当前位置: 仪器信息网 > 行业主题 > >

红外计法

仪器信息网红外计法专题为您提供2024年最新红外计法价格报价、厂家品牌的相关信息, 包括红外计法参数、型号等,不管是国产,还是进口品牌的红外计法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外计法相关的耗材配件、试剂标物,还有红外计法相关的最新资讯、资料,以及红外计法相关的解决方案。

红外计法相关的论坛

  • 【求助】红外自解卷积法是什么?

    看到好多文献能用自解卷积法解析出精细谱图,请问自解卷积法是什么方法,是软件功能还是需要硬件支持?单位的红外仪似乎没有这个功能。谢谢高手解答!

  • 红外发射管与红外接收管的区分

    940nm  现在市场上使用较多红外发射管的是850nm和940nm 因为850nm发射功率大,照射的距离较远,所以主要用于红外监控器材上;而940nm主要用于家电类的红外遥控器上。  峰值波长:λp (单位:nm)  发光体或物体在分光仪上所量测的能量分布,其峰值位置所对应的波长,称为峰值波长λp 辐射强度:POWER(单位:mW/sr)用以表示红外线发光二极管(IR LED)辐射红外线能量之大小。  辐射强度(POWER)与输入电流(If)成正比,发射距离与辐射强度(POWER)成正比。 mW/sr:表示红外线辐射强度的单位,为发射管发射红外线光之单位立体角(sr)所辐射出的光功率的大小  半功率角:2θ1/2 指发射管其上下或左右两边所辐射出的红外线强度为该组件最大辐射强度的50%时,其上下或左右两边所夹的角度称为半功率角。  人们习惯把红外发射管和红外线接收管称为红外对管。红外对管的外形与普通圆形的发光二极管类似。初接触红外对管者,较难区分发射管和接收管。本文介绍三种简便的识别方法。http://www.dzsc.com/data/uploadfile/20121019105553605.jpg 1. 根据内部结构识别  红外对管的内部结构如左图(a),(b)所示。左图(a)是红外发射管,管芯中央凹陷,类似聚光罩的形状。左图(b)是红外接收管,管芯中央的平台上有红外感光电极。红外对管的两引脚1长1短,长引脚是正极,和普通发光管相同。  2.用三用表测量识别  可用500型或其他型号指针式三用表的1kΩ电阻挡,测量红外对管的极间电阻,以判别红外对管。判据一:在红外对管的端部不受光线照射的条件下调换表笔测量,发射管的正向电阻小,反向电阻大,且黑表笔接正极(长引脚)时,电阻小的(1kΩ~20kΩ)是发射管。正反向电阻都很大的是接收管。判据二:黑表笔接负极(短引脚)时电阻大的是发射管,电阻小并且三用表指针随着光线强弱变化时,指针摆动的是接收管。  注:1)黑表笔接正极,红表笔接负极时测量正向电阻。  2)电阻大是指三用表指针基本不动。  3. 通电试验方法判别 用一只发光二极管和一只电阻与被测的对管串联,如上图2所示。图中电阻起限流作用,阻值取220Ω~510Ω。LED发光二极管用来显示被测红外管的工作状态。用遥控器(电视机遥控器等)对着被测管按下遥控器的任意键,LED亮时,被测管是红外接收管。不亮则是红外发射管。

