、理化诱控、应急防控、区域联防、统防统治等防控策略。当地农业农村部门也在利用救灾资金购置防治物资器械,指导农民选用药剂开展应急防治,全力组织做好防控工作。 总而言之,目前国内已经有了相对成熟的病虫害监测预警与防治措施,小托觉得,草地贪夜蛾的发展趋势还将进一步蔓延,但随着测报工作与灭杀工作的落实,虫情发展态势将会被遏制下来。尽管形式乐观,但过程不容松懈,需要农民与植保部门共同建立防治防线,打赢这场粮食保卫战。 最后也和大家打个广告,我们托普云农一直致力于农业数据的采集以及产业化应用的探索,在植保领域也凝练了一套成熟的解决方案,能够有效实现病虫害监测预警以及绿色防控。它们在本次草地贪夜蛾的攻坚战当中亦能够发挥重要的作用。 首先是我们的田间哨兵——病虫害监测预警系统图片上为新款虫情测报灯图片上为老款虫情测报灯 AI加持的它能够实现病虫害性诱捕捉与智能识别,自动测算病虫害种类及其数量,从而对监控区的虫情进行建模测算,结合系统内的气象监测系统,预估虫情发展趋势,向植保部门发送预警信息,用大数据辅助植保防治工作的开展。它是一年四季坚守在田间地头的植保哨兵。 其次是我们的害虫杀手——风吸式杀虫灯图片为杀虫灯在茶园的实景应用,灯杆可伸缩,适配玉米地使用环境 它是物理防治的头号武器,性诱害虫,风吸杀虫,无害防控,全天续航,宛若24小时伫立于田间的高科技模特型杀手,在害虫眼里它可能是姿态妖娆的异性虫伴,要是害虫进入灯体,等待它们的只有粉身碎骨。总而言之,我们这款杀虫灯功能强大,外型时尚,不仅能在田里迷杀害虫,还可以激发作物争相斗艳,茁壮成长,其实就是少了虫害的困扰。它是7*24小时不停歇的害虫致命杀手。 好啦,草地贪夜的介绍就到此为止了,最后附上农业农村部发布的《2019年草地贪夜蛾防控技术方案(试行)》,希望大家同心协力,共同击退草地贪夜蛾这个难缠的外敌,捍卫粮食国土,绝不姑息。2019年草地贪夜蛾防控技术方案(试行)一、防控目标防治处置率达到90%以上,绿色防控技术应用比例达到30%以上,综合防治效果达到85%以上,危害损失率控制在8%以内。二、防控策略云南侵入区坚持生态防控指导思想,加强防控。南方玉米区做好害虫种群动态监测和控制,减少向长江中下游及以北地区迁入的虫源基数,黄淮海和东北主产区加强监测,做好应急防控准备。利用理化诱杀控制成虫种群数量,抓住低龄幼虫防治关键期,加强普查,注重区域联防和统防统治。三、防控措施(一)监测预警在云南、广西等西南省(区)设立重点监测点,结合高空测报灯和黑光灯监测成虫迁飞数量和动态。在华南、江南、长江中下游、黄淮海、东北地区开展灯诱、性诱监测成虫发生情况。玉米生长季开展大田普查,确保早发现、早控制。(二)分区防控重点云南、广西等周年繁殖区加强成虫诱杀、卵和幼虫防控,黄淮海夏玉米区及东北春玉米区加强迁飞成虫监测和防治。(三)主要技术措施1.生态调控及天敌保护利用:有条件的地区可与非禾本科作物间作套种,保护农田自然环境中的寄生性和捕食性天敌,发挥生物多样性的自然控制优势,形成生态阻截带。2.成虫诱杀技术:成虫发生期,集中连片使用杀虫灯诱杀,可搭配性诱剂和食诱剂提升防治效果。3.幼虫防治技术:抓住低龄幼虫的防控最佳时期,施药时间最好选择在清晨或者傍晚,注意喷洒在玉米心叶、雄穗和雌穗等部位。(1)生物防治:在卵孵化初期选择喷施白僵菌、绿僵菌、苏云金杆菌制剂以及多杀菌素、苦参碱、印楝素等生物农药。(2)应急防治:玉米田虫口密度达到10头/百株时(参考玉米田二代黏虫防控的虫口密度指标),可选用防控夜蛾科害虫的高效低毒的杀虫剂喷雾防治。(联合国粮农组织防控草地贪夜蛾指导手册及国外登记防控该害虫的化学农药有氯虫苯甲酰胺、氟氯氰菊酯、溴氰虫酰胺等)。
  • 科研玉米被偷损失千万:育种人遭遇的困难可以少点吗?
    最近,有则消息刷爆了各大媒体,作为默默无闻的行业人员,看到“科研玉米”上了头条,小编其实感到挺激动的!但在看过报道之后,小编的心情变得十分沉重。 “你们觉得它就是一个不值钱的玉米棒子,但是在我们这些搞科研的老师手里面吧,真的是自己的心血,可能跟自己儿子、女儿一样,养了十年多!” 老师这番话,说出了多少从业者的心声呢?我们默默无闻的搞科研,有时甚至还不被理解,但我们依旧在坚持,只是为了能够培育出性状更加优良的种子! 科研玉米,是湖南农业大学的老师与历届同学们用汗水浇灌出来的心血,或许,这些科研玉米没有达到网上传的“上千万”的价值,但它却凝聚了大家十年来的努力。就算你有“上千万”,也买不到这“十年心血”! 科研玉米“值钱”的不是单株的产能,而是作为研究对象,它所提供的研究价值!如果能够研制出优良性状的种子而进行大范围推广,往小了说叫做“改变产业”,往大了说叫做“造福人类”!也许,这就是一代代育种人默默坚守在田间的原因所在吧! 其实,对于育种人来说,在研究过程中会碰到许多困难,这些困难不仅有外界的原因,还有实验内部的客观因素,比如作物的种植环境控制、作物生长各阶段性状的测量、试验田里的病虫害等……这些因素会导致实验过程的偏差增大,实验结果的准确性降低,甚至有可能阻止试验推进,结束试验周期,毕竟育种试验是以“年”为单位的,一旦出了差错,过去的时间与付出的精力就白白浪费了! 好在现在有许多仪器与系统可以用来解决这类问题!托普云农一直致力于打造智慧农业,为辅助科研人员科学考种,研发出了“育种信息化”以及配套解决方案。 首先,通过智能大棚系统、“水肥一体化”等系统保证作物生长处于最佳环境。其次,通过“四情监测”等系统,排除病虫害对于作物生长的影响,最后,再通过“育种信息化”系统,对作物生长状态进行动态测量、记录、分析,确保每一个环节不出纰漏、试验数据精准无误,从而保证育种科研人员的科学考种。 育种信息化的基础是各项数据的测量与记录,这些数据能够直观地对比出植株在长势过程中的性状信息与产生种子的品质信息。而借助托普云农研发的高科技仪器,育种人员就能够快速、方便、准确地获取相应数据,有效减少人工工作量以及人工操作产生的误差值。玉米株高测量仪玉米考种分析系统 育种信息化的特色是对采集好的数据的深度处理,借助于仪器与平台之间的联动,能将采集好的多阶段数据进行清晰直观的展示,在帮助育种人员充分了解作物的长势情况以及种子状况的同时,更好地分析作物及种子品质,估测作物产量,从而筛选优质品种进行更大范围的推广试验。 有了托普云农的设备系统帮助,育种人员的测量工作将会变得更加快捷精准。小编希望,在未来的育种试验当中,能排除“人祸”,排除客观环境因素的影响,育种人员能不用为“小事”操心,把更多的精力都放在攻克技术难题上,让每一个“十年”都有意义、有成果!
