当前位置: 仪器信息网 > 行业主题 > >

圆盘试验机

仪器信息网圆盘试验机专题为您提供2024年最新圆盘试验机价格报价、厂家品牌的相关信息, 包括圆盘试验机参数、型号等,不管是国产,还是进口品牌的圆盘试验机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合圆盘试验机相关的耗材配件、试剂标物,还有圆盘试验机相关的最新资讯、资料,以及圆盘试验机相关的解决方案。

圆盘试验机相关的论坛

  • 寻找转动圆盘~

    电脑放在办公桌上,需要打资料的时候,就必须要坐到显示器所向的位置上面来。有没有一种圆盘,是可以放在显示器下面的,需要用电脑的时候,就可以很方便很随意地转动显示器到任何一个角度呀?

  • 【求助】圆盘金电极怎么处理干净啊!!!新手跪求!

    我现在用CHI800b 电化学分析仪,三电极系统(工作电极为圆盘金电极,辅助电极铂丝电极,参比电极为银溶液电极),来制作免疫传感器。想在金电极表面组装一层L-半胱氨酸,但多次实验下来结果好像不太理想! 目前怀疑是电极抛光不彻底,希望高人指点圆盘金电极抛光的方法!另外若有大侠知道检测电极抛光程度的方法的话,阿拉直接拜倒!!!!谢谢~~~~~

  • 【资料】水质浊度的测定透明度测试试管法和圆盘法

    FHZHJSZISO0002 水质浊度的测定透明度测试试管法F-HZ-HJ-SZ-ISO-002水质—浊度的测定—透明度测试试管法1 适用范围透明度测试试管法是半定量的方法,适用于测定纯水和高度污染的水。2 采样用玻璃或塑料瓶采样,采样后尽快分析。或将样品放在阴凉、黑暗处,24 小时内分析。防止样品与空气接触,避免样品温度不必要的变化。3 仪器透明度测试试管,防护屏,印刷物样品(白底黑印记),恒定光源。4 过程简述将样品充分混合,转移到透明度测试试管中,平稳的降低样品液面的高度,直至从上方观察可清楚的辨认印刷符号。根据试管上的刻度记录液面高度。5 来源国际标准化组织,ISO 7027:1999(E)FHZHJSZISO0003 水质浊度的测定透明度测试圆盘法F-HZ-HJ-SZ-ISO-003水质—浊度的测定—透明度测试圆盘法1 适用范围透明度测试圆盘法是半定量的方法,适用于测定地表水。2 采样用玻璃或塑料瓶采样,采样后尽快分析。或将样品放在阴凉、黑暗处,24 小时内分析。防止样品与空气接触,避免样品温度不必要的变化。3 仪器透明度测试圆盘4 过程简述将圆盘放在链上,放入水中逐渐降低,直至从上方观察几乎看不见。测量链子浸没的长度。重复实验几次。5 来源国际标准化组织,ISO 7027:1999(E)

  • 【求助】关于旋转圆盘电极

    请教高手指教:旋转圆盘电极是独立装置吗,可以在所有工作站或恒电位仪上通用吗?旋转环-盘电极有成品卖吗,还是要自行设计?谁有相关资料和图片之类的给偶发一些吧:pfofp@163.com小女子不胜感激!