  • 国际近红外光谱技术的发展 (—) ‐及我怎样走进近红外的几个小故事 龚伟

    国际近红外光谱技术的发展 (—)‐及我怎样走进近红外的几个小故事龚伟近红外光谱的发现第一个发现红外线光谱的人是原来的 Hanoverian(罗马帝国)人, 后来移民到英国的 Friedrich William Herschel。 他生于 1738 年 11 月 15 日,卒于 1822年 的 8 月 25 日。他多才多艺,是天文学家,也是个音乐家。但是他毕身从事的事业其实还是天文学,他在 1774 年就建造了他自己的第一台天文望远镜。 1800 年 二月 11 日, Friedrich William Herschel 用了一个三角棱镜使太阳光通过,分开了从蓝光到红光的各种光, 他在红光的尾部放了一个温度计,原意是控制室内温度的。后来他很吃惊的发现从蓝光到红光温度一直上升,红光部份的温度大大的超过可见光的温度,他推理的结果就是在可见光外一定还有肉眼看不见的光。 这部份就是今天的红外光区域,也正是这个实验使 Friedrich William Herschel 意外的发现了红外光谱。随着时间的推移,一晃一个半世纪过去了。在这个期间,人类开始并且逐渐地大量应用中红外做研究, 因为它的各种化学管能团的特征吸收峰非常明显,很适合做化合物的定性分析和部分的定量分析,比如过去分析部门常用的中红外的标准工作曲线法就是个例子。从 20 世纪开始,中红外仪器已经成了每个研究机构的必备仪器。但是中红外的应用并没有将近红外光谱部分包括进去,近红外光谱 依然是一门没有发展的技术,一个沉睡的巨人,一块未开垦的处女地。二十世纪国际近红外光谱技术的发展近红外技术的觉醒开始在 二十世纪中叶。一般世界公认的“近红外之父”是 Dr. Karl H Norris。他当时在美联邦的农业部门做研究工作。 1949 年为了发展一个自动化鸡蛋质量的分类的方法, 他用了可见光到短波长的近红外光的部分来鉴别鸡蛋,他发现了在 750 nm 的水的吸收峰。但是 由于当时对近红外光谱的理解有限,他并没有将蛋黄的颜色和水分的含量联系起来考虑鸡蛋的质量,这个发现也就搁下了,没有深入下去。 1962 年, Hart and Golumbic 用了此波长成功测定了种子中的含水量。这些应用也是第一次确认近红外光谱可以不破坏样品,不需要样品的预处理,可以测定固体样品中某些含量。这才有了 Trans‐reflectance 近红外光谱的测定方法。与 Dr. Karl Norris 同时期为近红外技术在农产品检验的发展上做了研究工作的还有, Dr. Prof. P . Williams, Dr. Prof.Fred McClure and and Dr. J. Shenk 等。 当年他们把近红外技术应用在的农产品检测上的样品有大豆,油料,小麦,食品,和羊毛等,而近红外光谱最著名的应用则是用近红外光谱仪测定小麦里的蛋白质。1991 年 8 月 22 日,我有幸参加了在苏格兰的 Aberdeen 举行的世界第四届近红外光谱学术大会( 4th ICNIRS)。会议的主题是( Making light work) 我做为一个在近红外领域刚刚起步的晚辈,怀着崇敬的心情向 Dr. Karl Norris 汇报了我在油料化学工业上的近红外光谱的应用。请他看了我做的肥皂的近红外光谱图,说了我的分析和我的理解,请教了他几个 chemometrics 里所用的图解,并与 Dr. Karl Norris 合影留念(见照片 1)。 Karl 当时非常耐心的听了我的说明,也很惊奇我能用刚刚上市的仪器 (NIRSystem 6500, 应用软件还没有出版) 打出光谱图, 并且用了 Unscrrambler(Chemometrics ) 软件把结果给解读了。后来我才知道,第一个 NIRSystem 6500 仪器的使用软件是他亲自编写的,当时还没有写完!他也不知道,为了使用这台新仪器, 我和当年在 NIRSystem6500 仪器公司做销售后服务的资深工程师 Mr. Andre Van den Broeck (现任一个公司欧州地区总裁)在实验室奋斗了三天三夜才打出了第一张肥皂样品的近红外的光谱图!当时 Dr. Karl Norris 对我说, 能将近红外用于化工分析他还不太了解, 因为他的专业是农产品分析。他给我留下的印象非常深刻, 他很谦虚,是一个很愿意听取别人的见解,非常和蔼可亲和平易近人的科学家。在 Dr. Karl Norris 和他的同事工作的基础上,他那一辈近红外光谱应用的研究人员 当年做了很多开创性工作,他们当中我知道的有: Barnes, R.F.; Moore, J. E.; Wetzel, D. L.;Griffiths, P.; Davies, A.M.C.; Murray. I. ; Weyer, L.; Iwamoto, Mutsuo; Gold H.S.; Stark, Ed.; StarK,Karen; Siesler, H. W ; Batten, G.D. and Downey, Gerard. ; Brown, S. D. ; Buijs, H. ; Etc. 他们中有人至今还在继续为近红外事业做贡献。当年积极发展近红外技术应用的除了农产品外,其它主要的领域还有,食品分析,饲料,高分子聚合物, 自然和合成纤维,制药,化工,和石油化工等。1992 年,在挪威的 Haugesund, 由于我的近红外论文( .Group information - an application ofPCA/PLS)被接受并在第五届近红外光谱学术会议 (5th ICNIRS)上发言,当年的 ICNIRS 的主席夫妇Dr. E. Stark 和 Dr. K. Stark 和在我离开会场时追上了我,表示对我的论文的赞赏。 当时我们只做了短崭的交谈,后来因为常常在各种世界大会上见面,我们就成了长期的好朋友。在这次大会上有一件事是我终身难忘的。大会注册报到的第一天,因为我能说比较流利的英语,许多参会的代表议论纷纷,有的说我是日本人,有的说我是韩国人, 也有的说我是香港人或是新加坡人或是台湾人。我不能一一向大家说明。正好第二天我是第二个发言,我就穿上了旗袍。第一句话就是:很多人猜测我是哪里来的?我不是韩国人,也不是香港人或是新加坡人或是台湾人,更不是日本人,她们没有我的个子这么高,对吗?我是中国大陆来的中国人, 100%, 请看我的中装旗袍!台下热烈的掌声持续了 2-3 分钟。大会主席还为我拍下了照片。(请看照片 2)可见外国人是非常尊重一个有国格和人格的人的。中国那时还刚刚改革开放, 我们是穷,但是孩子不能嫌弃母亲,我们永远是黄河的子孙,黄皮肤的中国人。1994 年, 我也参加了在澳大利亚举行的国际第六届近红外光谱学术会议( 6th CNIRS)。向大会做了题为"Production control by Near Infrared spectroscopy" 的学术报告。这次也值得提起的一件事是,这是我第一次遇到来自中国的两位做近红外光谱应用的老师, 两位都是当年中国农科所的研究员, 一位是吴秀琴先生(女), 一位是金东铭先生。他们在大会要做的发言是用近红外光谱来做蚕蛹的鉴别。吴老师很紧张,她的英语不大好,加上没有做发言提要的幻灯片,(那时大会还不能用计算机的 ppt 做报告,要用幻灯机片)只带来她的全文。当时 Prof.Dr. G.D. Batten 还要请她谈一下中国近红外的发展情况,吴老师很为难。我帮她给 Prof. Dr. G.D.Batten 解释了要她对全中国近红外情况做介绍比较困难,后来吴老师就没有谈这部分内容。当天晚上,我连夜帮她把全文的摘要加上她原来的部分内容做成了幻灯片。吴老师顺利上台做了报告。她们的工作是做的很成功的, 能用透射‐漫反射近红外光谱分辩出蚕蛹的雌雄, 受到大会的赞扬。

  • 【原创】红外线加热法资料

    红外线加热法资料 红外线加热机理:当远红外线辐射到一个物体上时,可发生吸收、反射和透过。但是,不是所有的分子都能吸收远红外线的,只有对那些显示出电的极性分子才能起作用。水,有机物质和高分子物质具有强烈的吸收远红外线的性能。当这些物质吸收远红外线辐射能量并使其分子,原子固有的振动和转动的频率与远红外线辐射的频率相一致时,极容易发生分子、原子的共振或转动,导致运动大大加剧,所转换成的热能使内部升高温度,从而使得物质迅速得到软化或干燥。一般的加热方法是利用热的传导和对流,需要通过媒质传播,速度慢,能耗大,而远红外线加热是用热的辐射,中间无需媒质传播。同时,由于辐射能与发热体温度的4次方成正比,因此,不仅节约能源而且速度快、效率高。此外,远红外线具有一定的穿透能力,由于被加热干燥的物质在一定深度的内部和表层分子同时吸收远红外辐射能,产生自发热效应,使溶剂或水分子蒸发,发热均匀,从而避免了由于热胀程度不同而产生的形变和质变,使物质外观、物理机械性能、牢度和色泽等保持完好。红外线水分测定仪主要由红外辐射加热器和电子天平确定其精度和稳定性.(红外辐射加热器:钨丝真空管可辐射近红外线,碳化硅属长波长的远红外辐射加热器,石英玻璃和陶瓷红外加热器能辐射中红外线) 红外线水分测定仪水分测定基准的公认标准测定法的「干燥减量法」极其类似的加热干燥、质量测定的红外线水分仪。公认标准测定法的「干燥减量法」也被称之为「105°C5小时法」、「135°C3小时法」等,通过在干燥机中放入样品进行长时间的加热干燥,来精确的测定干燥前与干燥之后的质量变化,以此计算出水分量。为此,需要测定人员对设备和技术非常精通。由于测定需要较长的时间,因此快速测定大量的样品比较困难。所以,对于高准确度的针对多种多样的样品进行测定而言,除红外线水分计之外不作他想。虽然也有一些其他的电气以及光学的测定方法,但是,都属于限定测定对象的专用仪器。从通用性的角度而言,都远不及红外水分计。适用范围: 可以测定谷物、淀粉、面粉、干面、酿造品、海产品、鱼类加工品、食用肉类加工品、调料、点、心、乳制品、干燥食品、植物油等食品相关物品,药品、矿石砂、焦碳、玻璃原料、水泥、化学肥料、纸、纸浆、棉、各种纤维等的工业制品等。更多相关资料:www.ok17.cn