  • 岛津推出猪肉中玉米赤霉素的LCMSMS检测方案
    玉米赤霉醇(zeranol)系非固醇、非激素类化合物,常作为牛羊促生长剂,能提高体内生长激素和胰岛素水平,促进羊机体蛋白质的合成,提高胴体瘦肉率和饲料利用率。但是玉米赤霉醇具有弱雌激素作用,在动物尿液中的残留会引起人体性机能紊乱及影响第二性征的正常发育,在外部条件诱导下,还可能致癌。而且玉米赤霉醇排除动物体外后,还可经饮水和食物造成二次污染及环境污染。1998年欧盟禁止将玉米赤霉醇等激素类药物应用于禽畜养殖。我国农业部第235号公告明确规定玉米赤霉醇禁止用于所有食品动物,所有可食用动物不得检出。 本方法根据《GBT 21982-2008 动物源食品中&alpha -玉米赤霉醇、&beta -玉米赤霉醇、&alpha -玉米赤霉烯醇、&beta -玉米赤霉烯醇、玉米赤霉酮和赤霉烯酮残留量检测方法 液相色谱-质谱质谱法》,使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用,建立了快速准确测定猪肉中玉米赤霉醇类物质的方法。 本方法分析速度快,重复性和精密度良好;6种玉米赤霉醇类物质均在两个数量级以上浓度范围内线性良好,所有样品的标准曲线的相关系数均在0.999以上;对5 &mu g/L、10 &mu g/L和100 &mu g/L混合标准溶液连续6次进样,3个浓度标准品的峰面积和保留时间的相对标准偏差分别在1.86 ~ 4.61%和0.04 ~ 0.29%之间,仪器精密度良好。该仪器对猪肉空白样品中添加1 &mu g/kg混合标样有较好的响应,方法定量限满足《GB/T 21982-2008 动物源食品中&alpha -玉米赤霉醇、&beta -玉米赤霉醇、&alpha -玉米赤霉烯醇、&beta -玉米赤霉烯醇、玉米赤霉酮和赤霉烯酮残留量检测方法 液相色谱-质谱质谱法》中的要求。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法测定猪肉中的玉米赤霉素&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 湖南玉米奶三聚氰胺超标近1倍
    11月24日,湖南省食品安全委员会向社会通报了对湘潭市远山乳业有限公司三聚氰胺超标乳品的清查情况。通报中透露,根据远山乳业提供的数据,问题玉米奶总共861件,已经销售824件,目前已召回345.4件,而且11月1日湖南省疾病预防控制中心的监测表明,这一批次产品三聚氰胺含量为4.8毫克/千克,超出国家规定的2.5毫克/千克限量值。  此前有媒体曝出湖北襄樊出现50件三聚氰胺严重超标的乳酸玉米奶,并产于“湖北远山乳业有限公司”,后经湖北襄樊有关部门调查,这批问题玉米奶产自湖南湘潭市远山乳业有限公司。远山乳业提供的数据称,这批问题玉米奶销往江西、湖北以及湖南省的湘潭、长沙、郴州、邵阳,目前江西召回287.8件,湘潭召回57.6件。  检查发现,该企业自今年5月至今,使用乳粉和鲜奶共生产乳酸菌玉米奶7.2吨,其中,以青海东垣乳制品厂生产的问题乳粉作为原材料,生产乳酸菌玉米奶0.1吨。据企业反映,该批产品早已销售完毕。目前,湖南省质监局正在组织对该批产品的流向进行追查。
  • 利用废弃玉米秸秆制备高效除磷器件
    记者从中国科学院青岛生物能源与过程研究所获悉,该研究所王光辉研究员带领的多孔催化材料研究组以废弃玉米秸秆为载体,开发了一种用于连续流水体除磷的新型金属有机框架(MOFs)材料器件。相关研究发表在《化学工程杂志》上。  MOFs材料具有比表面积高、密度低、易于调控修饰等优点,在污染物吸附领域具有巨大的应用潜质。然而,合成的MOFs材料通常是纳米/微米级粉末,在实际应用中需要通过添加胶黏剂或压片等手段成型,这一过程会导致孔道减少、传质受阻,大幅降低MOFs材料的效率。如何在保持MOFs材料固有特性的前提下,将其塑造成面向应用的整体材料仍具挑战。  为了解决以上问题,该研究团队利用溶剂热法,在玉米秸秆的细胞壁表面均匀生长了一层UiO-66 MOFs材料膜,制备了UiO-66/MS材料,并将其组装成了过滤器件。玉米秸秆独特的生物结构提供了发达的传质通道,UiO-66的单层膜形态促进了吸附位点的暴露,使UiO-66的本征磷酸盐吸附性能得以充分发挥。在连续流实验中,UiO-66/MS器件可将初始浓度为3ppm(百万分之三)的磷污染水体修复至中国一级污水排放标准的要求范围内。同时,该研究也为废弃玉米秸秆的增值利用提供了一种新途径。
  • 投资1.26亿 小麦和玉米深加工国家工程实验室落户吉林
    近日,经国家发改委批准,“小麦和玉米深加工国家工程实验室”正式落户吉林农业大学,标志着该校国家级科研平台实现了“零”的突破。  “小麦和玉米深加工国家工程实验室”由吉林农业大学牵头,与河南工业大学、华南理工大学共同建设。该国家工程实验室建设期为2年,总投资1.26亿元,其中吉林农业大学投入2414万元。  在该工程实验室的建设中,吉林农业大学主要承担玉米深加工工程实验室的建设任务。主要研究方向为:玉米高效分离分级技术研究,玉米食品品质提升关键技术研究,玉米加工减损增效关键技术研究,高效节能玉米深加工新技术研究,清洁安全玉米深加工新技术研究,玉米主食及玉米功能性食品生产技术与产业化关键技术研究,玉米加工副产品综合利用技术研究以及工程化推广应用。  玉米深加工在我国农产品加工产业发展中占有举足轻重的地位。吉林是农业大省和粮食大省,以玉米为主的农产品深加工产业已成为吉林重要的支柱产业。该工程实验室建成后,可以在国家玉米深加工产业化关键技术创新、新产品开发研究和科技成果的工程化应用等领域发挥重要作用。
  • 【瑞士步琦】近红外光谱分析技术在玉米品质检测中的应用
    近红外光谱分析技术在玉米品质检测中的应用近红外应用”1介绍玉米是我国重要的粮食作物。根据国家统计局数据显示,我国 2021 年玉米播种面 4332 万 hm2,玉米产量达 2.7 亿 t。玉米中的水分、蛋白质、脂肪、糖类等主要化学成分含量会直接影响到玉米的经济效益。化学成分含量的测定已成为原料品质评价中的重要环节。玉米种子作为生产中最基本的资料,其质量的好坏直接影响玉米的产量及品质。玉米品质指标(水分、蛋白质、淀粉等)的检测常用理化方法,安全指标(毒素等)的检测使用液相等物理或化学方法,可用冷浸法等对种质品质进行分析,但这些方法均会对样本本身造成破坏,存在处理时间较长以及需要专业人员操作、仪器成本高等缺点。因此,探究一种可以对玉米进行无损、快速检测技术显得尤为重要。近红外光谱分析技术具有样品不需复杂耗时的前处理、无损耗、多成分同时分析、无污染的检测优势,近年来得到了广泛关注。近红外光谱分析技术是利用物质对光的吸收、散射、反射与透射等特性对待测物进行分析的检测技术,通过样品的吸收光谱及理化分析结果可对样品进行定性或定量分析。近红外光谱分析技术的检测步骤为使用化学计量法对近红外光谱数据进行预处理及建立模型,将样本的预测集通过模型进行检测,验证模型是否精准,并对模型进行评价及优化。近红外光谱技术常用处理方法,由于近红外光谱中强大的背景信息造成的噪声干扰和存在冗余变量,导致从样品的近红外光谱中提取与检测目标相关的信息较困难,因此,需对光谱数据进行预处理。常用的光谱预处理方法有去噪自编码器(DAE)、正交信号校正法(OSC)、标准正态变换(SNV)、多元散射校正(MSC)等。2近红外光谱技术模型评价指标定量模型评价指标 评价近红外光谱定量模型预测准确性的实质是模型的预测结果与样品结果的接近程度,评价预测模型一般采用校正决定系数(R2c)、验证决定系数(R2v)、校正相关系数(Rc)、验证相关系数(Rv)、校正均方根误差(RMSEC)、验证均方 根 误 差(RMSEV) 和 相 对 分 析 误 差(RPD)等参数,决定系数与相关系数是预测值与使用化学方法检测出的真值样本集相关性的标准,通常 R2c、R2v、Rc、Rv 越大时,认为所建模型效果越好;RMSEC 和 RMSEV 是校正集与验证集的预测值和使用化学方法检测出的真值之间差异大小的量度,RMSEC 和 RMSEV 越小,认为所建模型性能越优;RPD 是衡量模型可靠性的指标,当 RPD3,认为所建立的预测模型可靠性较高,3RPD2.5,认为模型可用于分析;RPD2.5 时,则表明模型分析难以进行。定性模型评价指标 近红外光谱技术在定性分析中多用于样品分类,常用判定指标有正确率、敏感性、特异性等。相关检测设备从采样现场到实验室快速无损检测样品的指标,主要包括水分、脂肪、蛋白、灰分等。可以帮助企业优化生产过程,控制最终产品质量,提高利润。近红外光谱仪检测过程无需化学试剂,可大大降低实验室湿化学成本。检测快速,可大大减少操作人员的劳动力,降低使用门槛,节约管理费用。▲ 步琦近红外光谱仪 ProxiMate防水型不锈钢外壳,入口防护等级为 IP69,可进行高压管冲洗,即使是最苛刻的工作环境也能满足多种即时可用的预校准,适用性广泛直观的现触摸屏界面,简单、明了样品使用磁耦合驱动装置旋转器,分析完成后该装置可拆除,轻松清洁允许用户利用近红外光,可见光或将两种信号结合来提高测量性能和全面评估样品,从而使其测量性能达到最大化3相关模型参数ProductParameterRangeSpectraSEPMaizeStarch16-76%6553.5MaizeFat3.14 -5.352980.2MaizeProtein6-21%6821.3MaizeMoisture7-13%6820.5MaizeAsh1-8%3070.04步琦公司为您提供完整的玉米检测解决方案,同时提供定制化服务和使用,欢迎用户前往我司实地参观考察。