  • 纳米圆盘简介

    纳米圆盘简介

    [font='times new roman'][size=18px] [font=宋体]纳米圆盘简介[/font][font=宋体]1 [/font][font=宋体]纳米圆盘与生物膜[/font][font=宋体]去垢剂在膜蛋白质研究中具有重要的作用,但是基于去垢剂的膜蛋白质提取方法存在一定缺陷。一方面,去垢剂种类诸多,筛选出最适合目标膜蛋白质增溶、稳定和结构表征的去垢剂费时费力;此外,去垢剂胶束固有的动态性质会导致去垢剂[/font][font=宋体]-[/font][font=宋体]膜蛋白质复合物不稳定,从而导致随着时间的推移膜蛋白质有聚集/变性的趋势。另一方面,膜蛋白质的结构和功能与其所处的膜环境即脂质分子是息息相关的。传统上用于提取膜蛋白质的去垢剂是通过破坏脂质双分子层,将膜蛋白周围的脂质剥离,以胶束的形式将膜蛋白质包裹于疏水核心,去垢剂分子的极性头部则暴露于水相环境,以此为膜蛋白质提供了另一种溶解环境,这极大地影响了膜蛋白质的结构和活性。[/font][font=宋体]显然,去垢剂分子形成的胶束远不能模拟膜蛋白质所存在的脂质双分子层环境,因而并不是膜蛋白提取、增溶、稳定的最佳工具。近年来,膜蛋白质研究的发展方向之一是开发能够提供更好的细胞膜膜模拟效果的纯化方法,新型细胞膜膜模拟系统主要有[/font][font=宋体]liposome[/font][font=宋体]s[/font][font=宋体]、bicelles、amphipols[/font][font=宋体]和nanodiscs,其中nanodiscs即纳米圆盘为细胞膜研究提供了新的工具,并被公认为是一种最佳的膜模拟系统。纳米圆盘技术最早由Sligar等人提出,纳米圆盘的组成为两亲性膜支架蛋白[/font][font=宋体](MSP)[/font][font=宋体]围绕圆盘状的磷脂双分子层,可稳定地分散于水相。将去垢剂增溶的膜蛋白质、磷脂分子、MSP混合,就可以将膜蛋白质自组装至MSP纳米圆盘中。MSP结合的纳米圆盘潜在优势包括纳米圆盘尺寸可调、可对MSP进行基因工程修饰、纳米圆盘中的脂质成分可控、纳米圆盘中的膜蛋白质可以确定的低聚状态存在等。但是,MSP纳米圆盘形成过程中仍需要去垢剂进行初始增溶步骤,如图1-7所示,不能避免去垢剂分子对膜蛋白质的稳定性和活性的影响。此外,MSP纳米圆盘中脂质的组成与天然脂质双分子层的组成不同,这可能会影响蛋白质的结构、活性及其调控。基于SMA的纳米圆盘克服了MSP纳米圆盘的局限性,没有去垢剂的情况下,SMA能够溶解脂质膜形成盘状纳米颗粒(图1-8),近年来在细胞膜研究领域受到越来越多的关注。[/font][/size][/font][align=center][img=,662,487]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071551559682_8480_3237657_3.jpg!w662x487.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]7 MSP纳米圆盘和SMA纳米圆盘的形成过程[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]7 [/font][font=宋体]The formation processes of MSP nanodiscs and SMA nanodiscs[/font][/align][font=宋体]1.2.[/font][font=宋体]2 SMA结合的纳米圆盘[/font][font=宋体]早在[/font][font=宋体]2001[/font][font=宋体]年,[/font][font=宋体]Tonge[/font][font=宋体]等人就证明了既含有疏水单元苯乙烯又含有亲水单元马来酸的[/font][font=宋体]SMA[/font][font=宋体][font=宋体]可以增溶脂质分子,并在[/font][font=宋体]2006年利用SMA将脂质双分子层转化成稳定的纳米圆盘形状的双层膜,获得专利。2009年,SMA首次被报道用于提取跨膜蛋白质,在脂质双分子层中加入SMA后,SMA与细胞膜结合,将其溶解为天然的纳米圆盘,又称为苯乙烯-马来酸脂质颗粒[/font][font=宋体]([/font][font=宋体]SMALPs)[/font][font=宋体],[/font][font=宋体]SMA包围在圆盘侧面,膜蛋白质则被包裹于圆盘之中,如图1-8所示。与去垢剂和MSP纳米圆盘相比,SMALPs的优势在于不需要去垢剂就可以直接从细胞膜上提取膜蛋白质,同时保留膜蛋白质周围的天然脂质环境。自2009年开始,[/font][font=宋体]关于利用[/font][font=宋体]SMALPs技术提取纯化膜蛋白质的文献数目[/font][font=宋体]迅速增加,(图[/font][font=宋体]1-9)。这些文献研究了多种重要的膜蛋白质,如G蛋白偶联受体、离子通道、ABC转运蛋白等,处于SMALPs中的膜蛋白质具有良好的稳定性和活性且显著优于去垢剂胶束中的膜蛋白质。此外,这些文献表明SMA对于单跨膜螺旋蛋白、多跨膜螺旋蛋白,甚至大型多亚基跨膜蛋白都具有良好的提取效果。[/font][/font][align=center][img=,662,406]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071552290358_7544_3237657_3.jpg!w662x406.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]8 SMALPs示意图[/font][sup][font=宋体][font=宋体][59][/font][/font][/sup][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]8 [/font][font=宋体]Schematic diagram of SMALPs[/font][sup][font=宋体][font=宋体][59][/font][/font][/sup][/align][align=center][img=,615,432]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071552556903_281_3237657_3.jpg!w615x432.jpg[/img][/align][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]9 利用SMALPs技术纯化膜蛋白质的文献数目[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]9 Numbers of [/font][font=宋体]literatures describing membrane proteins purified by SMALPs technology[/font][/align][font=宋体][font=宋体]SMA可同时实现膜蛋白质和膜脂的提取,很多研究也对[/font][font=宋体]SMALPs[/font][font=宋体]中的脂质分子进行了定性定量分析。[/font][font=宋体]Teo等采用SMA对大肠杆菌的ZipA、FtsA和PgpB三种膜蛋白质进行提取纯化,并采用反相HPLC-MS/MS分别对三种膜蛋白质的SMALPs中的磷脂进行分离分析。结果表明,SMA本身不会优先从细胞膜中提取特定的磷脂[/font][font=宋体]。在[/font][font=宋体]ZipA和PgpB[/font][font=宋体]的[/font][font=宋体]SMALPs中,磷脂分子种类类似且单不饱和PE和PG含量较高;在FtsA的SMALPs中,磷脂分子种类与ZipA和PgpB差异较大,具有更长碳链的PE和PG含量更高。Ayub等人采用SMA对酵母细胞膜上的CD81蛋白进行增溶和纯化,并采用“鸟枪法”对酵母细胞膜总脂质提取物、空SMALPs(不含CD81)[/font][font=宋体]中脂质[/font][font=宋体]和含[/font][font=宋体]CD81的SMALPs中[/font][font=宋体]脂质进行测定。