  • 水中石油类红外法的试剂问题

    水质石油类和动植物油类的测定 红外分光光度法中,四氯乙烯用哪个厂家的,要什么级别的,优级纯还是光谱纯?玻璃棉是哪种,有没有图片?哪个厂家的?

  • 国际近红外光谱技术的发展 (二) -及我怎样走进近红外的几个小故事 龚伟

    国际近红外光谱技术的发展 (二)-及我怎样走进近红外的几个小故事龚伟化学计量学的诞生和发展在上一篇“国际近红外光谱技术的发展 ( —) ”中忘了解释 ICNIRS 是什么,它是 1987 年成立的International Committee for NIR spectroscopy,英文缩写 ICNIRS 。 说到近红外光谱技术的发展,首先应该提到的是化学计量学 (Chemometrics) 的诞生。 1971 年, 瑞典 Umeå 大学的有机化学的教授Svante Wold, 和美国 Seattle 华盛敦大学的分析化学教授 Bruce Kowalski, 这 两个先行者第一次启用了这个概念。紧接着在 1972 年分析化学的一次学术会议上, 一批搞分析化学的教授和学者一致同意把化学计量学(Chemometrics), 数学中的矩阵和线性回归方法用到大量的化学光谱数据的处理上,并定名为化学计量学 (Chemometrics) 。 近红外光谱的数据就是当时典型的大数据大矩阵,急需要这样的工具来帮助解读。 就这样, 化学计量学 (Chemometrics) 这门学科正式诞生了, 而且很快成为了一门化学的专门学科 ,我们才有了今天化学光谱学皇冠上的明珠-化学计量学 (Chemometrics)。 当年我的博士论文答辩委员会成员之一, Dr. S. N. Deming 就是当时的化学计量学 (Chemometrics) 的发起人之一。但是,由于当时我根本没有认识到这门学科的重要性, 加上我们也没有书本, Dr.Deming 只发给我们他手写的讲义( 见照片 1), 我也没有认真的钻研。虽然拿到学科的分数是“ A”,其实只是算算矩阵,背背理论而已,并未真正的理解 Chemometrics 的实质是什么。工作几年后,我居然要成天的应用化学计量学做近红外光谱的解读和建模型,真是有点“早知如此,何必当初”的感觉了!近红外光谱技术在沉睡了百年之后, 能够在上世纪八十年代开始飞速发展,其实是与化学计量学的诞生息息相关的。由于样品的近红外光谱图的化学或物理信息完全隐藏在几个山坡状的吸收峰中,相互重叠,没有官能团独特的特征吸收峰,用一般的解读光谱的方法是得不到所需要的信息的。有了大量数据,有了电脑及能实际应用的多变量的检测工具,才有了主成分分析法 PrincipleComponent Analysis( PCA)和偏最小二乘法 Partial Least Square (PLS).作为开创者, 1980 年代 Malinowski 出版了的第一版 “ Factors in Chemsirty”; Sharaf, Illman and Kowalski 的“ Chemometrics” 化学计量学; Massart et al. 的书 “ Chemometrics: a textbook”;还有就是 Martens 博士 and T. Naes 博士合著的实用的“ Multivariate Calibration” 这些 都是早期出版的几本化学计量学的书。在化学计量学 (Chemometrics) 的发展过程中, 也必然要提到另外几个学者。正是这些学者把化学计量学 的理论首先用计算机的软件方式表达出来的。也正是由于他们不懈的努力, 我们这些做近红外应用的人才能把巨大的光谱数据矩阵解读和图像化。首先做这个工作的是当时的 Dr. Martens博士和 Dr. Naes 博士写的实用的化学计量学“ Multivariate Calibration” 。 Martens 和 Naes 博士早年都为挪威的 CAMO 的化学计量学( Chemometrics) 软件公司的创建和壮大做出了巨大的贡献,Dr. Martens 现在已经退休好几年了。 Dr. Tormod Naes 现在还在工作,他是挪威国家食品(很多是海产品)研究院的高级研究员并兼职丹麦的哥本哈根大学的教授。他也曾受聘于美国的 Delaware大学,在美国当了几年教授。由于当年我在英国皇家帝国化学公司的四大公司之一, Uniqema 工作时聘请他做过我们公司的化学计量学顾问,我和 Dr. Tormod Naes 比较熟,至今我们还常常联系。除了他们两个学者外, 还有丹麦的 Prof. Dr. Kim H. Esbensen 和 Dr. Isaksson (他也是挪威国家食品研究院的高级研究员, 可惜已于三年前去世)当年都是北欧有名的近红外和化学计量学的专家, 都为挪威的 CAMO 软件公司的 Unscrambler 写过软件。 Prof. Dr. Kim H. Esbensen 今天仍然与 CAMO 有合作关系。 正是由于他们孜孜不倦的努力, Unscrambler 始终是国际上运用最广泛的Chemometrics 的软件。后来美国也有不少科学家做了化学计量学的计算机软件的研究和发展, 其中比较有名的有: Prof.S.D. Brown; Dr. D. Hopkins, 等等。现在在中国广泛使用的 Matlab 就是一款美国的产品。因为我在欧洲的工作时间比在美国的工作的时间长,与欧洲的近红外的发展和人员更熟一些。二十世纪以来近红外仪器公司的发展二十世纪时世界上的近红外仪器如果以分光技术为标准,主要有两大类。一类是光栅的近红外光谱仪,还有一类是傅里叶转换的 FTNIR 近红外光谱仪。最早把近红外光谱仪商业化的是美国,第一台 Trans-reflectance 透射漫反射光栅式光谱仪应该是Dr.K. Norris 亲自参加设计的 NIRSystem 5000 或 6500 系列, 当年的 NIRSystem 公司在马里兰州的(Maryland ,Silver Spring)。 Dr.K. Norris 并且撰写了应用操作程续的软件。后来 NIRSystem 公司被丹麦一家做化学产品的企业 FOSS 收购,改名 FOSS NIRSystem, 生产线也被厂家搬到瑞典。去年NIRSystem 仪器公司又被转手卖给了瑞士的 Metrohm 仪器公司做子公司。90 年代初与 NIRSystem 同时走向市场的还有美国加州的 Guided Wave 公司的透视近红外光谱仪。Guided Wave 的创始人是做光纤起家的, 所以它的光迁是最好的。这种仪器的卖点是非常明确的, 专门做液体样品,可以同时测定六-八个通道的样品,是在线分析的首选。如果我没有猜错的话, 中石化或中石油最早做汽油的辛烷值 Octane number 的仪器一定是 Guided Wave 的近红外的仪器。 Guided Wave 公司曾经与几个公司做过合作伙伴或做子公司, 比如 Ocean Optics 和 UOP,但是后来都分开了,如今还是自己做。因为公司小,资本有限,尽管仪器质量很好,确始终没能在国际上占据一席之地。在世界 5th ICNIRS 第五届近红外光谱大会照片( 2) 中,前排左边第二个人, 一个金发的女士,是另一家美国的近红外光谱仪生产公司 IT Instrument 的总裁,名叫 Aviva , 非常能干的一个女性企业家。在竞争中沉浮多年,去年听说还参加了匹兹堡大会, 我离开公司后就没有再见过她。 现况不请楚。当年同时在国际市场的还有一家名字叫 “Brant+Luebbe” 的德国公司, 它的产品也是傅里叶转换的红外光谱仪器。由于它的产品质量没有过关, 在用户中口碑不好, 后来就慢慢的消失了。据说,它的一部份技术被后来美国的 Thermo 公司吸收发展,一部份被后来的瑞士的 Buchi company 吸收了利用了。AOTF -NIR Spectrometers 也在近红外光谱仪器市场崭露头角是二千年左右的事。它以没有移动的部件作为卖点。这个仪器原来是军用产品, 一块 TeO2的晶体用无线电波引起晶体震动的音响声波达到分光的目的。在中国有没有这款仪器我不太了解。近年来还有一家公司是专门做农产品测定的近红外光谱仪的, Perten company。据我所知,这台仪器的知识产权是 Dr. E. Stark 和 Dr. K. Stark 的。应该是一种稳定的仪器。Perkin Elmer 是美国的成熟的中红外光谱仪的厂家, 在美国分析仪器市场是长期独占鳌头的。最初它并没有加入近红外光谱仪生产场家的竞争, 后来将近红外光谱波段加上去了,但是至今它也还不是把近红外光谱仪作为主要产