  • 助力粮食安全,玉米孢囊线虫有了检测“神器”
    日前,记者从河南农业大学了解到,该校蒋士君/崔江宽研究团队联合河南农业大学学术副校长、省部共建小麦玉米作物学国家重点实验室主任汤继华教授系统开展了河南玉米作物线虫危害损失和监测预警的相关研究,取得了重要进展。玉米是我国第一大粮食作物,常年播种面积在6.5亿亩左右,在粮、果、饲料和工业等方面的多元用途,使其在农业生产中占有重要地位。河南省地处黄淮海平原,是全国四大玉米主产区之一,河南玉米产量的变化对国家粮食安全有着举足轻重的作用。玉米孢囊线虫是玉米的重要新发病害,主要危害玉米根部,能够导致玉米根系发育不良,扭曲畸形,阻碍植株的正常生长和发育,造成玉米产量和品质下降。玉米孢囊线虫并非只侵害玉米这一种作物,它主要寄生在禾本科作物和杂草上,同时还可侵染茄科蔬菜和扁桃树、无花果等。自1971年印度拉贾斯坦邦首次发现玉米孢囊线虫以来,目前在巴基斯坦、埃及、泰国、尼泊尔、葡萄牙、美国、希腊、阿富汗以及我国广西等地均有报道。在我国,玉米孢囊线虫最早于2015—2016年在广西壮族自治区来宾市玉米田被发现。2017年,河南农大科研团队在河南省禹州市玉米田发现玉米孢囊线虫,调研发现,这些玉米孢囊线虫分布比较密集,繁殖力惊人。随后,研究团队在河南省郑州市荥阳、濮阳市清丰县韩村镇、许昌市长葛市董村镇和禹州市范坡镇检测点再次发现玉米孢囊线虫。“科研数据表明,当每毫升砂壤土里有5~6条玉米孢囊线虫J2幼虫时,便可造成玉米总产量下降21%~29%。”崔江宽说,而研究数据显示,河南省许昌市长葛市董村镇、禹州市范坡镇和濮阳市清丰县韩村镇地区的玉米孢囊线虫土壤中卵含量分别达到23.0、54.2和6.8粒/毫升,均已超出玉米孢囊线虫卵量的危害经济阈值。“学界之前普遍认为,玉米孢囊线虫主要分布在热带地区,而我们经过调研发现,我国黄淮海平原等温带地区也极可能是玉米孢囊线虫的重灾区。同时,根据室内接种发现,玉米孢囊线虫可以侵染小麦、水稻、大麦、谷子和高粱等多种禾本科作物,并完成其生活史。”崔江宽告诉记者。为探究河南省主要禾谷类作物的孢囊线虫发生分布,明确不同作物孢囊线虫的危害情况,团队于2017—2021年对河南省18个市50个县(区)的小麦、玉米和水稻作物的孢囊线虫种类和发生分布进行了系统取样调查。该研究共采集全省土壤样品308份,其中224份样品检测到孢囊,孢囊检出率为72.7%,覆盖了调查地区的92.0%。为监测玉米孢囊线虫在我国发生扩散,防止对玉米造成严重的减产损失,开发一套玉米孢囊线虫快速分子检测技术体系迫在眉睫。“在我国,玉米孢囊线虫是一个近几年才被发现的‘新物种’,我们是凭借经验和技术识别到它的。但其他科研人员不了解,也不好识别这种病原物的危害,我们想通过研发出玉米孢囊线虫检测‘试剂盒’,让科研机构、农业技术员和检测人员等能够简单、快速地识别到它,有针对性地进行防治。”崔江宽说。检测技术的研发需要大量样本作为支撑。5年来,河南农业大学崔江宽博士跑遍了河南省及其周边省市,采集了2500余份土壤样本,通过近缘种群大批量筛选,终于获得了玉米孢囊线虫的特异RAPD片段,进而设计出SCAR-PCR检测引物,建立了一套快速、准确、稳定的玉米孢囊线虫检测技术体系,为玉米孢囊线虫的检测和防治提供了有力技术支持。据介绍,该检测体系既避免了孢囊线虫ITS区异质现象而导致RFLP酶切图谱的差异,也弥补了RAPD技术的重复性差、结果不稳定的缺点,能够快速将玉米孢囊线虫从禾谷孢囊线虫、菲利普孢囊线虫、大豆孢囊线虫、旱稻孢囊线虫和甜菜孢囊线虫种群中区分开,极大地提高了检测效率,可用来对玉米孢囊线虫的传播、扩散进行监测预警,相关研究成果已申请国家发明专利,并获得授权。“玉米线虫对玉米的危害非常严重,常与多种其他病原微生物复合侵染,引起多种玉米土传病害的发生。然而玉米线虫尤其是玉米孢囊线虫的研究人员非常稀缺,这对玉米线虫的监测和防治非常不利。目前我们这项研究成果的意义主要有两点:第一,系统普查了河南及其周边省市地区玉米线虫的发生种类和危害情况,首次明确了玉米孢囊线虫的潜在威胁;第二,我们研发的微量检测技术可以在土壤中线虫密度非常低的情况下完成,对玉米孢囊线虫的早发现、早预警具有非常重要的实用价值。”汤继华告诉记者,“未来,我们将集中重要科研力量,完成我国玉米孢囊线虫基因组学、转录组学、蛋白组学和代谢组学的相关研究,系统解析玉米孢囊线虫的侵染发病机制。同时,我们将深入开展玉米抗线虫和抗病育种的相关工作,早谋划、早着手,为我国玉米抗病、育种等种业‘卡脖子’问题贡献自己的一份力量。”
  • 法国权威机构否定转基因玉米致癌论
    法国生物技术最高委员会和国家卫生安全署10月22日先后否定了关于美国孟山都公司NK603转基因玉米致癌的研究结论,同时建议对转基因作物的长期影响进行研究。  这两家机构当天均表示,此前法国卡昂大学研究者质疑转基因玉米安全的研究存在诸多不足,其报告中陈述的实验结果和分析不足以支持喂食NK603转基因玉米会毒害实验对象的结论,无法推翻“这种玉米无害”的早先评估结果。与此同时,这两家机构建议对转基因作物进行长期研究,以加深人们对转基因作物的认识。  法国农业部和生态、可持续发展与能源部当天发表的联合公报说,根据上述两家机构的调查结果,卡昂大学研究者的“有毒”论述不足以推翻此前的“无害”评估结果,但政府会考虑对转基因作物和杀虫剂长期影响加强研究的建议,并提议对欧洲转基因作物和杀虫剂的评估、进口批准和控制政策进行审查。公报还重申了法国政府继续禁止在法国种植转基因玉米的立场。  英国期刊《食品和化学毒物学》今年9月19日刊登了法国卡昂大学分子生物学家塞拉利尼等人的一份研究报告。该报告指出,其长达两年的研究显示,喂食美国孟山都公司NK603转基因玉米的实验鼠寿命比正常实验鼠短,且前者出现肿瘤的几率更高。该报告对已在欧盟获准上市的这种转基因玉米的安全性提出疑问。  在获悉上述发现后,法国国家卫生安全署、生物技术最高委员会和欧洲食品安全局均对法方的研究展开调查。根据欧洲食品安全局10月4日公布的初步调查结果,这项研究的目标不明确,实验设计、指导和数据分析方面的诸多重要细节被省略,仅凭报告中给出的信息并不能得出相关结论,该报告也不能作为评估转基因玉米健康风险的有效依据。  目前共有两种转基因作物获准在欧盟种植,分别是美国孟山都公司的MON810转基因玉米和德国巴斯夫公司的Amflora转基因土豆。此外,包括NK603转基因玉米在内的44种转基因作物获准进口到欧盟销售,品种涵盖棉花、大豆、油菜、土豆和甜菜等。
  • 中国批准进口巴西转基因玉米
    北京时间11月6日晚间消息,据巴西当地媒体报道,中国已批准从巴西进口转基因玉米,双方官员将在未来几小时内签署一项正式协议。  巴西发行量最大报纸《圣保罗之页》(Folha de Sao Paulo)的记者从中国报道了这一消息。但巴西农业部代表称,他们不能证实这一报道。  中国目前主要从美国进口玉米,但今年8月首次批准从阿根廷进口转基因玉米。巴西也一直在努力应对中国方面对植物检疫问题的担忧,试图证明当地作物没有病虫或真菌风险。  虽然中国是仅次于美国的世界第二大玉米生产商,但预计仍将扩大粮食进口,以满足迅速增长的中产阶层的需求。  根据美国农业部的数据,2012-13种植季中国进口了300万吨玉米,预计2013-14种植季进口量将增至700万吨。  与此同时,过去十年巴西的玉米产量增长了60%,2012-13种植季的产量达到了8000万吨,远远超过了国内所需。  巴西农业部预计中国最终每年将从巴西进口至多1000万吨玉米,尽管2013-14种植季的进口量可能较小。
  • 超级简单的玉米DNA提取方法,净信为您私人订制...
