当前位置: 仪器信息网 > 行业主题 > >

脉冲位移传感器

仪器信息网脉冲位移传感器专题为您提供2024年最新脉冲位移传感器价格报价、厂家品牌的相关信息, 包括脉冲位移传感器参数、型号等,不管是国产,还是进口品牌的脉冲位移传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脉冲位移传感器相关的耗材配件、试剂标物,还有脉冲位移传感器相关的最新资讯、资料,以及脉冲位移传感器相关的解决方案。

脉冲位移传感器相关的论坛

  • 分析仪器常用传感器 编码式位置和位移传感器

    分析仪器常用传感器 编码式位置和位移传感器

    [align=center][font=宋体][font=宋体]分析仪器常用传感器[/font] [font=宋体]编码式位置和位移传感器[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]编码式位移传感器基于脉冲编码原理,用以测量运动部件的直线位置和速度变化、转轴旋转角度和速度变化等,其输出信号为电脉冲。[/font][align=center][font=宋体]简述[/font][/align][font=宋体][font=宋体]现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]是一套复杂的精密机[/font][font=Calibri]-[/font][font=宋体]电[/font][font=Calibri]-[/font][font=宋体]光学[/font][font=Calibri]-[/font][font=宋体]化学系统,为保证其高性能的运行,需要精细控制机械部件的运动位置、运动距离、角度和速度。例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]需要精确控制进样针运行位置和速度、样品瓶的准确识别检测、柱温箱后开门控制、色谱进样阀和切换阀控制等,均需要使用位置和位移传感器。[/font][/font][font=宋体]期间需要使用到位置和位移传感器,一般需要确定部件运行的起点(原点),各个部件位置,或者部件相对于原点的移动位置以及运动速度。[/font][font=宋体]通常情况下,机械部件需要安装反射式或者透射式的码盘,与机械部件运动同步或者通过齿轮、齿条、皮带或者丝杆连接,随着机械部件的运动位置(位移)传感器会连续输出脉冲信号。色谱系统根据接收到脉冲的时间点、时间间隔和脉冲个数,可以确定机械部件的运行是否正确和实时。[/font][font=宋体]高精度的脉冲编码器每个旋转周期可以输出数百至数万个脉冲信号,以满足高精度位置(或位移)检测的需要。按码盘的读取方式,脉冲编码器可以分为光电式、电磁式和接触式,其中光电式脉冲编码器的可靠性和精密度较高。根据编码类型,脉冲编码器可以分为绝对式编码器和增量式编码器。[/font][font=宋体][font=宋体]脉冲编码器使用的码盘的常见形式如图[/font][font=Calibri]1[/font][font=宋体]所示,图[/font][font=Calibri]1-a[/font][font=宋体]、[/font][font=Calibri]b[/font][font=宋体]为反射方式码盘,分别为二进制码盘和格雷码盘,码盘表面有黑色和白色不同区域组成,需要反射式光电开关配合工作,可用于绝对式编码器;图[/font][font=Calibri]1-c[/font][font=宋体]为透射式码盘,码盘上面均匀制作刻槽,需要透射式光电开关配合工作,可以用于绝对或者增量式编码器。[/font][/font][align=center][img=,467,170]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300833063950_3062_1604036_3.jpg!w690x249.jpg[/img][font=宋体] [/font][/align][font=宋体][font=宋体]图中所示的二进制码盘或格雷码盘旋转一周,即可以产生[/font][font=Calibri]0000-1111[/font][font=宋体]共计[/font][font=Calibri]16[/font][font=宋体]个二进制数字,可以将圆盘分成[/font][font=Calibri]16[/font][font=宋体]等份。某些型号[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]圆盘状自动进样器样品架采用此种码盘,用以确定样品瓶位置。[/font][/font][font=宋体][font=宋体]图[/font][font=Calibri]1-a[/font][font=宋体]所示的二进制形式码盘,如果传感器发生位置偏差,可能会出现较大的定位差异。例如[/font][font=Calibri]7[/font][font=宋体]号位置([/font][font=Calibri]0111[/font][font=宋体])向[/font][font=Calibri]8[/font][font=宋体]号位置([/font][font=Calibri]1000[/font][font=宋体])运行时,由于传感器位置发生偏差,可能会导致实际运行为[/font][font=Calibri]8[/font][font=宋体]([/font][font=Calibri]1000[/font][font=宋体])号位置至[/font][font=Calibri]15[/font][font=宋体]([/font][font=Calibri]1111[/font][font=宋体])号位置,一般称此类误差为非单值性误差。采用图[/font][font=Calibri]1-b[/font][font=宋体]所示的格雷码盘可以消除此类问题,格雷码盘的特点是相邻两个二进制数值仅有一位数字不同,运行偏差不超过一个单位,可以提高可靠性。[/font][/font][font=宋体][font=宋体]图[/font][font=Calibri]1-c[/font][font=宋体]为平动码盘,码盘可以选用透明或者不透明材质,对应制作不透明或透明的精密刻线或者刻槽,可以用作多位自动进样器样品瓶位置的位置传感器。[/font][/font][font=宋体]平动码盘还可以用作位移传感器,色谱系统通过识别码盘输出脉冲的数量和时间间隔,用以确定机械部件的移动距离和移动速度。多位样品盘的定位误差要求较高,采用精密刻线的码盘可以协助完成此项工作。[/font][font=宋体]色谱仪器较多部件的运动方式为直线型,一般需要采用皮带、齿轮齿条或丝杆将电机的旋转运动转换成直线运动,码盘一般与电机同步旋转工作。与普通光电开关相同,需要保持光路的清洁,避免严重灰尘或者油污的干扰。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明光电编码器的原理。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 【资料】光栅尺位移传感器安装指导及安全使用注意事项

    光栅尺,也称为光栅尺位移传感器(光栅尺传感器),是利用光栅的光学原理工作的测量反馈装置。光栅尺经常应用于数控机床的闭环伺服系统中,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。例如,在数控机床中常用于对刀具和工件的坐标进行检测,来观察和跟踪走刀误差,以起到一个补偿刀具的运动误差的作用。 光栅尺线位移传感器的安装比较灵活,可安装在机床的不同部位。 一般将主尺安装在机床的工作台(滑板)上,随机床走刀而动,读数头固定在床身上,尽可能使读数头安装在主尺的下方。其安装方式的选择必须注意切屑、切削液及油液的溅落方向。如果由于安装位置限制必须采用读数头朝上的方式安装时,则必须增加辅助密封装置。另外,一般情况下,读数头应尽量安装在相对机床静止部件上,此时输出导线不移动易固定,而尺身则应安装在相对机床运动的部件上(如滑板)。 1、光栅尺线位移传感器安装基面 安装光栅尺传感器时,不能直接将传感器安装在粗糙不平的机床身上,更不能安装在打底涂漆的机床身上。光栅主尺及读数头分别安装在机床相对运动的两个部件上。用千分表检查机床工作台的主尺安装面与导轨运动的方向平行度。千分表固定在床身上,移动工作台,要求达到平行度为0.1mm/1000mm以内。如果不能达到这个要求,则需设计加工一件光栅尺基座。 基座要求做到:(1)应加一根与光栅尺尺身长度相等的基座(最好基座长出光栅尺50mm左右)。(2)该基座通过铣、磨工序加工,保证其平面平行度0.1mm/1000mm以内。另外,还需加工一件与尺身基座等高的读数头基座。读数头的基座与尺身的基座总共误差不得大于±0.2mm。安装时,调整读数头位置,达到读数头与光栅尺尺身的平行度为0.1mm左右,读数头与光栅尺尺身之间的间距为1-1.5mm左右。 2、光栅尺线位移传感器主尺安装 将光栅主尺用M4螺钉上在机床安装的工作台安装面上,但不要上紧,把千分表固定在床身上,移动工作台(主尺与工作台同时移动)。用千分表测量主尺平面与机床导轨运动方向的平行度,调整主尺M4螺钉位置,使主尺平行度满足0.1mm/1000mm以内时,把M2螺钉彻底上紧。 在安装光栅主尺时,应注意如下三点: (1)在装主尺时,如安装超过1.5M以上的光栅时,不能象桥梁式只安装两端头,尚需在整个主尺尺身中有支撑。(2)在有基座情况下安装好后,最好用一个卡子卡住尺身中点(或几点)。(3)不能安装卡子时,最好用玻璃胶粘住光栅尺身,使基尺与主尺固定好。 3、光栅尺线位移传感器读数头的安装 在安装读数头时,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似。最后调整读数头,使读数头与光栅主尺平行度保证在0.1mm之内,其读数头与主尺的间隙控制在1-1.5mm以内。 4、光栅尺线位移传感器限位装置 光栅线位移传感器全部安装完以后,一定要在机床导轨上安装限位装置,以免机床加工产品移动时读数头冲撞到主尺两端,从而损坏光栅尺。另外,用户在选购光栅线位移传感器时,应尽量选用超出机床加工尺寸100mm左右的光栅尺,以留有余量。 5、光栅尺线位移传感器检查 光栅线位移传感器安装完毕后,可接通数显表,移动工作台,观察数显表计数是否正常。 在机床上选取一个参考位置,来回移动工作点至该选取的位置。数显表读数应相同(或回零)。另外也可使用千分表(或百分表),使千分表与数显表同时调至零(或记忆起始数据),往返多次后回到初始位置,观察数显表与千分表的数据是否一致。 高创传感器公司生产的高精度位移传感器具有良好的电磁兼容性,技术指标优于国家标准,处于国内绝对领先地位。 通过以上工作,光栅尺线位移传感器的安装就完成了。但对于一般的机床加工环境来讲,铁屑、切削液及油污较多。因此,传感器应附带加装护罩,护罩的设计是按照传感器的外形截面放大留一定的空间尺寸确定,护罩通常采用橡皮密封,使其具备一定的防水防油能力。 使用注意事项 (1)光栅尺传感器与数显表插头座插拔时应关闭电源后进行。 (2)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 (3)定期检查各安装联接螺钉是否松动。 (4)为延长防尘密封条的寿命,可在密封条上均匀涂上一薄层硅油,注意勿溅落在玻璃光栅刻划面上。 (5)为保证光栅尺传感器使用的可靠性,可每隔一定时间用乙醇混合液(各50%)清洗擦拭光栅尺面及指示光栅面,保持玻璃光栅尺面清洁。 (6)光栅尺传感器严禁剧烈震动及摔打,以免破坏光栅尺,如光栅尺断裂,光栅尺传感器即失效了。 (7)不要自行拆开光栅尺传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 (8)应注意防止油污及水污染光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 (9)光栅尺传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。