  • 红外光谱法的特点和应用

    红外光谱法的特点和应用1.红外光谱法的一般特点特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大2.对样品的要求①试样纯度应大于98%,或者符合商业规格这样才便于与纯化合物的标准光谱或商业光谱进行对照多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析;②试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理;③试样浓度和厚度要适当使最强吸收透光度在5~20%之间3.定性分析和结构分析红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。因此,红外光谱法是定性鉴定和结构分析的有力工具。①已知物的鉴定将试样的谱图与标准品测得的谱图相对照,或者与文献上的标准谱图(例如《药品红外光谱图集》、Sadtler标准光谱、Sadtler商业光谱等)相对照,即可定性。使用文献上的谱图应当注意:试样的物态、结晶形状、溶剂、测定条件以及所用仪器类型均应与标准谱图相同。②未知物的鉴定未知物如果不是新化合物,标准光谱己有收载的,可有两种方法来查对标准光谱:A.利用标准光谱的谱带索引,寻找标准光谱中与试样光谱吸收带相同的谱图B.进行光谱解析,判断试样可能的结构。然后由化学分类索引查找标准光谱对照核实。③新化合物的结构分析红外光谱主要提供官能团的结构信息,对于复杂化合物,尤其是新化合物,单靠红外光谱不能解决问题,需要与紫外光谱、质谱和核磁共振等分析手段互相配合,进行综合光谱解析,才能确定分子结构。④鉴定细菌,研究细胞和其它活组织的结构4.定量分析红外光谱有许多谱带可供选择,更有利于排除干扰。对于混合物,如果分别测定其特征谱带的吸收,甚至可以不经分离就可进行分别定量。红外吸收光谱定量时吸光度的测定常用基线法。假定背景的吸收在试样吸收峰两侧不变(或透光度呈线性变化),就可用画出的基线来表示该吸收峰不存在时的背景吸收线,于是图中T0与T之比的对数就是吸光度☆一般均用校正曲线法或者与对照品比较定量,不用吸光系数法因为红外分光光度计测定时需用较宽狭缝,ε不能测准☆红外光谱定量分析灵敏度较低、误差较大红外光源发光能量较低,红外检测器的灵敏度也很低,ε<103吸收池厚度小、单色器狭缝宽度大,测量误差也较大☆对于农药组份、土壤表面水份、田间二氧化碳含量的测定和谷物油料作物及肉类食品中蛋白质、脂肪和水份含量的测定,红外光谱法是较好的分析方法。 天津港东整理[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606272217_20667_1614961_3.gif[/img]

  • 【原创】红外光谱法的特点

    紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。 红外吸收带的波数位置、波峰的数目以及吸收谱带的强度反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。 由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且是鉴定化合物和测定分子结构的用效方法之一。

