当前位置: 仪器信息网 > 行业主题 > >

食品果蔬微型仪

仪器信息网食品果蔬微型仪专题为您提供2024年最新食品果蔬微型仪价格报价、厂家品牌的相关信息, 包括食品果蔬微型仪参数、型号等,不管是国产,还是进口品牌的食品果蔬微型仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合食品果蔬微型仪相关的耗材配件、试剂标物,还有食品果蔬微型仪相关的最新资讯、资料,以及食品果蔬微型仪相关的解决方案。

食品果蔬微型仪相关的资讯

  • 海洋光学微型光纤光谱仪市场前景广阔——BCEIA 2011视频采访系列
    仪器信息网讯 2011年10月12-15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆隆重举行。为让广大网友及仪器用户深入了解BCEIA 2011仪器新品动态,仪器信息网特别开展了以“盘点行业新品 聚焦最新技术”为主题大型视频采访活动,力争将科学仪器行业最新创新产品、最新技术进展及最具有代表性应用解决方案直观地呈现给业内人士。以下是仪器信息网编辑采访海洋光学技术中心经理李宇先生的视频。   在采访中,李宇先生介绍了适用于不同领域的光纤光谱仪的特点,以及海洋光学近红外光谱、过程控制实验室的应用,以及微型光纤光谱仪的市场发展前景等内容。   李宇先生表示:“微型光纤光谱仪是一个非常朝阳的产品,它从发明到现在已经20多年了,但是真正应用推广是在近几年来。微型光纤光谱仪相对于传统的分光光度计,它的主要特点是一是微型,二是可以根据用户需求定制,三是它可以覆盖不同的检测范围,比如紫外可见、近红外波段等。再者用户可以将微型光纤光谱仪集成到不同的应用生产当中,如可以用拉曼模块去监测生产过程,在中药制药行业,用微型光纤光谱仪模块可以监控药物有效成分是否已经达到期望的浓度等,对于微型光纤光谱仪模块用于生产过程的监控我是非常有信心的。”   具体产品展示、技术特点介绍、应用领域分析,请点击查看采访视频。    关于海洋光学   海洋光学是全球领先的光传感解决方案提供商,提供光与物质相互作用过程中测量和机理分析的基础方法;提供的方案适合各类应用,涵盖生物医学研究、环境检测、生命科学、科学教育以及娱乐照明和显示等诸多方面;所涉及到的技术和产品线包括光谱仪、化学传感器、度量仪器、光纤、薄膜及光学元件。作为微型光纤光谱设备的发明者,自1989年来我们在全球共售出了超过150,000套光谱仪。海洋光学是英国豪迈(Halma)集团的分公司,豪迈集团主要经营用于探测潜伏危险和保护人们生命安全的产品,是专业性电子、安全和环境技术领域的领军企业。
  • 美国海洋光学介绍微型光纤光谱仪——CIOAE 2011视频报道系列
    仪器信息网讯 2011年11月9日至10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心成功召开。在本届论坛的报道中,仪器信息网特别开设了视频报道形式,让广大网友跟随我们的镜头,近距离地了解本次论坛上各大仪器厂商展出的在线分析仪器新产品与新技术。以下是美国海洋光学亚洲分公司市场和业务拓展经理龚雅谦博士介绍公司微型光纤光谱仪的视频。   龚雅谦博士介绍美国海洋光学是一个技术创新型的公司,自世界第一台微型光纤光谱仪进入市场之后,目前在全球的市场上共销售了约15万台光纤光谱仪。光纤光谱仪是继傅立叶光谱仪之后光谱仪发展史上的又一里程碑,其最本质的特点就是小型化,特别适合在线的应用。随后龚雅谦博士介绍到,海洋光学微型光纤光谱仪的定位主要是关键零部件,其产品的核心竞争力主要有三个方面:时间的稳定性;台与台之间的一致性;工业环境应用的可靠性。此外,龚雅谦博士还介绍到通过上千种的应用,海洋光学发展了很多采样附件、光源附件等,以期给用户带来最大的便利。   美国海洋光学(Ocean Optics)   总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,成立于1989年,在全球有3个机构中心,分别是在德国,荷兰的欧洲中心和在中国的亚洲中心,公司提供光与物质相互作用过程中测量和机理分析的基础方法。自1992年以来,海洋光学在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛。   海洋光学是英国豪迈(Halma)集团的子公司,豪迈集团主要经营用于探测潜伏危险和保护人们生命安全的产品,是专业性电子、安全和环境技术领域的领军企业。
  • 微型量子点光谱仪问世
    化学家们日前的一项成就,为制造更高性能的光谱仪铺平了道路,而这种光谱仪将比手机照相机镜头的图像传感器还要微型。1日出版的英国《自然》杂志上的一篇论文,详细描述了一种微型量子点光谱仪,其未来应用包括太空探索、个性化医疗、微流控芯片实验室诊断平台等。   光谱仪作为一种分析仪器,几乎在每个科学领域都会用到,尤其在物理、化学和生物学研究中必不可少。这类设备通常体积过大以致于难以移动。科学家长期致力于让光谱仪小型化、成本低廉且易于使用,以便增加它们的使用范围。但一直以来,相关努力都不是很成功。   据美国麻省理工学院官方网站消息,此次,前麻省理工学院博士后、中国清华大学的鲍捷以及麻省理工学院化学教授莫吉· 巴旺迪提出,现有微型光谱仪的设计局限可以用胶体量子点克服,量子点是高度可调控的、微型的并且对光敏感的半导体晶体,使用量子点可以在减小光谱仪体积的同时不影响它的分辨率、使用范围和效率。   研究人员展示了一个用195个不同的量子点做成的光谱仪,其每一个量子点都对特定光谱范围敏感,可以过滤各种波长的光并检测到非常小的光谱移位。美国加州大学伯克利分校物理学副教授王锋(音)认为,这个堪称&ldquo 美丽&rdquo 的方式,利用半导体量子点微型光谱仪来控制光吸收,该设备体积之小、性能之高,在以前还从未实现过。   论文作者们表示,这一系统兼具了高性能和简洁性,容易制造并有进一步小型化的可能,所以将会在很大程度上有利于那些需要缩小尺寸、重量、成本和复杂性的应用。其与小型设备结合后,可用于诊断皮肤状况或分析尿液样本,甚至用于追踪生命体征诸如脉搏和血氧水平等。与此同时,这一研究也代表了量子点的新应用,这种纳米结构材料现主要适用于标记细胞和生物分子,在计算机及电视显示屏领域也大有用武之地。   总编辑圈点   量子点这种发现于上世纪80年代的纳米晶体,吸收性能众所周知并且非常稳定。现在利用量子点固有的性质打造出新型光谱仪的优点,甚至足够小到可以在智能手机中运行,使得一个以往笨重的实验设备轻松走入日常生活。受益的,不仅仅是科学家们研究原子能量水平、分析生物组织样品,更多的行业都可随时利用光谱仪,譬如检测环境污染、判断食品安全等等。
  • 微型光纤光谱仪可以应用于哪些领域?
    从1992年Mike Morris发明世界上第一个微型光纤光谱仪至今已经24年了,各个行业已经开发了数以千计的应用。广阔的市场前景吸引了越来越多的公司,包括仪器仪表行业的大公司都开始参与到这个领域的竞争。  微型光纤光谱仪可以应用于哪些领域?  第一, 光谱仪可以分析各种光源发出的光,这些光源包括太阳,LED, 激光,平板显示器件,等离子体,气体放电,火焰燃烧,受激发光,化学发光等等基于各种原理的发光体。  第二, 光谱仪可以分析光与各种物质相互作用后的光,相互作用后的光一般都含有与物质微观结构有关的丰富信息。在这里光可以看成是探索物质微观结构的“探针”,因此,微型光谱仪通常被列为光学传感类(optical sensing)。  第三, 由于微型光谱仪的体积小,所以适合于便携,手持,现场,在线,原位,活体,非破坏性应用场合。由于光纤的使用,所以适合在有害环境下(包括化学,生物,放射性)进行远程测量。由于微型光谱仪内无移动部件,可靠性高,因此,适合于工作在环境恶劣的工业现场。由于采用探测器陈列,可一次获得全光谱,测试速度快,因此适合需要高速测量的应用,例如工业在线检测,化学反应动力学监测。  由于微型光谱仪应用领域非常广,在如此短的篇幅内无法详细列举所有的应用。以下,我们就当今社会最关注的领域中比较成功的应用案列进行分析:  环保行业:  -燃煤电厂烟气排放监测系统用于监测电厂在脱硫和脱硝之后对于大气的排放废气中SO2,NOx的含量。  这基于气体紫外吸光度测量的原理,看似简单,但是在解决实际问题时,必须要克服一些具体困难。由于实际应用中的待测气体样品中有颗粒物存在,如何将颗粒物对光的散射引起光的能量损耗扣除掉,以获得准确的浓度值?1970年代德国科学家Ulrich Platt在研究大气紫外吸收时,发现颗粒物散射谱随波长变化慢,气体分子紫外吸收谱随波长变化陡峭,因此对光谱进行微分,再进行数字滤波,将低频分量滤去,就可以将散射的影响扣除,这就是著名的DOAS技术(Differential Optical Absorption Spectroscopy)。由此可见,应用研究的重要性。  -对于地表水的有机物综合指标的监测  有机物综合指标是指化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC),高锰酸盐指数(CODMn),总磷(TP),总氮(TN),多环芳烃(PAHs)。分析地表水的有机物综合指标的困难在于,第一,这不是由单一化学组分决定的,而是由水中大量化学组分的综合效果 第二,水体中除了有机物之外,还有许多其它的干扰因素,譬如泥沙,会影响测量结果的准确度。  不少地方仍然采用化学滴定方法检测,这种方法虽然准确度高,由于需要采用化学试剂会对水体造成二次污染,而且设备复杂,测试所需时间长,运行费用高。  采用紫外吸收光谱技术,通过对大量水样建模和多变量化学计量学分析,可以获得有机物综合指标。但是实际的水样中总会含有泥沙,泥沙含量较高时,这些无机物也会使透光量减少,探测器无法区分透射光强度减少,究竟是被有机物吸收了,还是泥沙的散射引起透光量的减少,从而带来误差。而且,在有机物含量较少时,测量误差较大。浙江大学的吴铁军教授发现如果加用荧光光谱测试,由于无机物是不会产生荧光的,因此,融合荧光光谱和紫外吸收光谱的数据,就可以扣除无机物的影响。这种创新的方法可以用一台仪器同时测量出上述七个水的有机物污染的综合指标。  这个案例告诉我们,在分析复杂体系时,基于多变量化学计量学的算法和建模是极端重要的。  食品安全  -水,土壤和鱼的汞超标  由于环境污染体现在地表水和土壤的汞超标,汞又特别容易在生物组织中积累,譬如鱼类。摄入过量的汞会影响人的神经系统,儿童的发育生长。全球140个国家都对食品中汞的含量有规定。现有的分析方法非常耗时并只能在实验室使用。  美国Jackson州立大学发明了一种基于纳米材料表面能量转移技术NSET(Nanomaterial Surface Energy Transfer)的检测微量汞的便携式仪器。NSET技术原理如下,当罗丹明B(RhB)分子吸附在胶体金纳米颗粒时,胶体金纳米颗粒会使RhB荧光焠灭,当有Hg2+离子存在时,RhB会从纳米金颗粒表面释放,与汞离子结合,并在532nm激光激发下开始发荧光,荧光的强度与Hg2+离子浓度成正比。(见图2)这种方法检测灵敏度很高,汞的检测线0.8ppb,美国环境署水中汞含量的标准为2ppb.并能检测鱼组织中的汞,达到美国环保署0.55ppm的要求。图1 吸附在纳米金颗粒表面的罗丹明RhB,它的荧光强度与待测样品中汞的浓度成正比  这个案例中检测汞的原理就不那么直截了当,待测物汞本身并不能受激发荧光,而当汞离子与罗丹明RhB结合时,RhB充当标记物(marker)的角色,另一方面,利用了纳米金颗粒能使RhB荧光焠灭的特性。  -检测奶粉中的微量三聚氰胺  采用表面增强拉曼光谱技术SERS(Surface Enhanced Raman Spectroscopy),在785nm激光的激发下,待测的三聚氰胺的分子在基于纳米金颗粒的SERS芯片上,在激光强电磁场的作用下,与纳米颗粒表面的等离子激元发生谐振,拉曼光谱的强度被大大增强。(见图2)采用便携式拉曼光谱仪和SERS芯片三聚氰胺的检测限可达到12ppm。图2在打印的SERS芯片表面增强拉曼光谱与三聚氰胺浓度的线性关系  拉曼光谱技术,由于拉曼信号特别微弱,所以只适合应用于分析浓度较高的物质主成分。由于纳米材料科学,表面物理科学,激光技术的发展,才使SERS技术逐步进入应用阶段,用于分析痕量物质。不断提高测量的重复性,稳定性,降低SERS芯片的价格,使更多的应用领域用得起SERS技术。  -鉴别假冒的初榨橄榄油  常用的方法是观察油的颜色,但是在不同光线下显示的颜色是不同的,而且造假者会用叶绿素或b胡萝卜素去调节油的颜色去靠近真品的颜色。用低档橄榄油或者葵瓜子油,菜油稀释初榨橄榄油都可以用便携仪器进行吸光度测量方法鉴别。  正是由于光纤光谱仪的便携性和快速,使其得以应用在仓库,海关现场快速验货。图3 不同比例的低档橄榄油稀释初榨橄榄油对于吸光度的影响  -对食品内黄曲霉素的快速检测  发霉和变质的粮食,花生,坚果含有致癌的黄曲霉素。现用的主流技术有液相色谱仪HPLC,  液相-质谱联用仪LC-MS。这些技术只能在实验室用,并且设备昂贵,分析时间长,还要用大量化学溶剂,污染环境,操作和维护保养麻烦,需专业人员操作。也有用酶联免疫分析技术(ELISA),这种方法测量精度不如HPLC,并经常会报告假阳性。  因此,急需一种可以在现场快速筛检的设备。英国的Ray Coker博士发明了一种基于紫外荧光光谱的技术,先将样品进行预处理,使待测毒素分离,富集,然后用紫外荧光光谱分析,在365nm LED光源激发下,测量其荧光,并采用专利的算法,一次同时测得4种黄曲霉素(B1,B2,G1,G2,M1)和赭曲霉素A,其检测限1ppb,即零点几ppb,满足最严格的欧盟标准,可与HPLC比拟。这种方法其实还可以成为快速检测的平台,包括病原体检测,贝类毒素检测,兽药残留检测,动物饲料中真菌毒素检测,假药甄别检测,农药残留检测,MRSA(Methicillin-resistant Staphylococcus aureus)耐甲氧西林金黄色葡萄球菌检测。  该案例的技术难点在于样品预处理,如何从成分复杂的待测食品样品中将微量待测物萃取,分离,富集,第二,如何挑选出具有高度特异性的抗体,使自身不会发荧光的毒素与标记物(marker)可以用荧光技术来检测 第三,如何从光谱数据提取出有用信息的算法。  -食源性致病菌的快速检测  检测食品中的致病微生物,现行的方法,譬如检测细菌的金标准方法“平板计数法”(Culture Plating),虽然准确,但是分析所需时间太长,需要2-3天。其它的方法,例如酶联免疫吸附测定法ELISA,虽然速度快了,但是灵敏度不高。聚合酶链式反应法PCR方法,虽然速度快了,灵敏度也高一些,但需要复杂的核酸提取过程。