  • 转速传感器

    转速传感器从原理(或器件)上来分,有磁电感应式、光电效应式、霍尔效应式、磁阻效应式、介质电磁感应式等。另外还有间接测量转速的转速传感器:如加速度传感器(通过积分运算,间接导出转速),位移传感器通过微分运算,间接导出转速),等等。测速发电机和某些磁电传感器在线性区域,可以直接通过交流有效值转 转速表换,来测量转速 ;大多数都输出脉冲信号(近似正弦波或矩形波)。针对脉冲信号测转速的方法有:频率积分法(也就是F/V转换法,其直接结果是电压或电流),和频率运算法(其直接结果是数字)。

  • 位移传感器原理与分类

    传感器之家中将位移传感器分为线位移跟物位移两类,这是按照位移的特征分的。位移传感器就是测量空间中距离的大小,线位移就是在一条线上移动的长度,角位移就是转动的角度。下面就线位移做下介绍,线位移按原理分主要有电阻式、电容式、电感式、变压器式、电涡流式、激光式等等。前面三种主要用来测量小位移,中位移一般则用变压器式,大的位移则用电位器式的比较多,对于精密的场合,则需要选择激光式。

  • 位移传感器的故障

    位移显示为负方向下降,且传感器本身无动作。位移显示也无法回零,大家觉得会是什么问题呢

  • 求助:请问角位移传感器那个厂家的比较好

    请问角位移传感器那个厂家的比较好我们单位现在用的角位移传感器采过来的信号噪声过大,请问如何去掉传感器的噪声问题,还有那个厂家的角位移传感器没有这种问题,或者噪声问题相对比较小,还有抑制传感器噪声的原理是什么??请专家帮帮忙

  • 容栅式位移传感器校准需要参照哪个规范?

    容栅式位移传感器校准需要参照哪个规范? JJF1305-2011线位移传感器校准规范 这个校准规范里没有容栅式位移传感器啊?另外检位移传感器用量块就可以了吗?可以用数显指示表检定仪检吗?

  • 【分享】光栅线位移传感器的结构原理及安装与维护

    光栅数显测量系统是一种能自动检测和自动显示的光机电一体化产品,是改造旧机床,装备新机床以及各种长度计量仪器的重要配套件,是用微电子技术改造传统工业的方向之一。由于光栅数显测量系统具有精度高,安装及操作容易,价格低,回收投资快等优点而得到大量使用。为使广大用户能够更好地掌握运用好这一产品,本文以我公司生产的BG1/KG1型系列光栅线位移传感器为例,就其结构、原理、安装与维护作一介绍。一、结构 BG1/KG1系列光栅线位移传感器是我公司生产的主导产品之一,分为BG1型闭式结构和KG1型开启式结构两种类型。BG1型闭式结构的光栅尺为5线/mm,KG1型开启式结构的光栅尺为100线/mm。 KG1型开启式传感器的标尺光栅裸露在外,微型发光器件和接收器件都装在传感头里。它的精度较高,要求的工作环境条件高,通常运用于精密仪器及使用条件较好的数控设备上。BG1型闭式传感器的特点是发光器件、光电转换器件和光栅尺封装在紧固的铝合金型材里。发光器件采用红外发光二极管,光电转换器件采用光电三极管。在铝合金型材下部有柔性的密封胶条,可以防止铁屑、切屑和冷却剂等污染物进入尺体中。电气连接线经过缓冲电路进入传感头,然后再通过能防止干扰的电缆线送进光栅数显表,显示位移的变化。闭式光栅线位移传感器的结构及输出波形见图1、图2。 http://www.newmaker.com/nmsc/u/art_img1/200612/200612271602699406.gif图一http://www.newmaker.com/nmsc/u/art_img1/200612/200612271604153434.gif图二 BG1型闭式传感器的传感头分为下滑体和读数头两部分。下滑体上固定有五个精确定位的微型滚动轴承沿导轨运动,保证运动中指示光栅与主栅尺之间保持准确夹角和正确的间隙。读数头内装有前置放大和整形电路。读数头与下滑体之间采用刚柔结合的联接方式,既保证了很高的可靠性,又有很好的灵活性。读数头带有两个联接孔,主光栅尺体两端带有安装孔,将其分别安装在两个相对运动的两个部件上,实现主光栅尺与指示光栅之间的运动进行线性测量。二、基本原理 光栅位移传感器的工作原理,是由一对光栅副中的主光栅(即标尺光栅)和副光栅(即指示光栅)进行相对位移时,在光的干涉与衍射共同作用下产生黑白相间(或明暗相间)的规则条纹图形,称之为莫尔条纹。经过光电器件转换使黑白(或明暗)相同的条纹转换成正弦波变化的电信号,再经过放大器放大,整形电路整形后,得到两路相差为90o的正弦波或方波,送入光栅数显表计数显示。三、安装方式 光栅线位移传感器的安装比较灵活,可安装在机床的不同部位。 一般将主尺安装在机床的工作台(滑板)上,随机床走刀而动,读数头固定在床身上,尽可能使读数头安装在主尺的下方。其安装方式的选择必须注意切屑、切削液及油液的溅落方向。如果由于安装位置限制必须采用读数头朝上的方式安装时,则必须增加辅助密封装置。另外,一般情况下,读数头应尽量安装在相对机床静止部件上,此时输出导线不移动易固定,而尺身则应安装在相对机床运动的部件上(如滑板)。1、安装基面 安装光栅线位移传感器时,不能直接将传感器安装在粗糙不平的机床身上,更不能安装在打底涂漆的机床身上。光栅主尺及读数头分别安装在机床相对运动的两个部件上。用千分表检查机床工作台的主尺安装面与导轨运动的方向平行度。千分表固定在床身上,移动工作台,要求达到平行度为0.1mm/1000mm以内。如果不能达到这个要求,则需设计加工一件光栅尺基座。基座要求做到:①应加一根与光栅尺尺身长度相等的基座(最好基座长出光栅尺50mm左右)。②该基座通过铣、磨工序加工,保证其平面平行度0.1mm/1000mm以内。另外,还需加工一件与尺身基座等高的读数头基座。读数头的基座与尺身的基座总共误差不得大于±0.2mm。安装时,调整读数头位置,达到读数头与光栅尺尺身的平行度为0.1mm左右,读数头与光栅尺尺身之间的间距为1~1.5mm左右。2、主尺安装 将光栅主尺用M4螺钉上在机床安装的工作台安装面上,但不要上紧,把千分表固定在床身上,移动工作台(主尺与工作台同时移动)。用千分表测量主尺平面与机床导轨运动方向的平行度,调整主尺M4螺钉位置,使主尺平行度满足0.1mm/1000mm以内时,把M2螺钉彻底上紧。在安装光栅主尺时,应注意如下三点: (1) 在装主尺时,如安装超过1.5M以上的光栅时,不能象桥梁式只安装两端头,尚需在整个主尺尺身中有支撑。 (2) 在有基座情况下安装好后,最好用一个卡子卡住尺身中点(或几点)。 (3) 不能安装卡子时,最好用玻璃胶粘住光栅尺身,使基尺与主尺固定好。3、读数头的安装 在安装读数头时,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似。最后调整读数头,使读数头与光栅主尺平行度保证在0.1mm之内,其读数头与主尺的间隙控制在1~1.5mm以内。4、限位装置 光栅线位移传感器全部安装完以后,一定要在机床导轨上安装限位装置,以免机床加工产品移动时读数头冲撞到主尺两端,从而损坏光栅尺。另外,用户在选购光栅线位移传感器时,应尽量选用超出机床加工尺寸100mm左右的光栅尺,以留有余量。5、检查 光栅线位移传感器安装完毕后,可接通数显表,移动工作台,观察数显表计数是否正常。 在机床上选取一个参考位置,来回移动工作点至该选取的位置。数显表读数应相同(或回零)。另外也可使用千分表(或百分表),使千分表与数显表同时调至零(或记忆起始数据),往返多次后回到初始位置,观察数显表与千分表的数据是否一致。 通过以上工作,光栅传感器的安装就完成了。但对于一般的机床加工环境来讲,铁屑、切削液及油污较多。因此,光栅传感器应附带加装护罩,护罩的设计是按照光栅传感器的外形截面放大留一定的空间尺寸确定,护罩通常采用橡皮密封,使其具备一定的防水防油能力。四、使用注意事项(1)光栅传感器与数显表插头座插拔时应关闭电源后进行。 (2)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅传感器壳体内部。 (3)定期检查各安装联接螺钉是否松动。 (4)为延长防尘密封条的寿命,可在密封条上均匀涂上一薄层硅油,注意勿溅落在玻璃光栅刻划面上。 (5) 为保证光栅传感器使用的可靠性,可每隔一定时间用乙醇混合液(各50%)清洗擦拭光栅尺面及指示光栅面,保持玻璃光栅尺面清洁。 (6) 光栅传感器严禁剧烈震动及摔打,以免破坏光栅尺,如光栅尺断裂,光栅传感器即失效了。 (7) 不要自行拆开光栅传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 (8) 应注意防止油污及水污染光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 (9) 光栅传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。高创传感器公司生产的高精度位移传感器具有良好的电磁兼容性,技术指标优于国家标准,处于国内绝对领先地位。五、常见故障现象及判断方法1、接电源后数显表无显示 (1)检查电源线是否断线,插头接触是否良好。 (2)数显表电源保险丝是否熔断。 (3)供电电压是否 符合要求。2、数显表不计数(1)将传感器插头换至另一台数显表,若传感器能正常工作说明原数显表有问题。 (2)检查传感器电缆有无断线、破损。3、数显表间断计数(1)检查光栅尺安装是否正确,光栅尺所有固定螺钉是否松动,光栅尺是否被污染。 (2)插头与插座是否接触良好。 (3)光栅尺移动时是否与其他部件刮碰、摩擦。 (4)检查机床导轨运动副精度是否过低,造成光栅工作间隙变化。4、数显表显示报警(1)没有接光栅传感器。 (2)光栅