    玉米是四大粮食作物之一,处于国际食品种植面积和产量的前列,它是一种很多人都百吃不厌的普及化美食,其不仅含有碳水化合物、蛋白质、脂肪,还含有异麦芽低聚糖、维生素、多糖等等大量营养物质,而且玉米既是饲料、食品工业的重要原料;同时也是畜牧养殖业的基础,随着世界范围内生物能源产业的兴起与壮大,玉米已成为重要的生物能源作物。目前,我国玉米主推品种的产量、品质尚不能完全满足各行业的需求,对于玉米育种的效率有待进一步提高。对玉米的研究是国家食品、农业可持续发展的重要任务,然而各大科研院所、管理部门、种子公司等单位在玉米种子的研究过程中,最主要的一项既是——玉米DNA的样本提取工作。   由于植物基因纯度的随机性,所获得的基因组往往在分子特征和性状上会呈现多样性。因此:DNA提取的获得需要经过谨慎细致得分离,以及复杂的筛选过程和萃取流程,如果能够将玉米DNA定向插入特定位置并对针对其将其分离将极大提升提取的效率。上海净信在中国农业大学与研究人员开发了一套高效的利用研磨仪分离性、破碎性与相关试剂的整合技术,并在玉米种子上成功实现了。   传统的玉米研磨压是用人力或者畜力推磨将玉米碾成粉末,随着工业社会的到来,机械研磨代替了传统的碾压方式,但是研磨粉碎效果并不好,粉碎不均匀,如何选择一种研磨效果好,碾压均匀,科技水平高的研磨机既成为了一个问题。   Tissuelyser-24L实验室多样品组织砂磨机采用密闭式结构,设计为能使用小于5微米的研磨介质,用于超细研磨分散在液体中的固体颗粒物料。适合于多次研磨或循环研磨与分散操作。样品可以在短时间内就能够达到超细成品和分散的效果。该系列产品的价值体现是粒径分布均匀,温控好,能耗低。   净信多样品组织研磨机Tissuelyser-24L   研磨实例:  1.将玉米种子放在液氮里浸泡几分钟。  2.将冷冻的玉米种子装进研磨管,再放入一颗钢珠。  3.将装好样品的研磨管放在适配器中。  4.盖上盖板,固定好旋钮。  5.设定好所需相关参数,启动仪器至研磨程序结束。  样品研磨前后对比:
  • 德国元素:成功助力科学攻坚,提升玉米蛋白含量
    如今,玉米已成为世界上最高产的农作物之一,全球年产12亿吨,中国年产2.7亿吨。其中,70%的玉米都是用作饲料,玉米产量高,有效能量多,是最常用且用量最大的一种饲料,故有“饲料之王”的美称。随着人们生活质量的提高,对肉蛋奶的需求不断增加,玉米的消费量也日益增加,致使近年来玉米进口量也不断提升。由于普通玉米籽粒蛋白含量较低,大部分杂交种籽粒蛋白含量不到8%,因此饲料中需要补充大豆蛋白,然而大豆严重依赖进口,这些成为了我国畜禽养殖业的“卡脖子”问题。如果普通玉米蛋白含量每提高一个百分点,相当于中国可以少进口近800万吨大豆!因此,提高玉米蛋白含量不仅是保障国家粮食安全的重大战略需求,也是保障我国畜禽养殖业和饲料加工业健康发展的重要途径之一。中国科学院分子植物科学卓越创新中心研究团队于2012年开始进行玉米高蛋白供体材料的寻找、蛋白含量测定、遗传分析以及群体构建。此外,研究团队在三亚南繁基地进行了大规模田间试验,将野生玉米高蛋白基因Thp9-T杂交导入我国推广面积最大的玉米生产栽培品种郑单958中,可以显著提高杂交种籽粒蛋白含量,表明该基因在培育高蛋白玉米中具有重要的应用潜能。同时,在减少氮肥施用条件下,可以有效保持玉米的生物量以及植株和籽粒中氮含量水平,这对于在低氮条件下促进玉米高产、稳产具有重要意义。德国元素elementar rapid N exceed 杜马斯定氮仪为巫永睿研究组的玉米蛋白研究提供了精准的蛋白质含量测定。“德国元素elementar的杜马斯定氮仪准确的测定了我们研究材料的蛋白表型,对于我们克隆野生玉米高蛋白基因至关重要。”——中国科学院分子植物科学卓越创新中心巫永睿课题组德国元素elementar在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出世界第一台杜马斯定氮仪后,公司响应食品、农产品、饲料等样品的分析需要更大样品量的需求,于1989年,进一步推出了全球首款克级样品量的杜马斯定氮仪。逐步推动了杜马斯定氮法在法规中的应用。如今,国际上(如美国、加拿大、德国等)已经将杜马斯定氮法应用在食品、饮料、宠物食品、饲料和肥料等领域。1964年,德国元素elementar第一台杜马斯氮/蛋白质分析仪德国元素elementar杜马斯定氮仪rapid N exceed 杜马斯定氮仪经济型氮/蛋白质测定解决方案rapid N exceed 快速氮/蛋白质分析仪,对重量高达1克的样品,仍能准确测定氮或蛋白质的含量。新型EAS REGAINER催化剂可确保在不消耗还原金属的情况下结合燃烧后过量的氧气。EAS REDUCTOR管(还原管)的寿命可处理高达2000个样品。rapid MAX N exceed 杜马斯定氮仪高通量、高灵活性氮/蛋白质测定解决方案rapid MAX N exceed 利用不锈钢坩埚进样,可容纳高达重量为5g或体积为5ml的样品,同时具备自动除灰功能。且可以选择氦气或氩气作为载气。直立的坩埚设计可确保任何液体样品的最佳燃烧,如:牛奶、啤酒、软饮、果汁、酱油等,与独特的二级燃烧技术相结合,可为您提供可靠的、无基质效应的测试结果。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • 欧洲食品安全局否定转基因玉米致癌论
    欧洲食品安全局否定转基因玉米致癌论据中国之声《新闻纵横》报道,大约3个月前,英国期刊《食品和化学毒物学》刊登的法国卡昂大学分子生物学家塞拉利尼等人的一份研究报告指出,喂食美国孟山都公司NK603转基因玉米的实验鼠寿命比正常实验鼠短,并且前者出现肿瘤的几率更高,整个报告有图有真相,令人触目惊心,印象深刻。  这份报告一出,立刻引发轩然大波。无论是转基因的支持者还是反对者都纷纷站出发表观点。如今,三个月过去了,欧洲食品安全局就此作出最终评估,彻底否定了这种转基因玉米有毒甚至致癌的研究结论。然而,转基因玉米到底是否有害的争论却并没有停止。  今年9月份,一张身上长着又大又鼓肿块的小白鼠的照片引起媒体注意,这些小白鼠正是塞拉利尼的实验品。法国24电台这样报道:  “小白鼠身上的肿块大到它体重的四分之一,科学家说这惨不忍睹的照片正是证明了转基因玉米对动物有毒。这项在法国北部一所大学进行的试验发现80%食用转基因玉米的小白鼠死于肿瘤或者器官衰竭,而吃自然生产出来的食物的小白鼠只有30%的发病率。”  法国科学家表示,正是肝脏和肾脏中的高毒素导致了小白鼠的死亡。  科学家:我们觉得这很严重,因为直到试验进行4个月尤其是第二年期间小白鼠才发病,而目前工业试验只进行3个月。  然而,欧洲食品安全局在11月28日的公告中写道,卡昂大学研究人员试验得出的研究结论不仅缺乏数据支持,而且相关实验的设计和方法都存在严重漏洞,这些问题说明,可接受的科研标准在实验中没有得到遵守,因此,没有理由重新审查先前就NK603玉米安全性所做的评估。不过,中央民族大学生命与环境科学学院首席科学家薛达元提出疑问,用不到3个月的时间推翻花费两年完成的试验,是否言之过早?  薛达元:一个报告,一个实验,应该要有很多的数据来支撑,人家那个实验也做了两年了,所以你要否定一个结果,起码也要做到两年时间,要重复做实验,以前怎么做现在还是怎么做,看有没有这样的问题,但是这么快就否定了,我觉得也是一个问题。  而另一方面,受到的质疑美国孟山都公司对这项试验也做出了回应。  凤凰卫视刘芳:他表示说老鼠本来正常的饮食结构当中是不包括玉米的,这次长期给它吃玉米恐怕有待商榷,另外孟山都公司也提出来说这一份科学研究必须要看整个所有取样的过程,以及他做实验的过程,孟山都公司表示说他们会关注这一个事件,实验还要多做几次才能够真正得到科学的结果。  其实,这已经不是转基因作物第一次受到怀疑。比如,对于抗虫转基因作物,有观点认为转基因抗病抗虫的功能来自于毒蛋白基因,虫吃了会死,人吃了怎么办?这听起来似乎很可怕,不过,中国农业科学院植物保护研究所副研究员谢家建告诉记者,抗虫基因不是说所有的虫子都会被干掉,这其中有误读。  谢家建:他说的虫子都能杀死,这句话也不是完全正确的,因为它只能杀某种特定类的昆虫,其他的一些昆虫不是这个科这个目的,它基本没有什么作用,采用的这个蛋白基因是非常专业性的,这种蛋白是来源于一种细菌,这个细菌是作为我们的一个生活杀虫剂,已经使用了70多年,这么长时间了也没有发现对人有什么坏处,对人有什么毒性或者过敏性都没有。  长期以来,一提到转基因,不少欧洲人都会报以警惕的目光,这使得转基因食品一直难以端上欧洲人的餐桌。这项实验公布于众之后,法国农业部门立即表示要加强监管。  法国农业部门:不管怎样,我们要推动提高欧盟在转基因方面的标准,我们一定要考虑到转基因作物在这方面的风险。  对待转基因食品,欧洲人的态度俨然分成了两派,双方争执不下,互不相让。对于转基因作物的利弊现在科学家似乎也没有一个统一的答案。薛达元更用“说不清”来总结这些争议。  薛达元:说不清楚,因为一些机构做的一些实验,说转基因对健康是有危害的,以前也有好多次,但是这个报告出来之后,后面总是被否定的,这里面一种情况就是它真的可能对健康不会有那么大的问题。第二个也可能生物技术公司比较强大,给他施加压力,有可能是这样,所以究竟是哪一种我也没有办法区别。
  • 接触霉变玉米后女子肺部长满黄曲霉菌,毒性极强的黄曲霉毒素该如何鉴别?