  • 【分享】红外光谱法对试样的要求

    红外光谱法对试样的要求红外光谱的试样可以是液体、固体或气体,一般应要求:  (1)试样应该是单一组份的纯物质,纯度应98%或符合商业规格才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。  (2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。  (3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。  二、制样的方法  1 .气体样品气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。  2 . 液体和溶液试样  (1)液体池法  沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。  (2)液膜法沸点较高的试样,直接直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。  3 . 固体试样  (1)压片法107Pa压力在油压机上压成透明薄片,即可用语测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)  (2)石蜡糊法将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。  (3)薄膜法主要用于高分子化合物的测定。可将它们直接加热熔融制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。  当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

  • 红外光声光谱法---称PAS法

    物质吸收光后,除发光、光化学反应外大部分能量经非辐射跃迁过程最终变成热能。通过测定热能变化获取物质光学以及热性质的方法称为光声光谱法。入射断续光为红外光时,测定的是红外光声光谱。红外光声光谱法主要用于透射法无法测定的各种形态的固体样品,如深色催化剂、煤及人发,橡胶、高聚物等难以制样的样品, 古物表层等。

  • 【讨论】红外功率计之间的区别

    我们有LS122A红外功率计和LS127红外功率计,是用来测试太阳或者红外线灯中1000-1700nm的红外线强度的,简单一点说,就是比较不同的红外光强度。运用在太阳膜行业比较广泛。 威固太阳膜演示系统中也有一款辐照计,外观上很相似,功能也差不多。同样是测量不同的红外光源中的红外光强度。可能由于配备的数量少,价格贵等等原因,我们遇到相当多的威固系统内的客户到市场上来寻找类似的红外辐照计。LS122A红外功率计由于价格便宜,是客户们的首选。 只是,我们常常在仪器售卖出去以后,接到客户的电话,反映这个设备为什么跟我以前使用的测试数据不一样。首先,不同厂家的仪器有可能在测试范围等因素上不相同。而导致数据不同。这样的数据并没有可比性。何况辐照计本身是很敏感的设备。我们询问过客户之后,才发现,客户之前使用的并不是我们的红外功率计,想当然的觉得数据应该是一样,购买前也不咨询,所以才导致有退换货的需求。请太阳膜行业的威固客户们特别注意一下。

  • 【资料】红外光谱法(共6讲)

    【资料】红外光谱法(共6讲)

    [B][center]红外光谱法(一)---概论 [/center][/B] 一、概论红外光区划分:通常将红外波谱区分为近红外(near-infrared),中红外(middle-infrared)和远红外(far-infrared)。 [img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911051514_181474_1912472_3.jpg[/img] 当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,产生分子振动能级和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。   物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911051515_181475_1912472_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911051516_181476_1912472_3.jpg[/img]由于分子非谐振性质,各倍频峰并非正好是基频峰的整数倍,而是略小一些。以HCl为例:[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911051517_181477_1912472_3.jpg[/img]4)定量分析;5)固、液、气态样均可用,且用量少、不破坏样品;6)分析速度快。7)与色谱等联用(GC-FTIR)具有强大的定性功能。

  • 【分享】-----红外光谱法的应用

    红外光谱法的应用 红外光谱法广泛用于有机化合物的定性鉴定和结构分析。一、定性分析  1 . 已知物的鉴定 将试样的谱图与标准的谱图进行对照,或者与文献上的谱图进行对照。如果两张谱图各吸收峰的位置和形状完全相同,峰的相对强度一样,就可以认为样品是该种标准物。如果两张谱图不一样,或峰位不一致,则说明两者不为同一化合物,或样品有杂质。如用计算机谱图检索,则采用相似度来判别。使用文献上的谱图应当注意试样的物态、结晶状态、溶剂、测定条件以及所用仪器类型均应与标准谱图相同。  2 . 未知物结构的测定 测定未知物的结构,是红外光谱法定性分析的一个重要用途。如果未知物不是新化合物,可以通过两种方式利用标准谱图进行查对:  (1) 查阅标准谱图的谱带索引,与寻找试样光谱吸收带相同的标准谱图;  (2) 进行光谱解析,判断试样的可能结构,然后在由化学分类索引查找标准谱图对照核实。 在对光谱图进行解析之前,应收集样品的有关资料和数据。了解试样的来源、以估计其可能是哪类化合物;测定试样的物理常数,如熔点、沸点、溶解度、折光率等,作为定性分析的旁证;根据元素分析及相对摩尔质量的测定,求出化学式并计算化合物的不饱和度: ?不饱和度=1+n4+(n3-n1)/2 式中n4、n3、n1、分别为分子中所含的四价、三价和一价元素原子的数目。 当计算得?=0时,表示分子是饱和的,应在链状烃及其不含双键的衍生物。 当?=1时,可能有一个双键或脂环; 当?=2时,可能有两个双键和脂环,也可能有一个叁键; 当?=4时,可能有一个苯环等。 但是,二价原子如S、O等不参加计算。 谱图解析一般先从基团频率区的最强谱带开始,推测未知物可能含有的基团,判断不可能含有的基团。再从指纹区的谱带进一步验证,找出可能含有基团的相关峰,用一组相关峰确认一个基团的存在。对于简单化合物,确认几个基团之后,便可初步确定分子结构,然后查对标准谱图核实。  3.几种标准谱图  (1)萨特勒(Sadtler)标准红外光谱图  (2)Aldrich红外谱图库  (3)Sigma Fourier红外光谱图库二、定量分析 红外光谱定量分析是通过对特征吸收谱带强度的测量来求出组份含量。其理论依据是朗伯-比耳定律。 由于红外光谱的谱带较多,选择的余地大,所以能方便地对单一组份和多组份进行定量分析。此外,该法不受样品状态的限制,能定量测定气体、液体和固体样品。因此,红外光谱定量分析应用广泛。但红外噶定量灵敏度较低,尚不适用于微量组份的测定。  (一)基本原理  1. 选择吸收带的原则  (1) 必须是被测物质的特征吸收带。例如分析酸、酯、醛、酮时,必须选择C=O基团的振动有关的特征吸收带。  (2)所选择的吸收带的吸收强度应与被测物质的浓度有线性关系。  (3)所选择的吸收带应有较大的吸收系数且周围尽可能没有其它吸收带存在,以免干扰。  2 . 吸光度的测定  (1)一点法 该法不考虑背景吸收,直接从谱图中分析波数处读取谱图纵坐标的透过率,再由公式lg1/T=A计算吸光度。实际上这种背景可以忽略的情况较少,因此多用基线法。  (2)基线法 通过谱带两翼透过率最大点作光谱吸收的切线,作为该谱线的基线,则分析波数处的垂线与基线的交点,与最高吸收峰顶点的距离为峰高,其吸光度A=lg(I0/I)。  (二)定量分析方法 可用标准曲线法、求解联立方程法等方法进行定量分析。