  • 电涡流位移振动传感器的安装及注意事项

    电涡流位移传感器是基于高频磁场在金属表面的“涡流效应”而成,是对金属物体的位移、振动、转速等机械量进行检测和控制的理想传感器。电涡流位移传感器具有非接触测量、线性范围宽、灵敏度高、抗干扰能力强、无介质影响、稳定可靠、易于处理等明显优点。电涡流位移传感器广泛用于冶金、化工、航天等行业中,也可用于科研和学校实验中的位移、振动、转速、长度、厚度、表面不平度等机械量的检测。 安装的过程中,首先要在确定电涡流位移传感器已经标定完成后。卸下传感器,连同万用表和电源一起,安装到实际被测体处。调整传感器与被测体之间的距离,使变换器的输出读数符合检测要求。一般来说,(以“0―5V”输出为例)测振动,应使输出指示为“2.5V”即线性段的中点。测位移,如果被测体的位移是双向的也应使输出指示为“2.5V”即线性段的中点。如果是单向的,应使输出指示为“0V”,或者“5V”.即线性段的下限或者上限。安装无误后,固定电涡流位移传感器即可。 电涡流位移传感器在连接无误,接通电源后,请预热10分钟,探头周围一倍于探头直径的地方,不能有其它金属材料。工作时,电涡流位移传感器应避免强磁场和强电场的干扰。传感器和前置变换器之间的插头、插座工作时,不应有抖动,以免引起输出变化。高频电缆的长度不能随意增减。无温度补赏的电涡流位移传感器,测量环境不可出现温度急剧变化,以提高测量精度。

  • 位置传感器控件_位置传感器性能受损

    一般来说,一辆汽车最容易出现故障的地方就是它的发动机了,而我们都知道发动起是一个汽车的核心部位,如果发动机发生故障,那么整个车辆是无法运行的。发动机中位置传感器又是相对重要零部件,所以通常判断汽车发动机是有问题的时候都需要先对位置传感器的性能状态进行检查,排除一定的故障。位置传感器安装在曲轴前端、凸轮轴前端、分电器内或飞轮上,用于检测活塞上止点和曲轴的转角。曲轴位置和转速信号既发送给发动机电控单元,又发送给转速表。位置传感器损坏后,发动机既不会点火,也不会喷油。因此,位置传感器是发动机电子控制系统的最主要的传感器。  按照工作原理的不同,位置传感器划分为磁脉冲式、霍尔式和光电式等三大类。日产公爵王、伏尔加、本田雅阁、日产蓝鸟、北京切诺基、三菱太空以及丰田(K、5R、12R)等系列汽车采用磁脉冲式位置传感器,大众车系(桑塔纳、捷达、奥迪、红旗等)大多采用霍尔式位置传感器,而日产公司有的车型采用光电式位置传感器。  磁脉冲式位置传感器又称为可变磁阻式传感器,它是基于变化的磁场与电流之间相互感应这一电学原理而工作的。这种传感器带有磁铁和感应线圈(称为“传感头”),与安装在转动部位(如曲轴、飞轮)的铁磁质信号发生盘(俗称“转子”)配合工作。当带齿的信号发生盘转动时,转子与传感头之间的磁场产生变化,于是在传感头的线圈内感应出交流电压。如果信号发生盘的转速发生变化,传感头输出的信号电压和频率也随之变化,这就是磁脉冲式位置传感器的基本工作原理。   首先,位置传感器的脉冲信号发生盘的安装位置不能弄反,必须靠近传感头。否则,传感头感知不到曲轴位置的变化,甚至发出错误的信号,使得发动机ECU据此确定的点火指令和喷油指令也是错误的,进而导致发动机无法正常运转。  其次,磁脉冲式位置传感器信号发生盘的齿顶与传感头之间的气隙必须符合要求,否则难以感知磁力线的变化,将造成输出信号减弱或者无信号输出。  有的车型位置传感器的传感头固定在油底壳上,而信号发生盘安装在曲轴上,汽缸体与油底壳之间没有密封垫圈(依靠密封胶)。有时为防漏油,在汽缸体与油底壳之间加装密封垫圈,可致使位置传感器气隙达到3mm(标准为0.8~1.2mm)。位置传感器的传感头与信号发生盘的气隙过大,转速增加时,会出现曲轴位置信号不准或者丢失,导致发动机加速不良甚至无法启动等不良后果。  对于需要调整气隙的磁脉冲式位置传感器,可以采用类似分电器触点间隙的调整方法进行。装配位于飞轮上的位置传感器。应当在组装完大飞轮和变矩器以后,再安装位置传感器,而且要紧固可靠,不允许随意增加垫片,如果拧得不紧或乱加垫片,都会使位置传感器与飞轮的间隙超过规定值,从而导致曲轴转速及位置信号失常。位置传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器丨[url=http://mall.ofweek.com/category_127.html]位置传感器[/url][/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 如何选择传感器——激光功率计和能量计

    激光功率和能量计主要用来测量光源的输出。无论光发射是来源于弱光源(如荧光),还是来源于高能量的脉冲激光器,功率和能量计都是实验室、生产部门或是工作现场等多种应用环境中必不可少的工具。 虽然功率计和能量计是分别提供的,但随着能够适用大量不同类型的光学传感器的通用型仪表盘或显示装置的发展,它们也被合起来称作单独的一类仪器——功率和能量计,或PEM。仪器所采用的光学传感器的类型,决定了其能测量光功率还是光能量,通常单位分别瓦特(W)或焦耳(J)。具体来讲,功率计能够测量连续波(CW)或者重复脉冲光源,其所使用的传感器通常是热电堆或光电二极管。能量计则通常用于测量脉冲激光,即单脉冲或者重复脉冲光源,其所使用的传感器包括热释电、热电堆,或者带有专门为测量脉冲光源而设计的电路的光电二极管。

  • 在线脉冲清灰电脑控制仪

    在线脉冲清灰电脑控制仪

    SXC系列化产品:SXC-8A(在线脉冲)、SXC-8B(离线脉冲和气箱脉冲)、SXC-8C(反吹风)等,是我厂2004年开发的新产品,适用于各类袋式除尘系统的电脑控制仪。从2005年起将全面替代原有AL-8和SXC-1型及部分PLC程控柜老产品。中小除尘系统用的SXC型电脑控制仪,其中央控制单元选用美国microchip公司生产的新PIC单片机,充分发挥了它的物美价廉的软硬件资源;电源选用强抗干扰的开关型净化电源、电路进行了优秀的简化设计;中央控制单元与输出用光电隔离器,输出选用超大功率输出管(15A)或固态继电器,以大马拉小车来确保工作的高可靠性,从而实现了上述的四大特点。大除尘系统用的SXC型电脑控制仪,是PIC单片机、PLC、固态传感器三者的电子数字集成系统,与单独的单片机或PLC相比,具有功能更强、操作更灵活、可靠性更高,而且价格比PLC大幅度下降,是我厂开发的又一高新技术产品。8A1-8为1~8路(门)输出,8A1-16为1~16路(门),8A1-128为128路(门)。1、脉冲电磁阀阀数选择:1~8、9~16、17~40、40~128门四种(具体数字由用户订货时提出);2、每门输出功率:DC24V / 1.5A (一个电磁阀的电流为0.6~0.8A,需AC220V或110V输出请用户订货时提出);3、脉冲宽度: 0.01~0.25秒±0.001(出厂时已设置在通用值0.08秒); 4、脉冲间隔: 1~255秒±0.01(出厂时已设置为10秒)5、脉冲周期(循环间隔): 0~255分钟±1秒(出厂时已设置在0分) 上述三个时间设定范围,可根据用户特殊要求修改软件而确定。6、定时/ 定差压(或本地/远程)两种清灰控制方式任选(出厂时已设置为定时)。7、交流输入电源电压允许大范围波动:AC160~260V。[img=,200,126]http://ng1.17img.cn/bbsfiles/images/2017/05/201705051209_01_3163882_3.jpg[/img]

