当前位置: 仪器信息网 > 行业主题 > >

红外系统

仪器信息网红外系统专题为您提供2024年最新红外系统价格报价、厂家品牌的相关信息, 包括红外系统参数、型号等,不管是国产,还是进口品牌的红外系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外系统相关的耗材配件、试剂标物,还有红外系统相关的最新资讯、资料,以及红外系统相关的解决方案。

红外系统相关的仪器

  • 近中红外荧光光谱系统近中红外具体指哪个波段?红外波,是电磁频谱中的重要组成部分。相较于我们常说的可见光波段,是人眼所无法看到的成分。红外辐射覆盖从700nm到1mm的范围,常见地按照波段进行区分,红外分为以下几个部分:近红外(0.751.4μm)、短波红外(1.4-3μm)、中红外(3-8μm)、长波红外(8-15μm)、远红外(15-1000μm),所以近中红外区我们大致概括为700nm到8μm范围。红外与电磁波谱的关系波段波长范围应用领域近红外0.75 - 1.4μm材料科学、光纤通信,医学领域短波红外1.4 - 3μm电信和军事应用中红外3 - 8μm化学工业和天文学长波红外8 - 15μm天文望远镜和光纤通信远红外15 - 1000μm通常用于癌症治疗不同红外区的波段及应用近中红外荧光材料的典型应用——近中红外激光晶体Er:YAG和Cr,Er:YAG激光晶体棒的图片由于3μm中红外波段激光在军工领域、激光理疗设备及环境监测等领域有着重要的应用前景,稀土离子掺杂的固体激光材料因此得到广泛关注及大量研究。较早被研究的材料有基于808nm、980nm激光器激发的Er3+的2.7μm发射(4I11/2-4I13/2跃迁),随着半导体激光器在短波长逐渐成熟,衍生出了Ho3+离子掺杂的LiYF4,使用640nm的激光激发可产生1.2μm(5I6-5I8),2.0μm(5I7-5I8),2.8-3μm(5I5-5I7)均具有较强的荧光,再有硫系玻璃如Ho3+掺杂的Ge-Ga-S-CsI玻璃,在900nm激发下能够发射2.81μm(5I6-5I7)和3.86μm(5I5-5I6)。近中红外客户案例与实测数据1) 掺铒微晶玻璃的中红外荧光光谱在众多激光玻璃材料中,由于Er离子掺杂的氟化物玻璃具有较低的声子能量、优异的中红外透过特性、较高的激光损伤阈值,因此它是目前实现2.7μm波段光纤激光器的候选材料并备受关注,其2.7μm波段发光源于Er3+离子的4I11/2-4I13/2跃迁。采用卓立汉光中红外荧光测试系统,系统组成:980nm激光器、Omni-λ5015i影像校正型红外单色仪、红外镀金反射式样品室、液氮制冷型InSb探测器(光谱响应范围1-5.5um)。掺铒中红外荧光微晶玻璃PL谱测试结果,发射峰在2.7μm左右。2) 近中红外荧光光谱系统配置808nm,980nm激光器掺Er离子样品发射在1550nm,2730nm左右。3) 近中红外荧光光谱系统PbS量子点ns寿命测量及时间分辨荧光光谱碲酸盐玻璃掺杂硫酸锌YAG:Er晶体系统性能及指标稳态测试发射光谱:1-5.5μm(选配探测器拓宽光谱范围)瞬态测试荧光寿命衰减尺度:μs-ms-s(需配置示波器,具体视激发光源而定)激发光源连续激光808nm、980nm、1064nm、1550nm、1940nm等OPO可调谐激光器可选输出范围:3000-3450nm,2700-3100nm,650-2400nm,410-2400nm,210-2400nm。重复频率:20Hz,脉冲:≤6ns,mJ级别的单脉冲能量纳秒固体激光器2940nm,1064nm,532nm等光路切换外置3路激光切换装置,通过推拉装置进行光路切换,无需移动或调整激光样品仓结构红外专用镀金反射式样品仓,带两个激光吸收阱,带高通滤光片插槽样品架标配:液体、粉末、薄膜样品架光谱仪光路结构Czerny-Turner(CT)光路设计,焦距:320mm,杂散光:1*10-5光栅配置配置三块进口光栅,尺寸:68mm×68mm光子计数型探测模块近红外光电倍增管950-1700nm,TE制冷型,制冷温度:-60℃,最小有效面积Ø 1.6mm,增益:1×106,阳极暗计数:2.5×105,阳极脉冲上升时间:0.9ns近红外光电倍增管300-1700nm,液氮制冷型,制冷温度:-80℃,最小有效面积3×8mm,增益:1×106,阳极暗计数:2.5×105,阳极脉冲上升时间:3ns单光子计数器计数率:100Mcps,采样速率:1MB/S,四通道模拟输入:1-10V,通道数:10000时间相关单光子计数器计数率:100Mcps,分辨率:16/32/64/128/256/512/1024ps,通道数:65535模拟信号型探测模块TE-InGaAs探测器800-1700nm,TE制冷型,制冷温度:-40℃,光敏面直径:3mm,峰值响应度:0.9 A/W,配置温控器及前置放大器,温度稳定度:±0.5℃,信号输出模式:电流TE-InGaAs探测器800-2600nm,TE制冷型,制冷温度:-40℃,光敏面直径:3mm,峰值响应度:1.2 A/W,配置温控器及前置放大器,温度稳定度:±0.5℃,信号输出模式:电流LN-InSb探测器1-5.5μm,液氮制冷型,制冷温度:77K,光敏面尺寸:Ø 2mm,峰值响应度:3A/W,配置前置放大器,信号输出模式:电流LN-MCT探测器2-12μm(另有14μm、16μm、22μm选项),液氮制冷型,制冷温度:77K,光敏面尺寸:1×1mm,峰值响应度:3x103V/W,配置前置放大器,信号输出模式:电压锁相放大器参考信号通道,频率范围:50mHz至102kHz,输入阻抗:1MΩ/25pF,输入信号类型:方波或正弦波,相位分辨率:0.01°,相位漂移:低于10kHz 0.1°/℃;高于10kHz:0.5°/℃斩波器频率范围:标配20~1KHz( 10孔),30~1.5KHz(15孔),60~3KHz(30孔),TTL/COMS电平输入输出,频率稳定性:250ppm/℃,频率漂移:1%,输入输出连接器:BNC时序控制器可编程延时发生器脉冲通道个数:6个,一个T(时钟基准),其他为CH1-CH5,单个脉冲周期:最小值100ns(10MHz),最大值1s(1Hz),单个脉冲宽度:≥50ns,脉冲延迟:100ns-1s(基于T通道时钟),脉冲输出高电平:T,CH1-CH2:5±0.5V/20mA;CH3:4.5V±0.5V/100mA(适用于50Ω输入阻抗外设);CH4-CH5:3.3±0.5V/高阻,分辨率:1μs,上升时间:4-6ns电源:USB供电:5V/500mA,通讯接口:USB2.0,输出接口:SMA示波器示波器模拟带宽:500 MHz,通道数:4+ EXT,实时采样率:5GSa/s(交织模式),2.5GSa/s(非交织模式),存储深度:250Mpts/ch(交织模式),125 Mpts/ch(非交织模式)电脑及软件标配电脑标配操作系统Windows系统Omni-Win控制软件稳态测试功能:激发扫描,发射扫描,同步扫描,三维扫描瞬态测试功能:动力学扫描,寿命扫描,时间分辨光谱扫描可选功能:温度控制扫描光学平台阻尼隔振光学平台尺寸(L×W×H):1500mm×1000mm×800mm阻尼隔振光学平台尺寸(L×W×H):1800mm×1200mm×800mm相关文章成果液氮制冷型MCT检测器1、基于全光纤结构的2-6.5μm红外高能量超连续光源输出光谱测量[1] (a) 不同长度的As2S3光纤输出光谱测量 (b) 4m As2S3 光纤在不同输入光能量下的输出光谱2、PPLN晶体中通过温度调谐自由差频产生的连续波2.9-3.8μm 随机激光光谱测量[2]2.9μm-3.8μm可调谐中红外随机激光光谱测量液氮制冷型InSb检测器1、中红外发光硫卤玻璃陶瓷中红外发光研究[3],通过引入Ga2S3纳米晶,极大增强了硫卤玻璃陶瓷位于2.3和3.8μm处的中红外发光强度。下图为440℃不同热处理时间下的硫卤玻璃陶瓷中红外发射光谱测试,浅蓝曲线为主体玻璃陶瓷的发光。硫卤玻璃陶瓷中红外发射光谱2、能量转移相关的Ho3+掺杂Yb3+敏化氟铝酸玻璃的中红外2.85μm发光研究[4]Ho3+/Yb3+ 掺杂氟铝酸玻璃的中红外荧光光谱TE制冷型InGaAs检测器Bi:CsI晶体的超宽近红外发光光谱[5]300K不同激发波长下Bi:CsI 晶体的近红外发光光谱参考文献:【1】Bin Yan etal, Optics Express, Vol. 29, No. 3【2】Bo Hu etal, Science China-Information Sciences , August 2023, Vol. 66【3】Shixun Dai etal, Journal of Non-Crystalline Solids 357 (2011) 2302–2305【4】Beier Zhou etal,Journal of Quantitative Spectroscopy & Radiative Transfer, 149(2014)41–50【5】Liangbi Su etal, OPTICS LETTERS , Vol. 36, No. 23, December 1, 2011