结果表明,前两者所含磷脂分子种类差异不大,含[/font][font=宋体]CD81的SMALPs中磷脂分子种类变化明显,表现为带正电荷的PE和PC减少,带负电荷的PI相对增多。[/font][/font][font=宋体]1.2.[/font][font=宋体]3 SMA与磷脂双分子层[/font][font=宋体]近年来,关于[/font][font=宋体]SMALP[/font][font=宋体]s[/font][font=宋体]自组装机制的研究[/font][font=宋体]也[/font][font=宋体]得到开展[/font][font=宋体]。简单来说,在疏水效应驱动下,[/font][font=宋体]SMA吸附到磷脂双分子层[/font][font=宋体][font=宋体],苯乙烯基团插入到磷脂双分子层中,与酰基链紧密结合,在临界浓度下,带电的马来酸基团使膜失稳,导致膜破裂并形成被[/font][font=宋体]SMA聚合物带环绕的纳米圆盘。对于SMA与其它两亲性聚合物的区别,Scheidelaar等从苯环和羧基的性质进行了详细阐述:刚性苯环基团的存在,使SMA从溶液游离状态转化成围绕纳米圆盘的另一种状态,熵变小,这是有利的;羧基的偶极矩与膜的偶极势之间有良好的相互作用。SMA的这些特性使其对磷脂双分子层具有高增溶性能,可以增溶各种不同头部基团、不同酰基链、不同构型的脂质分子。特别是苯乙烯与马来酸摩尔比在2:1到3:1之间的SMA,其疏水性和极性达到最佳平衡,对磷脂双分子层增溶效果最佳[/font][/font][sup][font=宋体][font=宋体][71][/font][/font][/sup][font=宋体]。[/font][font=宋体]1.[/font][font=宋体][font=宋体]3 SMA[/font][font=宋体]及其衍生物[/font][/font][font=宋体]1.[/font][font=宋体]3[/font][font=宋体].[/font][font=宋体][font=宋体]1 SMA[/font][font=宋体]的性质与制备[/font][/font][font=宋体]SMA是苯乙烯[/font][font=宋体]-[/font][font=宋体][font=宋体]马来酸酐共聚物([/font][font=宋体]SMAnh)的水解形式,SMAnh是被广泛研究的聚合物之一,由Alfey和Lavin在1945年首次制备。由于苯乙烯和马来酸酐存在极性差异,且苯环为给电子体,马来酸酐为吸电子体,在一定反应条件下两者竞聚率相近,聚合后可形成具有独特交替结构的聚合物链,经水解后,赋予SMA两亲性聚合物的性质。SMA不仅化学性质独特,还具有良好的生物相容性,可用作很多药物的载体,如坦螺旋霉素、两性霉素B等。[/font][/font][font=宋体][font=宋体]用于膜蛋白质和膜脂研究时,[/font][font=宋体]SMAnh的制备方式通常有两种,即利用传统自由基聚合或[/font][font=宋体]可控[/font][font=宋体]/“活性”自由基聚合[/font][font=宋体]。传统自由基聚合因其慢引发、快增长、易终止的特点而导致聚合反应过程、聚合度、聚合物的结构和分子量分布难以控制。可控[/font][font=宋体]/“活性”自由基聚合技术的出现使得对聚合物进行分子设计和可控聚合成为可能,特别是可逆加成[/font][/font][font=宋体]-[/font][font=宋体]断裂链转移[/font][font=宋体][font=宋体]([/font]RAFT)[/font][font=宋体][font=宋体]聚合已发展成为合成复杂聚合物结构的最通用和最强大的聚合技术之一。[/font][font=宋体]RAFT聚合中的关键试剂[/font][/font][font=宋体]-[/font][font=宋体]链转移试剂[/font][font=宋体][font=宋体]([/font]CTA)[/font][font=宋体],在聚合过程中可以形成无聚合活性的休眠种,与活性自由基链相比,对体系中其它自由基的竞争力相当,使得整个反应体系始终存在自由基的可逆链转移,很大程度上抑制了双基终止,并实现了对聚合过程的调控。[/font][font=宋体]Craig等采用RAFT聚合法制备了三组具有低、中、高分子量的SMAnh,每组分别设置了不同的苯乙烯、马来酸酐摩尔比[/font][font=宋体][font=宋体]([/font]2:1-4:1)[/font][font=宋体][font=宋体],经体积排阻色谱法分析,证明了所得聚合物的分散度指数([/font][font=宋体]PDI)在1.25-1.35之间,且所有聚合物的实际分子量与理论值相近,说明聚合过程得到了很好的控制。将SMAnh进行水解,用于磷脂分子增溶,结果发现形成SMALPs的大小与SMA分子量无关,而与两个单体的比例有关。苯乙烯、马来酸酐摩尔比为2:1、3:1、4:1时,形成的纳米圆盘尺寸分别约为28 nm、10 nm、32 nm。因此,利用RAFT聚合方法可以控制SMA结构,通过扩大纳米圆盘的尺寸可为提取更多的膜脂和体积更大的膜蛋白质提供可能性。[/font][/font][font=宋体]Smith等在蒙特卡罗模拟的基础上,通过RAFT聚合法合成了六组16种具有不同苯乙烯/马来酸酐比例和不同单体/CTA比例的聚合物,经凝胶渗透色谱、核磁共振等技术表征,证实了RAFT聚合可以控制聚合物链中单体的含量、组成、分布情况。作者进一步比较了上述聚合物在磷脂增溶和SMALPs形成方面的性能差异,筛选出了聚合物D,与商业SMA2000相比,得到的纳米圆盘分散性更小,而较低的样品分散性可能有利于结构生物学研究。[/font][font=宋体]1.3.2 SMA衍生物的[/font][font=宋体]性质与[/font][font=宋体]制备[/font][font=宋体]SMA[/font][font=宋体]LPs[/font][font=宋体]已逐渐发展成为细胞膜组成研究的可靠工具,但其应用价值受到[/font][font=宋体]pH[/font][font=宋体]值[/font][font=宋体]和二价金属离子的限制。在酸性条件下,[/font][font=宋体]SMA[/font][font=宋体][font=宋体]中的羧基[/font][font=宋体]易发生质子化使共聚物疏水性增强而极易从溶液中沉淀析出,这不利于提取在酸性环境中发挥最佳功能的膜蛋白质;此外,在毫摩尔浓度的镁或钙离子存在下,[/font][/font][font=宋体]SMA[/font][font=宋体]中的羧基可与金属离子螯合而产生沉淀,使[/font][font=宋体]SMA[/font][font=宋体][font=宋体]无法用于钙[/font][font=宋体]/镁离子依赖性膜蛋白质的研究[/font][/font][sup][font=宋体][font=宋体][82-83][/font][/font][/sup][font=宋体]。[/font][font=宋体]为了拓宽[/font][font=宋体]SMALPs[/font][font=宋体][font=宋体]技术的适用范围,利用[/font][font=宋体]SMAnh中酸酐基团的高反应活性和衍生能力,可进一步通过酯化、酰胺化等反应进行后修饰制备[/font][font=宋体]SMA衍生物[/font][font=宋体],如图[/font][font=宋体]1-10所示。后修饰基团的引入可改变SMA的特性,增强了聚合物的pH值和金属离子耐受范围,如SMI在pH值为2.5-10范围内,二价金属离子浓度高达200 mM时,仍可发挥膜蛋白质及膜脂提取功能,形成的纳米圆盘显示出超强稳定性。上述SMA衍生物为后续更广泛的膜蛋白质和膜脂研究提供了更多的选择。[/font][/font][align=center][img=,690,343]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071553237687_6095_3237657_3.jpg!w690x343.