  • 超声波传感器测量方法_超声波液位传感器水位监测

    超声波传感器测量方法_超声波液位传感器水位监测

    [align=left]过去,河流水位监测通常使用手动现场测量来获取数据。虽然这种方法可靠,但同时存在许多问题,例如:[/align](1)河岸上的手工测量存在一定的风险(河流深5米)。(2)在恶劣天气下不能停止工作。(3)测量值不是很准确,只能作为参考。(4)人工成本高,每天需要多个现场数据记录。所以现在测量水位都采用相应的仪器仪表,最常用的还是超声波液位传感器了,超声波液位传感器使用超声波原理,发射和接收所需的时间以及液位或距离的转换是液位监测领域中经常使用的方法。这种非接触方法稳定可靠,因此超声波液位传感器被广泛使用。[b]超声波传感器测量方法:[/b]OFweek Mall了解到超声波物位测量有多种方法,如超声脉冲回波法、共振法、频差法、超声衰减法:超声波脉冲回波方法的基本原理是超声波探头发射超声波。当超声波遇到障碍物时,它将被反射。根据当前环境中的超声波,由单片机记录超声波传输的时间和接收回波的时间。传播速度可以通过公式S = C * t / 2计算(其中S是测量距离,C是超声波传播速度,t是回波时间。)计算超声波的距离,并且获得了障碍。测试系统的距离。共振方法的基本原理是调节超声波的频率,以便在探头和液体表面之间建立驻波共振状态。此时,探针和液体表面之间的距离与介质中超声波的波长成比例。当已知超声速度时,可以从共振频率计算波长,并且可以转换从探针到液体表面的距离。频差法是让超声波探头发出调频超声波。超声波的频率随传播距离而变化,并且可以根据接收信号和发送信号之间的频率差来获得从发送到接收的时间。超声波衰减测量顾名思义,测量介质中超声波的衰减随距离而变化,液位根据接收信号与发射信号之间的衰减变化来测量。从上述方法的比较可以看出,共振法检测液位受某些特定条件的限制,需要与液体表面建立驻波关系,属于接触测量方法。频率差方法要求频率调制器产生调制频率,衰减方法需要测量超声波的衰减量。相比之下,超声脉冲回波方法不需要与液面建立驻波,并且可以实现非接触检测。因此,脉冲回波方法是最合适的方法。OFweek Mall技术工程师推荐使用MB7066超声波液位传感器进行水位监测:[b]MaxBotix 超声波液位传感器-MB7066 [/b]精准而窄的波束角分辨率是1cmIP67防尘防水标准封装超低功耗适合电池供电系统体积小、多种输出方式小、轻重量为您简单集成的项目或产品而设计快速的测量周期可测距离长达10米[img=,293,258]https://ng1.17img.cn/bbsfiles/images/2018/11/201811141618574529_7904_3422752_3.png!w293x258.jpg[/img]超声波液位传感器MB7066是一种体积小但坚固的耐风雨的超声波传感器。符合IP67防护安全等级,可以防护灰尘吸入,可以短暂浸泡。可测距离长达10米,在远距离检测和水槽液位检测中,得到很好的应用。首先,超声波传感器发出噪声脉冲,然后用户可以基于反射信号几乎实时地知道水位。用户还可以使用雷达、深度水位传感器和其他技术,为他们的应用提供最佳解决方案。当使用超声波液位传感器时,用户可以获得所有需要的数据,用于绘制、绘图、分析、 API(应用程序编程接口)转发、数据下载和短信和电子邮件提醒。相关的地方部门可以根据超声波液位传感器反馈的数据快速部署洪水监测系统,具有很高的成本效益。设备可以安装在桥、河、流和任何需要安装远程监控系统的地方。预警系统将提醒您,水位正在上升,以便保护人民和社区免受洪水侵袭。由于数据读取方便。此外,所有超声波液位传感器测量数据的历史存储在云中,用户可以随时随地访问,从而便于历史分析。相关[url=https://mall.ofweek.com/category_5.html]传感器[/url]分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨酒精传感器丨PID传感器丨温湿度传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨光电液位传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html丨紫外线传感器丨CO2传感器丨CO传感器丨超声波传感器丨UV传感器丨光离子传感器丨氧化锆传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨PM2.5传感器

  • 脉冲驱动模块

    脉冲驱动模块针对激光测距市场的电子元器件我们目前针对主要专注于脉冲和相位测距领域,以下予以分别介绍:对于我们所提供的大多数产品,均保证价格最低,低于华强北市场不信你可以咨询,同时我们的质量要好于华强北的B货,使您可以不必购买后心存忐忑。同时我们提供最迟3天内的交货期,详见下方:一、其中脉冲测距主要提供如下元器件:发射:1 SPL PL90-3 905nm 75W(预测距离:600-1600米)德国Osram,9万原装库存一周内交货,2 905D1S3J09UA 905nm 75W(预测距离:450-1200米)德国Laser Components,常备原装库存2万,3天交货3 VPL 90-3 905nm 75W(预测距离:450-900米),常备库存5000,7天交货除上述应用领域之外,还可用于安防,CS,全站仪,汽车防撞,工业测距传感器等领域。另外,我们还可以提供4W,10W,25W,50W等其他功率的激光管。自己封装,7天交货5000pcs接收:1 PIN管:SFH203PFA 德国OSRAM,1万原装库存一周内交货2 雪崩管:AD500-9TO52S3 德国Silicon sensor,5000原装库存一周内交货3 带滤光片的雪崩管:AD500-9TO52S1F2 德国Silicon sensor,500原装库存,3天内交货 本公司另外还提供相应的发射驱动模块,接收模块。

  • 超声脉冲功率放大及接收模块

    超声脉冲功率放大及接收模块

    该模块是一个由脉冲功率发射电路和信号接收滤波放大电路高度集成的超声收发共用应用模块,它能够为高精度超声波检测系统的优化应用提供解决方案。本模块的脉冲功率发射电路主要集成了超声传感器的前置放大及功率驱动电路,它与匹配变压器相连后可直接驱动超声换能器产生超声波。通过改变MCU输出脉冲的频率,该驱动模块可以产生从20KHz~2MHz的频率,这个频段基本涵盖了目前常见的超声波应用频段。模块的供电范围为12V~24V,工作温度为工业级-40~+85oC,输出脉冲功率可调,最高可达300w,输出阻抗为25mΩ。本模块中的超声脉冲驱动电路基本可以满足目前国内所有超声脉冲功率发射的常规应用要求。接收部分电路主要提供的对接收到的信号进行滤波放大,可根据不同的应用需要调整接收部分的滤波频带和放大倍数,它的输入噪声在输入信号频率为500kHz的时候可低至50uV,对于接收信号特别微弱的应用场合,如超声波气体流量计中有良好的表现。本模块可满足超声波常见的工业上的应用,如超声测距、超声测流量计量、超声探伤、超声测厚等。可应用于双探头的单发单收方案中,也可以应用于收发共同的单探头系统中。模块的设计采用规范的设计方法和封装方式,并且该模块经过多种应用环境的可靠性测试,具有良好的稳定性,能够应用于复杂(如电磁干扰严重)的环境。选用该模块,研发人员可以在不需要对超声波产生和驱动电路有深刻的理解的条件下开发出超声波应用系统,开发的系统技术指标能够达到同类产品的先进水平。http://ng1.17img.cn/bbsfiles/images/2011/07/201107051107_303156_2333795_3.jpg

  • 流量计与液位传感器之间的功能简述和应用

    流量计与液位传感器之间的功能简述和应用

    [size=24px][font=宋体]流量计主要的功能是检测液体流量的多少,液位传感器的主要功能是检测液位状态变化情况。[/font][b][font=宋体]流量计安装应用:[/font][/b][font=宋体]将流量计进出水口的两端用水管连接,当水泵开始抽水时,水流进入流量计内部时会带动叶轮转动,流量计则会输出对应的脉冲信号,叶轮每转动一圈就会产生一个脉冲信号输出,通过计算叶轮的转动次数来测量水流量的多少。[/font][img=,690,212]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230959007615_9949_4008598_3.jpg!w690x212.jpg[/img][b][font=宋体]液位传感器安装应用:[/font][/b][font=宋体]液位传感器有接触式和非接触式两种,接触式液位传感器是安装在水箱上的,非接触式液位传感器是安装在水箱外的,不直接接触液体检测,将传感器安装在水箱底部(或低液位处),当液位下降至传感器检测位置时,传感器则会发出信号提醒,即缺水提醒。把传感器安装在高液位处,可实现满水提醒。[/font][img=,690,333]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230959408673_7209_4008598_3.jpg!w690x333.jpg[/img][font=宋体][url=https://www.eptsz.cn/Product/89457.html][b]流量计[/b][/url]也可以实现缺水检测功能,将流量计和液位传感器组合起来使用,不仅可以控制流量,还可以实现缺水检测双重保护。[img=,640,378]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230959167483_348_4008598_3.png!w640x378.jpg[/img][/font][/size]