    留言咨询
  • 仪器简介:Continuμm XL 红外成像系统 采用完全升级的模式,可以从单点分析的显微镜升级配置到目前领先的双排阵列数据采集显微红外成像系统和 FPA 焦平面阵列数据采集显微红外成像系统,它代表着目前红外显微镜的最高水平,提供最高的空间分辨率的快速样品分析与研究。主要特点:1.涵盖 Continuμm 显微镜所有专利技术及强大功能2.软件控制单光阑/双光阑切换,根据样品不同,提供红外成像或高空间分辨率、高信噪比的样品测量3.透射、反射、掠角反射及 ATR 测量,模式齐全4.中/近红外光谱范围,单点测量5种检测器可供选择5.红外成像系统独有高效的双排阵列检测器,两种像素测量尺寸选择6.预览模式下,自动样品台有三种移动速度,快速准确找到测量微区7.高清晰高质量图像采集模式8.USB2.0 高速数据传输接口
    留言咨询
  • 研究微塑料等新兴污染物需要创新的分析技术。Agilent 8700 LDIR 激光红外成像系统采用量子级联激光器光谱技术,具有出众的分析速度和易用性以应对此类分析挑战。8700 LDIR 系统的全自动化微塑料工作流程非常适合分析环境样品、食品等样品中的微塑料颗粒。8700 LDIR 处理样品仅需几分钟或几小时(而非几天),能够在极少的操作人员干预下实现更高的样品通量。这一优势可降低成本并避免潜在错误,为您快速提供所需的结果。Agilent 8700 LDIR 激光红外成像系统——清晰的化学成像和理想的分析速度如果您既可以节省时间又能获得更出色的结果,那将会怎样?Agilent 8700 LDIR 激光红外成像系统为您提供全新的尖端化学成像和光谱分析能力。针对专家和非专家使用而设计的 8700 LDIR 提供了一种简单的高度自动化方法,能够使表面成分获得可靠的高清化学图像。Agilent 8700 LDIR 采用最新量子级联激光器 (QCL) 技术,结合快速扫描光学元件,可提供快速、清晰的高质量图像和光谱数据。这项技术与直观的 Agilent Clarity 软件相结合,可通过“放置样品-自动运行”的简单方法,以最少的仪器交互实现大样品区域快速、详细的成像。使用 8700 LDIR,您可以在更短的时间内更详细地分析更多样品,这种强大的解决方案为您提供了比以往更多的统计数据,有助于完成片剂、多层薄膜材料、生物组织、聚合物和纤维的组成分析。借助更有意义的信息,您可以在产品开发过程中制定更明智、更快速的决策,从而降低成本、缩短分析时间。(从左到右)安捷伦样品切片机、Agilent 8700 LDIR 激光红外成像系统和 Agilent Clarity 软件分析窗口主要优势– 主要应用领域:微塑料测试、制药、科研– 自动完成样品分析– 无需更换任何光学元件,即可分析大样品区域,然后更详细地分析较小的目标区域– 全面软件控制支持自动调节微米级到厘米级的视野范围,或 1 μm 到 40 μm 的像素分辨率– 通过采集像素分辨率小至 0.1 μm 的 ATR 成像数据,可获得无与伦比的图像细节和光谱质量– 借助 ATR 功能,可使用商业或自定义谱库快速鉴定未知物– 无需进行复杂的方法开发,即可获得样品成分的相对定量信息– 无需使用液氮,可降低运行成本并简化维护操作特性:高度自动化的工作流程使您能够从一系列样品基质中定位、描述和鉴定微塑料颗粒无需更换任何光学元件,即可分析大样品区域并成像,然后更详细地分析较小的目标区域。使用 Agilent Clarity 软件实现全面控制,“ 放置样品-自动运行” 方法仅需极少的仪器操作,小巧体积节省了实验台空间用于实时谱图匹配的内置文库。结果随谱图采集持续更新。量子级联激光器 (QCL) 和电冷却检测器无需液氮,降低了运行成本并简化了维护过程。机载 ATR 允许进一步分析未知颗粒,而无需移除样品。谱图可以导出到外部文库用于确认鉴定结果。使专业光谱工作者和受过培训的一般技术人员都能够快速准确地分析和表征样品。工作原理:8700 LDIR — 量子级联激光器光谱分析在对极小的对象(例如微塑料)进行分析时,保持高水平的精度至关重要。8700 LDIR 使用基于半导体的量子级联激光器 (QCL) 光源替代了传统红外光源。QCL 能够以单波长发射红外光,或是在不到一秒的时间内完成完整光谱的扫描。双线工作模式与大功率信号及精密的波长准确度相结合,实现了超越以往仪器的分析选择和分析性能。应用:表征环境样品中的微塑料LDIR 配备的 Agilent Clarity 软件提供了出色的工作流程自动化和灵活的进样选项。了解使用 Agilent 8700 LDIR 激光红外成像系统进行微塑料分析的强大工作流程。对滤膜上源自塑料瓶的微塑料进行快速的大面积直接分析由于废弃物管理不当和塑料污染,现在已知微塑料广泛存在于环境中。但是,微塑料的膳食暴露途径目前尚不明确。了解 8700 LDIR 如何准确鉴定和定量瓶装饮用水中存在的微塑料。同行评审的 8700 LDIR 出版物LDIR 正在迅速成为分析各种样品类型中微塑料的首选技术。在科学文献和可公开访问的数据库(包括谷歌学术)中,可以找到种类繁多的 8700 LDIR 出版物。
    留言咨询
  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询
  • 仪器简介:PerkinElmer Spotlight 400/400N 傅立叶变换红外/近红外成像系统 提升您实验室的能力水平到艺术的境界 不是每一天都会有杰作产生,但 Spotlight的确是一个杰作,否则我们还怎么去描述一台实验室仪器能够如此大幅度地,跨越多个应用领域,来增加工业界对材料的了解呢?由于有了Spotlight 400,红外成像比以前变得更快、更有效并且更灵活了。Spotlight 400实在是这个世界上方便好用、有效的实验室傅里叶变换红外成像系统。 红外成像系统性能和速度的新纪元 Spotlight 400能够以每秒170张的高速采集高品质的红外光谱数据,让你以前所未有的速度获得红外图像。在研究领域,你能通过红外图像得到更深层次的启迪;对于分析实验室,你能提高判断和解决问题的能力,归根结底,通过红外图像你将比以前更加了解材料、组织成分和你的产品。 Spotlight 400无与伦比的性能和可靠源于一系列专利的革新技术,包括第一个用于红外成像的线阵列检测器以及数据采集和控制电子线路技术,这些突破带来的就是PerkinElmer高速和高品质的红外图像仪。Spotlight 400同样在灵活性方面开辟了新天地,除了6.25&mu 和25&mu 像素分辨率之外,PerkinElmer现在可以用50&mu 像素分辨率进行更快的探查性成象。这种灵活性对于那些不需要高空间分辨率的应用将特别有价值。现在可以比以前快四倍来做一次粗扫描,为所有的难题分析或常规质量保障提供一个理想的初筛工具。通过使用图像ATR(衰减全反射)附件,Spotlight 400进一步提高了应用能力,能够适应各种各样的样品类型,包括测试那些困难的或无反射的样品。同时空间分辨率突破常规红外图象的物理限制达到1.56&mu 。另外,Spotlight 400还赋予你通过单次操作测试多重成象区域的能力;该系统的无人值守方式允许通宵实验,可以充分利用资源;可选的大样品台增加了可用的采样区域,允许一次测试多个样品或测试面积非常大的样品,提供有关样品的更多信息和获得高效率。 技术参数:Spotlight 400线阵列检测器 &mdash &mdash 美在于细节 Spotlight 400的心脏是它独特的线阵列检测器,提供高的信息质量,并且比任何其它红外光谱成像系统更快。 线阵列检测器技术提供的性能、可靠性和样品处理能力远胜过那些焦平面阵列(FPA)检测器,对于任何大小样品区域和相应的分析时间,线阵列检测器能提供高得多的灵敏度和宽得多的光谱范围。Spotlight 400把16个带有镀金信号线的独立优质MCT红外检测器元件合并成为线阵列检测器,检测器以精确的线性模式扫过样品,专利的载物台移动与干涉仪同步获得大的数据采集速度,所有的16个检测器单元以100%曝光系数记录数据,确保图像质量,Spotlight不需要在速度和灵敏度上折衷的设计,带来的是好的数据质量,所以经常单次扫描就能获得高质量、宽范围的光谱。采样灵活性之高与采样时间之短远超过任何其它仪器。 与此相反,传统的焦平面阵列检测器需要多次循环重复采样才能获得可比较的数据质量,而且光谱范围也缩小了。Spotlight 400检测器提供测量到超过720cm的能力,可以更好地检测材料的特性,这对许多竞争对手的傅里叶变换红外成像系统来说是不可能的。 Spotlight获得专利的检测器在同一个杜瓦瓶的单一衬底上将一排窄带的MCT阵列检测器和一个中带的MCT检测器组合起来,PerkinElmer的Spotlight不需要定位调整您也不会像使用焦平面阵列检测器那样遭遇像素坏点。中带单点检测器对于希望扩展光谱范围非常有用并且能提供好的灵敏度,很容易地在性能上超越目前行业中常用的红外显微镜系统。随着鼠标的轻轻一击,检测器的模式就能改变。除此之外没有任何其他移动部件, 保证了仪器有非常好的可靠性。 Spotlight可以相当快地获取图像并且它能够快速移动样品台以测量用户指定的图像尺寸,样品台与光谱仪的干涉仪直接相连并且在干涉仪改变方向的瞬间随之同步移动,最多每秒可改变五次方向,样品台位置的重现性可达到0.001%。