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]10 SMA衍生物[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]10 [/font][font=宋体]SMA derivatives[/font][/align][align=center][/align][font=宋体]1.4 SMALPs[/font][font=宋体]的扩展[/font][font=宋体]二异丁烯[/font][font=宋体]-[/font][font=宋体][font=宋体]马来酸共聚物([/font][font=宋体]DIBMA[/font][font=宋体])在增溶磷脂,稳定膜蛋白质的性能上与[/font][font=宋体]SMA相当。同SMALPs一样,DIBMA以[/font][font=宋体]DIBMA[/font][font=宋体]脂质颗粒([/font][font=宋体]DIBMALPs[/font][font=宋体])的形式同时提取膜脂和膜蛋白[/font][font=宋体]质[/font][font=宋体]。[/font][font=宋体]SMA中苯基的存在使得提取的膜蛋白质不能直接进行紫外或圆二色谱等光谱学表征,而DIBMA可弥补这一缺陷。Gulamhussein等比较了SMA与DIB-MA两种聚合物对不同表达系统的具有不同形状和不同大小的膜蛋白质在增溶效率、提取纯度和稳定性能方面的差异,如图1-11所示[/font][font=宋体]。[/font][font=宋体]DIBMA[/font][font=宋体]对某些膜蛋白质的增溶效率并没有优于[/font][font=宋体]SMA,所提取膜蛋白质的纯度也不如SMA,这是由于[/font][font=宋体]DIBMALPs[/font][font=宋体]的尺寸较[/font][font=宋体]SMALPs大,提取出来的杂质随之增多。较大尺寸的DIBMALPs能包容更多的膜脂,膜脂的有序度因为空间的增大而下降,这可能不利于膜蛋白质结构和功能的稳定,但也可能为蛋白质构象变化和动力学研究提供更好的环境。[/font][/font][align=center][img=,580,473]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071553485075_347_3237657_3.jpg!w580x473.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]11 比较SMALPs与DIBMALPs[/font][/align][align=center][/align][font=宋体]Tribet等开发了一类新型两亲性聚合物([/font][font=宋体]APols[/font][font=宋体]),其结构特征为低分子量聚丙烯酸的羧基被辛胺和异丙胺随机酯化。[/font][font=宋体]APols[/font][font=宋体]这一命名是为了将这类两亲性聚合物与化学或工业等其它领域的两亲性聚合物区分,其中被应用和研究最为广泛的是[/font][font=宋体]A8-35[/font][font=宋体]。[/font][font=宋体]A8-35[/font][font=宋体][font=宋体]中有[/font][font=宋体]25%的羧基被辛胺随机酯化,40%的羧基被异丙胺随机酯化,剩下35%的游离羧基,使其具有温和的表面活性。另外,与去垢剂分子相比,聚合物链具有一定粘度,与膜蛋白质接触位点更多,能使膜蛋白质在更长时间和更高温度下保持稳定状态。[/font][/font][font=宋体]A8-35[font=宋体]主要缺点在于其[/font][/font][font=宋体][font=宋体]临界缔合浓度较低,不能像[/font][font=宋体]SMA那样直接溶解细胞膜,提取膜蛋白质。基于此,Marconnet等作出假设,用环烷烃替代[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]中线性的烷基侧链,期望环烷烃能发挥[/font][font=宋体]SMA中苯环的作用,可以自发地吸附到磷脂双分子层上,这是实现生物膜增溶、膜蛋白质提取的第一步。结合SMA独特的膜增溶性能和[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]优异的膜蛋白稳定性能,[/font][font=宋体]Marconnet等制备了聚丙烯酸衍生物CyclAPols。[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]和[/font][font=宋体]CyclAPols结构如图1-12。经过一系列膜蛋白质提取实验,结果表明,所制备的CyclAPols可用于直接提取膜蛋白质和膜脂,提取速度甚至比SMA更快。例如,对于膜蛋白质YidC,CyclAPols可在1小时左右达到最大提取率,而SMA用时超过1小时。此外,CyclAPols对膜蛋白质的稳定性优于SMA。例如,对于HsBR膜蛋白质,[/font][/font][font=宋体]50[/font][font=宋体]℃加热处理6小时,在CyclAPols中可保留80-85%的原始构象,而在SMA中约保留20%。[/font][align=center][img=,412,473]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071554112299_7819_3237657_3.jpg!w412x473.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体][font=宋体]12 [/font][font=宋体]A8-35和CyclAPols[/font][font=宋体]结构[/font][/font][sup][font=宋体][font=宋体][92][/font][/font][/sup][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]12 Structures of [/font][font=宋体]A8-35 and CyclAPols[/font][sup][font=宋体][font=宋体][92][/font][/font][/sup][/align][font=宋体]Yasuhara等[/font][sup][font=宋体][font=宋体][97][/font][/font][/sup][font=宋体][font=宋体]首次报道了[/font][font=宋体]聚甲基丙烯酸酯两亲性共聚物[/font][font=宋体],如图[/font][font=宋体]1-13所示,甲基丙烯酸丁酯可提供非极性侧链,而甲基丙烯酰氧乙基三甲基氯化铵可提供带正电荷的极性侧链。动态光散射、电镜、核磁共振测试证实了制备的聚合物可以有效溶解磷脂双分子层形成纳米圆盘结构。此外,与SMA相比,[/font][font=宋体]聚甲基丙烯酸酯衍生物[/font][font=宋体]中不含苯环和酰胺键,可将提取的膜蛋白质直接进行荧光、圆二色谱表征,这些表征可用于研究淀粉样蛋白质聚集的动力学和淀粉样蛋白质聚集过程中的结构变化。因此,该聚合物被进一步用于研究人胰岛淀粉样多肽([/font][font=宋体]hIAPP[/font][font=宋体]),[/font][font=宋体]而[/font][font=宋体]hIAPP[/font][font=宋体]产生淀粉样聚集变性与[/font][font=宋体]2型糖尿病中胰岛细胞的死亡息息相关。[/font][/font][align=center][img=,690,190]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071554363037_3318_3237657_3.jpg!w690x190.jpg[/img][/align][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]13 两亲性甲基丙烯酸酯共聚物[/font][sup][font=宋体][font=宋体][96][/font][/font][/sup][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]13 [/font][font=宋体]Amphiphilic methacrylate copolymers[/font][sup][font=宋体][font=宋体][96][/font][/font][/sup][/align][font=宋体] [/font]