  • 【原创】红外光谱法的特点和应用

    红外光谱法的特点和应用1.红外光谱法的一般特点特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大2.对样品的要求①试样纯度应大于98%,或者符合商业规格 这样才便于与纯化合物的标准光谱或商业光谱进行对照 多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析②试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理③试样浓度和厚度要适当使最强吸收透光度在5~20%之间3.定性分析和结构分析红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。因此,红外光谱法是定性鉴定和结构分析的有力工具①已知物的鉴定将试样的谱图与标准品测得的谱图相对照,或者与文献上的标准谱图(例如《药品红外光谱图集》、Sadtler标准光谱、Sadtler商业光谱等)相对照,即可定性使用文献上的谱图应当注意:试样的物态、结晶形状、溶剂、测定条件以及所用仪器类型均应与标准谱图相同②未知物的鉴定未知物如果不是新化合物,标准光谱己有收载的,可有两种方法来查对标准光谱:A.利用标准光谱的谱带索引,寻找标准光谱中与试样光谱吸收带相同的谱图B.进行光谱解析,判断试样可能的结构。然后由化学分类索引查找标准光谱对照核实解析光谱之前的准备: 了解试样的来源以估计其可能的范围 测定试样的物理常数如熔沸点、溶解度、折光率、旋光率等作为定性的旁证 根据元素分析及分子量的测定,求出分子式 计算化合物的不饱和度Ω,用以估计结构并验证光谱解析结果的合理性解析光谱的程序一般为:A.从特征区的最强谱带入手,推测未知物可能含有的基团,判断不可能含有的基团B.用指纹区的谱带验证,找出可能含有基团的相关峰,用一组相关峰来确认一个基团的存在C.对于简单化合物,确认几个基团之后,便可初步确定分子结构D.查对标准光谱核实③新化合物的结构分析红外光谱主要提供官能团的结构信息,对于复杂化合物,尤其是新化合物,单靠红外光谱不能解决问题,需要与紫外光谱、质谱和核磁共振等分析手段互相配合,进行综合光谱解析,才能确定分子结构。④鉴定细菌,研究细胞和其它活组织的结构4.定量分析红外光谱有许多谱带可供选择,更有利于排除干扰。 红外光源发光能量较低,红外检测器的灵敏度也很低,ε<103 吸收池厚度小、单色器狭缝宽度大,测量误差也较大☆对于农药组份、土壤表面水份、田间二氧化碳含量的测定和谷物油料作物及肉类食品中蛋白质、脂肪和水份含量的测定,红外光谱法是较好的分析方法天津港东分析仪器推广部 022-83711190

  • 谈谈你对近红外发展的看法

    近红外发展好几十年,也经历了不少风风雨雨。拥有快速检测和在线检测等优势的近红外仪,在某些行业广泛应用。但近红外的理论发展、应用研究、接受程度并不让人满意。作为刚接触近红外的一个新手,迫切需要各位前辈元老大侠的指点。

  • 傅立叶红外与紫外可见近红外分光光度计的差异

    近同时用中红外傅立叶红外和紫外可见近红外分光光度计做了透光率的测试,发现在红外2500nm之后二者重叠部分透光率存在很大差异,傅接近100而光度计才40左右,想请问这两种测试的透光率是一个概念吗?有人说,两者测试波段不一样,2500以下紫外可见近红外分光光度计准确;2500以上傅里叶红外准确。但是因为测试时傅立叶并没有校准这一步,而分光光度计我校准了,为什么还是傅利叶准确呢?