    留言咨询
  • 原位红外反应系统是利用傅里叶变换红外光谱仪对催化剂或物料在多环境下的性能进行原位评价的设备,对催化剂/物料在多种条件下性能进行原位评价的仪器。可方便地跟踪鉴定反应中间态和产物,从而为催化反应体系反应机理的考察给出直接的证据。原位红外漫反射主要用于气固相催化的表征和催化反应的研究,如催化剂表面羟基的鉴别、催化剂表面物种吸附态研究、催化剂表面酸碱性的表征。该反应系统可应用于真空到高压环境,温度高达500°C(真空下),是研究多相催化、气固相互作用、光化学反应和氧化机理等方向的理想选择。目前已应用于光催化降解气相有机物、热催化(CO+H2、CO2+H2)等领域的气固界面反应的红外光谱研究。 产品参数:池体主要采用316L不锈钢材质,最高耐温500℃,耐压3Mpa;/ 哈氏合金材质,最高耐温800℃,耐腐蚀;反应池可以配备高精度触摸屏温控仪进行精确控温和加热,同时利用冷却循环装置对反应池外部进行降温;反应池腔帽有三个窗口,其中两个为红外窗口,另一个为石英窗口,用于引入外部光源(光催化激发光源)或作为观察窗口使用;提供三个入口/出口,用于抽空池体和引入气体,可在反应池中形成VOCs、CO2等反应气,反应尾气先通入安全瓶再经特定溶液吸收后排 至室外,各路气体均通过质量流量计来控制流量,反应气路操作界面方便友好,易于操作;可定制各类光学窗口,可选配高温拉曼池盖。详情可登录合肥原位科技有限公司网站。
    留言咨询
  • 原位红外透射池反应系统主要用于研究样品在不同温度和气体环境下的红外光谱特征。产品主要由反应池、混气控制系统及温度控制系统三部分构成。其中反应池主体采用316L不锈钢材质,并配备红外窗片,混气控制系统通过质量流量计精确控制各路气体流量并实现混合,温度控制系统通过各类传感器实现对气路、混气罐及反应池温度的控制。详情请登录“合肥原位科技有限公司”网站。
    留言咨询
  • Asiagene NIR2020 近红外I区和近红外II区生物医学荧光成像系统是上海亚晶生物科技有限公司自主研发的大型高端设备。 主机包含:1.暗箱2.科研一级CCD相机(光谱范围:400-1700nm)3.近红外探测器4.荧光光路及照明系统5.小动物麻醉系统6.操作分析软件7.电源线和数据线8.操作说明 其中暗箱:1.内部铺有吸光性能良好的材料;2.可以装配近红外探测器配备;3.多位波段滤光片及切换装置;4.可装配多个波段光源,并分别控制及采集5.可以支持小动物麻醉系统6.配备自动升降台,可以随时调整样品台高度7.配备小动物恒温模块,保证成像时动物体温8.配备明场光源 近红外探测器:1.探测器芯片:铟镓砷探测器2.分辨率:640(h)×512(v);3.带宽:900-1,700nm;4.峰值量子效率(peak QE):85%;5.保持信号完整性:65,535灰度值;6.扫描频率:4×18 MHz;7.InGaAs探测器运行能力:99.5%;8.输入像素尺寸:15×15μm;9.输入传感器尺寸:9.6×7.68 mm;10.读出杂讯:High gain mode 27-35 电子
    留言咨询
  • 原位红外电化学ATR可以获得电极表面吸附物种的取向、排列、覆盖等状态信息,是从分子水平研究电极过程的一种有效手段,其中衰减全反射模式的表面增强光谱,由于表面选律简单、表面信号强、传质容易以及受本体溶液干扰小的优点,特别适合实时检测电极表面动态过程。该原位反应系统引入了三电极和气体接口,可以在施加外偏压的条件下,向溶液中通入CO2、N2等反应气体,实现光(电)催化原位红外光谱表征。在此基础上,通过在单晶硅表面蒸镀(或溅射等)金层,引入表面等离子共振波,实现表面增强效应,增强该原位表征的信号。详情可登录“合肥原位科技有限公司”网站。
    留言咨询
  • 近红外荧光寿命测量系统 具有亚纳秒到皮秒的时间分辨率的近红外(650—1700 nm)荧光寿命测量系统。欢迎您登陆滨松中国全新中文网站 查看该产品更多详细信息!产品实例:产品图像产品型号产品名称测量波长范围制冷方式探测器时间分辨率 C7990-01近红外荧光寿命测量系统650 nm 到 1400 nm液氮制冷 (制冷时间:约 2 h)约 600 ps C7990-02近红外荧光寿命测量系统650 nm 到 1700 nm液氮制冷 (制冷时间:约 2 h)约 600 ps C7990-11近红外荧光寿命测量系统950 nm 到 1400 nm热电制冷(制冷时间:约30 min)约 300 ps C7990-12近红外荧光寿命测量系统950 nm 到 1700 nm热电制冷(制冷时间:约30 min)约 300 ps C7990-21近红外荧光寿命测量系统950 nm to 1400 nm液氮制冷约 100 ps C7990-22近红外荧光寿命测量系统950 nm 到 1700 nm液氮制冷约 100 ps
    留言咨询
  • Panlab的红外旷场实验系统在四边布置好红外感应器矩阵的红外感应框内,放置可以限定活动界限的饲养笼或者探孔板(制成开放场)。动物的运动由红外感应器监测到,并将数据传至软件进行储存和分析处理,即可获得平面二维的活动数据。还可以通过垂直位置添加一个红外感应框,用于监测动物的站立或配合其它特殊道具发挥作用。在动物行为学实验中,红外感应是常用的行为记录方式。红外的分辨率不如基于视频拍摄的记录,但其实验数据更容易处理和便于分析,数据的效率往往比较高。红外监控系统用于监测动物活动行为。常用于自发活动监测、昼夜节律记录、新奇环境探索、旷场活动量初筛等。 技术指标(LE8815/8816)系统主要包括:红外感应框、饲养笼或探孔板拼成的开放场、数据记录装置、有机玻璃方框、分析软件系统外部尺寸450 x 450 x 200 mm 和 220 x 220 x 200 mm两种可选红外感应框:32对红外感应器,16个平均分布于X轴,16个平均分布于Y轴。使用950nm的红外光,工作频率为40Hz红外感应框尺寸:450 x 450 mm(红外感应器间隔25mm)和250 x 250 mm(红外感应器间隔13mm),两种规格可选另有红外感应框安置在另一框的上方,用于监测站立行为,或者配合动物笼最中的特殊道具发挥作用箱体可选择在动物饲养笼或旷场(探孔板)环境(饲养笼环境主要用于监测动物自发活动量和节律,旷场环境用于测试新奇探索行为和活动量筛选)Acti-Track软件:专用于基于红外的行为学分析可任意划分逻辑区域,得出需要的统计结果快跑和慢走的软件界定(用户设置阈值)特定行动模式设计以及快速或慢速的速度界定(用户设置阈值)站立行为监测及站立速度的界定(用户设置阈值)探鼻行为的监测及快、慢动作界定(用户设置阈值)一套软件支持32个数据终端选择单区域做单只动物或划分为两个区域,同时做两只(小)动物。行为数据:在特定区域的移动距离、最大、最小和平均速度、快跑慢走和停留的时间比、逗留时间、进入目标区域的次数、站立行为的次数和持续时间、旋转圈数、基于轨迹的分析等。
    留言咨询