  • 记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修原创:大陆2015-11-13一、前言磁场设备是磁学研究中产生磁场的设备,根据可产生最高磁场强弱可以分为亥姆赫兹线圈、永磁场发生器、电磁铁、超导磁体与强脉冲磁场发生器几种,其中使用脉冲磁场发生器原理是短时间通大电流产生强磁场,在相同的散热及供电功率等配套条件下可以产生比稳恒磁体强一个数量级以上的磁场,因而可以在物理、化学与生物研究中需要强场的场合应用。目前脉冲强磁场能产生的最高磁场的世界纪录超过2千特斯拉,不过这些极端磁场的产生过程伴随爆炸冲击波作用,只是一次性的产生,线圈无法再次使用,而且需要防爆实验环境;能够重复使用同一个线圈可控产生的脉冲强磁场最高约1百特斯拉,这需要配套专门的实验室与供电通道;在普通实验室条件下对脉冲磁场发生装置的需求一是不需要专门的电力改造,且整个装置方便移动,不过产生的磁场最高超过10特斯拉,我们实验室(磁学国家重点实验室)就有一套这样的样机设备,是实验室几位老前辈在1990年前后自己做的,设备整体照片如图1,它的主体分为充放电控制模块、线圈负载与电容柜(如图02中肚子里主要装的是1kV,0.1mF的电容阵列,合计98个,总容量9.8毫法拉) 、。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573466_1611921_3.png图01 脉冲强磁场装置照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573467_1611921_3.jpeg图02 脉冲强磁场装置中的电容二、故障及诊断维修前段时间有使用者在使用过程中发现设备电容无法充到设定电压,从而无法放电产生磁场。首先通过沟通,获知设备是在用户更换自己的负载线圈之后引起,用户自己的负载线圈电感约10纳亨,而设备标配的负载线圈是280微亨,相差4个数量级;然后结合图03所示的脉冲强磁场的电路分析故障在充电模块;最后打开机柜,通过肉眼观察线路板与元器件,如图04所示,可以看到大功率晶闸管的散热固定木柱有裂纹,从而将故障诊断在晶闸管上。值得一提的是,必须赞一下实验室前辈们:在设备制造过程中保留着晶闸管的铭牌,这样尽管他们退休好多年了,设备出现问题,后人还可以找到配件的线索。将晶闸管拆下来后发现正反向都是导通状态,显然控制端无法控制其单向积累电荷给电容充电,因而根据铭牌上的最大电流500A、耐压1800V、控制电压1.5V指标购买替换晶闸管,幸运的是市场上还能找到同样规格的KP-500A晶闸管,买回来替换上后测试发现仪器可以正常充放电,至此维修工作完成。简单分析其原因是使用者将负载换成特别轻的电感,这样在最高800V充电后,电感几乎不能增加阻抗,此时放电回路电路中的阻抗幅值约0.5欧姆,导致放电回路中的电流瞬间超过1600安培,而晶闸管的最高承受电流只有500安培,所以损坏导致故障。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573468_1611921_3.gif图03 脉冲强磁场装置充放电原理电路图http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573469_1611921_3.png图04 脉冲强磁场装置充放电电路照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573470_1611921_3.jpeg图05 更换的晶闸管照片三、测试验证我们知道,设备维修让设备能工作与是否适合科学研究是两码事,为了让使用者更好的在该设备上开展研究,需要在正常工作的基础上对其性能做一次测试验证,测量不同充电电压对应在标准负载线圈中的放电脉冲磁场。测试用到的工具是带轴向(霍尔传感器)磁场探头的特斯拉计(高斯计),与一台示波器,如图06所示,由于仪器尾部自带有BNC模拟接口,将其连在示波器上,但初步测试发现仪器标配的模拟信号在较高磁场下有饱和截断平台,如图07所示。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573471_1611921_3.png图06 测试验证需要的仪器http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573472_1611921_3.png图07 直接使用模拟信号观测脉冲场波形经过与特斯拉计的工程师交流,得知其模拟输出的是原始霍尔电压信号放大10倍并做滤波限幅保护等电路处理之后输出的结果,而设备限幅4V,对应典型传感器最高只能测量4T的磁场。我们目前的应用明显要测量超过4T的磁场,那么要想获得高于4T的模拟脉冲信号,怎么办呢?使用原始(未经放大、调理、限幅处理的)霍尔电压信号!于是打开特斯拉计机箱,如图08所示,http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573473_1611921_3.png图08 特斯拉计内部电路结构http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573474_1611921_3.png图09 改变模拟BNC输入线的接入位置做好以上的准备工作后,开始进行测量系统标定,为了简便,这里使用一块永磁体产生磁场做动态模拟电压-磁场标定,放在探头边上,通过调节距离改变特斯拉计的输入磁场,记录特斯拉计与示波器上直流信号的平均值,绘制成曲线并拟合如图10所示。然后将磁场探头放入负载线圈的中心位置,测量不同放电电压下产生的脉冲磁场波形,并根据指数衰减放电函数拟合出峰值与脉宽,如图11所示。最后将所有的初始放电电压获得的脉冲磁场信号曲线的拟合结果汇总可得脉宽不随放电电压变化,恒定约1毫秒,峰值磁场与初始放电电压关系经拟合满足为B(特斯拉)=20V(千伏)关系,该设备在最高800V电压充电时产生峰值磁场约16T,使用相对简单的原理与低成本[c

  • 【分享】世界最小超声波传感器问世

    英国研究人员16日说,他们制造出了世界上最小的超声波传感器。它是如此微小,以至于可以在一根头发丝上排成队列。这一成果可广泛用于探索细胞内部等微观环境。  英国诺丁汉大学当天发布公报说,该校应用光学研究小组制造出了这种微型超声波传感器。它比现有的超声波传感器要小许多,500个这种传感器排在一起才会达到一根头发丝的宽度。它同时具有超声波特性和光学特性,在感知到超声波时会微微变形,这种变形可以被照射它们的激光所探测到,从而获得超声波的信息 反过来,如果对它发出一个激光脉冲,它也可以受激向外发出超声波,探测目标对象。

  • 【资料】解析传感器的基本知识应用

    一、传感器的定义  国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。  二、传感器的分类  目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:  1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器  2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。  3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。  关于传感器的分类:  1.按被测物理量分:如:力,压力,位移,温度,角度传感器等;  2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;  3.按照传感器转换能量的方式分:  (1)能量转换型:如:压电式、热电偶、光电式传感器等;  (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;  4.按照传感器工作机理分:  (1)结构型:如:电感式、电容式传感器等;  (2)物性型:如:压电式、光电式、各种半导体式传感器等;  5.按照传感器输出信号的形式分:  (1)模拟式:传感器输出为模拟电压量;  (2)数字式:传感器输出为数字量,如:编码器式传感器。  三、传感器的静态特性  传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。  四、传感器的动态特性  所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。  五、传感器的线性度  通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。  拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。  六、传感器的灵敏度  灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。  它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。  灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。  当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。  提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。  七、传感器的分辨力  分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。  通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。  八、电阻式传感器  电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。  九、电阻应变式传感器  传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。  十、压阻式传感器  压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。  用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。  十一、热电阻传感器  热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。  十二、传感器的迟滞特性  迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。  迟滞可由传感器内部元件存在能量的吸收造成。   压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过 外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是 这样的,所以这决定了压电传感器只能够测量动态的应力。