总之,需要一种快速,灵敏,准确,特异性强的检测方法。  食品是一个成分复杂的物质,我们需要分析其中微量的细菌,首先要解决的问题是如何从复杂的背景中提取并富集这些待测的细菌 第二,按照国家标准,允许存在的细菌浓度必须很低,因此要求检测方法的灵敏度很高 第三,实际上,食物中很可能同时存在多种细菌,因此检测方法一定能够同时,分别检测出多种目标物。  美国阿肯色大学生物与农业工程系Yanbin Li教授团队近年来利用免疫纳米磁珠与免疫量子点对食源性致病菌进行快速检测。同时检测李斯特菌,沙门氏菌,大肠杆菌,检测下限可达到101 CFU/ml。(见图4) 图4(a)纯细菌样本的荧光光谱 (b)含致病菌的牛肉样本的荧光光谱  其基本原理是利用免疫检测方法,即先用第一抗体去修饰纳米磁珠,形成细菌-免疫磁珠复合体,在与样品均匀混合时,抗体就会与样品中的目标细菌进行免疫反应,在强磁场作用下,这些被免疫磁珠抓住的细菌就会被吸附到磁极,从而实现了细菌从复杂的背景物中分离。但是抓住细菌的磁珠不会受激发射荧光。我们知道量子点是可以受激发光的,如果用被第二抗体修饰的量子点作细菌的标记物,就可以通过测量量子点发出的荧光强度来间接测量细菌的浓度。利用抗体的特异性,即不同的抗体专门去抓不同的细菌。再利用量子点发光的波长取决于量子点的大小的特点。就可以通过对于荧光光谱相应的波峰强度测量,同时测量不同细菌的浓度。  生命科学和医疗诊断  -核酸,蛋白质分析  对核酸和蛋白质进行定量分析是现代生命科学实验中最基本的工具。  紫外吸光度方法是测量核酸浓度最常用的方法之一。核酸包括:DNA(脱氧核糖核酸)和RNA(核糖核酸)。它的基本组成是核苷酸。核苷酸又是以含氮的碱基,戊糖和磷酸组成。五种碱基包括嘌呤和嘧啶。碱基上苯环的共轭双键在紫外波段有强吸收,最强的吸收峰在260nm。核酸浓度与波长260nm的吸光度成线性关系,这就是用紫外吸光度方法测量核酸浓度的基本原理。核酸样品中如果含有蛋白质,蛋白质的紫外吸收峰在波长280nm,但是蛋白质在280nm的吸光度只有核酸在260nm的吸光度的1/10,利用样品在这两个波长的吸光度比值,可以得到核酸的纯度。  核酸,蛋白质这类生物样品的量常常很小,甚至在mL量级,微量样品的采样在技术上是一个难点。美国热电公司的NanoDrop2000型紫外/可见分光光度计巧妙地利用表面张力的原理,将待测样品液滴置于连接光源的光纤端头和连接微型光谱仪的光纤端头之间,形成待测样品液柱。利用这种采样技术,可以不用稀释样品就可以测量高浓度的DNA样品,对于双链DNA样品,可测的浓度可高达15000ng/ml。  该仪器还可以利用蛋白质在280nm的吸收来测量蛋白质的浓度。这是由于蛋白质分子结构中含有芳香族氨基酸,而芳香族氨基酸(主要是酪氨酸和色氨酸)的紫外吸收的峰值位于280nm。  蛋白质实际测量中遇到的问题是待测样品中常常含有其它化学试剂的残余,而这些杂质对紫外吸光度测量有干扰,影响测量的准确性。因此就在对蛋白质的各种性质研究的基础上,发展了各种其它的测量方法,以摆脱杂质对测量的干扰。例如蛋白质和染料的结合,蛋白质和铜离子的络合反应?  同样这一台工作在紫外/可见波段的分光光度计NanoDrop,基于不同的原理,还可以在不同的波长用于蛋白质定量分析。譬如,Bradford法测蛋白质,这是基于让染料分子(考马斯亮蓝G250)与蛋白质结合成复合体,该复合体在595nm有最大吸收峰,这种方法的好处是待测蛋白质样品中可能含有的K+,Na+,Mg2+,(NH4)2SO4,乙醇等杂质不会干扰蛋白质测定。BCA法则是利用蛋白质的化学性质,即在碱性条件下蛋白质可以与Cu2+发生络合反应,并将Cu2+还原为Cu+,而BCA (bicinchoninic acid)则会与Cu+反应形成稳定的复合物,它的吸收峰在562nm。这就是BCA法测量蛋白质的原理。  -紫外荧光光谱是研究蛋白质组分,构象的强大工具。  实验发现大部分蛋白质中有三种氨基酸残基具有内源性荧光的特性,它们分别是:色氨酸tryptophan (Trp), 酪氨酸tyrosine (Tyr) and 苯丙氨酸phenylalanine (Phe)。但是,实验中常用的是Trp和Tyr的内源性荧光,主要是因为这两种氨基酸的残基的荧光的量子效率比较高,所发出的荧光信号较强。Phe受激荧光的量子效率较低,激发波长在257nm。如果采用波长为280nm的激发光,由于Trp和Tyr的激发波长比较接近(分别为280nm,274nm),因此Trp和Tyr会同时有荧光信号。如果想选择性地只激发Trp,则可以采用295nm激发光源。  实验进一步发现,氨基酸残基的內源荧光的强度,峰位对于氨基酸的组分和构象状态十分敏感。这是因为在蛋白质分子处于自然折叠状态时,Trp和Tyr被包裹在蛋白质的中心位置。而当采用升高温度,采用尿素,盐酸胍,或者调解pH值等方法,使得蛋白质展开(图6A)。原先在折叠状态下埋在里面的疏水核心就暴露在溶剂中。Trp和Tyr就暴露在周围的环境中,它的荧光发光特性发生变化(图5B)  图5 用Trp的荧光来监测蛋白质的构象状态。图6A中Trp是用红点和红色字母w表示,在蛋白质处于自然折叠的状态下Trp被埋藏在疏水的环境中,展开后则暴露在溶剂的环境中。图5B,在自然折叠状态下Trp处于疏水状态下,荧光强 反之,在展开状态下,Trp暴露在溶剂中,荧光强度下降。  实验还发现Trp残基的荧光峰值的波长与周围的溶剂有关,发生Stoke位移。  研究蛋白质的分子折叠和展开有什么应用价值?有些疾病与人体内蛋白质分子的构象状态有关. 譬如, 有些退行性神经病变,就与蛋白质分子的展开有关,因此蛋白质的荧光光谱有时可用于退行性神经病变的诊断。  -医学诊断  一般而论, 采用光纤光谱仪作为医学诊断的手段有两个优点. 一个优点是非侵入性, 第二个优点是体积小, 仪器方便携带, 因此, 可以部署在病床边上, 县以下的基层诊所, 战地,出诊.  以下举一些例子.  基于吸光度和荧光技术的血样,尿样在生化分析仪器在医院的分析实验室几乎处处可见,现在可以做得更小,更便宜.  对于皮肤癌,乳腺癌可以对人体组织活体(in vivo)用拉曼光谱或反射光谱技术进行诊断.  黄疸病对于新生儿是常见的,而且无害,但是,对于早产婴儿则有造成大脑损伤的危险。因此,需要密切监测血液中胆红素的浓度。现行的方法是针刺婴儿的脚跟取血样,然后送实验室进行生化分析,大约需要一个小时,每日三次。如果对新生儿脚底皮肤用光学方法,通过反射谱测量,立即可以分析得到血液中胆红素的浓度,可以比现行的方法更快地诊断黄疸病,并使婴儿免受脚跟针刺之苦,这就是非侵入性带来的好处。  脉搏血氧仪是用红光和近红外透射测量技术连续监测血氧饱和度。慢性阻塞性肺病,哮喘等呼吸性疾病,病人的血氧饱和度是表征病的严重程度的非常重要的指标。  在线检测:  -为了得到辛烷值(RON)合乎标准的92号,95号汽油,石油炼化厂需要将重整催化工艺所得到的高辛烷值油与低辛烷值的催化裂化汽油按适当比例进行调和,以最终获得辛烷值符合国家标准,而且产率足够高的汽油。生产工艺需要在线测量汽油的辛烷值,并根据测量值去控制重整反应器的温度。  浙江大学戴连奎教授采用在线拉曼光谱系统测量重整汽油的辛烷值。其辛烷值主要取决于待测油品中直链烷烃、侧链烷烃、环烷烃与芳烃含量。拉曼光谱可以很好地显示直链烷烃、侧链烷烃、环烷烃与芳烃等物质的特征峰,因此可以很好的计算各种芳烃和其它烷烃等物质的含量。由于不同的烃类物质对辛烷值的影响不同,需要综合考虑每类物质对辛烷值的影响。通过含量高低建立相应的预测模型可以很好地测量汽油样品的辛烷值。相比于红外光谱,拉曼光谱特征峰明显,建立模型所需的样品数量也大为减少。相比色谱,拉曼光谱测量速度较快,使用和维护成本较低。图6 重整汽油的拉曼光谱(经过数据的预处理)  在此应用案例中,待测的汽油辛烷值并不是由单一物质的分子的光谱所决定的,而是由多种烃类的分子的综合作用所决定。因此,有了光谱之后,如何得到辛烷值,建模就是关键。
  • 西门子展出微型在线气相色谱仪MicroSAM——CIOAE 2011视频报道系列
    仪器信息网讯 2011年11月9日至10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心成功召开。在本届论坛的报道中,仪器信息网特别开设了视频报道形式,让广大网友跟随我们的镜头,近距离地了解本次论坛上各大仪器厂商展出的在线分析仪器新产品与新技术。以下是西门子(中国)有限公司工业业务领域产品经理杨飞先生介绍该公司微型在线气相色谱仪的视频。   杨飞先生介绍了公司最近推出的一款微型在线气相色谱仪MicroSAM,这款仪器在防爆外壳内集成了中央智能芯片,样品分离和检测所需的一切信息都集中在一块小母板上,因此可以实现无阀进样、无阀柱切,并且可以用多种检测器来验证结果。与传统大型色谱仪器相比,MicroSAM外形小巧坚固,无需分析小屋。另外,MicroSAM使用20V电源,正常功率只有18W,具有更少的耗电量,更低的环境要求和更少的辅助气消耗等优点,并且需要排放的样品量也更少。目前该款仪器广泛应用于天然气计量、煤气分析以及传统的化工行业等方面。   西门子(中国)有限公司工业业务领域   作为工业生产、基础设施、运输、楼宇和照明技术领域内的全球领先供应商,西门子工业业务领域一直积极支持中国的建设与发展。西门子在中国14个城市中,设有29个运营公司、62 个销售办事处和8个研发中心。西门子一直秉承“服务客户零距离”的理念,通过创新产品、集成化系统和一流的专门知识,帮助中国工业用户提高生产率、工作效率和灵活性。   西门子工业业务领域自动化与驱动技术集团(IA&DT)是全球范围工业自动化领域内的领先供应商。基于其独一无二的全集成自动化 (TIA) 和全集成能源管理(TIP)理念,西门子在生产自动化、过程自动化、楼宇电气装置以及电子装配系统等领域内,提供了广泛的创新、可靠、高效和高质量的产品、系统、解决方案和服务。目前,IA&DT的产品与服务广泛应用于钢铁、机械、金属、食品与饮料、包装、汽车、电力、石化以及航空航天等领域。
  • 相对于传统光谱仪,微型光谱仪具有哪些优势?
    微型光谱仪具体模块化和高速采集的特点,在系统集成和现场检测的场合得到了广泛的应用,结合光源、光纤、测量附件,可以搭配成各种光学测量系统。  光谱仪器是应用光学技术、电子技术及计算机技术对物质的成分及结构等进行分析和测量的基本设备,广泛应用于环境监测、工业控制、化学分析、食品品质检测、材料分析、临床检验、航空航天遥感及科学教育等领域。由于传统的光谱仪存在着结构复杂、使用环境受限、不便携带及价格昂贵等不足,不能满足现场检测和实时监控的需求。因此,微型光纤光谱仪成为光谱仪器发展的一个重要的研究方向。  近年来,由于光纤技术、光栅技术及阵列式探测器技术的发展和成熟,使得光谱检测系统形成了光源、采样单元及摄谱单元相分离的结构形式,整个系统结构更具模块化,使用更加方便灵活,从而使微型光纤光谱仪成为现场检测和实时监控的首选仪器。  那么,相对于传统的光谱仪,微型光谱仪器都有哪些优势呢?总体来说,微型光谱仪的优势体现在以下几个方面:  适合现场分析,即待测样品在那里,就在那里进行分析,而不是将待测样品取回实验室进行分析。适合手持,移动应用。  适合工业在线应用,作为可以分析化学组分的光学传感器,而且由于光谱仪内部结构中没有移动部件,因此可靠性好,所以特别适合对于生产工艺过程的在线控制。众所周知传统的压力,温度传感器在工业上已有广泛应用,设想一下,这种可以分析化学组分的光学传感器具有多大的市场潜力。  由于采用光纤,可以在200米外进行远程分析,这对于分析易燃,易爆样品,对人体有害的放射性,化学或生物样品的应用非常有吸引力。例如,在石化,反恐,化学战,生物战,核电站的应用。  由于其快速测量的特点,测量可在几秒钟,甚至几毫秒内完成譬如,对于数以万计的LED产品快速分类。  由于其非接触,非破坏性测量的特点,使其在考古,珠宝鉴定,司法鉴定,制药业原材料鉴定,食品质量控制等方面有重要应用。
  • 助力风味研究,海能仪器参会第二届果蔬食品发展大会
    8月22日,第二届果蔬类功能食品开发及产业发展大会在济南召开,海能仪器G.A.S.团队出席此次大会。本次大会以“营养 健康 发展 合作”为主题,通过特邀报告、专题论坛、展览展示等形式,充分展示了我国果蔬产业发展的新技术、新成果。海能仪器G.A.S.事业部的工程师通过报告向现场观众分享了GC-IMS气相离子迁移谱联用技术在果蔬风味领域的应用案例和工作原理,结合现场真机供大家考察。果蔬作为人们日常饮食的重要组成部分,富含人体所需的各类维生素,不仅丰富了人们的口味,还维系着人体的健康。其重要性与日剧增,果蔬风味研究也随之愈加深入、专业、科学。GC-IMS气相离子迁移谱技术以其广泛的应用范围,为这些研究提供了新的选择。气相离子迁移谱(GC-IMS)在果蔬领域的应用:1、地理标识性产品的保护2、品种、品质的快速区分3、贮藏过程中品质的变化4、货架期、新鲜度的识别5、加工工艺的优化选择FlavourSpec® 风味分析仪现如今,果蔬功能性食品的研究开发已然成为当前食品工业发展的热点。在未来,气相离子迁移谱(GC-IMS)将会一直伴随着果蔬领域科技工作者,为大家提供更加方便、高效的科学仪器。
  • 国产微型光谱仪问世 离商品化尚需时日
    体积只比手机大一点点,几分钟就能测出食品有无安全问题   投入批量生产后市民都能买得起使用简单   想知道饮用水里有没有有害物质吗?想知道食品中是否有添加剂吗?想弄明白水果表皮是否有农药吗?在目前,这些都需要去专门的科研机构才能查到。但是未来,你在家里就能做到。事实上,这个未来并不远,重庆大学教授温志渝及其团队已掌握微型光谱仪技术,而微型光谱仪正式可以简便快速检测物质的机器。今年教师节,温教授被评选为全国模范教师。   几分钟就能测出食物中的物质   光谱仪,目前科研方面用于物质检测等用途,价格数万元,体积大小超过一台台式机。温教授设计出的微型光谱仪却只比手机大一点点,价格也会便宜很多。   据重大微系统研究中心主任温志渝介绍,将被检测的物质放入该机器,检测速度非常快,只需要几分钟就可以出检测结果。在食品检测方面,如果发现问题食品,现场就能直接进行检测,迅速得出结果,不用再经历抽样、带回检测中心、检测、出结果的漫长过程。   这项技术获得重庆市2011年科技奖励技术发明一等奖。但目前暂未投入生产。在采访中,温教授告诉重庆晚报记者,一项技术成熟到投入批量生产要经过一定阶段。今年6月份,还有生产商找到他希望能合作生产微型光谱仪,但温志渝拒绝了。   微型光谱仪还可用于地震、火灾救援   温志渝告诉重庆晚报记者,光谱仪是将成分复杂的光,分解为光谱线的科学仪器,它可以定性定量的检测各种物质主要成分和元素,被广泛地应用于空气污染、水污染、食品卫生、金属工业等的检测中。   微型光谱仪同样具有这些功能,而且携带方便,并且可以像CPU一样嵌入其他仪器中,进行多种检测。   除了可以用于食品安全检测,微型光谱仪还可以装入监测设备中,实时对环境、水质等污染情况进行检测 在医疗上,可以制成微型生化快速检测仪,在发生地震、火灾等急救情况下,可以一次做7个生命体征检测,为患者抢救提供及时可靠的数据。