  • 【讨论】什么是“粗玻璃圆盘布赫氏漏斗”?

    [em09509]螯合物鉴别检测方法(本实验是鉴别螯合物中未螯合金属离子含量的,是先将样品溶解,再用“粗玻璃圆盘布赫氏漏斗”过滤,收集滤液,进行离子测定。)方法:称取2克样品进行试验。在室温为21℃度时加入150毫升的去离子水并搅拌30分钟。用[color=#DC143C]粗玻璃圆盘布赫氏漏斗[/color]经过过滤,将可溶和不可溶部分分离。然后再用25毫升的去离子水冲洗漏斗内的残渣,并将滤液调节至标准容量(200毫升)。但我有些问题,那“粗玻璃圆盘布赫氏漏斗”是什么漏斗?能把螯合物都过滤出来了?有关于它的具体说明吗?有图片更好。谢谢了具体内容如下:螯合物鉴别检测方法-—离子选择电法 有机微量元素的大量商业化应用因为缺乏良好的产品分析技术而受到较长时间的限制。客户无法测定所购商品的优劣,不得不完全依赖厂家的信誉和从应用现场获得的主观反馈。最后的决定几乎完全受每千克成本的影响。他们的困扰在于他们不能确定是否所购昂贵的螯合铜实质上是廉价的硫酸铜。对于最终用户,即饲料企业来说,具有重大意义的是,最近出现的对螯合物产品质量,有了一种相对简单的检测分析方法,一种迟到了很久的方法。 大多数金属螯合物(金属蛋白或氨基酸螯合物)的生产过程是使用可溶性无机盐作为有机微量元素的来源,通常是硫酸盐与水解蛋白、肽和某种氨基酸,在某种条件下发生反应,再经后处理工艺加工而成。 如果一个金属已与一个水解蛋白或氨基酸螯合,打破这种螯合或将其一分为二是比较困难的。本分析使用了一种温和的溶剂即中性去离子水,来溶解金属蛋白,再检测溶解部分当中分离的自由金属离子的量,即未螯合或弱螯合的量,就可以判定螯合产品的优劣。 方法:称取2克样品进行试验。在室温为21℃度时加入150毫升的去离子水并搅拌30分钟。用粗玻璃圆盘布赫氏漏斗经过过滤,将可溶和不可溶部分分离。然后再用25毫升的去离子水冲洗漏斗内的残渣,并将滤液调节至标准容量(200毫升)。

  • 关于旋转圆盘电极的一些疑惑

    关于旋转圆盘电极的一些疑惑

    旋转圆盘电极上的各处的扩散层厚度一样,测LSV时,由于线性电势扫描的电势不断改变,不是稳态,扩散层厚度应该不断的改变,是不是旋转圆盘电极上的扩散层厚度也在变化,只是各处都一样?

  • 【求助】请问知道怎么购买或自制微碳圆盘电极吗?

    [em01] 大家好,我们现在用的是毛细管电泳电化学检测仪,仪器随带的电极无法满足实验要求,所以我们需要一种微碳圆盘电极。但是我们自己制作的效果一直不好,请问各位知道怎么自制或者购买吗?有好的建议希望大家多多发表!非常感谢!!!!