  • 【白皮书】数字信号与脉冲序列调理

    【白皮书】数字信号与脉冲序列调理

    数字信号与脉冲序列调理数字IO接口数字信号采用数字信号进行通信是计算机和外设、仪器以及其他电子设备之间最常见的通信方式,因为这是计算机工作的基本元素。任何信号,都必须转换为数字信号之后,才能输入计算机,并进行处理。数字信号流入或流出系统时,或是单个信号,或是一串脉冲,可以只经过单一端口,也可以经过多个并行端口,并行端口上每根信号线代表字符中的一个bit。计算机的数字输出信号线往往用于控制继电器,以间接控制其他设备的开关。类似地,数字输入信号线可以代表某个传感器或开关的两种状态之一,而一串脉冲序列可以指示某个设备的当前位置或瞬时速度。输入信号可能来自继电器或其他固态设备。大电流、高电压数字IO通过继电器,可控制超出计算机内部处理范围的电压或电流,但信号或状态的响应速度受限于线圈的频率响应和触点移动。同时,当电感负载由闭合切换至断开时,两端的反向自感电动势必须被抑制,可将续流二极管反接在负载两端,为脉冲电流提供通路,以释放能量。如果没有这个二极管,继电器两端的电弧会缩短自身使用寿命(见图11.01)。[img=,315,349]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514034446_4291_3859729_3.jpg!w315x349.jpg[/img]TTL和CMOS设备通常用于连接高速低压信号,例如速度或位置传感器的输出信号。但是在需要用计算机去激励继电器线圈的应用中,TTL或CMOS设备也许无法满足电压和电流需求。因此需要在TTL信号和继电器之间接入一级缓冲,以提供30V,100mA的驱动能力。 [img=,315,323]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514151811_8384_3859729_3.jpg!w315x323.jpg[/img]这种系统的一个例子是用于数字IO仪器的板卡,板载放大/衰减单元,由一个PNP晶体管、一个续流二极管和一个电阻组成(见图11.02)。为了控制标准的24V继电器,需要从外部引入24V电源。内部TTL输出高电平时,三极管导通,输出低电平(约0.7V);TTL输出低电平时,三极管进入截止区,输出被拉到24V。因为继电器线圈是感性负载,所以需要反接一个续流二极管,用于在开关切换时保护继电器。图11.03演示了高压数字输入的降压电路。这使得TTL电路可以处理高达48V的电压。高压信号接入电阻分压电路,得到衰减。选取一个阻值适当的电阻R,用于处理不同程度的高压信号。图11.04中的表格提供一些常用方案。[img=,368,288]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517039909_4386_3859729_3.jpg!w368x288.jpg[/img][img=,351,168]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517036364_4408_3859729_3.jpg!w351x168.jpg[/img]数字输入计算机处理数字输入的方法各种各样,有难有易。这一章节简要讨论软件触发,单字节读取;硬件控速,数字输入;外部触发,数字输入。数字输入的异步读取当计算机周期性的采样数字引脚时,需要使用软件触发的异步读取方式。有时,读取数字输入的速度和时机至关重要,但是采用软件触发的单字节读取方式,读取间隔很难保持稳定,尤其是当应用程序运行在多任务操作系统下的时候,例如在PC机上运行。原因是读取间隔受计算机的运行速度和其他并发任务的影响。读取间隔的不稳定可用软件定时器进行补偿,但是小于10ms的时间分辨率在PC上很难得到保证。数字输入的同步读取有些系统提供硬件控速的数字输入读取方式,用户可以设置数字输入端口的读取频率。例如,某系统能够以100kHz的频率读取16位IO口,某些系统可以达到1MHz的速度。硬件控制的读取,最大优点就是可以做到比软件快得多的速度。最后,此类设备可以在读取模拟输入的同时读取数字输入,使得模拟输入和数字输入的数据具有紧密的关联性。数字输入的外部触发读取某些外部设备以独立于数据采集系统的速率,产生以比特、字节或字为单位的数据。只有当新数据可读时才进行读数,并非以预先设置好的速率读数。因此,这些外部设备通常采用信号交换技术进行数据传输。当新的事件发生,例如外部数据就绪或门控信号输入时,外部设备在单独一根信号线上产生电平翻转。为了与这些设备交互,数据采集系统必须具备可被外部信号控制的输入锁存功能。这样,一个逻辑信号会提交到主控计算机,提示新数据准备就绪,可从锁存器中读取。举例来说,一个以此方式工作的设备,在其6根控制信号线中有一根线用来通知外部设备主机正在读取输入锁存器中的数据。这个动作使外部设备能够保持住新数据,直到本次读取完成。数字隔离由于多种原因,数字信号往往需要被隔离,比如保护系统一端免受另一端随时可能出现的高压信号的损害、使得不共地的两个设备之间正常通信或保证医学应用中用户的安全。常见的隔离方案是光耦。光耦包含一个用于发射数字信号的LED或激光二极管,和一个用于接收信号的光电二极管或光电三极管(见图11.05)。光耦体积虽小,但可以隔离500V高压,这种技术还可以用于控制并监控不共地的设备。[img=,554,221]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517178877_2957_3859729_3.jpg!w554x221.jpg[/img]脉冲序列信号调理在许多测量频率的应用中,脉冲信号被计数或与某个固定的时基单元做比较。脉冲也可作为一种数字信号,因为只有上升沿或下降沿会被计数。在很多情况下,脉冲序列甚至可能来自模拟信号源,比如电磁拾波器(magnetic pickup)。举例来说,数据采集系统中应用广泛的频率采集卡,提供4路频率输入通道,并包含2个独立的前端电路,一个用于数字信号输入,另一个用于模拟信号输入。采集卡将数字输入划分为不同逻辑状态,将模拟输入转换成一个随时间变化的纯净的数字脉冲序列。图11.06演示了原理框图:总共模拟输入和信号调理两部分。前端RC网络提供交流耦合,允许高于25Hz的信号通过。衰减比例可调的衰减器降低了波形的整体幅度,削弱了不必要的低压噪声的影响。当需要使用来自继电器闭合时的脉冲序列时,此电路单元为用户提供了软件可配置去抖时间的功能。数字电路监控着被调节的脉冲序列,保持高电平或低电平。如果没有去抖动环节,信号中额外的边沿将导致过高的、不稳定的频率读数。[img=,378,240]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517366706_1103_3859729_3.jpg!w378x240.jpg[/img]大量传感器输出调频信号,而不是调幅信号。比如用于测量转动和流体流速的传感器,通常属于这一类。光电倍增管(photomultiplier tubes)和带电粒子探测器(charged-particle detectors)常用于测量领域,并输出频率信号。原则上,这些信号也可以用AD采集,但这个方法将产生大量冗余数据,使得分析工作难以进行。直接进行频率测量效率则高得多。频率 - 电压转换数据采集系统可通过多种途径测量频率:对连续的AC信号或脉冲序列做积分,产生与频率成比例关系的DC电压,或用AD将交流电压转换成二进制的数字信号,或对数字脉冲计数。[img=,382,294]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517493299_2073_3859729_3.jpg!w382x294.jpg[/img]脉冲序列积分一种常见的用于单通道的转换技术,模块化的信号调节:对输入脉冲做积分,并输出与频率成比例的电压信号。首先, AC信号经过一系列电容耦合,滤除超低频和DC分量,此输入信号每次经过零点,比较器产生一个恒定宽度的脉冲,脉冲再经过积分电路,如低通滤波器,然后输出一个变化缓慢的信号,信号电压将正比于输入信号频率(见图11.08)。[img=,387,297]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518092778_237_3859729_3.jpg!w387x297.jpg[/img]频压转换器的响应时间比较慢,约为低通滤波器截止频率的倒数。截止频率必须远低于待测信号频率,又要足够高,以保证所需的响应时间。若待测信号频率接近于截止频率,明显的纹波将会成为一个严重的问题,如图11.09所示。[img=,379,238]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518237403_2408_3859729_3.jpg!w379x238.jpg[/img]外部电容决定了专用频压转换的IC时间常数,使得电路可测量较宽频率范围内的信号,但频率改变时,电容也必须随之改变。不幸的是,这种频压转换器在频率低于100Hz时,表现得很差,因为截止频率低于10Hz的低通滤波器需要超级电容器。数字脉冲计数另一种用于测量数字脉冲或AC耦合模拟信号频率的技术。可输出正比于输入信号频率的DC电压,类似上面提到的积分法,只不过这里的DC电压来源于DAC。前端电路将输入的模拟或数字信号转换成纯净的脉冲序列,使其在进入DAC之前,不会带有来自继电器的毛刺,高频噪声以及其他多余信号(见图11.10)。[img=,554,257]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518331462_5120_3859729_3.jpg!w554x257.jpg[/img]举例来说,一个标准的带有频率输入的数据采集卡,模拟输入通道前置低通滤波器,截止频率可设置为100kHz、300Hz或30Hz,测频范围1Hz至100kHz,信号峰峰值50mV至80V。数字输入部分直流耦合至TTL电平的施密特触发器,可测量0.001Hz至950kHz,±15VDC的信号。采集卡通常具有上拉电阻,用于继电器或开关应用。微控制器准确测量几个脉冲的周期之和,频率分辨率取决于用户可配置的最小脉冲宽度。从测得的周期数据中可换算出频率,再根据频率值,控制DAC向数据采集系统输出相应的模拟信号,信号流入DC调理电路,最后,软件再将此电压转换成频率值。这种方法可以测量幅值和频率范围很宽的信号,且响应迅速。程序可控的频率量程可以最佳匹配ADC的量程,提高测量性能。DAC输出范围±5V,用户配置的最低频率对应-5V,最高频率对应+5V。实际上,用户可任意配置频带范围,如500Hz-10kHz、59.5Hz-60.5Hz。但ADC固定为12位分辨率,不管频宽如何,-5V至+5V的电压都会被按比例划分为4096个等级,所以设置的频宽越窄,频率分辨率越高。例如1Hz的频宽划分为4096份,分辨率高达1/4096Hz(0.00244Hz),而100Hz的频宽,分辨率则降至24.41Hz。虽然不同量程下,分辨率都是固定的12位,但测量速度却有所不同。从1Hz至自定义的频率上限,电压转换时间2至4ms,最长不超过输入信号的周期。0至10kHz范围内的信号,更新速率2至4ms;0至60Hz,则需要16.6ms。随着输入量程越来越窄,例如49至51Hz,12位分辨率去处理2Hz的带宽,消耗时间越来越长,转换时间大约59ms。除了低通滤波器,内置的迟滞功能也可防止由于高频噪声导致的错误计数。去抖时间可被软件配置为0.6ms至10ms,用于处理机电设备,如开关、继电器等切换状态时会产生毛刺的设备。基于门控脉冲计数的频率测量门控脉冲计数相对于频压转换法精准度更高。门控脉冲计数法记录在指定时间内出现的脉冲个数,除以计数时间即频率值,频率误差可以低至计数时间的倒数,例如以2s作为计数时间,频率误差低至0.5Hz。许多数据采集系统包含TTL电平兼容的计数器/定时器IC,可以产生门控脉冲、测量数字输入,然而并不适用于未经调理的模拟信号。所幸多数频率输出设备可以输出TTL电平。有些产品上的一个计数器/定时器IC,包含了5个计数器/定时器,而且通常使用数据采集系统的内部晶振,或外部晶振。这些IC通常使用多个通道配合完成计数功能,每路通道都包含一个输入部分,一个门控部分和一个输出部分。最简单的计数只需使用输入部分,PC以一定的周期读取计数值并复位计数器,这种方法的不足之处是读取周期不确定,函数执行过程中突然出现的情况可能随时启动或停止计数。另外,延时函数,例如延时50ms,依赖于不精确的软件定时器。这两点原因致使计数时间较短的频率测量毫无意义,但是,这种技术足以应对计数时间超过1秒的频率测量。门控信号控制着计数时间,所以改变门控信号可以获得更高的精准度。这样,频率测量就变得与软件方面的时间问题无关。可以配置门控信号,在其高电平时才进行脉冲计数。同样的,也可以配置成在检测到一个脉冲时开始计数,检测到另一个脉冲时停止计数。这种方法的一个缺点是需要额外的计数器用于控制。但在多通道频率采集的应用中,一个计数器可以控制多个通道。例如在5个通道的系统中,4通道用于计数,1通道用于控制。计时应用计数器/定时器同样可用于需要计时/定时的应用场合。将连接至输入通道的时钟信号作为门控信号是不错的选择,当信号为高电平时,使能计数。同样的方法可用于测量两个脉冲之间的时间间隔,只需配置成在第一个脉冲到来时开始计数,下一个脉冲到来时停止计数。由于16位计数器在计数到65535时,即将发生溢出,所以以1MHz的时钟频率计数时,可测脉宽不超过65.535ms,更宽的脉冲将会导致计数器溢出,除非降低时钟频率。如需了解更多内容请关注嘉兆科技嘉兆公司拥有40年测试测量行业经验,专业的销售、技术、服务团队,在众多领域都非常出色,包括:通用微波/射频测试、无线通信测试、数据采集记录与分析、振动与噪声分析、电磁兼容测试、汽车安全测试、精密可编程测量电源、微波/射频元器件、传感器等,并分别在深圳、北京、上海、武汉、西安、沈阳、珠海、成都设有全资分公司、生产工厂、办事处。