  • 红外光谱法概述

    [align=center][font='黑体'][size=29px]红外光谱法概述[/size][/font][/align][font='仿宋'][size=18px]红外光谱属于吸收光谱的一种,是由分子振动能级的跃迁而产生的,因为同时伴有分子中转动能级的跃迁,因此又被称为振转光谱。红外光谱的作用显著广泛应用于分子结构的基础研究和化学组成的研究上;例如对未知物的剖析、判断有机化合物和高分子结构、化学反应过程的控制和反应机理的研究等。红外光谱是化学工作者不可缺少的工具。红外光谱具有诸多优点,如应用范围广,能够提供多种有特征的信息;不受样品相态的限制,也不受熔点、沸点和蒸汽压的限制,因此可以收红外光谱的应用极为广泛;样品用量少并且可以回收,还不会破坏式样,操作极为便捷,因此受到人们的青睐。下面进一步来说明红外光谱法的工作原理以及如何应用。[/size][/font][font='黑体'][size=21px]一、红外光谱法的工作原理[/size][/font][font='仿宋'][size=18px]红外光谱是由于分子在受到连续变化的红外光照射时,会吸收某些频率的红外光,从而引起振动和能级的跃迁,那么对应的吸收区域的透射光强度就会减弱,将分子吸收的情况记录在图上,那么就会得到红外光谱图。从红外光谱图上我们可以读取到很多的信息,例如峰位可以反映振动能级差,峰数可以反映分子振动自由度数目等。跃迁不是任意情况下都能发生的需要满足两个条件:[/size][/font]1、 [font='仿宋'][size=18px]辐射应满足物质产生振动跃迁所需要的能量[/size][/font]2、 [font='仿宋'][size=18px]分子振动时偶极矩的大小和方向必须有一定变化,对称分子就无红外活性,如O[/size][/font][font='仿宋'][sub][size=18px]2[/size][/sub][/font][font='仿宋'][size=18px]、N[/size][/font][font='仿宋'][sub][size=18px]2[/size][/sub][/font][font='仿宋'][size=18px]等。[/size][/font][font='仿宋'][size=18px]分子的振动频率可以由公式得出:[/size][/font][align=center][font='仿宋'][size=18px],其中[/size][/font][font='仿宋'][size=18px],k为化学键的力常数[/size][/font][/align][font='仿宋'][size=18px]因此当我们知道某化学键的力常数时就可以通过计算得出该键的吸收峰频率,从而反映在红外光谱图上。[/size][/font][font='仿宋'][size=18px]有许多特征基团的吸收频率已经有人先前测得,在研究过大量的化合物的红外吸收后,可以发现具有相同化学键或官能团的一系列化合物的红外吸收谱带均出现在一定的波数范围内,因此具有一定的特征性。例如羰基的吸收谱带均出现在1650~1870cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]范围内;含有腈基的化合物的吸收谱带出现在2225~2260cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]范围内。这样的吸收谱带称为吸收谱带,吸收谱带极大值的频率称为化学键或官能团的特征频率。[/size][/font][font='黑体'][size=21px]二、影响基团和振动频率的因素[/size][/font][font='仿宋'][size=18px]但是对于复杂分子来说,基团的振动会收到诸多因素的影响,因此相同的基团或键在不同分子中的特征吸收频率是根据分子结构和测量环境的影响而决定的。因素主要有以下几点:[/size][/font](1) [font='仿宋'][size=18px]分子中原子质量的影响。根据[/size][/font][font='仿宋'][size=18px]可知原子质量会对振动频率产生影响,原子质量越小,键的伸缩振动频率就越大。[/size][/font](2) [font='仿宋'][size=18px]化学键力常数的影响。仍由上面的公式可知键的强度越大,即力常数增加,伸缩振动频率也会增加。所以说要牢记分子振动频率的公式。[/size][/font](3) [font='仿宋'][size=18px]测定状态对不同对特征集基团吸收谱带的频率[/size][/font][font='仿宋'][size=18px]①式样状态的不同。式样状态不同,也会影响特征基团吸收谱带的频率、强度和形状。因此我们需要在红外谱图上对于样品的状态加以说明。同时结晶性固态物质、长直链脂肪酸等物质会出现一些特殊的光谱图,在这里就不予以说明了。[/size][/font][font='仿宋'][size=18px]②溶剂效应。同一物质所测得的光谱会由于溶剂种类的不同而不同。一般在极性溶剂中,溶质分子中的极性基团的伸缩振动频率随溶剂的机型增加向低波数移动,强度亦随之增加,而变形频率将向高波数移动。如果溶剂可以引起溶质的互变异构,并伴有氢键的形成,则吸收谱带的频率和强度都会有较大的变化。[/size][/font](4) [font='仿宋'][size=18px]分子结构的不同对特征基团吸收振动频率的影响[/size][/font][font='仿宋'][size=18px]这是影响特征基团吸收频率最主要的影响因素:[/size][/font][font='仿宋'][size=18px]①诱导效应。由于取代基具有不同的电负性,通过静电诱导作用,就会引起分子中电子分布的变化,从而改变了键的力常数,使基团的特征频率发生位移。所连原子的电负性越大,诱导作用也就越显著,特征频率发生位移也越明显。[/size][/font][font='仿宋'][size=18px]②共轭效应。分子中形成大п键所引起的效应叫做共轭效应,共轭作用的结果会使共轭体中的电子云密度平均分布,这样的话键长就会略有增加,力常数减小,吸收峰也就会向低波数移动。[/size][/font][font='仿宋'][size=18px]③空间效应。空间效应主要包括空间位阻效应、环状化合物的张力等。[/size][/font][font='仿宋'][size=18px]④氢键。分子内氢键浓度对峰位影响不大;分子间氢键受浓度的影响较大。[/size][/font][font='仿宋'][size=18px]⑤振动的相互作用。当两个振动频率相同或相近的基团连接在一起时,或当一振动的泛频与另一振动的基频接近时,它们之间可能产生强烈的相互作用,其结果使振动频率发生变化。[/size][/font][font='黑体'][size=21px]三、如何分析红外光谱图[/size][/font][font='仿宋'][size=18px]接着来说怎么解析一个红外光谱图:[/size][/font][font='仿宋'][size=18px]1、先确定分子式。红外光谱图通常需要跟其他多种谱图联合使用,先由其他谱图如质谱以及元素分析,相对质量的测定来推算出分子式。[/size][/font][font='仿宋'][size=18px]2、在知道分子式后计算其不饱和度。不饱和度表示有机分子中是否含有双键、三键、苯环,是链状分子还是环状分子等,对决定分子结构非常有用。不饱和度的计算公式如下:[/size][/font][align=center][font='仿宋'][size=18px]式中,n1、n3、n4分别为分子式中一价、三价和四价原子的数目[/size][/font][/align][font='仿宋'][size=18px]3、确定分子中所含的基团或键的类型。在我看来这是读取红外谱图最重要的一部分,对于不同官能团或键处在的大致区域我们应当有些了解,具体的数据我们可以通过查找书籍或网址来找到。但是对于一些常用的例如苯的骨架振动峰,烷烃的伸缩振动峰,含氧化合物中可能存在的费米振动峰等,熟记一些常用的峰可以极大的加快我们读图的速度。[/size][/font][font='仿宋'][size=18px]4、将整个红外光谱区划分为特征官能团区(4000cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]~1330cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px])和指纹区(1330cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]~667cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px])将特征官能团再分为三个波段检查:[/size][/font][font='仿宋'][size=18px](1)4000~2400cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]区,这个区域的吸收峰表征含有氢原子的官能团(伸缩振动)存在[/size][/font][font='仿宋'][size=18px](2)2400~2000cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]区,这个区域出现吸收表征含有叁键的化合物,一般是中等强度或弱峰[/size][/font][font='仿宋'][size=18px](3)1330cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]~900cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]区,这一区域出现吸收表征含有双键的化合物。[/size][/font][font='仿宋'][size=18px]指纹区再分为两个区域进行检查.包括1330~900cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]和900cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]~667cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]区。较为常用的是900cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]~667cm[/size][/font][font='仿宋'][sup][size=18px]-1[/size][/sup][/font][font='仿宋'][size=18px]区,该区域通常可以判断苯的取代位置。[/size][/font][font='仿宋'][size=18px]4、推测分子结构,验证分子结构。[/size][/font][font='黑体'][size=21px]四、红外吸收光谱的作用[/size][/font][font='仿宋'][size=18px]最后来简单说一下红外光谱既然有这么多的好处,那么它有哪些作用呢。[/size][/font][font='仿宋'][size=18px]首先,定性分析,由于基团与特征谱带的对应关系,分子中所含的各种官能团都可以由观察红外光谱鉴别;相同化合物有着完全相同的光谱;旋光性物质的左旋、右旋以及消旋体都有着完全相同的红外光谱;物质纯度检查、观察反应过程;在分离提纯方面也有着不可小觑的作用。[/size][/font][font='仿宋'][size=18px]其次,定量分析,许多光谱分析技术都有着标准曲线法这一定量分析方法,红外光谱也不例外,除此之外内标法和比例法也常用于红外光谱的定量分析方法。[/size][/font][font='仿宋'][size=18px]在这篇文章的结尾我想说的是光谱分析法是我们学习科研中必不可少的一项技能,熟练掌握这些光谱分析法将会对于我们今后的学习或工作有着极为重要的作用。常常总结方法,是学习好一项技能必不可缺的重要一环。[/size][/font]