  • 显微红外热点定位测试系统半导体器件作为现代科技社会的一大进步,却因为各种原因停滞不前,其中半导体器件故障问题一直是行业内的热点问题,多种多样的环境因素,五花八门的故障形式,使得制造商不知所措,针对此问题,金鉴实验室联合英国GMATG公司推出显微红外热点定位系统,采用法国的ULIS非晶硅红外探测器,通过算法、芯片和图像传感技术的改进,打造出高精智能化的测试体系,专为电子产品FA设计,整合出一套显微红外热点定位测试系统,价格远低于国外同类产品,同样的功能,但却有更精确的数据整理系统、更方便的操作体系,正呼应了一句名言“最好的检测设备是一线的测试工程师研发出来的!”。金鉴显微红外热点定位测试系统已演化到第四代:配备20um的微距镜,可用于观察芯片微米级别的红外热分布;通过强化系统软件算法处理,图像的分辨率高达5um,能看清金道与缺陷;热点锁定lock in功能,能够精准定位芯片微区缺陷;系统内置高低温数显精密控温平台与循环水冷装置校准各部位发射率,以达到精准测温度的目的;具备人工智能触发记录和大数据存储功能,适合电子行业相关的来料检验、研发检测和客诉处理,以达到企业节省20%的研发和品质支出的目的。金鉴实验室联合英国GMATG公司设立仪器研发中心,自主研发的主要设备有显微光热分布系统、显微红外定位系统和激光开封系统。产品获得中科院、暨南大学、南昌大学、华南理工大学、华中科技大学、士兰明芯、清华同方、华灿光电、三安光电、三安集成、天电光电、瑞丰光电等高校科研院所和上市公司的广泛使用,广受老师和科研人员普遍赞誉。性能卓著,值得信赖。红外显微镜系统(Thermal Emission microscopy system),是半导体失效分析和缺陷定位的常用的三大手段之一(EMMI,THERMAL,OBIRCH),是通过接收故障点产生的热辐射异常来定位故障点(热点/Hot Spot)位置。存在缺陷或性能不佳的半导体器件通常会表现出异常的局部功耗分布,最终会导致局部温度增高。金鉴显微热分布测试系统利用热点锁定技术,可准确而高效地确定这些关注区域的位置。热点锁定是一种动态红外热成像形式,通过改变电压提升特征分辨率和灵敏度,软件数据算法改善信噪比。在IC分析中, 可用来确定线路短路、 ESD缺陷、缺陷晶体管和二极管,以及器件闩锁。该测试技术是在自然周围环境下执行的,无需遮光箱。金鉴显微红外热点定位测试系统优点:高灵敏度的锁相热成像缺陷定位配合电测,XRAY等对样品作无损分析选配不同镜头,可分析封装芯片及裸芯片对短路及漏电流等分析效果佳0.03℃温度分辨率,20um定位分辨率,可探测uW级功耗其他功能如真实温度测量,热的动态分析,热阻计算相对于其他缺陷查找设备(EMMI,THERMAL,OBIRCH),价格可承受与国外同类设备相比,金鉴显微红外热点定位测试系统优点显著:金鉴显微红外热点定位测试系统 VS OBIRCHOBIRCH广泛用于芯片级分析和中等短路电阻,但挑战性低于10欧姆金鉴显微红外热点定位系统一般具有较高的成功率金鉴显微红外热点定位系统可兼容大样品、微米级样品测试金鉴显微红外热点定位系统热点锁定功能可以显着扩大覆盖范围,降低漏电阻金鉴显微红外热点定位系统支持长期在线监测热点缺陷异常金鉴显微红外热点定位系统测试依据:GB/T 28706-2012 无损检测 金鉴显微红外热点定位系统可以对探测电源、芯片等短路漏电故障缺陷热点锁定(lock in)功能:温度最高点定位聚焦过程只需要一秒应用领域:PCBA短路热点失效分析、IC器件缺陷定位、升温热分布动态采集、功率器件发热点探测、集成电路失效分析、无损失效分析、细微缺陷探测、正向点亮漏电LED芯片,Vf偏低(左图)。反向测试芯片漏电流显示漏电流较大(右图)测试结果:显微红外热点定位热分布测试结果显示:漏电芯片上热分布不均,存在异常热点,热点即为芯片漏电缺陷点。span font-size:14px white-space:normal background-color:#bcd3e5 "="" style="color: rgb(102, 102, 102) font-family: Arial, Helvetica, sans-serif font-size: 14px text-align: justify white-space: normal "存在缺陷或性能不佳的半导体器件通常会表现出异常的局部功耗分布,最终会导致局部温度增高。金鉴显微红外热点定位热分布系统,利用新型高分辨率微观缺陷定位技术,可在大范围内高效而准确地确定关注区域(异常点)位置。图示为在金鉴显微红外热点定位测试布设备下LED芯片漏电图:LED芯片热点定位图在金鉴显微红外热点定位测试系统中,不同模式调色板下的芯片漏电图如图所示显示:不同调色板下的LED芯片热点定位图对于受损LED来说,缺陷引起的非辐射复合几率增加,在加压增强的情况下,局部的高电场或强复合所引起的红外辐射能量被金鉴显微红外探测系统所接收,可以看到明亮的发光点或者热斑,再经过CCD图像转换处理,将其与器件表面的光学发射像叠加,就可以确认漏电造成发光点的位置。可见光与红外双重成像技术精确定位细微缺陷!案例二:金鉴显微红外热点定位系统查找紫外垂直芯片漏电点客户反馈其紫外垂直芯片存在漏电现象,送测裸晶芯片,委托金鉴查找芯片漏电点。 可见光图和热成像图融合,精准定位LED芯片热点取裸晶芯片进行外观观察,发现芯片结构完整,无击穿形貌,表面干净无污染。通过金鉴探针系统对裸晶芯片加载反向电压后,在暗室中使用显微红外热点定位系统的热点自动搜寻功能定位到了芯片上若干热点。经过可见光与热成像双重成像融合后,可以清晰观察到热点所在,即为芯片漏电缺陷处。案例三:客户送测LED芯片,委托金鉴在指定电流条件下(30mA、60mA、90mA)进行芯片热分布测试。其中60mA为额定电流。点亮条件:30mA、60mA、90mA环境温度:20~25℃/40~60%RH不同加载电流下LED芯片热分布图灯珠正常使用时,额定电流为60mA。金鉴通过显微热分布测试系统发现,该芯片在额定电流下工作,芯片存在发热不均匀的现象,其负极靠近芯片边缘位置温度比正电极周围高10度左右。建议改芯片电极设计做适当优化,以提高发光效率和产品稳定性。该芯片不同电流下(30mA、60mA、90mA)都存在发热不均的现象,芯片正极区域温度明显高于负极区域温度。当芯片超电流(90mA)使用时,我们发现过多的电流并没有转变成为光能,而是转变成为热能。案例四:某灯具厂家把芯片封装成灯珠后,做成灯具,在使用一个月后出现个别灯珠死灯现象,委托金鉴查找原因。本案例,金鉴发现该灯具芯片有漏电、烧电极和掉电极的现象,通过自主研发的显微热分布测试仪发现芯片正负电极温差过大,再经过FIB对芯片正负电极切割发现正极Al层过厚和正极下缺乏二氧化硅阻挡层。显微热分布测试系统在本案例中,起到定位失效点的关键作用。对漏电灯珠通电光学显微镜观察:金鉴随机取1pc漏电灯珠进行化学开封,使用3V/50uA直流电通电测试,发现灯珠存在电流分布不均现象,负极一端处的亮度较高。LED芯片光分布图对漏电灯珠显微红外观察:使用金鉴自主研发的显微热分布测试系统对同样漏电芯片表面温度进行测量,发现芯片正负电极温度差距很大,数据显示如图,负极电极温度为129.2℃,正极电极温度为82.0℃,电极两端温差30℃。LED芯片热分布图死灯芯片正极金道FIB切割:金鉴工程师对死灯灯珠芯片正极金道做FIB切割,结果显示芯片采用Cr-Al-Cr-Pt-Au反射结构,金鉴发现: 1.Cr-Al-Cr-Pt层呈现波浪形貌,尤其ITO层呈现波浪形貌,ITO层熔点较低,正极在高温下,芯片正极ITO-Cr-Al-Cr-Pt层很容易融化脱落,这也是金鉴观察到前面部分芯片正极脱落的原因。2.芯片正极的铝层厚度约为251nm,明显比负极100nm要厚,而负极和正极Cr-Al-Cr-Pt-Au是同时的蒸镀溅射工艺,厚度应该一致。3.在芯片正极金道ITO层下,我们没有发现二氧化硅阻挡层。而没有阻挡层恰好导致了正负电极分布电流不均,电极温差大,造成本案的失效真因。LED芯片正极金道FIB切割及截面形貌观察案例五:委托单位送测LED灯珠样品,要求使用显微热分布测试系统观察灯珠在不同电流下表面温度的变化情况。对大尺寸的倒装芯片进行观察:开始时样品电流为1A,此时芯片表面温度约134℃;一段时间后,电流降低到800mA,温度在切换电流后的2s内,温度下降到125℃,随后逐渐下降到115℃达到稳定;紧接着再把电流降低到500mA,10s后,温度从115℃下降到91℃。加载电流变化下大尺寸倒装芯片的温度-时间曲线图对小尺寸的倒装芯片进行观察:样品在300mA下稳定时,芯片表面温度约为68℃;电流增加到500mA,10s后温度上升到99℃;随后把电流降低到200mA,13s后温度下降到57℃,此时把电流增加到400mA,芯片表面温度逐渐上升,在20s后温度达到稳定,此时温度约为83℃;最后把电流降低到100mA后,温度逐渐下降。加载电流变化下小尺寸倒装芯片的温度-时间曲线图案例五:电源失效分析之热点定位委托单位电源出现失效现象,委托金鉴查找电源失效原因。在该案例中,金鉴使用显微红外热点定位测试系统对电源进行测试,定位到电源结构中的R5电阻在使用时发热严重,经测温发现该电阻温度高达90℃。厂家建议碳膜电阻在满载功率时最佳工作温度在70℃以下,而该电源中R5碳膜电阻在90℃温度下满载工作,长期使用过程中导致R5电阻失效。电源热分布图及热点定位案例六:测试原理:PCB器件存在缺陷异常或性能不佳的情况下,通常会表现出异常局部功耗分布,最终会导致局部温度升高。金鉴显微红外热点定位系统利用新型高分辨率微观缺陷定位技术进行热点锁定(lock in) ,可快速而准确地探测细微缺陷(异常点)位置。 室温24.5℃条件下,对待测区域施加5V电压,此时导通电流为20mA。使用显微热点定位系统测试PCB板热点。如红外热点定位图所示,其中红色三角形标识处即为热点所在,红外-可见光融合图可观察到热点在PCB板上的位置,该热点位置即为PCB板漏电缺陷位置。局部漏电PCB样品红外热点定位测试 红外热点定位图 可见光图(测试区域) 红外-可见光融合图
    留言咨询
  • 激光红外成像系统 400-860-5168转2879