    12月8日早间,“女子接触霉变玉米后肺部长满真菌”冲上热搜第一。据人民网,一23岁女子前段时间回老家帮忙收玉米,事后连续1个多月咳喘不止。经医生检查,她的肺部长满了黄曲霉菌,引发了真菌感染。该女子回忆,当时她在无防护措施情况下收玉米,有些玉米可能淋雨霉坏。[1]什么是黄曲霉毒素?黄曲霉毒素是黄曲霉、寄生曲霉等产生的代谢产物。当粮食未能及时晒干及储藏不当时,往往容易被黄曲霉或寄生曲霉污染而产生此类毒素。在各类食品中,花生、花生油、玉米污染最严重。黄曲霉毒素是一种剧毒的致肝癌物质,人摄入大剂量的黄曲霉毒素后可出现肝实质细胞坏死、胆管上皮细胞增生、肝脂肪浸润及肝出血等急性病变。事实上,世界范围内有多次黄曲霉毒素急性中毒事件,非洲的霉木薯饼中毒,印度的霉玉米中毒,肯尼亚黄曲霉玉米污染事件… … 所以把食物中的黄曲霉毒素控制在安全值以内,也是各国都在严格把关不敢松懈的事儿。[2]怎么鉴别食物中是否黄曲霉素超标?首先是快速识别,黄曲霉素是很苦的,食用花生、核桃等食物时如果感觉很苦,马上吐出来,并漱口。此外,睿科集团建立了Fotector Plus高通量全自动固相萃取仪测定玉米、大米和花生油中黄曲霉毒素B族和G族的分析方法,供广大食品检测客户参考。试样经过70%甲醇水溶液提取,提取液经离心、稀释后用含有黄曲霉素特异抗体的免疫亲和柱自动净化。用20mL水淋洗柱子将免疫亲和柱上的杂质除去,以甲醇洗脱免疫亲和柱。将洗脱液在50℃条件下氮吹干,用1mL初始流动相定容,经高效液相色谱仪上机分析。图-1.4种黄曲霉毒素的结构式下文参考GB5009.22-2016《食品中黄曲霉毒素B族和G族的测定》中第三法,采用免疫亲和柱净化,高效液相色谱检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在83-100%之间,RSD值小于5%。1.标准曲线配置使用睿科Auto Prep 200全自动液体样品处理工作站可实现标准品的全自动化配置,可将购买的混合标液(1000ug/L)通过工作站的直接稀释模式,配置成浓度为10ug/L的工作中间液,紧接着可通过程序设置,吸取该工作液,配置一条浓度分别为0.5ug/L,2.0ug/L,5.0ug/L,25ug/L和100ug/L的标准工作曲线。图-2. Auto Prep 200 液体工作站配标程序2.样品提取与前处理花生油样品前处理准确称取5g花生油样品于50mL离心管中,加入20mL甲醇-水溶液(7:3)(v/v),涡旋震荡提取20min,以7000r/min的转速离心5min,取4mL上清液于80mL玻璃上样管中,加入23mL 0.1%吐温-20的PBS缓冲液混匀,待用。(此处以花生油样品前处理为例,玉米粉、大米样品操作步骤同上)固相萃取净化条件全自动固相萃取仪Fotector Plus固相萃取柱黄曲霉毒素免疫亲和柱(Romer,60 mg/3 mL)淋洗超纯水洗脱甲醇表-1 固相萃取净化条件以2mL/min的速度精确上样27 mL待测液,10mL水润洗样品瓶,10mL水淋洗免疫亲和柱,气推30mL吹干免疫亲和柱,推速为80mL/min。最后用2mL甲醇以0.5mL/min的速度洗脱样品,收集洗脱液用睿科Auto EVA-60全自动平行浓缩仪于50°C、2psi条件下氮吹干,用初始流动相定容至1mL,过滤膜上机分析。详细步骤见图-3。图-3. Fotector Plus 黄曲霉毒素免疫亲和净化方法3.样品测试油样加标测试取空白花生油样5g,添加2ug/kg的黄曲霉毒素G2、B2、G1和B1的标准品,进行上述步骤的前处理净化,样品回收率如下表-2所示:表-2添加水平为2ug/kg花生油样的回收率大米样品加标测试大米中添加水平为2ug/kg的黄曲霉毒素G2、B2、G1和B1的回收率结果:表-3添加水平为2ug/kg大米的回收率结果玉米样品加标测试玉米中添加水平为2ug/kg的黄曲霉毒素G2、B2、G1和B1的回收率结果:表-4添加水平为2ug/kg玉米的回收率结果4.注意事项由于黄曲霉毒素在紫外光照射下不稳定,因此在实验过程中应该避免紫外光和太阳光的照射。谷物中离心完成后,不可放置过长时间,否则谷物容易重新吸水,可能导致提取液的浓度过高,使样品的回收率偏高,影响测试结果。固相萃取进行提取液净化前,特别对于偏酸或偏碱性样品,应用PBS缓冲溶液(pH=7.4)进行稀释后上机,否则可能会导致回收率偏低。5.总结标液配制净化浓缩本文采用Auto Prep 200全自动液体样品处理工作站可实现混标、标准曲线的配置,全程无需人为值守,让实验人员远离有毒有害特别是黄曲霉毒素这样的剧毒化学物质,保护身体健康。Fotector Plus高通量全自动固相萃取仪能同步净化6个样品,连续自动处理60个样品,做样通量高;同时可无人值守,减少工作量。此外还可避免工作人员因操作失误导致的检测偏差,以及将实验人员更迭对检测结果的影响最小化。Auto EVA-60全自动平行浓缩仪处理通量高,60个样品可同时进行氮吹,实验平行性好;采用氮吹针自动追随液面的设计,无需手动调节氮吹针且耗气量小,省时省力。本解决方案快速高效,且无需人员值守,让实验人员远离黄曲霉毒素等有害化学物质且提供工作效率。参考资料:[1]《热搜第一!女子接触霉变玉米后肺部长满黄曲霉菌,什么是黄曲霉毒素,它有哪些危害?》人民网人民数据[2]《“食药安全 科学生活”食品篇之黄曲霉毒素的前世今生》广州市黄埔区人民政府
  • 中国转基因水稻和玉米新品种安全性没问题
    两位中国工程院院士——中国农业科学院生物技术研究所研究员范云六和华中农业大学教授张启发25日相继表示,中国去年批准生产应用的转基因玉米和水稻与非转基因水稻、玉米具有同样的安全性。  这是他们在由中国生物工程学会、中国农业生物技术学会共同举办的农作物生物育种产业发展高层专家座谈会上表示的。  2009年,中国颁发了具有自主知识产权的一个转植酸酶基因玉米品种,以及两个转抗虫基因水稻品种的生产应用安全证书。这一举措被业界认为具有里程碑性的意义。但是,部分社会公众曾经对此心存疑虑,担心转基因作物存在安全性问题。  研究者表示,已批准的转基因玉米和水稻品种的安全性评价过程历经多年,根据法规要求,相关研发单位系统开展了分子特征、遗传稳定性、环境安全性、食用安全性的试验,积累了充分的科学数据。这三种转基因新品种和非转基因品种在关键营养成分方面没有生物学意义差异,毒性试验对试验动物未发现不良影响,与已知过敏原无同源性。  中国农业转基因生物安全委员会在对申报资料进行反复评价和审查,并由农业部委托第三方权威检测机构对食用安全、环境安全、目标性状分子特征等重要指标进行了严格的检测验证后,未发现环境安全不良影响。  在此基础上,经农业、科技、环保、卫生等11个农业转基因生物安全管理部际联席会议成员部门审议,农业部于去年8月批准颁发了生产应用安全证书。  “转植酸酶基因玉米可以提高饲料的利用效率,减少饲料中磷酸氢钙的添加量,降低饲养成本 减少动物粪、尿中植酸磷的排泄,减轻环境污染,有利于环境保护。”范云六说,“此外,利用农业种植方式生产植酸酶,还具有节能、环保、低成本的优势。”  张启发则介绍说,转抗虫基因水稻不仅能有效控制螟虫等鳞翅目害虫危害,保障水稻增产,还能减少80%的化学农药用量。  近年来,中国转基因农作物的研究和产业化步伐加快。2008年,中国启动了转基因生物新品种培育重大专项 2009年,农作物生物育种被列入国家战略性新兴产业发展规划 今年中央一号文件又明确指出,要在科学评估,依法管理基础上推进转基因新品种产业化。  在这次座谈会上,来自中国农业科学院、北京大学、中国农业大学以及相关企业界的100多位专家认为,转基因生物育种已成为中国推进科技创新、发展现代农业、确保粮食安全的战略选择。他们建议政府相关部门加快转基因技术研究,通过产学研紧密结合,增强中国生物育种国际竞争能力,大力培植具有自主知识产权的战略性新兴产业。  国际农业生物技术应用服务组织(ISAAA)日前发布的全球转基因作物育种产业发展最新统计数据显示,2009年全球有25个国家商业化种植转基因作物,包括玉米、大豆、棉花、油菜等24种转基因作物种植面积继续快速增长,总面积已达1.34亿公顷,较产业化初始的1996年增长近79倍。  对此,专家们表示,转基因作物育种带来的巨大经济、社会效益和显著的生态效益已充分显现,其推广应用速度之快创造了近代农业科技发展的奇迹。伴随着生物安全管理的日趋规范和科学实践的不断积累,转基因作物安全性进一步得到保障,公众的认识也逐步走向科学和理性。