  • 环境监测卫星也在遭遇交通拥堵?(视频)
    日前,NASA科学计算可视化工作室公布了一段新太空视频。该段视频展示了NASA 19颗地球环境监测卫星在地球轨道上运行的画面。其中,Aqua、Aura、CloudSat和Calipso这四颗卫星都是在同一个轨道运行。NASA介绍称,这些卫星身上都安装了15种不同的环境监测设备。相信你看了下面这段视频之后一定会有这样的感受:这19颗卫星面临的&ldquo 交通&rdquo 状况未免也太过拥堵了。
  • 微型化双光子显微镜研制十年路
    今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。 在南京脑观象台投入使用的微型化双光子显微镜成像系统。  “第三次双光子显微镜测试顺利结束!”  “无比完美!”  “这一次的曲线如此丝滑!”  ……  4月1日上午,中国科学院院士、北京大学未来技术学院教授程和平的微信对话框,被同事们发来的这些评论不断刷新。而在中国航天员科研训练中心内,掌声此起彼伏。让大家欢欣鼓舞的,是中国空间站再次传来的好消息。  当日,神舟十五号航天员乘组,使用空间站双光子显微镜进行成像测试。他们用探头轻轻掠过脸部和前臂,一旁的电子屏幕上立即显示出皮肤结构及细胞的三维分布影像。  这不是显微镜第一次在轨成像测试。今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。  “如果能从这些图像中发现空间环境中人体变化规律,就更好了!”程和平捧着手机与记者分享这些科学图像时说。  只有了解程和平团队十年来经历的艰难曲折,才能体会这些图像的来之不易。2013年,程和平带领团队开启微型化双光子显微镜研究时,“全世界都不看好”。  历经10年,该团队完成了从科研仪器技术创新,到技术产品化,再到技术服务平台化的跃迁。他们将中国带到全球大脑成像研究的前沿,让微型化双光子显微镜在中国的高校院所、企业得到推广应用,为脑科学研究搭建起重要实验平台、提供了海量数据支持。  程和平希望,用微型化双光子显微镜拓展人类对脑宇宙的认知疆域,为探索脑机接口原理、深化对大脑疾病机制的了解、推进药物研发开辟一片新天地。神舟十五号航天员乘组在轨使用空间站双光子显微镜(视频截图)  一束光的启迪  意识的生物学基础是什么,记忆是如何存储和恢复的……在世界各国的脑科学计划中,这些问题吸引着全球科学家们不断上下求索。  在2021年国际权威学术期刊《科学》发布的125个最前沿的科学问题中,有22个问题与脑科学相关。  双光子显微镜的出现,仿佛是照在生命科学研究领域的一束光。  1992年,程和平用世界上第二台双光子显微镜,首次实现了心肌线粒体成像。  “双光子显微镜,是用两个光子同时激发同一个荧光分子的光学成像技术。它具有天然的光学断层扫描效果,能看到的组织深度更深,成像的清晰度更高,像一个高性能的X光机。”程和平说,与单光子显微镜相比,双光子显微镜看得准、看得深、光损伤小。但传统的台式双光子显微镜非常笨重,足有房间那么大,所以只能观察头部固定的动物或者动物的脑切片。  研究一款微型化双光子显微镜,观察自由行走的小动物脑袋中的一颗颗神经元的动态变化,成为程和平藏在心底的一个梦想。  一个梦想的点燃,有时只需一个使命的召唤。  2013年,国家自然科学基金委员会启动了国家重大科研仪器研制项目。程和平带队申请了“超高时空分辨微型化双光子在体显微成像系统”项目。  那一年,美国启动“创新性神经技术推动的脑计划”,欧盟启动了旨在建立大型脑科学研究数据库和脑功能计算机模拟平台的“人脑计划”。  而此前,我国在《国家中长期科学和技术发展规划纲要(2006—2020年)》中,已把“脑科学与认知”列入基础研究8个科学前沿问题之一。  “中国科学家只有用自己研发的观测仪器,做出原创性的脑科学成果,国际科学界才会认可。我们希望研制一款成像仪,率先让中国科学家用起来。用国外的仪器做研究,都是在别人建设的四梁八柱上做文章。”程和平用使命必达的决心来筹备项目的启动。  一场跨越山海的探索  想实现双光子显微镜在自由活动的动物体上的高清成像,必须为它“瘦身”。  然而,极大的技术难度,让团队一度面临质疑。程和平向科技日报记者坦言,7200万元的投入“相当于一吨百元大钞”,究竟能不能收获一个看得见的未来,大家当时心里很忐忑。“那时世界多国尝试微型化双光子显微镜的研制,但都没有实质性突破,尝试十几次都无疾而终。”他说。  程和平所言非虚。2008年,瑞士有课题组公布了他们的微型双光子系统,仅重0.9克,并实现了大鼠在体钙成像信号。但其空间分辨率极低,也未实现真正的自由运动下的成像。  2009年,德国有课题组展示了它们的微型双光子系统,其理论分辨率接近大型的双光子显微镜。但其探头较重,扫描速度很慢。  程和平身后,有一支不同寻常的团队,团队中有人研究超快激光器,有人专攻高速电路,有人擅长图像处理,有人能做大数据分析……然而,研究起步阶段,团队中无人具备研制系统性科研设备的经验,技术路线也不确定。  “怎么办?只有一点点地认真做。”程和平给团队立下军令状。  在项目开始的前两年,大家争分夺秒地汲取多学科的营养。在北京大学分子医学研究所300平方米的大仪器联合实验室里,来自机械、光学、生物、电路等研究领域的师生汇聚在一起,交流切磋。每周六上午的集体学习,大家分享一周行业动态,介绍各自研究进展。同时,大量的国内外顶尖专家被邀请来作报告。  引进来的同时,团队也频频走出去。仅2014年,他们就涉足美国、俄罗斯、澳大利亚、西班牙。每去一个地方,大家都会在当天晚上写好总结,发给团队共同学习。空间站双光子显微镜对航天员皮肤表层成像。  一场持续十年的攻关  2017年,团队终于迎来了振奋人心的进展。  在如今北京大学膜生物学国家重点实验室设备研发平台内,一个只有拇指大小、重约2.2克的显微镜探头,被珍藏在实验室深处——这是团队于2017年成功研制的第一台微型化双光子显微镜的核心部件。  这台显微镜可以实现高时空分辨微型化成像,能实时记录数十个神经元、上千个神经突触动态信号。这些突破性的进展,使其入选2017年中国科学十大进展。  4年后,该团队推出微型化双光子显微镜的2.0版本,其成像视野扩大到初代显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像。  今年2月,团队又发布了他们研制的微型化三光子显微镜。该显微镜能直接透过大脑皮层和胼胝体,首次实现对自由行为中小鼠的大脑全皮层和海马神经元功能成像,神经元钙信号最大成像深度可达1.2毫米,血管成像深度可达1.4毫米。  致广大而尽精微。10年,微型化双光子显微镜完成了从高清成像,向更广、更深成像的科研布局。然而,这在研制一款“大国重器”的探索之旅中,也许仅仅是开始。  2016年,当第一代微型化双光子显微镜的研究即将“破土”时,一个声音再次在程和平脑海里回响,“如果投入‘一吨百元大钞’,只是交付3台显微镜,性价比太低了。应该先让中国科研院所、企业的实验室用起来,做出领先国际的研究,再向国际市场推广。”  让程和平下定决心办公司的,还有3年来培养起来的一支团队。“国家投入这么大,让我们长了一身本事,项目结题后如果团队散了就太可惜了。”程和平说。  办公司让研究成果产品化,成为程和平团队的共识。2016年,程和平团队创立了北京超维景生物科技有限公司(以下简称超维景)。  一个新时代开启了。  一场自立自强的产业突围  当科学技术的光芒照进产业,不仅砥砺技术创新的成色,也可以点亮一片“暗夜”。要将高端精密科研仪器产品化,元器件的可靠性、稳定性必须过硬。  微型物镜,是微型化双光子显微镜的关键核心零部件。团队核心成员、北京大学未来技术学院特聘副研究员吴润龙记得,最初做原理样机时,团队从国外一家公司进口微型物镜。  但当团队进入显微镜产品化阶段后,对方的发展战略也发生变化。“对方要求我们购买他们合作伙伴的单光子显微镜系统,物镜不再单独售卖,而这个系统的价格要100多万元。代价太大,我们不能被‘卡脖子’。”吴润龙说,自此,团队开始自行设计高数值孔径的微型物镜,并联合国内企业加工,在超维景进行装配和测试。  自胜者强。2018年,赵春竹到北京大学未来技术学院做博士后研究,为助力物镜的自主研发按下了快进键。  “经过三代技术攻关,我们已经掌握了高端物镜的设计技术。但在自主设计、加工的基础上,还要形成高精度自主装配的流程和方法。微型物镜由多个镜片叠加而成,每片直径约3毫米,最初我们将所有的镜片一起装配完后,统一调试,但发现精度相差太大。后来,我们优化了装调工艺,每安装一片镜片,都用仪器检测光轴偏移量、焦距等参数。由于物镜直径太小,一开始,调整几微米的误差,都要耗时一两天。”赵春竹回忆,最艰难的时候,大家几乎绝望。但抱着不破楼兰终不还的信念,大家几微米几微米地死磕,想办法迭代技术,最终攻克了高端微型物镜装配技术。  光纤是显微镜微型化的另一个瓶颈。团队成员、北大电子学院副教授王爱民设计了一款蜂窝状的空芯光子带隙光纤,让激光通过光纤传输到微型化探头的过程中,脉冲不发生畸变、能量几乎不损耗,以有效激发小动物体内的荧光分子。  但让王爱民措手不及的是,设计方案有了,国内却没有厂家能生产这种光纤。“我们最初找了一家外国公司订制。但一年后,这家公司提出翻番的价格,每米光纤的价格接近万元,仅光纤的成本就增加了几百万元。”他回忆说,团队被“逼上梁山”,转而联袂上海光机所的一位青年学者一起摸索加工工艺,进行国产化。  在北京大学未来技术学院教授陈良怡看来,科研仪器国产化过程中的突围,也将带动应用基础研究与产业发展“双向奔赴”。  “我们的论文发表后,很多技术被公开了,但很多人做重复实验时无法再现,是因为加工中有很多细节问题难以解决,这些细节在学术论文中也难以呈现。”陈良怡说,如果想将这款显微镜尽快用起来,就要将科研成果产品化,带动产业的发展。而产品化的过程,也促使他们思考,如何用成像技术推动神经科学、脑科学乃至整个生命科学基础研究的发展。  目前,超维景研制的微型化双光子显微镜已服务了150余家国内实验室,年平均销售额达5000万元。今年,公司还将拓展国际市场。  一项世界首创的应用  10年前项目启动时,程和平抱着“从幼儿园开始读一个博士学位”的心态,研制微型化双光子显微镜。  时光浩荡向前,多年的厉兵秣马是否能支撑国家重大战略需求?团队将答卷写进宇宙苍穹。  2019年,在中国载人航天工程办公室大力支持下,程和平团队、中国航天员科研训练中心李英贤团队、北京航空航天大学冯丽爽团队联合相关企业及院所,组建了空间站双光子显微镜项目团队,由程和平担任总负责人。  “中国要发展载人航天、要研究生命科学,太空是一个难得的实验室。在失重环境下,人体细胞是如何完成新陈代谢的,大脑的神经元又将发生什么变化,都是很好的研究课题。双光子显微镜成像深度深,可以帮助我们逐层扫描、分析航天员的细胞结构和代谢成分信息。”程和平说。  2022年9月,空间站双光子显微镜研制成功。当年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。  今年2月上旬的一天,空间站双光子显微镜终于开机。坐在中国航天员科研训练中心看到航天员操作画面传回,程和平松了一口气:“终于成功了。”  消息传来,整个团队沸腾了。“这辈子能做这么一件事情,值了!”王爱民至今回忆起来仍激动不已。  鲜为人知的是,为了达到航天应用的标准,显微镜经历了一次次蜕变。  精密的显微镜,要能承受飞船发射时的剧烈振动,这要求它足够抗振。“最初,激光器的核心部件被振得粉碎。”北京大学未来技术学院助理研究员王俊杰记得,为了让显微镜“强健筋骨”,他们将激光器的核心部件设计为固态结构,以增强激光器的机械强度,同时在激光器外部增加了减震装置,相当于给其上了一层保险。  超维景的团队也参与进来。超维景超快激光事业部经理陈燕川介绍,他们将激光器核心部件置于-40℃至80℃的温度下循环试验,使部件在短期内反复承受极端高低温变化应力以及极端温度交替突变的影响,以排查隐患。为了确保万无一失,团队还制作多组关键部件样品,进行加量级、破坏性的振动冲击试验,保证显微镜能满足航天发射环境各种极端条件的挑战。  最终,团队实现了多项突破:首次在轨验证实验实现了世界上首次双光子显微镜在轨正常运行,国内首次实现飞秒激光器在轨正常运行,国际上首次在轨、在体观测航天员细胞结构和代谢成分信息。  一个梦想的启航  从突破理论研究瓶颈,到试水产业蓝海,再到支撑国家重大战略需求,程和平团队将科技创新的底色写在从技术创新到产业应用的跃迁中。如今,一个更宏大的构想正在渐次舒展。  在南京江北新区,成立近4年的北大分子医学南京转化研究院(以下简称转化院),已搭建起高端脑成像的公共技术服务平台“南京脑观象台”。后者可以提供微型化双光子显微镜、超灵敏结构光超分辨显微镜及高速三维扫描荧光成像系统等设备,帮助科研团队获得从大脑突触、神经元集群、神经环路,再到全脑水平的全景式脑功能成像。  科研团队的身后,还有一群人与他们并肩作战。  几乎每天,实验员陈雪莉都要为小鼠注入观测所需的荧光蛋白,对小鼠进行行为训练。  当她为小鼠戴上显微镜探头后,一旁的屏幕上会立即呈现出小鼠大脑的钙活动影像。  “脑观象台有一支技术团队。对于遴选通过的研究项目,技术团队会与科研团队一起制订实验计划,为学者们制备、训练小鼠,采集小鼠的脑活动成像数据,再将小鼠的行为学数据和脑活动数据匹配,供科研人员分析小鼠在表现出某种行为时,大脑发生了什么变化。”转化院副院长赵婷解释,脑观象台希望将学者们从繁琐高难的实验技术细节中解放出来,加速从理论设想到实验发现的进程。  凭借南京脑观象台成像技术的支持,科学家们已经开始收获惊喜、成果迭出:小鼠有喜新厌旧的行为,而孤独症小鼠却存在这一行为缺陷;清醒状态下小鼠癫痫发作时,神经元异常放电……  赵婷介绍,如今,脑观象台已经服务了100多家单位的180余个课题组,开机时间累计超过2万小时。脑观象台与江北新区联合发起的两期“探索计划”,也已累计支持48项课题研究。  十年春华秋实。一颗在未名湖畔种下的种子,如今正在千里之外的扬子江畔落地生根、开枝散叶,荫泽全国的脑科学、神经科学等领域的研究。  40多年前,少年程和平曾在他的笔记本上写下带有科幻色彩的理想——“做一款思维记录器”。  跨越万水千山,如今,理想照进现实,中国脑科学研究风华正茂。