    Agilent 8700 LDIR 激光红外 (LDIR) 成像系统为您提供全新的前沿化学成像和红外光谱分析能力。8700 LDIR 采用量子级联激光器 (QCL) 技术,针对专家和非专家使用而设计,可提供简单、高度自动化的操作。8700 LDIR 非常适合分析环境样品(例如水)中的微塑料颗粒,可以在数分钟内更详细地分析更多样品,无需数小时。自动化工作流程可降低成本与避免潜在错误,简化微塑料分析过程,为您快速提供所需的结果。特性1、高度自动化的工作流程使您能够从一系列样品基质中定位、描述和鉴定微塑料颗粒。2、无需更换任何光学元件,即可分析大样品区域并成像,然后更详细地分析较小的目标区域。3、使用 Agilent Clarity 软件实现全面控制,“ 放置样品-自动运行” 方法仅需极少的仪器操作,小巧体积节省了实验台空间。4、用于实时谱图匹配的内置文库。结果随谱图采集持续更新。5、量子级联激光器 (QCL) 和电冷却检测器无需液氮,降低了运行成本并简化了维护过程。6、机载 ATR 允许进一步分析未知颗粒,而无需移除样品。谱图可以导出到外部文库用于确认鉴定结果。7、使专业光谱工作者和受过培训的一般技术人员都能够快速准确地分析和表征样品。工作原理突破性的红外光谱技术安捷伦的创新设计采用量子级联激光(QCL),高空间分辨成像和直观的Agilent Clarity软件来创建详细的化学图像。与使用2D焦平面阵列(FPA)检测器的其他QCL成像系统不同,8700 LDIR采用单元件电冷却检测器来消除图像和光谱中的激光相干伪影。这样可以生成最清晰的图像和最可靠的光谱数据。分析模式8700 LDIR 可工作于反射或衰减全反射(ATR)模式,通过将入射光导向适当的物镜,在这两种模式之间自动切换。样品相对于光束的移动是完全自动化的,该过程可在非常短的时间内产生高质量的二维分子图像。8700 LDIR有两个可见光通道:一个用于大视场摄像头获取样品的全局视图,另一个用于显微镜级物镜捕获高放大倍率的细节。
    留言咨询
  • 产品介绍 短波红外相机与TV/LLLTV相机原理类似,也是利用被观察的目标产生的辐射反射来获取图像。同时,短波红外相机也可以利用被测试目标产生的热辐射生成与热像仪类似的图像。根据以上功能描述,短波红外相机的测试可以依据测试TV/LLLTV相机原理或者根据热像仪测试原理进行。InGaAs FPAs的参数也可以用来表征短波红外相机。ST短波红外相机测试系统使用一系列不同的靶标来投影标准靶标图形到被测试的短波红外相机,短波红外相机生成畸变的靶标图像由计算机采集并由人眼主观或者软件来计算得到短波红外相机的重要参数。ST测试系统由反射式平行光管,带宽光源,中温黑体,旋转靶轮,一组靶标,一组滤波片,PC,图像采集卡以及测试软件组成。产品参数平行光管光源平行光管类型反射式,离轴口径40mm口径100mm到200mm光源类型双光源模式:1)多色卤素灯2)单色LED焦距根据型号卤素灯光谱范围400-2200 nm光谱范围0.4-15μm卤素灯色温2856K在450-1700nm 范围空间分辨率不低于160 lp/mrad卤素灯动态范围0.02 mcd/m2 - 3000 cd/ m2镀膜抛物镜-铝膜,平面反射镜-金膜卤素灯调节模式光机调节,连续可调视场根据型号LED波长1060nm旋转靶轮LED动态范围10000:1型号MRW-8黑体靶孔数8孔径50 mm控制类型电动,数字温度范围50℃ 到 600℃靶标温度不确定性0.005xT直径54mm(靶孔)设置时间30 min反射式靶标一组USAF靶标,视场/畸变靶标,刀口靶标调节分辨率/稳定性0.01℃/ 0.05℃辐射式靶标一组4杆靶标,一组8个圆孔靶标,视场/畸变靶标,红外刀口靶标电脑控制RS-232 (USB 2.0)电源115-230VAC 50/60Hz
    留言咨询
  • 波长可选中红外激光器-光学参量振荡器系统/COPO &ndash 中红外波长可选激光系统RAYSCIENCE的波长可选光参量振荡系统覆盖1390-4200 nm波长范围。基于我们的MgO:PPLN晶体,每台COPO是一个独立的系统, 集成了泵浦激光和控制电路,使得需要的波长可以通过按钮方便地选择。主要特点:· 即用型,波长可选IR激光器· 宽调谐范围1390-4200 nm (7200-2350cm-1)· 简单的用户界面· 典型输出功率o 信号光 20-50mWo 空闲光 5-25mW· 信号光选择,1nm增量· 脉宽: ~15ns· 重复频率: ~2kHz (根据要求可选)· 用户可选滤光片,进行信号光,空闲光和未滤光OPO/泵浦光输出切换应用领域:1. 红外波段光源2. 光通讯3. 军事对抗4. 大气环境监测5. 医学6. 特殊环境远距离监控7. 光谱学研究详细资料下载 中文版 波长可选中红外激光器-光学参量振荡器系统--------------------------------------------------------------------------------StratoLase SSOPO 系列产品描述英国Covesion生产的波长可选中红外激光器,设计用于实验室校准和测试。SSOPO光学参量振荡器基于Covesion的PPLN技术,覆盖的波长范围宽。该系统前端设计了简便的操作面板,方便用户实时选择所需要的波长,并自动调节OPO需要输出的匹配相位。该系列提供了优越的宽光谱,用户可用于多用功能的红外实验校准或测试。分两种类型:SSOPO2(光谱范围1400-1545nm)和SSOPO3(光谱范围1540-1780nm),SSOPO3甚至可用于1780nm-2&mu m。两种系统都可通过PPLN晶体的非线性转换组装成1047nm的泵浦激光器。特点■ Turnkey, 波长可选■ 从1400-4150nm提供两种不同类型■ 标准输出功率:&ndash Signal: 20 to 40mW&ndash Idler: 10 to 20mW■ 脉宽: ~10ns■ 重复频率: ~2kHz■ 便利的用户接口应用■  &ldquo IR-HeNe&rdquo 光学组件校准和测试■ 低成本的测试■   红外光学元件■   波导表征■ CCD 阵列测试■ 低成本存储波速2400-7150cm-1信息
    留言咨询
  • 失效分析检测公司推荐的设备,功能多多,科研利器!显微红外热分布测试系统金鉴显微红外热分布测试系统(GMATG-G5)由金鉴实验室和英国GMATG公司联合推出,采用法国的非晶硅红外ULIS探测器,通过算法、芯片和图像传感技术的改进,打造出一套高精智能化的显微红外热分布测试体系。这套测试体系专为微观热成像设计,价格远低于国外同类产品,除传统红外热成像的优势外,还具有更高精度的成像系统、更高的温度灵敏度,更便捷的操作体系,并为微观热成像研究添加诸多实用和创新的功能,是关注微观热分布的科研和生产必不可少工具。金鉴显微红外热分布测试系统已演化到第五代:配备20um的微距镜,可用于观察微米级别芯片的红外热分布;通过软件算法处理,图像的分辨率高达5μm,能看清芯片金道;高低温数显精密控温体系,可以模拟芯片工作温度;区域发射率校准软件设置,根据被测物上的不同材质,设置不同发射率,才能得到最真实的温度值;具备人工智能触发记录和大数据存储功能,适合电子行业相关的来料检验、研发检测和客诉处理,以达到企业节省研发和品质支出的目的。金鉴实验室联合英国GMATG公司设立仪器研发中心,自主研发的主要设备有显微红外热分布测试系统、显微红外定位系统和激光开封系统。产品获得中科院、暨南大学、南昌大学、华南理工大学、华中科技大学、士兰明芯、清华同方、华灿光电、三安光电、三安集成、天电光电、瑞丰光电等高校科研院所和上市公司的广泛使用,广受老师和科研人员普遍赞誉,性能卓著,值得信赖。与传统红外热像仪相比,金鉴显微红外热分布测试系统优点显著:应用领域:适用于LED、半导体器件、电子器件、激光器件、功率器件、MEMS、传感器等样品的研发设计、来料检验、失效分析、热分布测量、升温热分布动态采集。金鉴显微热分布与传统设备大PK:金鉴显微热分布测试系统特点:1. 20μm微距镜,通过软件强化像素功能将画质清晰度提高4倍,图像分辨率提高至5μm,可用于观察芯片微米级别的红外热分布。 LED芯片热分布图 2. 模拟器件实际工作温度进行测试,测试数据更真实有效。电子元器件性能受温度的影响较大,金鉴显微热分布测试系统配备高低温数显精密控温平台,控温范围:室温~200℃,能有效稳定环境温度,模拟器件实际工作温度进行测试,提供更为真实有效的数据。配备的水冷降温系统,在100s内可将平台温度由100℃降到室温,有效解决了样品台降温困难的问题 3. 1TB超大视频录制支持老化测试等长期实时在线监测。金鉴显微热分布测试系统的全辐射视频录像可保存每一帧画面所有像素的温度数据,支持逐帧分析热过程和变化,可全面的观测分析温度与时间的关系、温度与空间的关系,更容易发现和确认真实的温度值,以及需要进一步检查的位置。