  • 红外光谱KBr压片法鉴定药物结构

    来源:天津科技条件网一、实验目的1.学习KBr压片法的制样技术。2.用Satler标准光栅光谱的谱线索引鉴定已知物质。二、实验原理KBr压片法广泛用于红外定性分析和结构分析,通过称量压片质量也可方便的用于常量组分的定量分析。制备KBr压片时,应取约2mg样品研磨,然后与100~200mg干燥KBr粉末充分混合,并再次用球磨机研磨1~2min,研磨时间将对最终的光谱外观有显著影响。再转入合适的模具中,使之分布均匀,抽空下压成透明薄片。装入压片夹以KBr空白压片作参比扫描红外光谱。查谱线索引找出标准谱图对照谱峰位置、形状和相对强度进行鉴定。三、试剂及仪器1.试剂(1)KBr(AR)粉末(200℃烘干数小时,研细至直径约2μm存于5A分子筛干燥器中)。(2)标样Vc(AR,5A分子筛干燥)。(3)Vc药片(作试样,硅胶干燥器中)。2仪器(1)红外分光光度计。(2)振动球磨机,配套玛瑙研钵。(3)13mm直径压片模具。(4)压片机。(5)真空泵。

  • 改革开放40周年暨中国近红外光谱发展史视频征集的通知

    各相关单位和理事: 国运系于国策,战略决定成败。40年前的春天,一次科学大会,开创了一个崭新时代。解放思想,改革开放,一次伟大的历史转折,勾勒出一幅中国未来发展的壮丽蓝图。科学春天的到来,打开了国门,用更为积极的心态去感知世界,也催动了中国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的萌芽与迸发,更造就了今日中国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的千花竞放,百舸争流。 中国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],顺应历史洪流,在机遇中诞生,在探索中发展,在发展中创新,在创新中迈向未来。为了中国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术历史没有真空,为了记录中国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]迁跃史,为了2021年国际[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]会议中国近红外团队积累素材,中国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]学会拟向所有近红外相关从业者(近红外仪器生产厂商和用户)征集视频。 视频相关事宜如下: 1.视频应紧扣主题,导向积极向上,表现方式富于创意,语言生动活泼,用新时代的视角捕捉[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器时代变迁,用镜头语言记录[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]带给中国的价值。 2.具体选题内容可围绕在中国的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器厂家的重要战略任务谈认识谈体会,围绕[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器新品性能参数变化,围绕“NIR在中国各领域的实际应用”阐述近红外人如何看、如何做。包括但不限于以下主题:新时代的NIR真得很酷、我的中国NIR梦,我最欣赏的NIR仪器是XX、一起告白近红外、晒晒这40年以来我用过的近红外、近红外仪器在中国的40年、我与近红外的小美好、反映近红外领域科研先锋人物,近红外领域时代楷模等重大先进典型的感人故事等。 3.视频脚本将由视频制作团队与征集方共同完善,独立视频的版权归征集方厂家所有,完整版视频版权归中国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]学会所有。 视频时长:1分钟以内短视频 或 1分钟以上5分钟以内宣传视频 视频形式:实拍或者动画,形式不限 视频用途:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]会议暖场播放,培训宣传插播,行业展会科普展播,二维码形式宣传册传播 视频播出平台:腾讯视频,优酷视频,爱奇艺视频,哔哩哔哩动画,抖音,腾讯微视,仪器信息网,指点网。 分会拟与指点网视频制作团队合作开展这项活动,有意参加这项活动的单位或个人请与指点网联系。 联系方式: 联系人:包锞炜 E-mail:kiwi.bao@zhidian.la 微信:kiwicoco

  • 红外法测水中石油类的疑惑与思考!!!

    最近做了水中石油类的检测,方法是用现在环保的国家标准红外法,先用四氯化碳萃取总油,然后用硅酸镁吸附,剩下的就是石油类。在做的过程中有很多疑惑,希望和各位老师交流一下,能帮忙答疑解惑!1.为什么红外法测水中油不能做平行样?之前也是听前辈说因为水中油采样不能保证每个样品都一样,所以不可能做平行的,想想确实如此,而且表示认可。可是最近和荧光法进行比对发现,同样采的平行样,荧光法是可以很好的实现平行,而红外的却没有平行性可言,这又怎么解释呢?另外我一直觉得平行性也是验证数据是否准确的一个方法,现在出来这样完全不同的结果,让我开始怀疑红外法的准确性了。可是这个方法是国家认可的方法,所以开始迷惑。2.四氯化碳明明是有剧毒的,而且在做的过程中明显感觉萃取的时候和水的可溶性很不好,为什么还在使用呢?尤其是在做地表水的时候,样品量500毫升,加上萃取试剂四氯化碳,在萃取的时候就感觉四氯化碳完全不能和水相溶,器皿小是一个原因,但是可溶性绝对是个问题,而且我觉得这个也是红外数据平行性差一个很重要的原因。另外蒙特利尔公约是禁止用四氯化碳的,因为试剂毒性大,为什么就不能用其他的试剂呢。3.硅酸镁是否会吸附石油烃类? 这个也是个需要探讨的问题,因为之前曾经做过柴油,发现过硅酸镁后,检测值是有降低的,当然这个还是需要做大量的实验的。反正在做的过程中还是发现很多问题值得探讨和讨论的,也希望圈子内的老师能给予指点。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制