  • 赛默飞收购微型核磁共振波谱仪制造商picoSpin
    2012年12月21日,全球科学服务领域的领导者——赛默飞世尔科技公司宣布,其已经完成了对全球首款微型核磁共振波谱仪(NMR)制造者——picoSpin公司的收购交易。 picoSpin-45 NMR   2010年11月,picoSpin公司宣布推出全球首款微型核磁共振波谱仪——picoSpin-45 NMR。与以往的核磁共振波谱仪相比,picoSpin-45 NMR装置只有鞋盒大小,体积缩小了100倍左右,消除了核磁共振波谱仪成本和规模的障碍,极大地扩大了核磁共振波谱仪的应用范围。此外,该产品的建议零售价20,000美元,价格仅是传统核磁共振波谱仪成本的一小部分,便宜了近90%。据悉如此“物美价廉”的picoSpin-45 NMR已获得了2012年的R&D 100大奖。picoSpin-45 NMR是一个强大的化学分析工具,分辨率可达100ppb,可以应用在食品制造、医药、石油化工、法医、生物燃料、化妆品及化学教育等行业,主要用于分析液体样品。   该交易增强了赛默飞世尔光谱解决方案的产品组合,从互补型的傅里叶变换光谱仪(FT-IR)和紫外可见吸收光谱仪(UV-Vis),扩展至全范围的气体、液体、同位素比率和电感耦合等离子体质谱仪。同时,此次收购也使赛默飞世尔提供给本科生和研究生的化学实验室,以及做行业分析的质量保证和质量控制实验室的一系列分析工具得以扩展。   赛默飞世尔科技公司分子光谱学部门副总裁兼总经理John Sos表示:“在我们现有的光谱能力上,picoSpin公司独特的产品加入将使我们能够提供更广泛的一套化学分析,为那些受NMR实用性限制的客户创造价值。”   据了解,picoSpin将被整合到赛默飞世尔科技公司分析技术部门中的化学分析业务。同时,赛默飞世尔科技并不期望这次交易能够对2012年的财务业绩产生重大影响。(编译:刘玉兰)
  • 微型光谱仪应用难点:采样、算法和数据库
    自1992年发明世界上第一台微型光纤光谱仪以来,经过20多年的发展,它已经被广泛应用在包括环保,食品安全,国土安全,新能源,军事,半导体,化工,医药,航天,农业,在内的几乎所有的行业。这是由光和物质的相互作用的普遍性所决定的。  详细应用案例请见:微型光纤光谱仪可以应用于哪些领域?  这些案列也反映出了市场需要解决什么问题,以及为什么微型光谱仪能够解决这个问题?  总体来说,微型光纤光谱仪应用的难点在以下两个环节,这是应用研究所需要解决的问题。  采样:对于每一个特定的实际应用场景都有其具体的困难需要解决,如何从组分复杂的样品中,萃取,分离,富集微量待测物,如何排除气泡,杂质,颗粒物对测试的干扰。  算法和数据库:如何从光谱数据中提取出有用的信息,特别是当实验所得到的光谱是由样品中各种组分与光作用的综合结果时,化学计量学算法,建立数据库是极端重要的,而且又花钱,又耗时。  此外,急需跨行业,跨领域的合作:正是由于光和物质作用的普遍性,决定了光谱应用领域的分散性,许多应用都需要跨领域的知识。熟悉光学的人对基因,核酸非常陌生 熟悉分子生物学的人则害怕看仪器结构的方框图。不同领域专家的交流和合作才能知道其它行业存在什么问题,才能找到解决问题的方法。
  • 让需求面对面,第三届小微型近红外光谱仪器研发与应用交流会在镇江召开
    仪器信息网讯 2023年3月25-26日,由江苏大学食品与生物工程学院、近红外光谱技术服务平台主办,近红外光谱苏沪工作站、江苏科技大学粮食学院协办,中国仪器仪表学会近红外光谱分会提供技术支持的“第三届小微型近红外光谱仪器研发与应用交流会”在江苏省镇江市召开,吸引了160余人参会。仪器信息网作为会议支持媒体参加了本次会议。会议现场江苏大学食品与生物工程学院陈斌教授主持开幕式并介绍了大会情况,中国仪器仪表学会近红外光谱分会秘书长、教授级高工褚小立,江苏大学食品与生物工程学院党委书记万由令博士发表了致辞。中国仪器仪表学会近红外光谱分会秘书长 褚小立 教授级高工致辞中国仪器仪表学会近红外光谱分会秘书长、教授级高工褚小立在致辞中表示,微型/便携式光谱仪和工业在线分析仪是近红外光谱腾飞的两个翅膀,特别是小微型的光谱仪正在改变或即将改变人们的生产生活方式。从另一个层面而言,小微型光谱仪的用户可能不是专业的分析工作者,而是各行各业的普通工作者,基于此,小微型光谱仪有着明显的特殊性,其研制面临极强的挑战性。此外,褚小立秘书长还提到,党中央和国家相关部委都密集发布了很多利好的消息,近红外光谱技术正在迎接着千载难逢的新机遇,希望各位同仁继续努力,抓住风口,用实打实的成果迎接明年的第十届全国近红外光谱学术会议和陆婉珍院士诞辰100周年!江苏大学食品与生物工程学院党委书记 万由令 博士致辞江苏大学食品与生物工程学院党委书记万由令博士在致辞中表示,近年来,国内涌现出了许多采用各种原理研发的小微型近红外光谱仪器,在一些领域得到了广泛的应用。不过,现在我国红外光谱仪器研发方面相比很多发达国家还有一些弱项,特别是核心元器件很多还是依靠进口。希望通过这次会议,各产学研单位可以加强合作,在引进、吸收、创新等方面加速国产仪器的发展,早日拥有核心自主知识产权,让仪器仪表,特别是近红外光谱仪器在国内仪器市场占有一席之地,更好的引领我国智能制造工业的数字化转型。会徽 揭幕让需求面对面,本次会议安排了多位代表分别从仪器生产商及用户两个角度分享最新的技术、方法、标准、应用,以及当前的需求和未来的发展趋势等,旨在给近红外光谱相关从业者搭建一个自由交流的平台,创造一个面对面对话的机会,为中国近红外光谱分析技术的发展贡献每一位“近红外光谱人”的力量。山东大学 臧恒昌教授 主持会议仪器生产商发言各大企业在分享的过程中,不仅介绍了最新的产品和技术,还从多个角度对小微型近红外光谱仪器的研发思路、技术指标、数据标准化、网络化等进行了探讨,引发了大家的思考和关注。其中,上海昊量光电设备有限公司王亮经理介绍了低成本光波导型微型近红外光谱仪;奥谱天成(厦门)光电有限公司董事长刘鸿飞分享了国产中短波红外光谱仪的研制及其应用;杭州谱洋光电科技有限公司总经理石清海介绍了在线近红外水份仪应用案例;无锡迅杰光远科技有限公司技术总监兰树明分享了IAS-PAT100 在线分析仪设计与应用;滨松光子学(商贸)中国有限公司业务经理张顺斌展示了滨松近红外光谱技术与应用示例;天津九光科技发展有限责任公司总经理倪勇与大家探讨了“便携的”实验室近红外仪器的研发与应用;深圳谱研互联科技有限公司总经理沈玉杰就微型近红外光谱仪的技术指标与大家进行了讨论;北京与光科技有限公司技术经理朱志强介绍了超表面结构微型光谱仪及其应用;上海创和亿电子科技发展有限公司副总经理石超提出了便携近红外应用在线化属性的几点思考;北京北分瑞利分析仪器(集团)有限责任公司产品总监田燕龙介绍了傅立叶变换红外气体分析仪;ABB 近红外主管邹贤勇经理分享了“ABB OEM-KIT 助力开发您的FTIR 分析仪”;福斯华(北京)科贸有限公司鄂东梅经理给大家展示了FOSS 云服务数字化解决方案;蓝星智云(山东)智能科技有限公司艾宏高工分享了光谱和模型文件格式标准化。云南中烟工业有限责任公司 王家俊 教授级高工 主持会议应用方需求发言作为一类应用导向型的技术,近红外光谱的发展与用户的应用需求紧密关联。不同的应用场景对仪器有什么不同的需求?这些需求又将会衍生出哪些仪器技术的进步?7位专家从烟叶、香精香料、制药、粮食、植物提取物、火炸药、果泥加工等多个应用场景分别分享了最新应用进展,并且针对当前近红外的现状提出了切实的建议与需求。其中,云南中烟工业有限责任公司王家俊教授级高工介绍了烟叶收购质量管控中的应用;常州工学院张建平教授分享了数字化调香技术的思考与探索;中国食品药品检验院尹利辉主任讲述了近红外光谱仪器在药品CMC 中的应用进展;中国粮食科学研究院韩逸陶副研究员分享了粮食快检产品评价验证及应用;晨光生物科技集团股份有限责任公司质量主管石文杰介绍了微型光谱仪在植物提取生产过程控制中的应用;西安近代化学研究所火炸药一级计量站张皋总工介绍了科学仪器设备验证评价中心并提出了近红外技术在火炸药行业的需求;南京农业大学兰维杰副教授分享了近红外光谱技术对果泥加工品质快速评估的优缺点分析及应用展望。在此过程中,多位专家在分享的同时特别提出了目前近红外应用存在的问题,比如王家俊教授级高工提出应重视一些采样附件的光学性能,规范相关光学材料的性能指标;近红外检测分析的网络化信息处理能力有待提升;仪器操作指南需要进一步完善等。不仅如此,值得一提的是,本次会议多位专家也分享了近红外分析方法未来极具诱惑的应用前景和市场机会。其中,尹利辉主任指出,近红外是目前应用最广泛且最有前景的过程分析技术工具,近年来欧洲EMA和美国FDA都在大力推行在PAT中应用近红外技术,而且中国药典也新增了过程控制附录(含红外和近红外方法);韩逸陶副研究员分享到,中储粮正在做粮食收储过程中的近红外方法评价,其指出,目前近红外光谱方法在全国粮食收储系统,特别是品质评价方面使用还比较少,基于近红外技术的优势,未来该方面的应用可以逐步加强。江苏大学食品与生物工程学院 陈斌 教授标准是产业发展的必由之路,为了规范傅立叶变换近红外光谱仪器的性能测定方法,确保仪器性能的可靠性,中国仪器仪表学会于2020年正式立项《傅里叶变换近红外光谱仪通用技术规范》团体标准。经过3年的筹备工作,该标准于2023年2月8日正式发布,对我国近红外光谱分析技术及其应用的可持续发展具有重要意义。本次会议中,江苏大学食品与生物工程学院陈斌教授特别介绍了《傅里叶变换近红外光谱仪器技术通则》团体标准的制定和颁布情况,并同大家一起探讨了小微型近红外光谱仪器的发展思路。陈斌教授介绍道,当前小微型近红外仪器已出现了井喷的前兆,比如,元器件日新月异的技术催助着仪器的开发;智能制造、数字化转型的刚性需求,智慧生活、智慧健康、智慧家庭新要求,国产化替代的刚性需求等,推动着市场的发展。同时,他指出未来市场拓展的几个重要方向:小型近红外仪器是目前国内错位发展的机遇;在线检测装置的开发是新的热点,可以为智能制造提供待测物质的化学组分感知;低价位的普及型仪器大有可为,或可变仪器为家电;工业在线需要应用简单、安装方便、使用可靠稳定,变仪器为传感器的理念值得探索;台间差问题需要彻底解决,智能建模值得思考等。原中国仪器仪表学会近红外光谱分会秘书长,原中国人民解放军后勤总后油料所教授级高工刘慧颖发言华东理工大学 杜一平教授 发言最后,华东理工大学杜一平教授进行了总结发言,就近红外光谱技术的多方合作,以及未来传承表达了期许。除此之外,本次会议还特别设置了讨论环节,各应用单位和仪器企业根据具体应用需求、互动对接。交流现场
  • 大热门?国外微型光谱仪最新研发与投资进展
    利用光谱扫描食品、药品成分,并利用智能手机进行数据分析的微型光谱仪正在兴起,而这类小型仪器亦有希望在医疗、健康诊断领域发挥作用。目前,在国外有数种此类产品正在研发之中。 TellSpec检测巧克力   TellSpec,由创业者Isabel Hoffman与来自英国约克大学的数学教授Stephen Watson共同研发。TellSpec使用了拉曼光谱技术,同时包括一个云端算法与一个手机应用,手持设备大小为8.5cmx5.5cmx1.6cm,重80g。当按住机身上的按钮,TellSpec会向待测食物发出一束5mW低功率激光,并利用内置光谱仪对反射回来的激光进行测量,随后会将数据通过移动设备或电脑上传至云端,服务器利用其分析引擎获取食物中的成分,最终将结果传回设备。据称,TellSpec能在20秒内完成分析。在2013年11月,TellSpec还没有可正常工作的产品原型时,就已经成功的在美国第二大众筹平台Indiegogo上筹得19万美元,远超其10万美元的筹款目标。目前,研发团队正在致力于光谱仪的微型化及降低产品价格。 TellSpec获得的投资(注:网页空白处为youtube视频,因此国内访问时无法显示)   在发出本文之前,我们又查询了一下TellSpec的筹款情况,发现它已获得38.6万美元投资。 SCiO光谱仪的三代原型样机,可以发现变得越来越小   由Consumer Physics公司研发的SCiO光谱仪也在不久前登录美国最大众筹平台Kickstarter开始筹资。SCiO内置了光谱传感器,通过LED光源来扫描物体,促进分子振动,通过波长反射数据来进行检测。数据的反馈也非常方便,SCiO创建了一个云数据库,能够对上传数据进行比对,最终通过应用程序呈现给用户一个准确的数据。该仪器预计售价150美元(约合人民币940元),能够扫描各种材料的分子信息,主要用于检测食物和药品的成分,让用户自行掌握食品、药品健康。如果一切顺利,它预计将在2015年正式上市销售。 SCiO检测水果样品并在安卓手机上生成检测结果 SCiO检测水果样品并在安卓手机上生成检测结果   在实际测试中,用SCiO尝试扫描一块奶酪,手机端应用程序检测出了奶酪包含的脂肪、碳水化合物、蛋白质和热量等物质,非常方便。但当使用SCiO扫描西红柿时,传感器并不能识别它,所以无法生成一个标准的西红柿养分信息。相对来说,扫描蛋白质是最困难的,其次是碳水化合物,脂肪则是最为简单的,但传感器目前还无法完美解决类似西红柿果肉这样的类透明材质,这是需要下一步解决的问题。 拿在手中的SCiO   研发人员表示,SCiO具有很大潜力,最终成品将具备识别生熟、变质的功能,通过建立强大的数据库,甚至可以识别出包含不良添加剂的牛奶(如臭名昭彰的三聚氰胺)。当然,SCiO如果要做到精准、权威,不仅仅要在传感器上下功夫,数据也不能仅仅来源于用户收集,还需要一个经过权威机构认证的资质,这是开发人员可以努力的方向。SCiO公司还计划开发软件API,让第三方人员能够添加更多数据库,帮助消费者来扫描更多产品,包括检测酒品的酒精含量、化妆品成分、奢侈品真伪等等。   Consumer Physics的CEO Dror Sharon认为,SCiO与TellSpec的不同之处在于:&ldquo 首先,我们有一个完整的、多学科的团队 其次,我们自己拥有传感器技术,他们只能用别人的 最后,他们使用了不同类型的光谱和交换,这会花他们很多时间来实现。&rdquo SCiO获得的筹资   我们也查询了一下SCiO的筹款情况,发现它在筹款还未正式开始的情况下,就已获得86.7万美元投资。 Jack Andraka的拉曼光谱仪设计方案   在2013年ISEF大会上,因研发早期胰腺癌纳米试纸检测法而出名的美国少年研究人员Jack Andraka也曾展示了一种用于探测爆炸物、环境污染甚至可以检测癌症的手持式拉曼光谱仪。普通的拉曼光谱仪体积庞大而且售价接近10万美元,仅高能量激光器就要花费4万美元。Andraka的设计是利用现成的激光指示器,并用iPhone的摄像头代替光谱仪上的光电探测器,达到和传统的拉曼光谱仪比较接近的结果,但只要15美元,只有手机的大小。 综合编译:魏昕