  • 对接国家新标准大商所修改大豆玉米合约
    为与9月1日起执行的大豆、玉米新国标相衔接,大商所日前发出通知,对黄大豆1号、黄大豆2号及玉米期货合约相关规则进行修改。为保持市场的稳定和连续性,修改后的合约质量标准自新挂牌合约开始执行,已挂牌合约仍执行原规则。这次大豆合约规则修改的核心内容,是根据新的国家标准将黄大豆1号定等标准由纯粮率变为完整粒率,并增加损伤粒率方面的规定。在玉米品种上,由于新国家标准采用了新的容重测量方法,容重标准也随之发生变化,新玉米期货质量标准也相应进行了调整。
  • 美国主要使用以玉米为原料的第一代生物燃料,逐渐过渡到第二代纤维素乙醇燃料
    内布拉斯加大学林肯分校能源科学研究所主任肯尼斯卡斯曼认为,美国对进口蔗糖乙醇燃料征收高额关税是正确的,可以保障美国纤维素乙醇燃料发展。他认为,市场一旦放开,美国很可能从依赖进口石油转为依赖进口乙醇燃料。巴西方面则认为,美国采取的贸易保护措施,牺牲了环保利益。虽然要求降低或取消进口蔗糖乙醇燃料关税的呼声已引起奥巴马的注意,但观察人士认为,关税调整落实较难,那些以农业为支柱产业的美国某些州,将以政治手段阻挠降低蔗糖乙醇燃料的进口关税。ELISA试剂盒在这场新能源热潮中,如何发展更环保、效益高的能源成为讨论的焦点,也由此激起无数热议。近日,巴西蔗糖工业协会常务理事埃德瓦多莱奥公开表态,抗议美国对进口巴西产蔗糖乙醇燃料征收54%的高额关税。他表示,蔗糖乙醇燃料比美国广泛使用的玉米乙醇燃料环保,负面影响较低,社会效益更佳。ELISA试剂盒由于外汇匮乏,巴西在20世纪70年代的两次石油危机中,经济濒临崩溃。于是该国政府决定大力发展乙醇燃料,降低对进口能源的依赖。如今,巴西乙醇燃料的使用比例达55%,数千条管道输送乙醇燃料,几乎所有加油站都供应乙醇燃料。不仅如此,近年来巴西生产的汽车几乎都配装弹性燃料发动机,可使用汽油或车用乙醇。今年4月,巴西总统卢拉在一次地区峰会上,ELISA试剂盒曾向美国总统奥巴马表达对美限制进口蔗糖乙醇燃料的不满。他指出,美国的再生能源政策影响巴西对美国出口蔗糖乙醇燃料。卢拉认为,美国选择玉米为乙醇燃料的主要原料是错误的,会造成玉米供应紧张、价格上涨等问题,还会使那些以玉米为主要粮食作物的国家陷入粮食危机。密歇根大学汽车研究中心主任安娜斯坦菲诺保罗持相同观点:“美国中西部地区种植的玉米被广泛用于制造乙醇燃料,造成食品价格持续上涨。”
  • 玉米是否转基因60分钟可知结果
    如今在日常生活中市民已经不可避免地接触到转基因食品。根据我国的相关法律法规,进口转基因产品必须属于我国允许进口的转基因品系且按照规定用途使用,因此转基因检测在出入境检验检疫、第三方检测机构、大型食品企业中必不可缺。广东检验检疫技术中心表示,将在出口食品转基因成分检测工作中启用更快捷简便的新技术检测转基因。 据悉,在进出口环节,我国会对转基因产品、非转基因产品进行品系检测和转基因初筛检测。但我国现行的转基因检测所采用的检测技术成本较高、耗时较长、操作复杂、需要依赖贵重的仪器设备,在实际工作中不能较好地满足检验监管和行业自检的需要。 而作为新检测技术标准的制定单位之一,广州迪澳生物科技有限公司销售工程师杨海朋告诉记者,如果采用新方法检测的话,则操作简便快捷,只要60-90分钟就可知结果。 据介绍,广州有关部门每年都会组织对市面上的加工食品进行转基因抽检,去年重点抽检了豆制品,而今年的重点是大豆和玉米的加工食品。
  • 特色应用(二) | SPME-GC-MS/MS研究不同储藏年份玉米风味物质差异
    风味物质是粮食作物食用品质和营养价值的重要衡量指标。小麦、玉米等谷类作物在储藏过程中的品质劣变与其风味物质含量密切相关。岛津中国创新中心与国家粮食和物资储备局科学研究院杨永坛研究员团队合作,基于固相微萃取-气相色谱-三重四极杆质谱联用技术(SPME-GC-MS/MS)对玉米中挥发性风味物质的种类和含量进行分析,多元统计分析结果显示,玉米的挥发性风味物质与储藏年限存在一定的相关性。由此可构建玉米储藏年份的分类模型,为玉米储藏品质的动态监测提供技术手段。研究成果以“SPME-GC-MS/MS结合多元统计分析不同储藏年份玉米风味物质差异”为题,已发表在《粮油食品科技》期刊。背景介绍粮食在贮藏期间会受到温度、湿度、微生物等环境因素影响,其食用品质和营养价值也会随着储藏时间延长而发生改变。玉米是我国主要粮食作物之一,也是我国储备粮的重要组成。由于玉米原始水分含量相对较高,同时内部富含脂肪,其相较于其他粮食品种储藏稳定性较差,易发生品质劣变,进而影响其种用、食用和加工品质。因此在玉米收购入仓和轮换出库前对其储藏品质进行评估十分必要,引起了研究人员的广泛关注。挥发性风味物质是影响玉米食用和加工的主要因素之一,风味物质的类型、含量以及它们之间的相互作用共同决定着玉米的风味。玉米储藏过程中风味物质含量变化间接反映其品质改变,因此越来越多的研究人员通过测定玉米中典型挥发性风味物质对其进行品质鉴别。已有多项研究发现玉米挥发性风味物质的种类和含量受不同储藏条件的影响,但尚未阐明不同储藏时间玉米的特征差异物质。固相微萃取技术能对含量较低的挥发性物质进行富集,在挥发性物质检测中具有方便、灵敏、高效的优点,在食品风味物质检测领域应用广泛。本研究以吉林地区2019—2022年收获玉米为研究对象,采用固相微萃取-气相色谱-三重四极杆质谱联用技术(SPME-GC-MS/MS)对玉米储藏过程中的风味物质进行检测,并结合主成分分析(PCA)和偏最小二乘法判别分析(PLS-DA)进行数据分析,阐明不同储藏年份玉米的特征差异物,建立玉米储藏年份判别模型。以期为玉米储藏品质的动态监测提供技术手段,更好地指导储备玉米科学储存与适时更新轮换。研究内容本研究采用固相微萃取-气相色谱三重四极杆质谱(GCMS-TQ系列),搭配专属型风味物质多反应监测(MRM)数据库,对玉米样品中的挥发性风味物质进行分析。图1为某采收自2019年的玉米样品的总离子流图,共检出挥发性风味物质共129种,包括醛类、醇类、酯类、酮类、苯系物、杂环类、酸类、醚类、烃类和酚类化合物共10类。检出化合物中醛类物质种类最为丰富,共检出26种,其次为醇类物质和酯类物质,分别检出23种和17种。对不同储藏年份玉米中各类风味物质的相对含量进行分析,结果显示酸类物质在玉米中相对含量最高,是玉米中的主要挥发性风味物质。并发现不同储藏年份玉米中风味物质相对含量发生了变化,需进一步探究二者之间的相关性。图1. 2019年玉米样品总离子流色谱图为明确风味物质含量与玉米储藏年份之间的关系,对不同储藏年份玉米中的挥发性风味物质进行PCA分析。从图2(A)可以看出,不同储藏年份玉米呈一定的聚类趋势。其中2019年和2022年储藏玉米区分度较为显著,表明该模型对储藏年份相差较大的样品区分能力较强。对不同储藏年份的样品组进行皮尔逊相关分析,结果如图2(B)所示,表明每个年份的样品组与其相应年份的样品组之间有很强的正相关性。图2. 2019—2022年玉米风味物质的统计分析结果: (A) 主成分分析得分图 (B) 皮尔逊相关分析为进一步直观体现不同储藏年份玉米的风味物质特征,对检测数据进行了PLS-DA分析。如图3(A)所示,4个储藏年份的样品分别聚为一类,表明不同年份间玉米的挥发性化合物差异显著。利用5倍交叉验证对PLS-DA模型的预测精确度和拟合度进行验证,结果如图3(B)所示,使用3个组分时,模型的R2=0.98,Q2=0.96,预测精确度为1.0,表明模型具有较好的预测能力。按照变量投影重要性(VIP)值大于1的标准,共筛选出47种关键差异化合物。图3 2019—2022年玉米风味物质的偏最小二乘判别分析结果: (A) 三维PLS-DA得分图 (B) 不同组分数下PLS-DA分类性能 (C) VIP值图进一步比较不同年份间玉米中挥发性风味物质的差异,可以看出有6种挥发性化合物出现规律性变化。其中,1-辛烯-3-醇、丁酸橙花酯和2-正戊基呋喃3种化合物含量随储藏时间的延长而减少(如图4(A)~(C));此外,DL-泛酰内酯、辛酸甲酯和2-乙酰基呋喃化合物的含量随储藏时间的延长而增加(如图4(D)~(F))。