灯具温升变化图 灯珠芯片温升变化图4. 热灵敏度和分辨率高,便于分辨更小温差和更小目标,提供更清晰的热像。 专业测温,-20℃~650℃宽温度量程,测温误差±2℃或±2%。热灵敏度0.03℃,便于分辨更小的温差和更小目标,提供更清晰的热像。红外分辨率640x480,若使用算法改进的像素增强功能,可有4倍图像清晰度,画质提升为1280x960。5. 定制化的热像分析软件,为科研和分析提供专业化的数据支持。金鉴定制PC端、APP分析软件: IR pro、JinJian IR,针对不同测试样品开发的特殊应用功能,人性化的操作界面,纠正多种错误测温方式,具备强大的热像图片分析和报告功能,方便做各个维度的温度数据分析和图像效果处理。(1) PC和手机触屏操作界面,简单易学,即开即用。 手机软件主界面 PC软件主界面(2)支持高低温自动捕捉,多个点、线、面的实时温度显示、分析功能,可导出时间温度曲线、三维温度图等测试数据。 (3)多达15种调色板,适用于不用的测试样品和场景需求,显示颜色的变化不影响温度的测试。(4) 微小器件由不同材质组成,不同材质、不同粗糙度等都影响发射率,图像上大部分对比度通常是由于发射率变化而不是温度变化引起的,因此发射率校正显得尤为重要。金鉴显微热分布测试系统可灵活设置不同区域的发射率,实现不同材质单独测量,温度测试更加准确。 (5)视频录制触发与自由定义帧频,最快25帧/秒,可精准捕捉有效的温度数据和视频图像。 (6)切换图像模式,可实现热像图和可见光图融合,可查看画面中高温区域或温度变化较大区域。 图像模式热成像-可见光融合图(7)导出热像图全部像素点温度数据值,为专业仿真软件建立温度云图等分析提供原始建模数据。 (8)温差模式,可直观获取任意两张热像图的温度差异,分析更快速精准。测试案例:案例一:不同环境温度下热分布测试金鉴显微热分布测试系统配备高精度控温体系,可实现器件在不同温度下的热分布测试。本案例模拟灯具芯片在不同环境温度下的结温及热分布状态,测试结果表明,控制环境温度达到80℃时,芯片结温122℃,继续升高环境温度可能导致芯片发光效率低下甚至芯片受损。案例二:不同厂家芯片光热分布差异以下案例中A款芯片发光最强,发热量最小,光热分布最均匀,量子效率最高。强烈建议LED芯片规格书里添加不同使用温度下的光热分布数据!做好光热分布来料检验,可以使LED最亮,温度最低,而成本最低,质量更可靠。 案例三:多芯片封装,电流密度均匀性需把控某款灯珠采用两颗芯片并联的方式封装,金鉴显微光分布测试系统测得B芯片发光强度较A芯片的大,显微热分布测试系统测得B芯片表面温度高于A芯片。分析其原因,LED芯片较小的电压波动都会产生较大的电流变化,该灯珠两颗芯片采用并联方式工作,两颗芯片两端的电压一样,芯片电阻之间的差异会造成流过两颗芯片的电流存在较大差异,从而出现一个灯珠内两颗芯片亮度不一的现象,影响灯珠性能。 案例四:倒装芯片光热分布分析 失效分析案例中,CSP灯珠出现胶裂异常,金鉴显微热分布测试分析显示,芯片负极焊盘区域温度比正极焊盘区域温度高约15℃。因此,推断该芯片电流密度均匀性较差,导致正负极焊盘位置光热分布差异较大,局部热膨胀差异过大从而引起芯片上方封装胶开裂异常。 案例五:显示屏模组热分布监测PCB板大屏显示模组存在过热区,过热区亮度会偏低,高温还会加速LED光源的老化,热分布不均势必会造成发光不均,影响显示模组清晰度。在显示屏分辨率快速提升的当下,光热分布不均已成为制约LED显示屏清晰度的最大因素。因此,提升LED显示屏光热分布均匀性对提高当下LED显示屏清晰度,意义重大! 案例六:IC器件热分布测试未开封的IC器件也可观察到表面热分布图。无需化学或激光开封,金鉴的红外热分布测试系统使用更高灵敏度的探头以及更先进的图像优化技术,即可了解器件内部热分布高点和低点的区域,真正实现无损检测。案例七:LED灯具热分布测试日常使用的灯具过热容易引起电子器件故障,缩短产品使用寿命,严重甚至造成安全隐患,检测LED灯具发热均匀情况能帮助设计产品,合理布置发热部件,有效防止过热。LED灯具热分布 案例八:定位电源失效区域电源失效案例中,金鉴使用红外热分布测试系统对电源进行测试,发现电源结构中的R5电阻在使用时发热严重,温度高达90℃。厂家建议碳膜电阻在满载功率时最佳工作温度在70℃以下,而该电源中R5碳膜电阻在90℃温度下满载工作,长期使用过程中导致R5电阻失效。 电源热分布图及热点定位 案例九:OLED热分布测试OLED发光材料像素在不同温度下表现出不同的发光特性,温度的分布不均会使得OLED显示面板中各处的薄膜晶体管的阈值电压和迁移率的变化也分布不均,进而导致整个显示面板出现发光亮度不均。 案例十:集成电路芯片温度测试通过金鉴显微红外热分布测试系统可测试封装后集成电路芯片工作时的温度及温度场分布,也可以直接测试芯片微米大小区域的温度数据,观察芯片的温度场分布,轻松发现温度聚集点,并且能够测试芯片开启后的温升曲线,判断芯片达到热稳定的时间。 集成电路芯片工作时的热分布及局部放大热分布图 集成电路芯片通电开启后的温升曲线 集成电路芯片通电开启热分布瞬态图案例十一:热分布测试应用于PCB领域红外热分布测试用于PCB板的检测,可直观显示电路板各区域和元件的温度分布,设计阶段可用于分析电路板布局设计是否合理,最大限度地减少故障排查和维修带来的高成本。生产阶段也可及时发现可靠性隐患,因为异常组件的升温速度通常比正常的要快,通过热分布测试,许多缺陷在出厂前就能被发现。案例十二:热分布系统全辐射视频录像功能应用于GaN器件领域 电子元器件器件实际应用过程中,进行单一热像图的分析往往是不够的,例如某GaN器件,其工作时的各项性能参数受温度影响较大,因此需要监控器件开始工作瞬间直至稳定的整个温度变化过程,这就涉及到金鉴显微热分布测试系统的全辐射视频录像功能。金鉴显微红外热分布测试系统全辐射视频录像功能采样速率可达到25帧/秒,可实现1TB单个视频录制,轻松捕捉器件通电瞬间温升变化。通过逐帧分析器件的升温过程全辐射视频录像可以看出,器件通电瞬间开始升温,这个瞬间时长仅有几十个毫秒左右,并在开始通电后2分钟左右达到温度稳定,同时各项电性参数也达到稳定。GaN器件工作过程温升变化曲线 GaN器件工作过程电流变化曲线案例十三:电器开关柜红外热分布测试电气设备在生产中已广泛采用,而电气故障是不可避免的,如何排查电气故障是面临的一大问题。电气设备的初期异常通常伴随温度的变化迹象,采用红外热分布测试可在不断电状态下进行检测工作,及时发现和诊断问题。
    留言咨询
  • 锁相红外热成像系统 400-860-5168转6017
    更多锁相红外热成像系统技术问题,请联系专业工程师
    留言咨询
  • 红外快速消化系统 400-860-5168转1429
    仪器简介:德国格哈特的Turbotherm红外快速消化器是一款多功能红外消化系统,简单方便,适合处理当今现代化实验室各种样品。技术参数: 型号TT 625 /TT125标配电压*230 V AC频率50/60 Hz标配功率1500 W 重量21kg尺寸(WxDxH525 x 450 x 740 mm温度750 ° C消化管数6/12 消化管体积250 ml欢迎致电询问其余型号的技术参数!主要特点:所有快速消化单元都由基本单元、双层搁架、带有一套消化管的放置架、带滴盘的排气歧管(含水负压泵和1.5m耐化学腐蚀软管)。 基本单元的电子控制时间和电源功率采用先进的电子控制部件。可以设定和存储9种不同程序,每种程序可分别有9种加热和时间设定。当前状态可以长久显示,可以随时手动删除。 排气罩 消化过程中产生的酸蒸汽通过排气歧管(水负压泵或尾汽吸收装置)有效地排除。 这样有效地保证实验室操作安全,不会有酸蒸汽从仪器里逸出。
    留言咨询
  • NIR-Online Multipoint System (在线近红外多探头系统)以最经济的方式为您掌控加工全过程 BUCHI NIR-Online(在线近红外)解决方案能够实现每一步工艺关键参数的连续监控,例如水分、蛋白质、脂肪、灰分、淀粉、纤维或者残油。创新的多探头系统能够以最具性价比的方式对生产全过程进行监控。 经济性可将一个主探头扩展至多达九个探头。对光纤的充分利用方式(专利)能够最大程度节省成本 快速收回投资平均投资回收周期不到一年 专业的过程控制技术完整的过程控制解决方案,从根据需求进行工程设计,到长期技术和应用支持 Quality in your hands一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
    留言咨询