  • 2021年全球小型/微型光谱仪市场将达3亿美元
    p   日前,Research and Markets发布最新研究报告,报告内容显示,与整个分子光谱系统的市场增长状况相比,小型化光谱仪器的增长速度更高。预计,2015-2021年之间,整个分子光谱市场年增长率为7%,而小型/微型光谱仪的复合年增长率将达11%,2021年市场将达3亿美元。 /p p   小型/微型光谱仪,主要用于实验室之外的环境,比如工业在线、农业或环境现场应用,医疗应用时的即时检测,甚至是消费类产品等设任何领域。随着尺寸的减小,紧凑型光谱仪的使用更加方便,成本更低,响应时间也更短。 /p p   然而,为了达到工业和消费市场的需求,开发面向应用的产品是至关重要的。其中,硬件并不是系统中唯一重要的部分,数据处理、数据解析、人机交互界面、产品设计等方面的要求也很高,尤其是这些产品的用户并非光谱专家。 /p p   报告中,预计将呈现高增长的市场包括:医药QA/QC、食品和饮料、农业、环境检测、医疗POC和消费者应用(智能手机光谱、食品测试等)。 /p p   要很好的满足这些领域的应用,一些技术上的突破是必要的,最近的研究就利用了MEMS(微机电系统)、MOEMS(微光机电系统)、微镜阵列、线性渐变滤光片、集成光子等新的技术,从而降低光谱分析仪的成本和尺寸,同时提高了性能,增强抗造性和产量。 /p p   该报告中提到的小型/微型光谱仪的厂家包括Avantes、B& amp W Tek、、Buchi、Horiba、Ocean Optics、Stellarnet、ThermoFisher、Zeiss等。 /p
  • 食品(奶粉、牛奶、果蔬等)中高氯酸盐的检测
    食品(奶粉、牛奶、果蔬、矿泉水、玉米、小麦淀粉等)中高氯酸盐的检测 根据美国FDA以及EPA方法 高氯酸盐为无色晶体。在高温下,高氯酸盐有较强的氧化性。可由氯酸盐热分解或电解氧化氯酸盐制得。高氯酸镁和高氯酸钡的去水作用很强,可制高效脱水剂。高氯酸钠可做除草剂。高氯酸钾可制炸药。高氯酸盐是冷战时期火箭和导弹燃料常用的化学物质,多种研究显示,高氯酸盐是一种强力甲状腺毒素,可能影响胎儿和婴儿大脑发育。美国FDA和EPA方法采用IC-ESI/MS离子色谱-质谱检测各种食品中的高氯酸盐含量,内标法定量。 货号 名称 品牌 规格 报价(RMB) CFFD-ICCLO41-1# 高氯酸盐离子色谱标准溶液,1000ug/ml溶于水 进口 125ml 1060.00 CFFD-ICCLO41-5 高氯酸盐离子色谱标准溶液,1000ug/ml溶于水 进口 500ml 2180.00 SBAA-Ag# Ag离子小柱,1mL Anpel 10支/包 398.00 SBAA-H# H离子小柱,1mL Anpel 10支/包 298.00 SBAA-Ba# Ba离子小柱,1mL Anpel 10支/包 398.00 SBEQ-CA1654# CNWBOND Carbon-GCB石墨化碳黑SPE小柱,500mg/6mL CNW 30支/盒 1129.00 LAEB-F6995243 NI-424阴离子色谱柱100*4.6mm Shodex 根 13581.00 LBEB-F6709616 NI-G保护柱10*4.6mm Shodex 根 4415.00 DAAQ-6-1006-510 万通离子色谱柱,SUPP5-100, 4-mm I.D. X 100-mm length Metrohm 根 19975.80 DAAQ-6-1006-500# 万通离子色谱保护柱,ASUPP-4/5 Guard 4-mm I.D Metrohm 根 2792.40
  • “100家实验室”专题:访大连化物所微型仪器课题组(105组)实验室、微流控芯片课题组实验室
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,将用一年半的时间对不同行业有代表性的“100个实验室”进行走访参观。2008年6月25日,仪器信息网工作人员参观访问了本次活动的第四站:中国科学院大连化学物理研究所微型仪器课题组(105组)实验室、微流控芯片课题组实验室。 中国科学院大连化学物理研究所 中国科学院大连化学物理研究所,创建于1949年3月19日,原名为“大连大学科学研究所”,是一个应用研究与基础研究并重、具有较强技术开发实力、以承担国家和企业重大项目为主的化学化工研究所;其在中科院38个高技术研究所中名列前茅,先后有14位科学家当选为中国科学院和中国工程院院士,与三十多个国家建立了广泛的科技合作和交流关系。相关情况请见附件。 微型仪器课题组(105组)实验室 微型仪器课题组(105组)实验室一角 6月25日下午,大连化物所微型仪器课题组成员王华博士热情接待了仪器信息网到访人员;王华博士首先介绍了微型仪器课题组的基本情况:微型仪器课题组,又称105组,成立于1963年,上世纪九十年代以来,取得了科学院科技发明二等奖、自然科学二等奖、辽宁省科技发明一等奖等众多奖项,先后研制出有自主知识产权的高纯氩气、高纯氧气等高纯气体分析仪并且实现了产业化,研制出有自主知识产权的微型气相色谱仪、4种类型样品预处理技术和装置,研制出性能指标达到国际先进水平的激光诱导荧光检测器以及毛细管液相色谱-高温气相色谱联用仪等。 目前,微型仪器课题组(105组)的主要研究课题包括:微型液相色谱、泵系统和检测器,特种传感器,毛细管液相色谱-气相色谱联用技术,工业在线分析仪器,水中有机物样品预处理技术,环境和食品中农药残留样品预处理技术,化学传感器,色谱柱制备技术,毛细管液相色谱/电色谱整体柱制备技术等。 王华博士为仪器信息网到访人员介绍实验室仪器 王华博士称,目前大连化物所现设十大研究室,其中,基础研究类2个,重大项目类3个,应用研究类5个;微型仪器课题组(105组)是应用研究类仪器分析化学研究室下属的一个课题组,其课题组组长是由仪器分析化学研究室主任、博士生导师关亚风研究员兼任;微型仪器课题组实验室目前有毛细管液相-质谱联用仪、气相色谱-质谱联用仪、气相色谱仪、毛细管液相色谱仪、毛细管二维液相色谱、液相色谱仪、等离子体原子发射光谱仪、原子吸收光谱仪等多台高精度的分析检测仪器,以及大量的实验室辅助设备;总资产在1100多万元,实验室面积280多平方米。 Agilent 7890A/5975C 气-质联用仪 岛津 GCMS-QP2010气相色谱质谱联用仪 Finnigan Polaris Q 气相色谱-质谱联用仪 Waters 的CapLC-ESI-Q-Tof Micro™ 毛细管液相-串级质谱联用仪 IRIS Advantage ICP-AES等离子体原子发射光谱仪 Micro-Tech Scientific毛细管二维液相色谱仪 PE-AutoSystem气相色谱仪 Varian 3800气相色谱仪 Agilent 6890N气相色谱仪 当问及科研项目产业化以及“科分”品牌相关情况时,王华博士表示,课题组相关科研项目产业化主要体现在“科分”品牌系列产品研制开发上,凭借着大连化物所雄厚的科研力量和坚实的技术积累,课题组几十年一直致力于色谱、分析领域的研究和开发,尤其是在国家科委和中科院的九五科技攻关课题支持下,研制开发出的“微型气相色谱仪”并开始商品化就是其中一个典型。 据了解,目前“科分”品牌系列产品有高性能气相毛细管柱、气相色谱填充柱、毛细管液相色谱柱、零点空气发生器、微型气相色谱、氢气含量分析仪、工业在线总烃分析仪、高效填充毛细管液相—高温气相色谱联用仪、高可靠工业小型专用色谱等。 从已有的相关资料信息以及在微型仪器课题组(105组)实验室的所见所闻,尤其是王华博士的精彩讲解,仪器信息网到访人员深有体会:微型仪器课题组(105组)的确是大连化物所中最具综合实力的课题组之一。 微流控芯片课题组实验室 在参观微型仪器课题组(105组)实验室之后,仪器信息网工作人员一行又拜访了微流控芯片课题组林炳承研究员,林老师热情接待了仪器信息网到访人员。 林炳承研究员与仪器信息网到访人员交谈 在微流控芯片课题组成员解华博士的带领下,仪器信息网到访人员参观了课题组实验室,解华博士介绍道:课题组是90年代初起开始从事生命科学中的毛细管电泳研究,在90年代后期才转向微流控芯片研究,根据生物医学领域需求,以微流控芯片为主要平台,在细胞和分子层面,开展以不同单元技术灵活组合和规模集成为特征的疾病诊断和药物筛选等方面的工作。 微流控芯片课题组实验室一角 微流控芯片紫外检测仪 解华博士进一步表示,微流控芯片课题组实验室,可能与很多实验室有所不同,通用性仪器不多,基本上都是自己搭建、直接定制或二次研制的仪器;目前,课题组已具备了自行设计、制造多种不同材料的芯片和不同检测器的芯片工作站的能力,掌握了化学和生物实验室主要单元操作的芯片化及其集成技术,建立了具有自主知识产权,兼有生物医学特色的微流控芯片体系,并用于分子和细胞层次的实际样品,实现了微流控芯片的初级功能化。 解华博士为仪器信息网到访人员讲解微流控芯片分析技术 微流控芯片分析技术荣获“2007年度辽宁省技术发明一等奖” 通过解华博士的详细讲解,不难理解课题组的微流控芯片分析技术相对成熟,但实现其产品产业化进展又如何呢。针对这一点,解华博士谈到,之前课题组也与相关公司谈过微流控芯片项目相关合作,但不是很成功,目前课题组准备依托中科院的支持而自己做,其产品产业化基地就在“中科院大连科技创新园”建设计划之一的河口“研发孵化园”。 据了解,“中科院大连科技创新园”是中国科学院与大连市政府开展全面科技合作的一个重要载体,以科技创新、中试孵化和成果转移为主要内容;其中,100亩“研发孵化园”建在大连河口,主要内容为中科院所属院所的研发、中试、孵化项目及国家工程中心建设等;300亩“产业化园”建在旅顺,重点建设中科院所属院所成熟技术转化和产业化项目;500亩“海洋生态园”由长海县提供,重点开展海洋生态、海洋资源与能源、海产养殖等研发示范项目。 附: 大连化物所简介PPT http://www.instrument.com.cn/news/doc/dalianshenghuasuo.rar
  • 全球首个微型核磁共振波谱仪问世
    2010年11月10日,picoSpin公司宣布推出全球首款微型核磁共振波谱仪picoSpin-45 NMR。与以往的核磁共振波谱仪相比,picoSpin-45 NMR体积小了100倍左右,价格便宜近90%。picoSpin-45 NMR是一个强大的化学分析工具,分辨率可达100ppb,其可以应用在食品制造、医药、石油化工、法医、生物燃料、化妆品及化学教育等行业,主要用于分析液体样品。 picoSpin-45 NMR   picoSpin-45 NMR装置只有鞋盒大小,其消除了核磁共振波谱仪成本和规模的障碍,极大地扩大了核磁共振波谱仪的应用范围。 45兆赫(MHz)的picoSpin NMR可以在不足40微升的样本中解决质子化学转移问题。新仪器是一个完整的液相质子核磁共振系统,包括永磁体、发射器、接收器、数据采集、可编程脉冲序列发生器、以太网接口和直观的基于Web的控制软件。   picoSpin 公司总裁兼首席执行官Price博士表示,“核磁共振波谱仪是最强大的化学分析工具.我们设计的产品,真正改变了核磁共振波谱仪的前景。凭借低价格和紧凑的外形,picoSpin -45 NMR可以应用在过去认为不可能应用的领域。现在,您可以在您的实验室台上就拥有一台核磁共振波谱仪。您可以在工厂内设置多个单元,通过一个鼠标就可以持续监测和控制过程流体。您的学生可以在化学实验室和研究项目中实际操作核磁共振波谱仪。”
  • 海谱纳米光学:全球首款微型光谱芯片正式量产
    物理世界的数字化时代正奔涌而来。2D、3D视觉技术将物体的颜色、形状、大小、尺寸、位置等信息转换为AI时代的大数据,但物质成分的数字化进程却停步不前。如今,可解码万物“指纹”的革命性视觉成像技术—高光谱成像正打破这一僵局。高光谱成像突破人眼限制,可实现万物成分检测,为机器视觉提供更真实、更准确的物理世界信息,为人类提供更高维度观察世界的方式。近日,《南方日报》等媒体持续聚焦海谱纳米光学(以下简称“海谱”)微型高光谱成像MEMS芯片及快速增长的高光谱成像市场。从专注研发到高光谱产品的工程化、市场化,海谱跨过创业公司“死亡之谷”的背后,折射的是国产MEMS芯片在全球高端芯片竞技场的突围。从深圳市海谱纳米光学科技有限公司(Hypernano,简称海谱)获悉,2022年初,该公司宣布正式全球率先量产了第一代微型高光谱成像MEMS(微机电系统,Micro-Electro-Mechanical System)芯片,高光谱工业相机及高光谱相机模组即将推向市场。▲海谱纳米光学据悉,基于微型高光谱成像MEMS芯片技术,海谱推出的高光谱成像模组在波长精度、拍摄速度、空间分辨率、半峰宽、视场角等专业技术指标上达到全球领先水平,体积比传统光谱相机缩小了近1000倍,是业界尺寸最小的高光谱相机模组。半导体老兵深圳创业跨越“死亡之谷”海谱创始人兼CEO黄锦标介绍,公司于2019年1月创立,以“光谱芯视觉,感知超极限”为使命,专注于高光谱成像技术的设计与研发。▲黄锦标黄锦标毕业于南开大学微电子专业,有着20多年半导体技术和市场经验,曾担任多家半导体公司高管,有着很强的系统开发和市场开拓的经验。而海谱研发团队在MEMS领域拥有近20年的芯片设计与工艺制造经验,团队核心成员包括多名顶尖MEMS专家及深圳孔雀人才。2022年3月,海谱完成数千万元A轮融资,投资方包括昆仑资本、远方资本、湾信资本。业内人士介绍,MEMS芯片最常用的是承担传感功能,在整个大的信息系统里有点类似于人的感官系统。从行业而言,欧美是MEMS产业、技术与产品的发源地,处于全球领先地位,中国MEMS产业起步较晚,MEMS产业还处于发展的起步阶段,我国不仅在精度和敏感度等性能指标上与国外存在巨大差距,应用范围也多局限于中低端领域。因而有芯片创业难,MEMS芯片创业更难的说法。不过,尽管我国MEMS传感器厂商面临诸多挑战,但从上游设计、中游制造、下游封装等领域国产替代的空间巨大。▲海谱微型高光谱成像MEMS芯片正因为身处MEMS产业这一高精尖行业,海谱从成立初期的3年,经历了高科技创业公司所面临的“死亡之谷”考验,即从技术研发到产品量产的种种挑战。“创业公司的技术再领先,也要把它变成一个工程化且可市场化的产品,这个过程有很多坑,只有迈过去,技术才具有商业价值。”黄锦标称。黄锦标介绍,海谱走到去年年底时,最核心的技术芯片开始量产。同时,将芯片应用于相机的相关模组也已准备完毕,相当于公司在技术工程化产品这个初创公司最大的槛,已经迈了过去。填补国内微型高光谱MEMS芯片领域空白说起海谱的技术,首先还要科普一下光谱技术。