  • 摆锤式冲击试验机用标样应用特点

    该方法专用标准冲击体,为流线形子弹头形状,包括依次固定相连接的导向体、配重块和冲击头。该发明实现了冲击试验机的直接检测,确定了冲击试验机的准确性,制造成本低,操作简单方便。摆锤挂摆机构包括主机、摆锤、脱挂钩装置、缓冲装置、举摆角调节装置,摆锤通过一摆锤转轴与主机相连;脱挂钩装置包括:电磁吸铁、用于支撑电磁吸铁的支承座,支承座的外侧设有拉杆,拉杆与一弹簧的一端相连,弹簧的另一端与一挂钩轴相连,挂钩轴上设有一挂钩,挂钩与一锤钩相连;缓冲装置包括一缓冲弹簧,缓冲弹簧与一缓冲头相连,缓冲头的外侧设有一限位开关;举摆角调节装置包括一带有圆弧滑槽的调节圆盘。将其应用在同一台示波冲击试验机同一只摆锤的情况下可精确、定量地改变冲击速度和冲击能量,为材料的冲击性能试验拓展了更大的空间。 利用精确的冲击试验机来确定标准冲击体的质量与其冲击功的对应关系;在需检定的冲击试验机的能量段内至少选择三个能量值,分别对该三个能量值,选用与该能量值对应质量的标准冲击体进行反复冲击;冲击试验机盘指针所指冲击功,与该质量标准冲击体对应的冲击功进行比较,若误差在1%之内,认为该冲击试验机计量合格,否则进行调试,若三个能量值均合格,即冲击试验机在该能量区段内为准确。 摆锤式冲击试验机用标样适用于摆锤式冲击试验机冲击能量检查和校验的标准试样。该标准冲击试样的组成形状为长条方形,标准冲击试样垂直中心轴线的截面为正方形,其特征在于沿标准冲击试样中心轴线的平行方向任意一端面中部,设有垂直于中心轴线方向的一圆弧端面,圆弧半径R=5-150mm。该标准冲击试样的圆弧端面厚度H=2-9mm,圆弧端面总长度D=5-35mm,L≤29mm。具有形状结构简单、合理,制备容易和适用间接方法校验冲击试验机范围宽等特点。

  • 火车轮毂旋转弯曲疲劳试验机

    火车轮毂旋转弯曲疲劳试验机火车轮毂旋转弯曲疲劳试验机技术咨询13581584194Wheel Hub Test StandApplication: Rotating bending test at constant load amplitude to identify the fatigue strength under rotating bending stresses on wheel hubs, spindles, flanges and bearing. Specification: Dynamic Load ±10 kNm, testing at a frequency of up to 60 Hz. Power consumption: max. 3 kW. Abort criteria: Frequency difference, digitally and highly accurate. Advantages: Testing at high frequencies, extremely low cost for testing and maintenance.车轮弯曲疲劳试验机,适合于适用于汽车车轮的弯曲疲劳试验,试验机符合QC/ T 221-1997的要求。特点☆  车轮轮辋旋转,旋转速度可在30~750r/min之间任意设定;☆ 采用由伺服电机、减速器、滚珠丝杠、测力计、力传咸器、调心轴承、调心轴承限位机构、位移测量装置、位移传感器等构成的加载机构;☆ 轿车车轮弯曲疲劳试验机采用工控机闭环控制,具有自动检测和手动调试两种功能,计算机显示各种试验参数。☆ 操作简单,维护方便,布局合理,安装方便,美观大方。主要技术指标●最大试验弯矩:800Nm;●示值精度:20%FS起≤±1%;●基础臂长:810mm;●试验转速:100~800r/min;●转速精度:±1%;●被测车轮直径:12吋~26吋;●外形尺寸:L1800mm×W900mm×H1600mm;●功率:7~11kW;●重量:3.0t;●工作方式:手动装卸车轮,自动检测;●试验次数:0~200万次可任意设定;●控制方式:采用工业控制计算机进行控制,自动采集数据,对数据进行自动处理,并用图表等方式在屏幕上输出;自动判定试验是否失效,如车轮不能承受载荷至所要求的循环次数,设备自动停机;达到循环次数后的失效判断由人工色渗法或无损探伤发判断。试验结果由激光打印机打出。●力传感器精度:±0.5%F.S;●位移传感器精度:±0.1%F.S;●温度传感器精度:±1%F.S;●电源:三相AC380V。Railway Wheel Set Test StandApplication: Rotating bending test at constant load amplitude to identify the fatigue strength under rotating bending stesses on railway wheel sets. Specification: Dynamic Load ±200 kNm, testing at a frequency of up to 60 Hz. Power consumption: max. 3 kW. Abort criteria: Frequency difference, digitally and highly accurate. Advantages: Testing at high frequencies, extremely low cost for testing and maintenance.主要技术参数  1. 适用范围:12—24″  2. 工作电压:380V 50HZ  3. 整机功率:不大于11KW  4. 最大弯曲力矩:1000Kg/M  5. 测试速度:600—1800RPM  6. 驱动机:伺服控制  7. 圆盘直径:Ф1000mm  8. 圆盘驱动器:变频调速  9. 刹车系统:激磁式刹车  10. 力矩产生:离心式  11. 控制系统:PLC控制  12. 人机界面荧屏  13. 实验报告打印  14. 主轴对心:自动  15. 转速稳定性:±1%  16. 负载稳定性:±2.5%  17. 安全变为量显示:键入式设定  注:该机适用标准为日本JWL.VIA.台湾ARTC.美国SAE.SFI.德国TüV 之标准 POWER ROTATING BENDING.pdfRailway Wheel Test System.pdf附件 Railway Wheel Test System.pdf (551.

  • WXG-4圆盘旋光仪怎么读数

    买了台WXG-4圆盘旋光仪,不知道这圆盘的游标怎么读数。不知道谁还在使用这种老机器,知道的说下啊,最好能附图,谢了!