图4. 不同储藏年份玉米特征风味物质箱线图结论基于岛津固相微萃取-气相色谱三重四极杆质谱仪建立玉米中挥发性风味物质的分析方法,对2019至2022年收获东北地区玉米样品中挥发性风味物质进行检测,采用PCA和PLS-DA方法对不同储藏年份玉米的风味物质数据进行分析,筛选出在不同年份的玉米间具有显著性差异的化合物,根据检出的差异化合物在不同储藏年份玉米中的含量分布构建分类模型,将为不同年份玉米的储藏品质动态监测提供参考,以更好指导储备玉米的科学储存与适时更新轮换,对保障国家粮食安全和节粮减损具有重要意义。岛津多功能自动进样器-气相色谱三重四极杆质谱仪参考文献:[1] WANG S, CHEN H, SUN B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS) [J]. Food Chemistry, 2020, 15(315): 126158.[2] 徐瑞, 李洪军, 贺稚非. 玉米冻藏过程中挥发性成分变化及主成分分析[J]. 食品与发酵工业, 2019, 45(1): 210-218. XUN R, LI H J, HE Z F. Changes and principal component analysis of volatile compounds in corn ears during frozen storage[J]. Food and Fermentation Industries, 2019, 45(1): 210-218.[3] 李云峰, 范競升, 陈冰琳,等. 3个甜玉米品种在不同储藏条件下可溶性固形物含量及挥发性风味成分变化[J]. 华南农业大学学报, 2021, 42(03): 33-44. LI Y F, FAN J S, CHEN B L, et al. Changes of soluble solid contents and volatile flavor components of three sweet corn cultivars under different storage conditions[J]. Journal of South China Agricultural University, 2021, 42(03): 33-44.[4] 郭瑞, 李盼盼, 张晓莉, 等. SPME-GC-MS/MS 结合多元统计分析研究不同储藏年份玉米风味物质差异[J]. 粮油食品科技, 2024, 32(3): 179-186. GUO R, LI P P, ZHANG X L, et al. Diversity analysis of volatile flavor compounds of corn with various storage years based on SPME-GCMS/MS and multivariate statistical analysis[J]. Science and Technology of Cereals, Oils and Foods, 2024, 32(3): 179-186.本文内容非商业广告,仅供专业人士参考。
  • 前沿合作丨CT助力玉米抗倒伏研究发表国际知名期刊New Phytologist
    导读玉米(Zea mays L.)作为世界第一大作物,其充足稳定的供应对保障全球的粮食安全至关重要。然而,目前倒伏已经成为限制玉米高产、稳产和机械化的主要因素,而根系构型则是决定玉米倒伏抗性的关键因素。近日,华南农业大学生命科学学院王海洋教授课题组揭示了生长素合成基因调控气生根生长角度的分子机理,为培育耐密抗倒玉米新品种提供了重要的基因资源。该研究进展发表在国际知名学术期刊《New Phytologist》上,同时受到F1000的关注并被评为本领域必读的研究论文。岛津分析中心应用工程师黄军飞参与该研究中的玉米根系构型成像,采用岛津SMX-225CT FPD HR完成了玉米根系构型的无损、原位、三维成像工作。生长素局部生物合成调控玉米气生根角度与倒伏抗性&bull 根倒伏对玉米生产构成重大威胁,导致粮食产量和品质下降,收获成本增加。&bull 研究结果表明,ZmYUC2和ZmYUC4介导的局部生长素生物合成是玉米气生根对重力响应所必需的,本研究为培育抗根倒伏玉米品种提供了重要的基因资源。期刊首页截图及摘要译文玉米倒伏小科普玉米倒伏是由于外力引发的玉米根或茎秆弯倒(折断)的现象,倒伏类型分为茎倒伏和根倒伏。茎秆倒伏主要发生在生长后期,表现为穗下部节间弯曲(折断),而根系倒伏则可以发生在任何生长阶段,表现为根系不能锚定地上植株。倒伏的危害主要表现在:光合效率锐减、光合产物运输受损、籽粒品质下降及增大收获成本。摘自 王夏青, 宋伟, 张如养, 等. 玉米茎秆抗倒伏遗传的研究进展[J].中国农业科学, 2021, 54(11): 2261-2272.研究成果概览根系是植物吸取地下水分和养分的主要器官,也是固定和支撑玉米生长的的主要器官。玉米的根系主要由胚根系和胚后根系两部分组成。胚根系由1条初生根(PR)和多条种子根(SR)组成,其生物量在V3时期(玉米有三片完全展开叶时)达到最大,是玉米幼苗期固定幼苗、获取地下水分和营养的主要器官。胚后根系主要指玉米茎节上着生的节根和在上述根系上萌发的侧根(LR)。节根可分为地下茎节上着生的冠根(CR)及地上茎节上着生的气生根(BR)。节根(包括CR和BR)一般在玉米V6时期后取代胚根系成为玉米的主要根系,是玉米最主要的植株固定和养分获取器官。节根中BR可以“抓地”形成锥形结构来有效地支撑玉米植株直立;并且一般情况下,两层“抓地”的BR(一般着生于第6-7节)可占到节根生物量总量的50%,是玉米最主要的功能根系。摘自 Hochholdinger F. The maize root system: morphology, anatomy, and genetics[J].Handbook of maize: Its biology, 2009: 145-160.过去植物根系研究中常用的水培、砂培或纸培等方法不能显示出根系的三维构型,且无法反应出根系在土壤中的生长状况;然而传统挖掘土壤中生长的植株根系会不可避免地损伤根系完整度,在清洗过程中也会破坏根系的三维构型。故开发新的植物根系实时活体检测技术来满足无损、原位、三维的根系构型观测尤为重要!图1是 通过在土壤中生长到V6期(6片完全展开叶时期)的各玉米材料的根系重建的三维(3D)显微CT,Zmyuc4单基因突变体和Zmyuc2/4双基因突变体的气生根夹角明显大于野生型(WT),而地下根系数量和根夹角与WT无显著差异,Zmyuc2的根系角度和数目较WT均无显著差异。这些结果表明,Micro-CT技术可以在不损坏植株根系的情况下,对玉米的根系进行原位、三维的可视化。图1 CT表征玉米根系构型玉米根系构型的无损、原位、三维成像玉米根系构型动画,点击查看:https://mp.weixin.qq.com/s/UwGQRHGhhNwN-e_2Fx4ZCg岛津CT,科研好帮手inspeXio SMX-225CT FPD HR Plus是一款高性能微焦点X射线CT系统,是采用岛津自行研制的微焦点X射线发生器和大型高分辨率平板检出器制造的仪器。图2 SMX-225CT FPD HR Plus微焦点X射线CT系统无论是科研院校的材料及生物研究,还是工业正在研发的复合材料(GFRP、CFRTP)和大型铝合金压铸件产品,这款仪器能够用于多种样品所需要的研究、开发和检查的实验。专家心声王海洋教授,华南农业大学文章通讯作者王海洋教授表示:根系构型不仅影响作物的抗旱性和养分利用效率,也是作物抗倒伏的关键决定因素之一。但是由于根系构型表型考察的困难,作物根系遗传基础的解析和关键调控基因的挖掘进展缓慢,极大迟缓了作物的改良。在本研究中,我们利用岛津公司的inspeXio SMX-225CT FPD HR Plus对土壤中的玉米根系进行了三维可视化重建。该技术实现了对植物根系构型的无损、原位及三维化的观察和分析,弥补了传统根系表型观测方法的不足,将有助于解决根系观测的难题,从而大大加快作物根系构型遗传调控基础的研究,为作物根系的遗传改良提供有效的基因资源和技术支撑。参考文献Hochholdinger F. The maize root system: morphology, anatomy, and genetics[J]. Handbook of maize: Its biology, 2009: 145-160.本文内容非商业广告,仅供专业人士参考。