光谱学始于英国科学家牛顿,是人类借助光认知世界的重要方式,地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为可以辨别物质的成分信息。光谱学的最大特色之一,是研究光与物质产生相互作用的学科,通过物理的方法可以获取物体的成分,在应用上可以非接触和非破坏地进行检测。典型的如天文对象、高温物体、放电气体… … 在分子和原子层次上物质作分析研究,主要是用光谱方法。比如人类用光谱相机拍摄遥远星球的表面物质。▲高光谱原理黄锦标介绍,高光谱成像技术则将成像技术与光谱技术相结合,可获取高光谱分辨率的连续、窄波段的图像数据。其原理是将成像技术与光谱技术相结合,在探测目标二维空间信息的同时,获取其每一个空间位置上的光谱信息,从而实现对物质成分的直接检测。物质光谱信息具有指纹特性,即不同的物质拥有不同的光谱,因此高光谱成像为机器视觉的物质感知、识别和分析提供了新路径,是继2D、3D视觉技术之后的下一代革命性视觉成像技术。2019年,海谱在深圳成立后,开启第一款微型高光谱成像MEMS芯片的研发设计与流片。2020年初,海谱宣布正式量产第一代微型高光谱成像MEMS芯片,填补了国内在微型高光谱成像MEMS芯片领域的空白。传统光谱成像设备一般手工组装,存在体积大、价格昂贵、无法批量生产等问题,海谱微型高光谱成像MEMS芯片具备高空间分辨率、高透光率等性能优势,解决了光谱成像设备体积、成本等问题 芯片化量产还可有效降低高光谱成像设备的台间差,实现芯片至整机全自动组装。由此,海谱突破性地实现了MEMS特殊工艺的突破,解决了高光谱成像工业化、低成本和量产化的业界难题,研发能力覆盖芯片设计、光学模组、产品相机、算法研发、完整应用解决方案等高光谱全链条技术,可为全球多领域客户提供一站式高光谱成像解决方案。“传统的光谱成像设备是一个大仪器 海谱的相机模组才一片指甲大,而且更便宜,不管从体积还是价格、便利性都跨越民用的门槛,也是中国在这个细分芯片赛道上做到了世界领先的位置。”黄锦标这样比较。▲高光谱成像技术可检测物质成分芯片产品覆盖全光谱波段,万物皆可测目前,公司已推出几款芯片,形成全光谱覆盖,实现万物皆可测。黄锦标介绍,高光谱成像MEMS芯片及模组可以应用于工业检测、医疗健康、安防环保、食品检测、IOT等多场景。例如在工业检测领域,高光谱技术可在非接触的情况下实现食品检测分拣、质量等级筛选等功能,以往几分钟或数小时的检测结果如今可实时在线获取。在医疗健康,高光谱设备可赋予普通显微镜高光谱视觉能力,同时还可实现癌症筛查、手术辅助成像等功能。在安防环保领域,高光谱技术可对水质、环境进行实时监测,实现对水质的定性、定量观测,实现云图可视化效果。在食品检测领域,高光谱成像技术可对肉类、果蔬、粮油等进行材质分析,检测果蔬的糖度、水分、硬度、酸度等指标,智能分析肉类的新鲜程度。值得留意的是,海谱不仅有硬件团队,也有AI算法团队,这也保证了芯片获取数据后可以计算建模,得到一致性较高的结果。为何一个默默无名的初创科技公司,可以填补芯片产业空白,实现全球技术领先?黄锦标介绍,高光谱成像MEMS芯片是一个多学科的技术突破,不单单涉及微电子,还有化学、材料、机械、光学等。但是,公司一直聚焦于高光谱成像技术这一细分领域,而且公司核心研发团队此前20年专注于该细分技术的研发,有着世界领先的技术沉淀。“中国芯片暂时落后于国外,实际上差在积累不够,除了资本、政策和市场加持,需要很多科研人员、工程师长年累月地在实验室和芯片产线上辛勤付出,这样才有领先技术突破。”黄锦标称,作为一名90年代从大学毕业后进入半导体行业的老兵,见证了深圳20来年半导体行业的萌生、发展和蓬勃,希望通过自主科技创新,支持国产技术在半导体“无人区”技术实现更多突破。【深创者说@黄锦标】“我们一直强调,一个技术是否具有先进性、突破性,一定要有用,要为市场和消费者提供所认可的解决方案。海谱将微型高光谱成像MEMS芯片与人工智能算法结合,来为消费者转译物体的成分信息。比如我们人眼或者普通相机拍一块肉,就是一张普通照片,但是安装我们芯片的相机拍出的照片,经过算法读取,会转换出一个普通人可理解的结果,告诉你这块肉是否新鲜。我们坚持不会做终端产品。现在国内尤其深圳已经有很多全球知名的硬件终端产品公司,我们的定位是生产芯片以及解决方案,来服务这些硬件终端产品公司。在我们看来,现在中国卡脖子,是卡在缺少上游核心芯片或器件的技术和制造能力。海谱立志于去做这样的一个角色。
  • 北京大学程和平院士等开发深脑成像的利器—微型化三光子显微镜
    2023年2月23日,北京大学程和平/王爱民团队在Nature Methods在线发表题为“Miniature three-photon microscopy maximized for scattered fluorescence collection”的文章。文中报道了重量仅为2.17克的微型化三光子显微镜(图1),首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。图1 小鼠佩戴微型化三光子显微镜实景图解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,为此需要打造自由运动动物佩戴式显微成像类研究工具。2017年,北京大学程和平院士团队成功研制第一代2.2克微型化双光子显微镜,获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像。2021年,该团队的第二代微型化双光子显微镜将成像视野扩大了7.8倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力。此次,北京大学最新的微型化三光子显微镜一举突破了此前微型化多光子显微镜的成像深度极限:显微镜激发光路可以穿透整个小鼠大脑皮层和胼胝体,实现对小鼠海马CA1亚区的直接观测记录(图2,Video 1-2),神经元钙信号最大成像深度可达1.2 mm,血管成像深度可达1.4 mm。另外,在光毒性方面,全皮层钙信号成像仅需要几个毫瓦,海马钙信号成像仅需要20至50毫瓦,大大低于组织损伤的安全阈值。因此,该款微型三光子显微镜可以长时间不间断连续观测神经元功能活动,而不产生明显的光漂白与光损伤。图2 微型三光子显微成像记录小鼠大脑皮层L1-L6和海马CA1的结构和功能动态。CC:胼胝体。绿色代表GCaMP6s标记的神经元荧光钙信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。Video1 这是使用北大微型化三光子显微镜拍摄的小鼠大脑从大脑皮层到胼胝体再到海马CA1亚区的三维重建图。绿色代表GCaMP6s标记的神经元荧光信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。左上角显示成像深度,可以看到,激光进入大脑,以硬脑膜作为0点,向下移动z轴位移台,我们一次看到了皮层L1至L6分层的神经元胞体和微血管,之后我们看到了胼胝体致密的纤维结构。在穿过胼胝体后,我们继续向下,我们终于看到了位于海马CA1亚区的神经元胞体。Video2 左下图是小鼠佩戴着微型化三光子探头,在鼠笼(长29厘米× 17.5厘米宽× 15厘米高)中自由探索。左上图是此时小鼠佩戴的微型化三光子探头正在对深度为978 μm的海马CA1亚区神经元荧光钙信号进行成像(帧率8.35Hz,物镜后的光功率为35.9 mW)。右图展示了左上图中10个神经元的钙活动轨迹,尖峰代表钙信号发放。钙活动轨迹上移动的蓝线与小鼠自由行为视频同步。海马体位于皮层和胼胝体下面,在短期记忆到长期记忆的巩固、空间记忆和情绪编码等方面起重要作用。在啮齿类动物研究模型中,海马距离脑表面深度大于一个毫米。由于大脑组织,特别是胼胝体,具有对光的高散射光学特性,所以突破成像深度极限是长期以来困扰神经科学家的一个极大的挑战。此前的微型单光子及微型多光子显微镜均无法实现穿透全皮层直接对海马区进行无损成像。北京大学微型化三光子显微镜成像深度的突破得益于全新的光学构型设计(图3)。作者通过对皮层、白质和海马体建立分层散射模型进行仿真,发现荧光信号从深层组织到达脑表面时已经处于随机散射的状态,使得显微物镜荧光收集效率降低,从而极大限制了成像深度。针对这一问题,经典阿贝聚光镜结构被引入构型设计中:微型阿贝聚光镜与简化的无限远物镜密接可以提高散射光的通透效率;阿贝聚光镜与激发光路中的微型管镜部分复用,可以进一步简化结构,降低损耗。总体上,新微型化显微镜的散射荧光收集效率实现了成倍的提升。图3 微型化三光子显微镜光学构型同时,利用微型三光子显微镜,作者研究了小鼠顶叶皮层第六层神经元在抓取糖豆这一感觉运动过程中的编码机制:发现大约37%的神经元在抓取动作之前就开始活跃且在抓取时最活跃,大约5.6%的神经元在抓取动作之后开始活跃,说明不同神经元参与了不同阶段的编码(图4,Video 3)。这一结果初步展示了微型化三光子显微镜在脑科学研究中的应用潜力。图4 小鼠顶叶皮层第六层神经元在抓取糖豆任务中的不同反应类型Video3 左图是佩戴着微型化三光子显微镜的小鼠在0.5厘米狭缝中用手抓取糖豆吃。中间图是此时微型化三光子显微镜探头拍摄的PPC脑区皮层第6层神经元(位于650微米深度)荧光钙信号(GCaMP6s标记的神经元,帧率15.93 Hz)。右图是选取中间图中5个神经元的钙活动轨迹,其中每条绿线表示一次小鼠的抓取动作。移动的蓝色线与左图的小鼠行为视频以及中间图中的神经元活动同步。视频以正常(×1)、慢速(×0.5)和快速(×10)的速度播放,以便于查看抓取行为。北京大学未来技术学院博士后赵春竹、北京大学前沿交叉学科研究院博士研究生陈诗源、北京大学分子医学南京转化研究院研究员张立风为该论文的共同第一作者,北京大学程和平、王爱民、赵春竹为论文的共同通讯作者。原文链接:https://doi.org/10.1038/s41592-023-01777-3这是程和平院士领衔发表的又一重大微型化显微成像成果。更早之前,由程和平院士牵头研发的微型化双光子活体成像技术,被Nature Methods评为“2018年度方法”,被国家科技部评为“2017度中国十大科学进展”。该技术将传统双光子显微镜中的核心探头,都缩减在一个仅有2.2克重的微小部件中。这项自主研发的核心技术已经成功商业化生产,产品为配戴式双光子显微镜,目前已经在世界多地实现销售,被国内外科学家应用于神经科学研究的多个领域,并获得了业内知名专家学者的高度认可。
  • 中国科学院大连化学物理研究所微型分析仪器研究组(105组)博士后招聘启事
    微型分析仪器研究组(105组)博士后招聘启事一、研究组简介中国科学院大连化学物理研究所微型分析仪器研究组(105组)主要从事微型色谱仪器、光学检测器的研制与开发,以及复杂样品的前处理技术和分离联用技术的研究。实验室拥有多种先进的仪器设备,为课题组的科学研究提供了良好的技术保障。在国家科技部、国家自然科学基金委、中国科学院和辽宁省科委的支持下,我组一直承担着国家和地方重大项目中的应用基础理论和应用技术的研究。先后研制出有自主知识产权的高纯氩气、高纯氧气等高纯气体分析仪;自主知识产权的微型特种气相色谱仪(已随天和核心舱和问天实验舱发射升空,至今稳定运行);自主知识产权的微光探测器(已出口美国,替代光电倍增管)和高灵敏荧光检测器;样品前处理材料及装置等,多项产品已经实现产业化。目前,我组申报的“辽宁省深海组分探测技术重点实验室”和“大连市深海探测仪器技术创新中心”获批挂牌,面向国家海洋战略重大需求,开展深海原位探测仪器研制开发工作,已研制出我国首套4500 m级深海原位气相色谱仪和系列深海原位荧光传感器并海试成功。研究组主页:www.105.dicp.ac.cn二、招聘岗位及人数招聘岗位:博士后招聘人数:3人三、研究方向及招聘条件研究方向:色谱仪器关键部件研制、特种环境气体传感器、样品前处理技术和装置招聘条件:化学、环境、仪器仪表、化工、材料、物理等专业。四、待遇保障1、研究所为在站博士后(统招统分)缴纳社会保险(五险),建立住房公积金。2、博士后薪资:年收入(非在职中国籍)28万起(包括五险一金、生活补助和地方补助,生活补助和地方补助发放期2年,全口径人员成本);在站博士后平均年收入(税前)33.4万左右。※年收入中包括五险一金、地方补助等,地方支持政策以最新文件为准。3、优秀博士后支持计划:每年组织2-3次遴选,资助等次:10万/年、20万/年、30万/年(资助期2年)4、外部支持:(1)出站博士后留辽工作奖励:30万(博士毕业学校全球排名前200);(2)国家博新计划:20万/年(国内博士);(3)国际博士后交流计划引进项目:20万/年(外籍、海外博士);(4)中科院PIFI项目(外籍博士):25万/年。(5)博士后同事业编制职工同等享受子女入托待遇,子女可进入中国科学院幼儿园,出站入职后子女可进入大连理工大学附属小学(综合排名全市前十)和大连理工大学附属中学(综合排名全市前十)就读。(6)设施完备的博士后公寓,可以拎包入住。星海园区和能源学院园区(提供免费班车,单程40-50分钟)设有博士后公寓(房间户型以入住时实际情况为准)。(7)同事业编制职工同等享受用餐补助和免费健康体检。※地方支持政策以最新文件为准五、未来发展中科院大连化物所出站博士后可以优先留所工作,并为其提供具有竞争力的薪酬待遇和发展空间:博士后即为特别研究助理,出站后留所工作不受招聘竞争性比例限制,通过考核后择优入事业编制。1、中科院大连化物所出站博士后留所工作,具有事业编制身份,缴纳五险二金【职业年金、公积金】。2、符合申领条件者,研究所给予20万元购房补贴;对于具有国内外知名大学授予的理工科博士学位或博士后出站人员,经大连市人才认定,给予30万元安家费。3、中科院大连化物所出站博士后留所工作(博士毕业学校全球排名TOP200),可享受辽宁省优秀博士后来辽工作奖励30万。4、中科院大连化物所博士后出站时,可申请“大连化物所优秀青年博士人才计划”,择优评选,可直接聘为副研究员,研究所给予100万元科研启动经费,并提供50万元个人租(购)房补贴。5、中科院大连化物所博士后出站时,可申请“中科院大连化物所国际英才计划”,择优评选,由研究所提供资助,公派前往国际知名大学、科研机构学习交流。资助金额20万—40万/年,资助期1—3年。※地方支持政策以最新文件为准六、研究组组长简介耿旭辉,中科院大连化学物理研究所研究员、微型分析仪器研究组组长,辽宁省深海组分探测技术重点实验室主任。长期从事高灵敏小型荧光检测器及应用研究,在Analytical Chemistry等期刊上发表论文25篇,授权发明专利35项。主持国家重点研发计划课题、国家重大科学仪器设备开发专项课题、中科院科研仪器设备研制项目。带领团队,研制出系列我国首套4500 m级深海原位荧光传感器,在印度洋和南海海试成功,灵敏度比国外同类产品高数倍;研制出我国首套黄曲霉毒素荧光检测器,灵敏度比国外同类产品高数倍;研制出高灵敏小型荧光检测模块,在非洲猪瘟检测和新冠病毒抗体检测中应用。系列荧光检测装备经成果鉴定为国际领先水平。入选国家万人计划青年拔尖人才、中国科协青年人才托举工程、中科院特聘核心研究岗位、辽宁省“兴辽英才计划”青年拔尖人才;获中国仪器仪表学会青年科技人才奖、天津市科技进步一等奖、大连市技术发明一等奖;任中国仪器仪表学会青工委副主任委员、分析仪器分会副秘书长、中科院青年创新促进会工程与装备分会秘书长;The innovation和Journal of Analysis and Testing青年编委。七、招聘方式有意向的申请人请将申请材料(个人简历,代表性论文)发送至耿旭辉老师。联系人:耿老师联系方式:0411-84379590,15042442584,xhgeng@dicp.ac.cn通讯地址:中国辽宁省大连市沙河口区中山路457号大连化物所生物楼