  • 【转帖】拉力试验机夹具好坏的判断标准及难点

    拉力试验机夹具好坏的判断标准及难点 对拉力试验机夹具好坏的判定很难界定,由于夹具结构的特殊性,对一种夹具,有时我们很难确定它到底更适合那种试样,通常从以下三点来判断1、夹具是否使用方便、安全。2、夹持是否可靠,不能有打滑现象。3、做试验过程中,试样断点好。数据离散性小。(即试样不断钳口、钳口内、平行段或标距外) 而有几种类型的材料,有与本身的特性及适用的环境特殊,目前为止,解决的办法并不多1、钢丝、钢绞线由于试样硬度高,内部结构相对松散,在拉伸试验过程中受力不均匀,夹持试样的钳口易磨损等原因,夹具一直未得到好的解决。过去是夹铝箔来做,一次试验就耗费四片铝箔,浪费太大。现在采用了喷涂金刚砂的拉力试验机夹具,打滑问题解决了,但断口位置始终未能理想,10根试样只能成功一半左右。2、对于变形量大的材料由于变形过大,所以夹持困难,夹具的设计也是一个难点。3、对于需要在高温环境下做的试验,夹具的要求也很高,既要耐高温,又要不变形,体积要小,所以一般的试验机厂家来说,也是很难搞定的事情4、对于批量大,高频率的试验来说,国外普遍采用全自动夹持,对与国内试验机厂家来说,还是个新的课题5、对与成品及半成品的检测,需要的夹具则是五花八门,如何个性化满足客户要求,对所有试验机厂家来说,都是一个挑战。

  • 【讨论】试验机升级改造效果如何?

    时才看见有试验机升级改造项目的公司,承接老试验机的改造升级,主要改造项目如下: 改造类型: 表盘式万能试验机------〉微机屏显系统 表盘式万能试验机------〉电液比例控制系统 微机屏显系统 ------〉电液比例控制系统 表盘式压力机 ------〉压力机屏显系统 表盘式压力机 ------〉压力机控制系统 压力机屏显系统 ------〉压力机控制系统 冲击试验机------〉仪器化冲击试验机 非标试验机------〉自动控制测量试验机改造升级后能改变老试验机力值采样不敏感,数值变化误差大,力值精度低,量程更换麻烦,位移精度低,变形无法计算,人为控制对试验员个人技能要求高等缺点。说是这样说的,不知道具体效果如何,有版友的老试验机这样改造过吗,需要花费多少费用?

  • 万能试验机自动判断断裂条件的设置

    万能试验机自动判断断裂条件的设置

    [img=,690,749]http://ng1.17img.cn/bbsfiles/images/2018/05/201805281553598801_5913_1921462_3.jpg!w690x749.jpg[/img]在利用万能试验机进行拉伸试验测试时,在软件中采用自动判断断裂的方式,断裂条件因为测试的试样材质不同,参数设置也不同,大家在做拉伸实验时,测试的材料有哪些?判断断裂条件是怎么设置的。如果设置不对,有时试样断裂了,试验机依然在运行。

  • 试验机夹具好坏判断标准介绍

    试验机夹具好坏判断标准介绍  由于夹具结构的特殊性,对一种夹具,有时我们很难确定它到底更适合哪种试样,通常从以下三点来判断:  1、夹具是否使用方便、安全。  2、夹持是否可靠,不能有打滑现象。  3、做试验过程中,试样断点好。数据离散性小。(即试样不断钳口、钳口内、平行段或标距外)  而有几种类型的材料,有与本身的特性及适用的环境特殊,目前为止,解决的办法并不多  1、钢丝、钢绞线由于试样硬度高,内部结构相对松散,在拉伸试验过程中受力不均匀,夹持试样的钳口易磨损等原因,夹具一直未得到好的解决。过去是夹铝箔来做,一次试验就耗费四片铝箔,浪费太大。现在采用了喷涂金刚砂的拉力试验机夹具,打滑问题解决了,但断口位置始终未能理想,10根试样只能成功一半左右。  2、对于变形量大的材料由于变形过大,所以夹持困难,夹具的设计也是一个难点。  3、对于需要在高温环境下做的试验,涡街流量计夹具的要求也很高,既要耐高温,又要不变形,体积要小,所以一般的试验机厂家来说,也是很难搞定的事情。  4、对于批量大,高频率的试验来说,国外普遍采用全自动夹持,对与国内试验机厂家来说,还是个新的课题  5、对与成品及半成品的万能试验机检测,需要的夹具则是五花八门,如何个性化满足客户要求,对所有试验机厂家来说,都是一个挑战。

  • 如何判断弹簧试验机精度的高低?