  • 大行程传感器信号误差抑制与细分功能电路--成果推广

    大行程传感器信号误差抑制与细分功能电路--成果推广

    成果简介 以光栅、磁栅等大行程传感器输出信号为对象,针对信号噪声对测量精度影响,提供传感器信号多项误差集中补偿实现方案,量化抑制信号的等幅、直流漂移、正交等误差,提供倍率可调的高速细分功能电路,实现大行程、大角度范围内的长度、角度的高分辨率测量。 电路系统在数字化硬件平台上实现,系统结构简洁,具有高集成度、高灵活性特点,支持多种信号输出形式。目前市场上没有类似的集成化信号处理产品,成果电路在灵活性、可靠性、适用性方面具有显著市场优势。系统组成 以传感器输出的正余弦信号(或方波信号)为输入,进行信号多路高速采样,通过集成化数字功能电路完成多种误差补偿和高分辨率细分,电路输出既可以通讯到上位机,也可以以脉冲形式输出。http://ng1.17img.cn/bbsfiles/images/2016/07/201607121448_600114_3112929_3.png技术指标(1)误差抑制效果:直流漂移<20mv;正交误差<0.8°;等幅性<1%;(2)细分倍率:256、512、1024可调;(3)最大输入信号频率;40KHz(1024细分);(4)输出信号:细分计数、脉冲。 技术特点 目前市场上对于光栅、磁栅等传感器输出信号的补偿、细分、数据采集和信号转换等产品功能单一,在使用便利性、费用、效率等方面均呈现市场需求与产品不匹配特征。本成果电路提供了多功能、一体化、可定制的信号处理功能解决方案,即可以作为集成化功能模块嵌入到大型系统中,也可以承担小型系统定制化功能实现任务。应用领域(1)对长度、角度有大行程、高分辨率测量需求的应用场合;(2)对传感器信号等幅、直流漂移、正交等噪声有定量抑制需求的场合;(3)对长度、角度测量的集成度和灵活性有需求的场合。前期应用 已成功应用于国家计量科学研究院长度所,服务于自校准角度编码器系统,完成360°圆周内2.0"分辨率的角度细分功能任务。合作方式(1)技术服务;(2)个性定制。 联系人:朱维斌联系方式:0571-86875665,0571-87676266;Email:zhuweibin@cjlu.edu.cn;工贸所网址:http://itmt.cjlu.edu.cn;工贸所微信公众号:中国计量大学工贸所。中国计量大学工业与商贸计量技术研究所简介 中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。 中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。 “应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。更多研究所介绍请登录研究所网站itmt.cjlu.edu.cn或微信公众号。

  • 安防领域传感器与探测技术的新趋势

    在过去的一年,传感器和探测技术得到广泛发展的同时,也呈现出许多新特点和趋势。探测技术逐渐由室内向室外转移,而电子脉冲围栏、电缆泄漏探测器等周界设备崭露头角,逐渐取代传统红外对射等室外探测设备。    电子围栏是由脉冲发生器(主机)和前端围栏组成的智能型周界系统。现代公共安全用电子围栏经过演变和改进,成为一种新型的周界报警产品,它一改以前周界防范中单纯的事后报警的传统模式,强调了以阻挡(有形围栏,制造入侵障碍)为主,报警(声光报警并可与其他安防系统联动)为辅兼有威慑(降低作案欲望)作用的国际周界安防新概念。    电子脉冲围栏克服了交流电网致命、影响美观的缺点,与传统的红外、微波、静电感应等周界安防系统相比,具有误报率低、不受地形和环境限制、安全性高等明显优点。脉冲电子围栏在起到阻挡作用的同时,对人体无伤害,能够真正实现阻挡、威慑和报警。而传统的红外对射对外来入侵者起不到阻挡作用,而高压电网虽然能起到强力阻挡作用,但由于强大的交流电作用会导致人的伤害甚至死亡,十分危险。这也是电子脉冲围栏逐渐受到欢迎的原因。    室内探测器目前则仍然以被动红外探测器为主,但是其误报率依然是困扰用户的主要问题,也成为个厂家不断攻克的问题。目前很多厂商都通过不同的技术来实现降低误报率的目的,包括采用特殊的透镜和双红外传感器检测相结合、采用双红外的对称原理、采用万向穿线型支架等,并取得了不断的效果。

  • 【分享】长寿命传感器

    2010年2月IEEE Spectrum上介绍了两种长寿命传感器。这两种方法都基于压电发电,一个微机电系统(MEMS)悬臂把机械运动转换成电能,而这个悬臂的运动可以用不同的方式来驱动。一种是用放射性同位素,另一种则用环境收集到的振动。所有自供电通信节点必须保持它们的记忆状态,周期性地发送其状态。这需要0.1微瓦到1毫瓦的能量。 康内尔大学的研究人员用少量镍-63(Ni-63)放射性同位素加入其原子核中的中子做成压电发电器。它可以放射无害的beta粒子,以维持每3分钟5mW的RF脉冲。其寿命可达100年。 荷兰的一个纳电子研究中心Imac创造了一个无线、自治的温度传感器,如下图所示。用铝氮化合物振动收集器。振动能量收集一般要求在特定频率下1微米的振动。该传感器每15秒可以测量温度,并把数据传到15米以外的基站。但是,这个传感器不能在大气压下封装,必须真空封装才能达到85微瓦。 这两个方案都被认为是原始创新,工业界尤其看好后一个方案,认为是有前途的。 这使我想起学科交叉的重要性。在我国,也有人研究过低功耗的传感器,自供电传感器,传感器节点。但是,搞计算机的人提出电源局部供电加控制,搞电子的人提出降低电压、修改电路,搞战略研究的人提出需求,搞材料的人提出CMOS工艺中某些材料的修改。所有这些想法也都不错,就是形不成像上面说的那样的长寿传感器方案,并用实验证明其可行性。我们的研究老给我一个感觉,浮在上面,或者隔靴搔痒,类比的东西比较多,纸面上说说的东西比较多。最近,我在审一篇国内文章,谈软件容错。他不谈真正的软件容错技术,而是研究各种软件容错方法之间的调度算法。你软件容错方法一个都没研究,你怎么选择、调度呢?只能是纸面上的空谈。http://blog.51xuewen.com/upload/blog/Aimg/2010/3/22/%E4%BC%A0%E6%84%9F%E5%99%A8.JPG