  • 杨宗银:绘制光谱仪微型化“全景图”
    走进浙江大学信息与电子工程学院智能传感所的百人计划研究员杨宗银的办公室,可以看到电路焊接平台上,电烙铁、电路板、各种零配件一应俱全,办公室俨然是一座实验室。杨宗银(左)指导学生做实验 王崇均/摄“回到浙大任教后,我对自己的办公室做了规划,圆了儿时的梦想。”杨宗银说,“很享受制作机械电路的过程,比打游戏有趣。”继2019年在《科学》杂志刊发世界上最小光谱仪成果后,今年3月,杨宗银作为第一作者撰写的综述,又在线发表于《科学》。该文章首次系统性总结了光谱仪微型化的技术方案和发展历程,引起国际科学界高度关注。150次失败后的成功 把心路写进实验记录本光谱仪是测量光谱线中各个波长强度的设备,可以对物质成份和结构进行测知,广泛应用于科研、生产和生活中。比如一个苹果是否成熟、含糖量如何,通过光谱仪的“火眼金睛”就能一目了然。杨宗银研制的世界上最小光谱仪,直径在一百微米以下,不到头发丝直径的一半。“这么小的尺寸很适合装进我们的手机中,将来或可通过拍摄进行食品安全和健康的监测。”他在谈及未来应用时说,“再过几个月,团队研制的微型高光谱成像样机就将面世。”这样一个比头发丝直径还小的器件,杨宗银前前后后研究了8年。攻读博士期间,杨宗银每天都是剑桥大学电子工程系实验楼最晚走的那个人,但每一次回寝前都对实验结果不甚满意。 “早起努力!” “新idea明天试一下… … 又失败了。”打开杨宗银的实验笔记,上面用英文密密麻麻写着各类实验优化的细节,但每天都有几句中文格外醒目。“刚开始做实验是非常有新鲜感的,但是失败次数越多自己也会感到很无力。”他说,于是自己便在笔记中记下实验中的灵光一闪,或者勉励的话,“每天都期待好的结果,同时又期待新的一天快快到来。”“当时就写了整整三大本笔记本。”杨宗银说,偶尔也会心灰意冷,但是内心的那份热爱总能驱使自己去找失败的原因再尝试一次。2018年8月,历时3年,历经150次失败,实验终于成功,他的论文于第二年5月投稿《科学》杂志,7月便被接受。评审专家评价这个工作是“集合了世界上最先进的材料合成工艺,配上最高超的器件制作水准、实验技巧和巧妙的算法,是一个惊艳之作。”荣誉随之而来,杨宗银获得了剑桥大学国际生全额奖学金和国家优秀自费留学特别优秀奖,还被选为剑桥大学国王学院研究员,是学院第一位华人研究员。交叉与蜕变 兴趣是最好的老师杨宗银这份愈挫愈勇的劲头,在他求学浙大期间就已经打下基础。在浙大读硕士生的杨宗银,在世界上首次“生长”出了彩虹渐变的半导体纳米线。这种材料可以发出五颜六色的光,非常漂亮。这份光亮的背后是他近一万个小时的不断试错改进的艰辛。凭着兴趣与热爱,他在浙大学习时打开了一片新天地。在机械工程学院完成本科学业时,杨宗银就把机器人、机械设计等领域的各类竞赛都参加了一遍,乐在其中,还拿过全国大学生机械创新设计大赛一等奖。浙江大学机械工程学院教授顾大强,在担任杨宗银导师期间,经常教导他“要用最巧妙的机构完成一件复杂的事情”。这种思维训练对杨宗银来说终身受益。后来杨宗银被保送到浙大光电科学与工程学院攻读硕士。他回忆道:“交叉融合的求学经历为我后来研究提供了便利条件,当面临没有现成的设备时,可以直接自己做一个。”“我从小就喜欢做点小发明,比如随着光照自动响的闹钟、光控灯,或者把家里收音机、闹钟等拆开,研究其中的机理。为此也没少挨父母批评。”杨宗银笑称。在硕士期间,杨宗银除了生长出彩虹渐变半导体纳米线,还基于这种材料开发了世界最宽光谱可调谐激光器。就像收音机不同的调台,能够听到不同的节目,不同的激光波长能够对物质进行不同层面的探测。读文献到写文献 绘制一个领域“藏宝图”现如今,传统的光谱仪由于体积庞大已经无法满足日益发展的光谱检测技术的需求,然而,减小光谱仪的分光元件或探测器尺寸将导致光谱分辨率、灵敏度及动态范围显著下降。光谱仪的微型化是目前科技界面临的一项重大技术挑战。回到浙大任职后,杨宗银的研究是将微型光谱仪进一步往应用端迈进。“光电技术终究还是要落实到百姓的实际应用中才更有意义”。其中,向全球科研探索者们展现微型光谱仪领域的“全景”也成为其工作计划之一。杨宗银认为,只是把技术原理和研究进展介绍清楚是远远不够的,还要有全局观,用一个清晰的脉络把全文串起来。一篇好的文献综述,就是认识一个领域的主心骨,是一张“藏宝图”。“我把整个领域几百篇文献捋了好几遍,了然于胸,最后像介绍老朋友一样把它们串起来讲。”杨宗银介绍,“在后续的修改中,我和另外几位合作者讨论了几十次,不厌其烦地对文章进行精雕细琢。记得我在准备文章图片的时候盯着屏幕好几天就为了不让它们有一点瑕疵。”如何用好“藏宝图”?杨宗银也有自己的独家秘籍。担任博导的他,会给新生“打样”,面对面教学生如何读文献管理文献。“每读完一篇文献后,在软件里做个标签,这样日积月累,大量的文献就能理出一个脉络,后续根据这些标签迅速找到需要的文献。”从前沿探究的坚持不懈,到带领学生探索的孜孜不倦。他还会手把手指导学生如何搭建和使用实验仪器,也乐在其中。“如果说,科研的成就感在于做出独创的贡献和价值,”杨宗银说,“那么带学生就是自我价值的延伸。”
  • 杭高院物光学院邵建达教授工作室在微型计算光谱传感/成像领域取得新进展
    国科大杭州高等研究院物理与光电工程学院邵建达教授工作室和浙江大学光电学院沈伟东教授课题组联合提出一种基于全介质紧凑薄膜结构的计算微型光谱仪。相关成果以“Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer”为题发表于中科院一区期刊ACS Photonics 。近年来,随着光谱分析的应用领域逐步扩大,对光谱仪较小物理尺寸、较低成本需求优先于高性能,光谱仪向微型化、集成化和低成本等方面高速发展。计算重构型微型光谱仪常依靠具有宽带光谱响应的阵列滤光片及探测器实现光谱编码,依靠压缩感知、深度学习等算法实现光谱重构。本研究中,阵列滤光片采用紧凑薄膜结构,通过改变单一介质膜层厚度,实现特异性高的宽带光谱响应。单点光谱重构仅需16个区块,数量在同类方案中数量最少,尺寸为毫米级的阵列滤光片(单个区块约2mm×3mm)采用电子束蒸发的方法进行制备。光谱重构网络基于深度学习,输入神经元数量对应区块数,输出神经元数量数量对应光谱通道数,含有若干隐层,各层神经元以全连接的方式连接,可实现高速、高精度(重构精度MSE论文第一作者为国科大杭高院2022级博士研究生温俊仁,通讯作者为国科大杭高院杨陈楹副研究员和浙江大学沈伟东教授,共同作者包括杭高院双聘教授邵宇川研究员,浙江大学章岳光副教授,杭高院硕士生郝凌云和高程等。目前,该团队积极探索科研成果转化,采用了微米级紫外光刻技术与纳米级薄膜沉积技术相结合的方法实现了百微米级滤光片阵列以及毫米级(约2×2mm)微型光谱传感模组。未来,该团队还将进一步研发超光谱成像模组及全光谱成像芯片,有望在于天文探测、人工智能、消费电子等诸多领域发挥重要作用。
  • 德研发现场诊断微型实验室 化验只需30分钟
    据德国弗劳恩霍夫研究所网站报道,近日,该所科学家成功研制出一套微型实验室系统,可在现场进行复杂的生物学化验,并在30分钟内得到结果。该系统有望在不久后投放市场。   随着医疗技术的发展,许多疾病已可以通过实验室测试确诊。然而,患者们不得不面对一个现实,即从样本送去化验,到分析结果返回到医生手中,需要等待很长时间,有时甚至是几天到一两周。而对很多疾病来说,快速诊断是治疗取得成功的关键。不过未来,患者们也许只需在诊室里等待很短的时间就可以拿到化验结果。这一切得益于弗劳恩霍夫7个研究所的研究人员共同合作的一个项目,他们为体外诊断开发了一个微型的模块化平台,针对如血液和唾液等不同的生物样本,医生可直接在诊室进行快速化验。   这一微型实验室的核心部件是一个可与不同传感器匹配的一次性塑料测试盒。检验时,医生注入相应的试剂,试剂中含有某些物质,可证实样本中是否含有对应的抗原。针对不同的问题,检测平台提供不同的化验方法。执行检验时,医生将相应的样本物质注入测试盒,测试就会自动进行。研究人员表示,他们已经优化了化验过程,可在一个单独的分析步骤中做到多达500项平行检测反应。因此,即便是复杂的分析,医生也能很快得到化验结果。   由于该体外诊断平台模块化的设计原则非常灵活,研究人员认为它几乎适用于所有生物问题。将来,通过开发新的模块,或许还能实现样本在DNA层面的检测。除去医疗市场外,该平台还可应用于食品分析或兴奋剂检测等领域
  • 津津有“卫”丨关注食品安全,岛津助力2022国抽检测
    “民以食为天、食以安为先”,食品安全无小事,食品安全是人民群众生命安全和健康的基础,是现代社会的“底线安全”。习近平总书记提出用“四个最严”的要求,用最严谨的标准、最严格的监管、最严厉的处罚、最严肃的问责,加强食品安全工作,确保人民群众“舌尖上的安全”。 每年国家市场监督管理总局均出台相应的食品安全监督抽检实施细则,对食品安全进行监督抽查,排查和防范食品安全风险隐患从而保障食品的安全。从近年来我国食品安全监督抽检的结果看,食品安全整体状况良好,2020年和2021年前三季度整体合格率在97%以上。食品中检出的不合格项目类别主要有农/兽药残留超标、微生物污染、超范围超限量使用食品添加剂,质量指标不达标、有机物污染、重金属污染等(具体占比见下图,数据来源:国家市场监督管理总局官网)。 2020年以来食品中检出不合格项目类别占比 2022年新版的《国家食品安全监督抽检实施细则》已发布,食品类别与2021年相同,未发生变化,仍是33大类。在指标方面,农药残留、兽药残留、食品添加剂、营养成分、真菌毒素等仍然是主要的检测指标,检测仪器涉及色谱、色谱串联质谱、光谱等多种类型。 岛津作为分析仪器厂商,自1875 年创业以来,始终坚持 “以科学技术向社会做贡献”这一创业宗旨,不断钻研满足社会需求的科学技术,并以实现“为了人类和地球的健康”这一愿望作为公司的经营思想。自进入中国市场以来,岛津一直密切关注国内外各行业监测项目、政策法规的颁布与实施,针对近年来出现的食品安全问题和一系列新颁布实施的国家标准,岛津一直积极应对,并提供有效的解决方案。本文针对2022年食品安全监督抽检项目,结合岛津优异的检测技术,为食品安全领域的检测工作提供技术支撑。 1农药残留2022年国抽涉及农残共76种农药,检测标准中GB 23200.113(GC-MS/MS)、GB 23200.121(LC-MS/MS)两个标准可以覆盖农残项目的80%以上,除串联质谱外,国抽中也包括一些常用的色谱标准,比如GB 23200.116(GC) 、GB 23200.112(LC)、NY/T 761(GC、LC)等。对于覆盖面很广的双MS标准(GB 23200.113和GB 23200.121),岛津提供从标准品、前处理到仪器分析方法、出具报告等的全套解决方案(见下图)。其中与GC-MS/MS和LC-MS/MS相对应的农残数据库均已包含800余种化合物,数据库随着农药品种的增加也在持续扩展中。GB 23200.113和GB 23200.121全套解决方案 2兽药残留国抽中兽药残留共涉及磺胺类、β-激动剂类、四环素类、氯霉素、孔雀石绿等30多种,本细则与2021年相比新增加1种兽药(青霉素)。这些兽药均可以使用液相色谱串联质谱检测,岛津已推出《LC-MS/MS兽药检测整体解决方案》以及《LC-MS/MS兽药分析方法包》,其中分析方法包括500余种兽药化合物的中英文名称、分子式、质量数、CAS号、MRM参数等化合物信息,以及按类别划分的所有兽药化合物的方案,用户可根据标准或者实际分析情况直接查找化合物参数或调用方法,实现多组分同时分析。《LC-MS/MS兽药检测整体解决方案》收录了多个兽药残留解决方案,考察了相关的LC分析条件、校准曲线、检出限、精密度和加标回收率等,从而帮助兽药分析检测的用户更方便、更高效开展检测工作。3生物毒素与2021年国抽细则相比,检测的真菌毒素种类和数量未发生变化。岛津LC-MS/MS生物毒素MRM数据库包含了谷物、水果、水产品中常见的100余种生物毒素的化合物信息、MRM参数、分析方法、分类汇总方法及操作指南,帮助用户快速建立分析各种毒素的方法;同时岛津还提供多种解决方案,如使用LC-MS/MS同时检测25种真菌毒素。4金属元素与2021年国抽细则相比,金属元素的种类没有变化,主要采用的检测仪器为电感耦合等离子体质谱(ICP-MS)、电感耦合等离子体发射光谱(ICP-OES)、原子吸收分光光度计(AAS)等仪器。岛津的ICP-MS、 ICP-OES、AAS可高灵敏度地分析食品中的有害金属(砷、铅、镉等),其中ICP-MS测定铅、镉、砷、汞、铜等时,检出限低,只需一次进样,便可进行多元素的快速同时分析,相比原子吸收分光光度法提高了分析效率,其中岛津全惰性LC-ICPMS联机系统不仅可以对多元素进行分析,还可以对重金属元素形态及价态进行分析,广泛应用于元素形态学研究。 5食品添加剂新版国抽在食品添加剂检测项目上增加了二氧化钛和偶氮甲酰胺两种添加剂,分别采用电感耦合等离子体-原子发射光谱法和液相色谱法。国抽中食品添加剂大部分项目的检测方法为LC、GC,少数项目的检测方法为ICP-MS、 ICP-OES、AAS。在这些检测项目上,岛津都可以为用户提供性能优异的仪器。 6其他除了上述检测项目,岛津还有很多仪器或方案可用于国抽中的其他项目的检测,比如岛津Essentia LC-16AAA氨基酸分析仪可以实现对氨基酸快速、稳定、灵敏的分析;岛津维生素ADE在线二维液相系统可以同时分析样品中的维生素A、D、E,具有灵敏度高、重复性好等优点 Essentia IC-16离子色谱仪可以用于水质环境检测、农业食品安全检测等相关检测,高性能的电导检测器搭载全新膜式抑制器,具有高超的流量精密度,超快速进样速度,低交叉污染,精准的温控稳定性等优异性能。 本文内容非商业广告,仅供专业人士参考。