  • 真菌毒素玉米赤霉烯酮检测步骤及检测仪器
    真菌毒素玉米赤霉烯酮检测步骤及检测仪器,玉米赤霉烯酮主要污染玉米、小麦、大米、大麦、小米和燕麦等谷物。其中玉米的阳性检出率为45%,*高含毒量可达到2909mg/kg;小麦的检出率为20%,含毒量为0.364~11.05mg/kg。玉米赤霉烯酮的耐热性较强,110℃下处理1h才被完全破坏。玉米赤霉烯酮具有雌激素样作用,能造成动物急慢性中毒,引起动物繁殖机能异常甚至死亡,可给畜牧场造成巨大经济损失。玉米赤霉烯酮是玉米赤霉菌的代谢产物。1980年李季伦教授发现植物体内也存在玉米赤霉烯酮深圳市芬析仪器制造有限公司生产的CSY-YG701真菌毒素定量检测系统可快速准确检测定出玉米、大米大麦、小麦、花生、火锅底料、豆瓣酱、粮油等食品乳制品、中药材、制药原料、谷物及饲料和饲料原料中的黄***素B1、呕吐毒素、玉米赤霉烯酮等真菌毒素,操作简便,只需一步加样,无需标准品,无需做标准曲线,采用荧光免疫定量分析仪读数,结果准确可靠且可现场打印,准确性高度符合HPLC法的检测结果,为饲料质量安全的快速检测和控制提供了一种全新的技术手段,广泛应用于粮油监测中心、中药材加工厂、制药厂、粮油饲料生产加工、食品加工贸易、养殖企业、面粉厂、豆制品加工生产企业、粮食局、畜禽养殖户自查、工商质监部门用于市场快速筛查等产品优势:1.仪器使用寿命长:采用高性能LED光源,金属丝杆设计,非连续工作模式,使用寿命可达10年;2.液晶触摸屏7英寸中文显示,人性化操作界面,读数准确、直观;3.本仪器具备数据储存功能,接口方式采用USB、RS232等设计,方便数据的存储和相关处理;4.自动保存检测结果,数据存储量大,内置微型热敏打印机,终身无需更换色带,可实时打印检测结果检测报告单;5.检测结果报告:可准确报告出检测项目、被测物质的浓度、检测单位、被检查单位、检验员、检测时间、检测限等信息可在触摸屏上显示,可通过仪器内置打印机输出6.支持网络通信(wifi、网络端口),可以进行数据传输功能(选配定制功能);7.内置6通道检测卡恒温孵育装置并带有温度孵育计时功能,解决不同区域温度对数据的影响;8.封闭式检测仓门设计,避免灰尘进入仪器内部,延长仪器使用寿命;9.配置齐全:所需设备、试剂、耗材一站式提供,开箱即检;10.内置标准曲线,通过ID卡导入标准曲线,无需检测时再做标准曲线,既节省了成本,也避免了操作人员与霉菌毒素的接触,保护操作人员的安全;11.整机支持按客户要求定制(ODM加工及OEM项目合作)技术参数:1.激发光谱中心波长:365nm2.接收光谱中心波长:610nm 3.重复性:CV<3%4.稳定性:CV<3%5.台间差:CV<3%6.检测通道:单通道定量检测结果7.前处理:≤15分钟(根据项目而定)8.检测仪外观尺寸:350*300*160mm9.一体化拉杆箱尺寸:800*480*280mm真菌毒素玉米赤霉烯酮检测步骤及检测仪器
  • 种子尺寸分析仪-玉米种子粒型参数分析仪器
    托普云农作物考种分析系统TPKZ-1型,专业用于各种作物籽粒的考种,同时也适用于测量玉米果穗、截面。种子尺寸分析仪-玉米种子粒型参数分析仪器。  种子分析仪适用范围:  玉米、水稻、小麦、油菜、豆类、花生、芝麻等各种作物种子。  种子尺寸分析仪功能特点:  1、配A3幅面最gao分辨率1600dpi × 1600dpi、紫光M1彩色扫描仪。可分析各类种粒的种粒直径1~20mm。扫描仪分析工作区:A3幅面(431.8mm×304.8 mm)。  2、分析速度:可同时成像分析10个玉米果穗、35个玉米截面、1000粒左右玉米籽粒。  3、自动数粒速度:1500~3000粒/分钟(玉米籽粒),其它籽粒为1200~20000粒/分钟,数粒误差≤±0.1~0.4%,可监视修正结果,监视修正即达准确。具有相机画面畸变、背光板均匀性的自动矫正特性,有效减小尺寸测量误差。  4、自动测出籽粒数、各籽粒的粒形参数(长、宽、长宽比、面积、等效直径、周长等),以及其平均值,并排序输出。自动千粒重分析的精度误差:≤±0.5%。并能对不同品种的种子进行长和宽的对比,并输出矢量图。  5、同时成像分析玉米果穗:10个/次/分钟、玉米截面:35个/次/2分钟。自动测出各玉米穗长、穗粗、秃尖长、左右穗缘角、穗行角、平均行粒数、粒厚、截面穗行数、穗粗、轴粗,颜色以及其平均值,可测出各玉米截面上的种子粒长、粒宽、颜色(RGB具体数值表示)、粒高等尺寸参数。  6、水分测定:通过水分测定仪,数据能输入到软件中,然后统一输出分析数据。  7、图像分析:有任意放大、缩小,方便查看标记结果。  8、有被测样本条码、电子天平RS232重量数据的自动输入接口,插上电脑条码枪即可刷入样本条码编号 电子天平上的被测样本重量数据可一键送到电脑保存为EXCEL表。  9、分析过程为全程电脑控制,高效、准确、简便易用,真正一键式操作,鼠标一点,结果即现。  10、辅助删补:用鼠标选择增加/删除,或直接用鼠标在屏上手工计数,以确保结果准确性。目标区的个性化计数:对工作区视野中任选范围或矩形范围内的计数。  11、种子尺寸分析数据导出:分析图像结果可保存,自动形成总报表,统计分析结果能输出至Excel表,考种系统有云平台的支持,通过云平台可以上传或是下载数据。  12、软件加密:采用动态二维码+密码狗加密,登记具体使用单位的信息,防止加密狗的丢失。
  • 转基因玉米快速检测技术获美国发明专利
    天津市农业质量标准与检测技术研究所经过8年开发,研发出转基因玉米快速检测技术,日前正式获得美国发明专利授权。该项检测专利发明技术可以在半小时内准确检测出玉米种子、玉米饲料及以玉米为原料的膨化食品中是否含有转基因成分。  该项快速检测方法可广泛用于田间、卖场的检测,可大大节省人力物力。
  • 岛津推出玉米赤霉醇及其杂质的离子阱-飞行时间串联质谱定性方法
    玉米赤霉醇是略带雌激素活性的合成激素,有催生长、提高瘦肉率的药物特性,作为家畜增重的外源激素,效果良好,但对人体生殖系统的形成和血浆中的甲状腺素水平有影响。家畜组织中玉米赤霉醇残留量一般为&mu g/kg水平,尽管极微量,但它仍对人体有潜在的危害。目前,许多国家对玉米赤霉醇用作动物促蛋白合成激素有严格控制,甚至禁止使用。我国农业部第235号公告明确规定玉米赤霉醇禁止用于所有食用动物,所有可食动物尿液。 &alpha -玉米赤霉醇结构式如图1所示。 图1:&alpha -玉米赤霉醇结构图 本文在研究&alpha ‐玉米赤霉醇(&alpha ‐zearalanol)标准物质时,采用高效液相色谱/离子阱-飞行时间/串联质谱仪(HPLC‐IT‐TOF MS)对其中杂质进行定性鉴定。高效液相色谱/离子阱-飞行时间/串联质谱仪是将高效液相色谱和离子阱质谱仪(IONS TRAP)以及飞行时间质谱仪(TOF MS)串联起来,使其在准确质量数和灵敏度方面较之其它多级质谱有较大提高,仪器具备高分辨率性能,能够准确提供分子和碎片离子的结构信息。由HPLC‐IT‐TOF MS 得到杂质的多级谱,对碎片裂解规律进行了探索,利用TOF较高的质量准确度,推测了杂质的可能结构,并用标准品对方法进行验证,结果表明,高效液相色谱/离子阱-飞行时间/串联质谱方法对杂质定性分析是很有效的。 有关玉米赤霉醇及其杂质的离子阱-飞行时间串联质谱定性方法的详细内容请参见http://www.instrument.com.cn/netshow/SH100277/down_171768.htm。岛津高效液相色谱‐离子阱‐飞行时间质谱LCMS‐IT‐TOF LCMS-IT-TOF是岛津公司的高端质谱仪,该仪器曾于2005年3月获得了全球著名分析仪器匹兹堡展会的银奖,这是该年度质谱仪整机产品得到的最高奖。而后,又获得了国际权威的分析仪器杂志R&D的2006年新产品大奖。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制