  • 基于温度传感器的新型多点测温系统设计

    1、温度传感器DS18B20介绍    DALLAS公司单线数字温度传感器DS18B20是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20支持“一线总线”接口,测量温度范围为-55℃~+125℃,在-10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12位的数字值读数方式;可以分别在93.75ms和750ms内将温度值转化为9位和12位的数字量。每个DS18B20具有唯一的64位长序列号,存放于DS18B20内部ROM只读存储器中。    DS18B20温度传感器的内部存储器包括1个高速暂存RAM和1个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前2字节为测得的温度信息,第1个字节为温度的低8位,第2个字节为温度的高8位。高8位中,前4位表示温度的正(全“0”)与负(全“1”);第3个字节和第4个字节为TH、TL的易失性拷贝;第5个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复位时被刷新;第6、7、8个字节用于内部计算;第9个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1列出了温度与温度字节间的对应关系。    2、系统硬件结构    系统分为现场温度数据采集和上位监控PC两部分。图1为系统的结构图。需要指出的是,下位机可以脱离上位PC机而独立工作。增加上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集部分采用8051单片机作为中央处理器,在P1.0口挂接10个DS18B20传感器,对10个点的温度进行检测。非易失性RAM用作系统温度采集及运行参数等的缓冲区。上位PC机通过RS485通信接口与现场单片微处理器通信,对系统进行全面的管理和控制,可完成数据记录,打印报表等工作。    系统各模块分析如下:    2.1DS18B20与单片机的接口电路    DS18B20与8051单片机连接非常简单,只需将DS18B20信号线与单片机一位I/O线相连,且一位I/O线可连接多个DS18B20,以实现单点或多点温度测量。DS18B20可以通过2种方式供电:外加电源方式和寄生电源方式。前者需要外加电源,电源的正负极分别与DS18B20的VDD和GND相连接。后者采用寄生电源,将DS18B20的VDD与GND接在一起,当总线上出现高电平时,上拉电阻提供电源;当总线低电平时,内部电容供电。由于采用外加电源方式更能增强DS18B20的抗干扰性,故本设计采用这种方式。在实际应用中,传感器与单片机的距离往往在几十米到几百米,传输线的寄生电容对DS18B20的操作也有一定的影响,所以往往在接口的地方稍加改动,以增加芯片的驱动能力和减少传输线电容效应带来的影响,达到远距离传输的目的。    2.2键盘及显示    键盘通过编程设置可完成以下功能:对温度值进行标定,定时显示各路的温度值,单独显示某路的温度值,给每一路设定上下限报警值等。LED则可为用户提供直观的视觉信息。在工作现场,用户可通过6位LED的显示数据来确定系统的当前工作状态以及采样的温度值信息等。    2.3报警电路    当被测温度值超过预先设定的上下限时,报警电路作出响应,蜂鸣器发出响声,告知用户温度的异常。具体哪一个传感器温度值超限,可由软件查询各DS18B20内部告警标志而确定,继而调整该现场温度,以达到对温度波动的控制。    3、软件设计及流程    3.1下位机软件    系统下位测温部分软件采用MCS51汇编语言编写,主要完成对DS18B20的读写操作,实现实时数据的采集,并获取最终温度值送至单片机内存。但需要注意的是,由于DS18B20的单总线方式,数据的读写都占用同一根线,所以每一种操作都必须严格按照时序进行。图2为测温子系统流程图。单片机首先发送复位脉冲,该脉冲使信号线上所有的DS18B20芯片都被复位,接着发送ROM操作命令,使得序列号编码匹配的DS18B20被激活。被激活后的DS18B20进入接收内存访问命令状态,内存访问命令完成温度转换、读取等工作(单总线在ROM命令发送之前存储命令和控制命令不起作用)。    3.2上位机软件    系统上位机的软件采用VC++6.0编写。主要完成的功能包括:与下位单片微机的实时通信;模拟显示各采集点温度曲线;保存各测温点温度数据;统计各采集点平均温度值;打印各点温度统计报表等。    4、结论    本系统具有如下特点:    a.结构简单,成本低廉,维护方便。    b.直接将温度数据进行编码,可以只使用单根电缆传输温度数据,通信方便,传输距离远且抗干扰性强。    c.配置灵活、方便、易于扩展。可扩展多路下位温度采集子系统,将它们通过RS485与上位PC机组网,形成多点温度采集网络。也可在各子系统中有选择性地增减温度传感器。    d.工作稳定,测温精度高。实验表明,在长达200m的一位总线上挂接24个DS18B20温度传感器,系统可正确地进行温度采集,分辨率为0.5℃。    e.适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。在大范围温度多点监控系统中具有十分诱人的应用前景。

  • 超声波传感器_超声波传感器探测功能

    [align=left]超声波传感器是一种机械波,其振动频率高于声波。它是在电压激励下由换能器晶片的振动产生的。当超声波撞击杂质或界面时,它将产生显着的反射以形成回波的反射,当其撞击移动物体时可产生多普勒效应。因此,超声检测广泛应用于工业、防御、生物医学等方面。超声波传感器是利用超声波的特性开发的传感器。在工业中,超声波的典型应用是金属的无损检测和超声波厚度测量。超声波传感器的医学应用主要是诊断疾病,已成为临床医学中不可或缺的诊断方法。[/align]超声波传感器根据待检测物体的体积、材料、以及是否可移动而具有不同的检测方法。常见的检测方法如下:P超声波传感器发射器和接收器分别位于两侧,当待检测物体在它们之间通过时,根据超声波的衰减(或遮挡)检测。有限距离类型:发射器和接收器位于同一侧,当检测到的物体通过规定的距离时,根据反射检测超声波。适用范围:发射器和接收器位于限制范围的中心,反射器位于限制范围的边缘,当没有待检测物体时,反射波衰减值用作参考值。当要检测的对象在有限范围内通过时,基于反射波的衰减来检测(将衰减值与参考值进行比较)。回归反射型:发射器和接收器位于同一侧,检测对象(平面物体)用作反射表面,并根据反射波的衰减进行检测。超声波传感器检测的好坏用万用表直接测试P + F超声波传感器没有任何反映。为了测试超声波传感器的质量,可以使用音频振荡电路。当C1为390μF时,可在逆变器的第8和第10引脚之间产生约1.9kHz的音频信号。将要检测的超声波传感器(发射和接收)连接在8到10英尺之间 如果超声波传感器可以发出声音,那么超声波传感器基本上是好的。由超声波探头发射的超声波脉冲信号在气体中传播,并被空气和液体之间的界面反射。在接收到回波信号之后,计算超声波往返的传播时间,并且可以转换距离或距离水平高度。 超声波传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨气压感应器丨微型压力传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨压阻式压力变送器丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨风速传感器丨硫化氢传感器丨光离子传感器丨ph3传感器丨[/color][color=#333333]电化学传感器丨[/color][color=#333333]光纤传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]气压传感器丨bm传感器丨氧气传感器丨超声波风速传感器丨气压传感器丨电流传感器丨voc传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]光纤应变传感器丨流量传感器[/color][color=#333333]丨超声波传感器https://mall.ofweek.com/2133.html丨[/color][color=#333333]称重传感[/color][color=#333333]器[/color][color=#333333]丨压力传感器丨meas压力[/color][color=#333333]传感器丨位置传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨压电薄膜传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【资料】-微波功率控制方式,脉冲微波和非脉冲微波的概念

    化学反应过程一旦超越某一临界点,可能会迅速释放出大量气体以致超过消解各罐的压力上限(110bar)而难以驾御。因此需随时谨慎监视反应过程,并及时改变微波功率输出加以调控。一般根据控制能力可分低、中、高三档,控制能力不同,程序输入也不一样。1)开关式脉冲控制:传统的办法是采用固定功率输出,但间歇关闭微波以改变输出功率总量的方式,其特征是开关式脉冲微波。如:在10秒钟内关闭微波5次间隔1秒,功率为50%。开关式控制是第一代控制技术。研究人员发现这种控制方式不仅不易控制,还可能会直接影响到反应结果,且意外都是发生在开关方式下。根据功率发射方式把微波定义为脉冲和非脉冲,即间断发射为脉冲微波,而不间断发射为非脉冲微波。 研究表明,脉冲微波在开关瞬间会产生高阈值电磁脉冲,对消解含有机脂类和醇类的样品,其与硝酸的反应产物可能会刺激发生临界爆炸,其反应机理与炸药引爆相似。在萃取反应中也宜采用非脉冲技术,因为高阈值脉冲微波也极易破坏所萃取的有机分子形态,不能保证分子有机形态的完整,从而影响结果的一致性和可靠性。2)自动功率变频控制和非脉冲技术:这是第二代控制技术,特征是功率自动变化,输出均为非脉冲微波。特点是无须关闭微波发射,在连续微波发射条件下,根据温压反馈信号,自动线性改变微波功率输出,调整反应状态。不仅提高了反应速率,而且非常安全。由于闭环响应是基于精确可靠的在线罐内温压传感装置,从而提高了整机技术,当然成本也相应提高。非脉冲微波是在连续微波发射的条件下,自动线性调整微波的功率输出,其特征是无论功率如何变化,微波仍能持续输出,无脉冲刺激。实验结果表明,这种方式更易于控制微波辅助反应,提高消解反应的稳定性和安全性。且有机萃取反应回收率和稳定性也得到改善。大功率微波仪器最好采用非脉冲,因为其阈值太高,有潜在的危险。因此,非脉冲微波化学仪器的发展对反应动力学的研究十分有利,它实际上代表了微波技术发展的一个新方向。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制