    判断弹簧试验机精度高低标准是什么?越来越多的使用者,都把位移测试精度的高低当做衡量试验机水平高低的标准。因为,小负荷的弹簧,尤其是大刚度精密弹簧的首要要求是设备的测试精度高,因为位移的微小变化,便会引起试验力的较大变化,而保证试验力的测试精度,是很容易的事情,但是要保证弹簧试验机的另一参数位移的精度,是保证弹簧测试精度的关键,也是判断弹簧试验机精度高低的标准。在弹簧试验机的国家标准中,位移精度的要求是很低的,满足不了大刚度精密弹簧的要求,因此,对试验机制造商来说,必须提高位移测试精度来满足使用者的要求。影响位移测试精度的因素很多,如检测方法、整机结构、整机刚度、压盘的平行度、测量元件、材料、负荷位移下沉等,只要对这些因素加以克服,位移精度的保证是不成问题的。弹簧试验机检测是严格按照标准对位移进行检测的,能够保证弹簧放置在压盘的不同地方试验力基本一致,保证在试验力的满量程范围内,任意负荷都不会引起负荷传感器的位移下沉。另外,弹簧试验机的加载方法对试验结果影响敢是不容忽视的。早期的加载方法主要为普通交流电机带动传动系统加载,加载速度不可调整,对于弹簧等弹性元件来说,由于回弹应力的存在,快速压缩时自动采集的数据与慢速压缩或静止压缩采集的数据差别很大,现在多采用变速系统如交流伺服调速系统、通过逼真的模拟弹簧的工作状态,真实测量弹簧在这一状态下的内部应力,为弹簧设计提供依据。随着计算机技术的发展,单片机的功能较简单的缺点又被微机所改善,智能化功能设置专家系统、参数选择、数据库、清晰的视窗中文界面、简单的鼠标操作,使弹簧测试过程中的最理想化状态成为可能,智能化水平得到了极大的提高,操作者只要轻轻点击鼠标,就可以按照预先设置的任意模式进行测量、控制,通过设定不同的试验速度、试验过程中的参数,使试验模式、整个试验过程可以按照人们的意志进行控制,试验曲线和试验数据实时显示,试验数据亦可按行业标准或企业标准进行计算、整理、输出,还可对以往的试验过程、试验结果进行查询,强大的计算和数理统计功能代替了过去繁杂的工作,大大减轻了人的劳动量。另外,计算机网络技术的应用,又会使检测控制机(简称下位机)与计算中心的主控机(简称上位机)结合起来,实现试验数据的传输、处理、综合管理,在中心实验室,由上位机对下位机群实现综合管理。

  • 【讨论】力学性能试验机(第五期)有奖活动:试验机计量校验大家谈

    [color=#00008B]大家好~~力学性能试验机论坛从今天起继续举办第五期活动. 本次的活动主题是:"试验机计量校验大家谈"许多试验机一般的计量检定周期为1年.1.如今新型的拉伸电子试验机基本上取代了老式的表盘读数型试验机.试验操作都是由计算机来完成的.象这种试验机在计量校验的时候是怎样完成的呢?在整个校验过程中计量校验员在校验时你是否仔细观察到了?遇到过那些问题?2.其他是试验机如:冲击试验机在校验过程中是否一次合格?表盘精度,摆锤的重量是否都一次合格过关了呢?欢迎大家畅所欲言,谈谈你对现在试验机计量校验的看法和感受.(可举些事例)希望大家积极参与,共同学习! 活动时间:10天[/color]

  • 【转帖】拉力试验机夹具的好坏怎么判断-江都俊平

    拉力试验机夹具的好坏怎么判断?对拉力试验机夹具好坏的判定很难界定,由于夹具结构的特殊性,对一种夹具,有时我们很难确定它到底更适合那种试样,通常从以下三点来判断①夹具是否使用方便、安全。②夹持是否可靠,不能有打滑现象。③做试验过程中,试样断点好。数据离散性小。(即试样不断钳口、钳口内、平行段或标距外)

  • 判断弹簧试验机精度高低的标准

    小负荷的弹簧,尤其是大刚度精密弹簧的首要要求是设备的测试精度高,因为位移的微小变化,便会引起试验力的较大变化,而保证试验力的测试精度,是很容易的事情,但是要保证弹簧试验机的另一参数位移的精度,是保证弹簧测试精度的关键,也是判断弹簧试验机精度高低的标准。因此,越来越多的使用者,都把位移测试精度的高低当做衡量试验机水平高低的标准。在弹簧试验机的国家标准中,位移精度的要求是很低的,满足不了大刚度精密弹簧的要求,因此,对试验机制造商来说,必须提高位移测试精度来满足使用者的要求。影响位移测试精度的因素很多,如检测方法、整机结构、整机刚度、压盘的平行度、测量元件、材料、负荷位移下沉等,只要对这些因素加以克服,位移精度的保证是不成问题的。 弹簧试验机检测是严格按照标准对位移进行检测的,能够保证弹簧放置在压盘的不同地方试验力基本一致,保证在试验力的满量程范围内,任意负荷都不会引起负荷传感器的位移下沉。另外,弹簧试验机的加载方法对试验结果影响敢是不容忽视的。早期的加载方法主要为普通交流电机带动传动系统加载,加载速度不可调整,对于弹簧等弹性元件来说,由于回弹应力的存在,快速压缩时自动采集的数据与慢速压缩或静止压缩采集的数据差别很大,现在多采用变速系统如交流伺服调速系统、通过逼真的模拟弹簧的工作状态,真实测量弹簧在这一状态下的内部应力,为弹簧设计提供依据。 随着计算机技术的发展,单片机的功能较简单的缺点又被微机所改善,智能化功能设置专家系统、参数选择、数据库、清晰的视窗中文界面、简单的鼠标操作,使弹簧测试过程中的最理想化状态成为可能,智能化水平得到了极大的提高,操作者只要轻轻点击鼠标,就可以按照预先设置的任意模式进行测量、控制,通过设定不同的试验速度、试验过程中的参数,使试验模式、整个试验过程可以按照人们的意志进行控制,试验曲线和试验数据实时显示,试验数据亦可按行业标准或企业标准进行计算、整理、输出,还可对以往的试验过程、试验结果进行查询,强大的计算和数理统计功能代替了过去繁杂的工作,大大减轻了人的劳动量。 另外,计算机网络技术的应用,又会使检测控制机(简称下位机)与计算中心的主控机(简称上位机)结合起来,实现试验数据的传输、处理、综合管理,在中心实验室,由上位机对下位机群实现综合管理。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制