  • 果蔬肉类检测仪让食品检测更简单
    果蔬肉类检测仪让食品检测更简单←←←点击查看相关产品信息  在当今社会,食品安全和质量已成为人们关注的焦点。我们渴望食用健康、安全的食品,而果蔬肉类检测仪正是使这一愿望成为现实的关键工具。这些仪器通过使用先进技术,使食品检测变得更加简单、高效和可靠。  果蔬肉类检测仪器旨在满足不同类型食品的检测需求,包括水果、蔬菜和肉类产品。  果蔬肉类检测仪的出现,使食品检测不再需要冗长的实验过程,也不需要高度训练的专业技术人员。这些仪器通常具有用户友好的界面和自动化功能,使操作更加简单。这为食品生产商、检验机构和监管部门提供了快速而可靠的检测工具,确保食品质量和安全性。  果蔬肉类检测仪器的应用范围非常广泛,包括新鲜水果、蔬菜、肉类和海鲜等各种食品。它们能够检测食品中的微生物、化学物质、残留农药和其他潜在污染物,以确保食品的质量和安全性。  这些仪器的快速性是它们的一大优势。传统的食品检测方法可能需要几天或更长时间来获得结果,而果蔬肉类检测仪器通常能够在几分钟内提供准确的数据。这意味着食品生产商可以更快地采取措施,确保问题食品不进入市场。  在当今复杂的食品供应链中,果蔬肉类检测仪器不仅提高了检测的效率,还增强了食品产业的透明度。它们有助于防止潜在的食品污染和食品欺诈,保护了消费者的健康和权益。这些仪器的不断发展和创新将继续推动食品安全和质量的提升,让我们更加安心地享用食品。  果蔬肉类检测仪器让食品检测更简单,同时提高了食品安全和质量的标准。消费者可以更自信地选择和享用食品,因为这些仪器确保他们所购买的食品是真实、无害且合规的。这些仪器的不断创新和技术进步将继续推动食品检测领域的发展,确保我们每天的餐桌上食品的质量和安全性。
  • 全球首款微型核磁共振仪 中科科尔获得代理权
    2010年11月10日,PicoSpin宣布推出全球首款微型核磁共振光谱仪PicoSpin-45 NMR, 此前该产品设计已获2011爱迪生最佳新产品奖提名,并于2011年2月7日获得自然科学和医学领域2011爱迪生最佳新产品奖,颁奖典礼将于2011年4月5日在纽约举行。 PicoSpin-45 质子核磁共振光谱仪是化学仪器领域一个新的突破。相对于传统核磁共振光谱仪,占用面积更小,价格更实惠,液体样品分析分辨率高达100ppb,可用于食品制造、医药、石油化工、生物燃料、化妆品及化学教育等行业。 PicoSpin-45 NMR系统包括:永磁体、发射器、接收器、数据采集、可编程脉冲序列发生器、以太网接口和直观的基于Web的控制软件。通过前面板装置,液体样品可方便地注入到内部毛细管里,仅需20微升液体就可获得一个光谱。高稳定性温度控制的永磁铁确保免维护运行,无需液体制冷剂,操作无需专业知识和培训。 PicoSpin 公司总裁兼首席执行官Price博士表示:&ldquo 核磁共振波谱仪是最强大的化学分析工具。我们设计的产品,真正改变了核磁共振波谱仪的前景。凭借低价格和紧凑的外形,PicoSpin -45 NMR可以应用在过去认为不可能应用的领域。现在,您可以在您的实验室台上就拥有一台核磁共振波谱仪,您可以在工厂内设置多个单元,通过一个鼠标就可以持续监测和控制过程流体,您的学生可以在化学实验室和研究项目中实际操作核磁共振波谱仪。&rdquo 北京中科科尔仪器有限公司提供流体处理系统,实验室设备,分析仪器,电化学仪器,安全防护,温度设备等优质产品,以及为您供最为专业的技术服务与支持。
  • 人民日报辟谣圣女果小黄瓜为转基因食品
    转基因食品一直备受关注,网上流传的“转基因食品名单”靠不靠谱?一些所谓“鉴别转基因作物方法”正确吗?国家正式批准生产或进口的转基因作物有哪些?就这些问题,人民日报“求证”栏目记者采访了农业部及专家学者。   我国转基因作物有哪些?   【回应】已批准安全证书的有棉花、水稻、玉米和番木瓜 只有棉花、番木瓜批准商业化种植   “截至目前,我国批准了转基因生产应用安全证书并在有效期内的作物有棉花、水稻、玉米和番木瓜。”中国农科院植保所副研究员谢家建介绍,证书的发放是根据研发人的申请和农业转基因生物安全委员会的评审,经部级联席会议讨论通过后批准的。证书的批准信息已经在农业部相关网站上公布(http://www.moa.gov.cn/ztzl/zjyqwgz/),各批次的批准情况都可以查询。   取得了转基因生产应用安全证书,并不能马上进行商业化种植。谢家建介绍,按照《中华人民共和国种子法》的要求,转基因作物还需要取得品种审定证书、生产许可证和经营许可证,才能进入商业化种植。   根据《主要农作物品种审定办法》,申请品种审定证书应当具备下列条件:人工选育或发现并经过改良 与现有品种有明显区别 遗传性状稳定 形态特征和生物学特性一致 具有符合《农业植物品种命名规定》的名称。生产许可证审批、经营许可证审批都需经企业注册所在地省级农业行政主管部门提出审查意见。   “目前,转基因水稻和转基因玉米尚未完成种子法规定的审批,没有商业化种植。”谢家建表示,“我国已经进行商业化种植的转基因作物只有棉花和番木瓜。”   我国批准进口用作加工原料的转基因作物有大豆、玉米、油菜、棉花和甜菜。这些食品必须获得我国的安全证书。   据了解,我国制定了《农业转基因生物进口安全管理办法》、《农业转基因生物加工审批办法》、《进出境转基因产品检验检疫管理办法》和《农业转基因生物标识管理办法》等,规定县级以上地方政府农业部门负责转基因生物标识的监督管理,国家质检总局负责进口农业转基因生物在口岸的标识检查验证。据介绍,这些管理制度得到了较好的贯彻落实,标识做到了应标尽标。   与传统食品不同就是转基因?   【回应】目前市售圣女果、彩椒、小南瓜、小黄瓜都不是转基因食品   网上流传一份转基因食品名单,包括“圣女果、大个儿彩椒、小南瓜、小黄瓜”。对此专家并不认同。   中国农科院生物所研究员王志兴说,小番茄也叫圣女果、樱桃番茄,是自古就有的番茄品种,只是因为个头小、采摘不便、产量低,最早仅作为观赏用,后来发现食用方便,口味经过改良后逐渐流行。个头小是天生的基因差异,不是转基因的结果。   中国农科院油料所副研究员吴刚表示,圣女果更接近人工驯化前的野生状态,其实野生的板栗、核桃、苹果等也都远小于常规栽培品种。人类驯化野生植物一般是为了提高产量,主要做法是增大果实,但随着人们对食品要求的多样化,出现了很多小型化的瓜果蔬菜,如早春红玉西瓜等。这些小型化品种都来源于带着祖先原始基因的种质资源,与转基因无关。   吴刚说,小南瓜和小黄瓜也不是转基因食品,仅仅是未充分成熟的南瓜和黄瓜。如果继续在田间种植,小南瓜和小黄瓜最终会生长成普通的大南瓜和老黄瓜。   关于大个儿彩椒,吴刚表示,大个儿彩椒含有不同类型的花青素,表现为更丰富的颜色。花青素的变异在植物中很常见,像鲜花同一个品种就有不同颜色,萝卜也有红萝卜、绿萝卜、白萝卜等。“我国曾经批准过抗病毒甜椒的商业化种植,但与常规甜椒相比,转基因甜椒并没有明显优势,因此被市场自然淘汰。”   吴刚说,在有些品种中,突变产生的颜色甚至取代了野生的颜色,成为栽培品种的主流,如原始的胡萝卜以紫色居多,现在最常见的橙色胡萝卜是荷兰育种家根据荷兰国旗颜色选育出的。因此,目前市场上在售的果蔬,其颜色跟转基因没有什么关系。   王志兴解释,棉花、辣椒、玉米、水稻等有不同颜色,是天然存在的遗传基因差异,并非转基因的结果。比如彩色棉花从古就有,但由于彩色棉花纤维短、强度差,过去很少种植,而现在因为不染色吸引了部分消费者,农民就开始种植了。彩色辣椒也是天然存在的,只是过去未大面积种植,普通消费者很少见到。   吴刚表示,以上这些瓜果蔬菜都是常规育种手段非常容易做到的,用转基因反而是不经济的做法。“常规育种主要通过选育获得具有新性状的新品种。这里面很重要的一个工作就是‘选’。自然发生的基因变异,往往也是随机发生的。”吴刚解释说,“无论大小、颜色,在自然界的自然突变体中,都可以找到。育种家做的工作仅仅是将这些突变体找到,并和其他好的性状聚合到一起,成为品种。”   吴刚介绍,番茄、甜椒、南瓜、黄瓜在国内外都曾有转基因研究并获得转基因植株,其中仅有番茄与甜椒获得过世界范围内商业化种植的批准。商业化种植过转基因番茄的国家有美国(6种)、墨西哥(3种)、日本(1种)、中国(1种,“华番一号”)等。   吴刚解释,早期没有延熟番茄,转基因的延熟番茄储藏期长是个优势。但随着科技的发展,育种家们获得了非转基因的延熟番茄,转基因番茄在储藏方面的优势不再,产量低就成为很大一个问题,又因皮厚口感差,直接被市场淘汰。   “自从1998年以来,全世界已经没有新的转基因番茄获准商品化种植。在我国,转基因番茄已经退出市场。”吴刚说。   【原标题】网传转基因食品名单包括圣女果小黄瓜 专家不认同
  • FFC 2022中国功能性食品大会
    FFC 2022中国功能性食品大会主题:功能性食品与人类健康一年一度的“FFC中国功能性食品大会”汇聚业内顶级专家、龙头企业等千余位功能食品界代表,共议科技创新、产品创新、市场趋势、政策标准等,搭建管理、科研、原料、终端、OEM、装备、经销商等全产业链直面对接平台,解决功能性食品发展全过程问题。具有我国功能食品产业发展风向标、信息面宽且产业链长等特点的品牌会议,引领我国功能性食品产业规范发展。在此,我们诚挚的邀请您出席本次大会,共聚人脉、共享资源、共谋发展!一、大会形式:特邀报告、专题论坛、新成果与新产品展览二、会议规模:1500-2000人,报告120+,分论坛10+,展位100+。三、组织机构:主办单位:FFC中国功能性食品大会组委会联合主办:江南大学国家功能食品工程技术研究中心 中国农业科学院农产品加工研究所 南昌大学食品学院 华南理工大学食品科学与工程学院协办单位:江苏大学食品物理加工研究院 南京农业大学食品科技学院 陕西省功能食品工程技术研究中心 吉林省功能食品工程研究中心 中国保健协会酵素产业分会 江苏省农业科学院农产品加工研究所 唯意朴仪器(上海)有限公司 钛和检测认证集团股份有限公司 南京师范大学食品与制药工程学院 南京工业大学食品与轻工学院 承办单位:南京林业大学轻工与食品学院 江西师范大学健康学院执行单位:北京味康食品科技交流中心 北京金玖盛国际会展有限公司支持媒体:人民新闻网、中国新闻资讯网、环球新闻网《食品伙伴网》《中国食物与营养》《功能食品配料网》《植提桥》《食品展会大全》《昊图食品网》《35斗》《现代食品科技》《食品商务网》《安全食报》《仪器信息网》《我要测网》四、时间地点(拟)时间:2022年4月7-9日(7日周四,报到、布展)地点:江苏省 南京市 白金汉爵酒店五、大会内容(一)特邀报告 1、全球营养功能食品发展现状与趋势; 2、营养保健及特殊食品法规标准; 3、特殊食品产业现状与发展; 4、个性化精准营养未来趋势。(二)专题论坛 1、特殊医学用途配方食品科技创新及产业发展; 2、益生菌科技创新与产业发展; 3、生物活性肽科技创新与产业发展; 4、功能食品原料/配料开发与应用; 5、食品营养与人体健康; 6、海洋资源功能性食品开发与产业发展; 7、药食同源、经济林食品营养及精深加工;8、功能多糖营养及开发应用;9、谷物类食品营养与精深加工10、新成果、新技术与新工艺。 (1)提高免疫力、改善睡眠、肠道、运动、血糖、血脂、抗氧化等新产品与新成果; (2)绿色、低碳、智能、纳米技术等新技术与新工艺。(三)新技术、新成果、新产品展览展示1、功能性食品、保健食品、特医食品、膳食补充剂及原料/配料等新产品、新成果;2、食品营养成分提取、分离、纯化、安全检测等新技术与装备。六、论文征集1、论文范围:食品营养、功能食品及配料开发应用、功能因子提取分离、生物技术、分析检测、加工新技术、新工艺等均可。2、论文要求:文字数3000-6000字,文件格式为 word 文档。具体内容包括:论文题目、作者姓名、工作单位、通讯地址、邮政编码、电话、论文摘要、关键词、正文、主要参考文献,请提交至电子信箱:1060415690@qq.com。3、截止时间:论文投稿截止2022年3月20日,以稿件收到时间为准。七、费用标准1、1800元/人,包括会议费、资料、会议期间用餐等。收款单位户 名:北京金玖盛国际会展有限公司开户行:中国工商银行北京永定路支行账 户:0200280609200037316八、联系方式联系人:常 虹电 话:13683070346(微信同号)邮 箱:1060415690@qq.com
  • 中国科大利用可重构微型光频梳实现kHz精度波长计
    中国科学技术大学郭光灿院士团队在微腔光学频率梳的研究方面取得重要进展。该团队董春华教授及合作者邹长铃等人提出一种普适的微腔色散调控机制,实现了光频梳中心频率和重复频率的实时独立调控,并应用于光学波长的精密测量,将波长的测量精度提升到kHz量级。相关研究成果1月12日发表在Nature Communications上。近年来,基于光学微腔的孤子微梳在精密光谱学、光钟、微波光子学、天文学等领域引起了极大的研究兴趣。然而,由于环境和激光噪声以及微腔中额外非线性效应的影响,孤子微梳的稳定性受到了很大的限制,这成为微光梳在实际应用中的一个主要障碍。在之前的工作中,科学家们通过控制材料的折射率或者微腔的几何尺寸以实现实时反馈,从而稳定并调控光频梳,这种方法会引起微腔内所有共振模式同时近乎均匀的变化,缺乏独立调控梳齿频率和重复频率的能力,这大大限制了微光梳在精密光谱、微波光子、光学测距等实际场景中的应用。针对这一难题,研究团队提出了一种新的物理机制实现了对于光频梳中心频率和重复频率的独立实时调控。通过引入两种不同的微腔色散调控手段,该团队能够对微腔不同阶次的色散进行独立控制,从而实现光频梳不同梳齿频率的全部控制。这种色散调控机制对于目前广泛研究的氮化硅、铌酸锂等不同的集成光子平台都是普适的。在实验中,该团队利用泵浦激光和辅助激光分别独立控制微腔不同阶次的空间模式实现了泵浦模式频率的自适应稳定和频梳重复频率的独立调控。基于该光频梳,研究团队演示了对于任意梳齿频率的快速、可编程的调控,并将其应用于波长的精密测量中,展示了具有kHz量级测量精度和多波长同时测量能力的波长计。相比于之前的研究成果,研究团队实现的测量精度达到了三个量级的提高。本研究成果所展示的可重构的孤子微梳为实现低成本、芯片集成的光学频率标准奠定了基础,将在精密测量、光钟、光谱学及通信等领域得到应用。 (a-c)可重构微腔光频梳原理示意图。 (d)波长计的性能演示。中科院量子信息重点实验室博士后牛睿、特任副研究员李明为论文共同第一作者,董春华教授、邹长铃教授为论文通讯作者。研究工作得到国家重点研发计划、国家自然科学基金委员会、中科院、量子信息与量子科技前沿协同创新中心等的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制