  • CR红外冠层温度监测系统一、用途CR红外冠层温度监测系统主要用于室内外环境中高精度非接触式连续表面温度监测。可应用于植物冠层温度监测、路面温度测量,能量平衡研究等方面。典型应用:植物冠层温度测量,用于植物水分状态估计;地面表面温度测量(土壤,植被,水,雪),用于能量平衡研究;路面温度测量,用于确定结冰条件;二、特点低功耗非接触式叶面温度测量可在恶劣环境下使用可选配多种环境因子传感器,如空气温湿度、风速风向、太阳辐射、气压、土温和降雨量等三、技术参数1、红外温度传感器SI-111传感器:测量范围:-40℃~+70℃;测量精度:±0.2℃@-20℃~+65℃ ;±0.5℃@-40℃~+70℃;视场角:22°半角光谱范围:8~14 μm操作环境:-55℃~+80℃,0~饱和 RH;尺寸:直径23 mm,长度60 mm(带5 m缆线)输出:模拟SI-411传感器:测量范围:-55℃~+80℃测量精度:±0.2℃@-20℃~+65℃ ;±0.5℃@-40℃~+80℃;视场角:22°半角光谱范围:8~14 μm操作环境:-55℃~+80℃;0~饱和 HR(非冷凝)尺寸:直径23mm,长度60mm(带5 m缆线)输出:SDI-12数字输出2、数据采集器2.1 CR300数据采集器CR300 是一款小型的高性价比的数据采集器。它通讯速度快,低功耗,内置USB 接口,模拟输入精度和分辨率高,可以测量 4~20 mA传感器。模拟输入:6单端或3对差分扫描速率:10Hz开关激发通道:2个激发电压数字通道:2 个I/O,1 个TX/RX 类型RS-232通讯/ 数据存储端口:1 个RS-232,1 个USB,1 个10/100 网口输入电压:-0.1 ~+2.5A/D 转换位数:24内存:10M 用于数据存储,5M 用于驱动CPU和程序,2M 用于运行系统电源:16-32 CHS,9.6-16V电池功耗:5W(1Hz 模拟扫描频率)SDI-12:支持2.2 CR1000X数据采集器CR1000X数据采集器,32位FPU, 运行速度1000 MHz,24位A/D转换,高精度快速模拟测量,多种端口。低功耗体现在传感器测量、直接/ 远程通讯连接、数据分析、外部设备控制及数据和程序的存储等方面。具备时钟功能,类BASIC 编程语言,数据处理和分析等功能。模拟输入:16单端或8对差分扫描速率:≤1000Hz开关激发通道:4个激发电压数字通道:8 个I/O,4 个TX/RX 类型RS-232 或4个SID-12通讯端口:1个USB,1个CSI/O,1个RS-232,1个SD卡,1个10/100网口 CPI 端口:1输入电压:±5VdcA/D 转换位数:24内存:128M 内存,4M SRAM电源:10~16Vdc功耗:1W(1Hz采样频率),55W(20Hz采样频率)SDI-12:支持四、系统组成数据采集器、红外温度传感器、环境因子传感器(可选),供电单元,支架及线缆等。产地:美国
    留言咨询
  • Metrology Systems 计量系统 计量对于控制,优化并确保半导体制造过程中的最高产量至关重要。 通过实施反馈循环,可以启用过程控制和过程参数校正,从而可以满足更严格的过程要求。EVG的度量衡解决方案针对光刻和所有类型的粘合应用进行了优化,并使用无损测量方法。 客户可以选择将计量技术集成到全自动过程设备中,也可以选择服务于多个过程步骤的独立计量系统。EVG20红外线检查系统快速检查键合晶圆叠层的空隙。 EVG40NT自动化测量系统适用于键合和光刻的多功能,高精度度量衡。EVG50自动化计量系统适用于键合叠层和单晶片的高通量,高分辨率度量衡。EVG20 IR Inspection SystemEVG20 红外线检查系统 快速检查键合晶圆叠层的空隙特征EVG20提供了一种快速检查方法,尤其是对于熔融粘合晶圆。 整个晶片的实时图像通过IR传输支持半径小于0.5 mm的空隙检测。 红外检测系统非常适合作为单独的EVG20工具或作为EVG集成粘合系统中的工作站的熔合工艺。 特征实时成像一次性检查整个晶圆可选的粘结销,用于实时可视化直接粘结Maszara测试兼容空隙尺寸检测小至0.5 mm半径 EVG40 NT Automated Measurement SystemEVG40NT 自动化测量系统 适用于键合和光刻的多功能,高精度计量 特征EVG40 NT(独立工具)和AVM(集成了HVM的模块)能够测量与光刻相关的参数,例如临界尺寸以及键合对准精度。由于系统具有很高的测量精度,因此可以验证是否符合严格的工艺规范并立即优化集成的工艺参数。凭借其多种测量方法,EVG40 NT可以同时适应多种制造工艺,例如纳米压印光刻或晶圆间键合。作为一个应用实例,EVG40 NT完善了EVG的产品范围,以实现高精度对准晶圆键合,作为记录工具,可以可靠地验证EVG的GEMINI FB自动熔合的100 nm键合覆盖精度。 特征光刻和键合计量的多功能测量选项粘接和光刻应用的对准验证上下显微镜用于多种测量方法临界尺寸(CD)测量芯片对芯片对准验证多层厚度测量垂直和水平方向的测量精度高专门的校准程序可实现高通量基于PC的测量和模式识别软件可实现最高可靠性 EVG50 Automated Metrology SystemEVG50 自动化计量系统 适用于键合叠层和单晶片的高通量,高分辨率计量 特征EVG50(全自动独立工具)和在线计量模块(集成在EVG的大批量生产系统中)可在各种应用中采用不同的测量方法,从而实现高速,高精度的测量。该工具的应用范围包括用于确定中间层的总厚度变化(TTV)的多层厚度测量,键合界面的检查以及抗蚀剂厚度的测量,并满足了良率驱动的半导体行业的最苛刻要求。 特征具有业界领先的吞吐量和分辨率的多层计量多层厚度映射绑定界面检查低接触边缘处理无颗粒全区域可访问的正面和背面自校准可提高系统重现性并延长生产时间多种输出格式100%生产检验
    留言咨询
  • EIE 加拿大进口 EIE-STC-04 蒸汽裂解原料在线近红外分析系统集成器简介: 加拿大ETECH INTERNATIONAL ENTERPRISES INC.公司用近红外技术在线分析蒸汽裂解原料很好的解决裂解过程中可能出现的裂解不深和结焦的问题。 我们国家的蒸汽裂解装置大都采用石脑油做原料,且原料占生产总成本70%以上。一个大型裂解装置每天的进料量达几千吨,这些原料来自不同的生产区、不同的批次,其组成结构有所区别,在生产时当然不能采用相同的裂解条件,只有原料性质和裂解条件相适应才能产生高的收率、低的平均能耗并且结焦少,这就需要随时掌握原料的PONA和密度、碳数分布、馏程等指标。近红外光谱技术具有分析速度快、同时测量几种样品的多个指标、绿色环保等特点,用近红外光谱技术监测裂解原料的意义体现在三个方面:1、改善分析手段和模式我们知道生产上都配备了色谱和分析人员,一般从现场采样到出分析结果要三个小时(需要不同人员操作不同的设备出不同的分析结果),这三个小时已经进料几百吨,根本不能为工艺操作提供及时的分析数据。而实现在线近红外分析后每一分钟就可以提供一组数据(一台在线近红外光谱仪就可以实现),不需要分析人员每天很辛苦地工作,连续24小时把自动分析的结果记录在电脑上。及时掌握原料组成和性质后就能实现优化,利用现有的原料辅以适合的裂解条件产出高的收率;一般可调节的操作条件是裂解温度、进料量(蒸汽稀释比);降低蒸汽裂解的单位能耗,延长清焦时间。由于原料与操作条件的相适应性,避免了过高的裂解温度和过多的蒸汽消耗,减少了结焦,且在收率提高的状况下,单位能耗也会下降,同时清焦周期变长,生产周期加长。近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同基团(如甲基、亚甲基、苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR光谱具有丰富的结构和组成信息,非常适合用于碳氢有机物质的组成与性质的测量。近红外光谱分析模型 近红外光谱技术是光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合,是将近红外光谱所反映的样品基团、组成或物态信息与标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的间接分析方法。分析模型建立和应用的步骤如下:2、在线近红外分析系统集成的应用?采样回样点的选择和预处理系统的设计?每个乙烯装置的进料系统有所区别,需要根据实际状况选取采样回样点并设计与现场相适应的样品预处理系统。 ?公用条件的具备:包括地基、仪表风、进出水、电源、通讯。 ?在线近红外分析系统的现场安装与调试 ?在线近红外分析仪、样品预处理系统等集成为在线近红外分析系统后,整体具备ⅡC级防爆等级,符合现场防爆要求,其接口与现场对应的接口连接为一体。经过试车后,可以开展调试工作。 ?分析模型的校正:工程开始前建立了原始分析模型,在线分析系统校正过程中需要对模型进一步补充完善,以增强其准确性。 ?正式投运。3、应用后的效果体现?在线近红外分析系统集成在蒸汽裂解原料中的应用无疑增强了乙烯装置的自动化程度,具体 ?应用的效果可以体现在下面三个方面: ?推测可以增多乙烯、丙烯产量0.1% 以上 ,以年60万吨乙烯产能计算,增加乙烯丙烯产量约600吨; ?降低能耗明显; ?减少结焦量,延长清焦周期,延长开工周期。 可以预测,应用本系统集成后可以在半年内收回投资。
    留言咨询
  • 仪器简介:Continu m XL 红外成像系统 采用完全升级的模式,可以从单点分析的显微镜升级配置到目前领先的双排阵列数据采集显微红外成像系统和 FPA 焦平面阵列数据采集显微红外成像系统,它代表着目前红外显微镜的最高水平,提供最高的空间分辨率的快速样品分析与研究。主要特点:1.涵盖 Continu&mu m 显微镜所有专利技术及强大功能2.软件控制单光阑/双光阑切换,根据样品不同,提供红外成像或高空间分辨率、高信噪比的样品测量3.透射、反射、掠角反射及 ATR 测量,模式齐全4.中/近红外光谱范围,单点测量5种检测器可供选择5.红外成像系统独有高效的双排阵列检测器,两种像素测量尺寸选择6.预览模式下,自动样品台有三种移动速度,快速准确找到测量微区7.高清晰高质量图像采集模式8.USB2.0 高速数据传输接口
    留言咨询
  • 仪器简介:Continuμm XL 红外成像系统 采用完全升级的模式,可以从单点分析的显微镜升级配置到目前领先的双排阵列数据采集显微红外成像系统和 FPA 焦平面阵列数据采集显微红外成像系统,它代表着目前红外显微镜的最高水平,提供最高的空间分辨率的快速样品分析与研究。主要特点:1.涵盖 Continuμm 显微镜所有专利技术及强大功能2.软件控制单光阑/双光阑切换,根据样品不同,提供红外成像或高空间分辨率、高信噪比的样品测量3.透射、反射、掠角反射及 ATR 测量,模式齐全4.中/近红外光谱范围,单点测量5种检测器可供选择5.红外成像系统独有高效的双排阵列检测器,两种像素测量尺寸选择6.预览模式下,自动样品台有三种移动速度,快速准确找到测量微区7.高清晰高质量图像采集模式8.USB2.0 高速数据传输接口
    留言咨询
  • Thermoconcept是致力于研发红外应用产品的法国先驱企业。Thermoconcept长期涉足教育系统,始终把支持教师对于学生的教学工作作为自己的使命。Thermoconcept的科学家利用专业的红外摄像机设计并构建了实用工具以引领学生进入热像领域。从高中到享有声誉的大学,我们都能提供一流的全套教学系统:这一实用工具为学生提供了接触红外技术的机会,感受他的优势并理解其应用。 应用:介绍主要的红外现象(反射,透射,辐射,普朗克定律…)多种材料热物理性能的定性(蓄热参数)无损检测,可进行缺陷探测(位错,包夹,虚接)此套系统利用额外的软件可以升级至允许教师利用他做专业或研究应用。 硬件:一套红外测试平台,装备了Thermovision A320红外摄像头和两套氙灯一套包含多种样品和附件的手提箱一台电脑,装有为此设备特别研发的软件应用脚本(学生和教师版本)
    留言咨询
  • TRAL红外探测器通用测试系统用于测量在700nm到16000nm宽光谱范围内敏感的离散(或小型线性阵列)红外探测器(NIR/SWIR/MWIR/LWIR探测器或宽带探测器)的参数。可测试的红外探测器包括:光子探测器:光伏/光电导、冷却/非制冷、热辐射探测器、热电探测器等。在辐射配置中,TRAL系统使用调制光束照射被测红外探测器。探测器产生与入射红外辐射功率成正比的输出电信号。通过分析被测探测器的输出电信号和辐射功率,得到所需参数。 在光谱配置中,TRAL系统使用可变波长、可变强度辐照被测探测器。过对被测探测器输出电信号的分析,可以确定其相对光谱灵敏度。测试功能:1.辐射参数:黑体响应度,响应度,黑体探测率,归一化探测率,NEP,暗电流,量子效率。2.光谱参数:相对光谱响应3.空间参数:调制传递函数MTF和非均匀性。
    留言咨询
  • 410-IR是一款高度一体化的机载高光谱红外成像系统,内置双探测器、采集控制、固态存储、惯性导航INS等组件,集高光谱成像、热红外成像、高精度云台为一体。高光谱传感器采用性能优异的高量子效率探测器及高反射衍射光栅,具有卓越的传输效率、信噪比、光谱保真度和空间分辨率;热红外传感器面阵为640*512像素,测温精度达±1℃,全屏测温,可进行大面积热红外成像测量及数据拼接。410-IR高光谱红外成像系统具有嵌入式处理器,基于以太网接口控制应用程序。可以存储经辐射校准的高光谱图像数据,还可以选择高光谱数据的存储波段,选取子集记录数据。配备Skyport电子排线接口的一体式高精度无刷云台,可快速搭载于M300 RTK无人机,大幅简化操作流程,提高作业效率。
    留言咨询
  • 优势特点1)样品处理开始后样品池中真空度可达到10-3 Pa;2)样品测量过程中各样品可同时或分别进行预处理、吸附、脱附探针分子;3)测量所需探针分子为酸性或碱性分子,高硼硅玻璃材质避免了各类气体的相互污染;4)真空处理系统由机械泵与玻璃四级扩散泵串联组成,可满足样品测试所需的高真空度的要求,具有抽速快、体积小、噪音低、操作简单、使用方便等特点;5)低真空部分主要是抽除系统中的高浓度气体或吸附的残余气体;6)各部分节门选用高硼硅玻璃节门,满足系统高真空的要求,透明性操作,便于调试;7)真空测量仪使用数显高精密真空计;8)本系统所配透过式石英红外吸收池,可对样品进行陪烧、流动氧化还原、抽空脱气、吸附反应等处理过程,可随时移入或移出到红外光谱仪的光路中进行实验,对样品的加热温度可达450度;9)波纹管更换方便。10)高真空系统和原位红外吸收池可按客户要求进行更改和定制。产品应用1 吸附态研究和催化剂红外光谱表征红外光谱已经广泛应用于催化剂表面性质的研究,其中有效和广泛应用的是研究吸附在催化剂表面的所谓“探针分子”的红外光谱,如:NO、CO、CO2、NH3、C3H5N等,红外光谱表征可以提供催化剂表面尤其是原位反应条件下催化剂表面存在的“活性中心”和表面吸附物种的信息,因此对于揭示催化反应机理十分重要。1.1 CO吸附态研究CO具有很高的红外消光系数,其未充满的空轨道很容易同过渡金属相互作用,同时许多重要的催化反应如羰基合成、水煤气合成、费托合成等均与CO密切相关,因此,研究CO在过渡金属表面的吸附态是一项十分广泛的研究课题。1.2催化剂表面组成测定合金催化剂表面组成与体相组成的差异会导致催化剂的性能显著不同,因此,测定催化剂的表面组成对理解反应的活性位相当重要。利用两种气体混合物在双组份过渡金属催化剂表面上的竞争吸附,并通过红外光谱测定其强度,可以方便地测定双金属负载催化剂的表面组成。典型的例子是CO和NO在Pt-Ru双金属催化剂上共吸附的红外光谱。1.3几何效应和电子效应研究在高分散金属催化剂中引入第二金属组元,由于金属间的几何效应和电子效应可显著改变催化剂的吸附性能从而改变催化活性。如在Pd-Ag/SiO2催化剂体系中,Ag对Pd起稀释作用,当Ag含量增加,成双存在的Pd浓度减少,因而桥式CO减少,线式CO增加,说明几何效应改变了CO在Pd-Ag/SiO2体系中的吸附性能,同时,随Ag含量的增加,CO吸附谱带红移加大,说明Pd-Ag之间存在电子效应。1.4吸附分子相互作用研究CO吸附在过渡金属表面时存在d-π反馈,nco同d-π反馈程度有有关,而d-π反馈程度与金属本身的d轨道情况有关,因此,通过CO吸附态的红外吸收光谱的化学位移,可以考察其它分子与CO共同吸附时导致的分子与金属组元之间的电子转移过程。如:当能够给出电子的Lewis碱与CO共吸附在Pt上时,根据d-π反馈原理,吸附在Pt上的CO伸缩振动向低波数位移,而当能够接受电子的受体与CO共吸附在Pt上时,根据d-π反馈原理,吸附在Pt上的CO伸缩振动向高波数位移。2 氧化物、分子筛催化剂的红外光谱表征2.1 固体表面酸性测定固体表面酸性位一般可看作是氧化物催化剂表面的活性位。在众多催化反应如催化裂化、异构化、聚合等反应中烃类分子与表面酸性位相互作用形成正碳离子,该正碳离子是反应的中间物种。正碳离子理论可以成功解释烃类在酸性表面上的反应,也对酸性位的存在提供了有力证明。为了表征固体酸催化剂的性质,需要测定表面酸性位的类型(Lewis酸,Bronsted酸)、强度和酸量。测定表面酸性的方法很多,如碱滴定法、碱性气体吸附法、热差法等,但这些方法都不能区分L酸和B酸部位。红外光谱法则广泛用来研究固体催化剂表面酸性,它可以有效区分L酸和B酸,在该方法中,常用碱性吸附质如氨、吡啶、三甲基胺、正丁胺等来表征酸性位,其中应用比较广泛的是吡啶和氨。2.2 氧化物表面羟基的研究氧化物尤其是大比表面的氧化物的表面结构羟基同许多催化反应如脱水反应、甲酸分解反应等有关,而表面结构羟基的性质又同表面酸性有密切的关系,多年来,人们对氧化物表面羟基进行了大量的研究,其中大部分研究着眼于氧化物表面羟基的结构、性质以及同酸性中心的关系,进而同催化剂的反应性能相关联。研究催化剂表面结构羟基的方法很多,但卓有成效的是红外光谱法。2.3 氧化物表面氧物种研究甲烷是烃类分子中结构简单、对称、化学惰性的分子,从基础研究角度认识以甲烷为代表的低碳烃类活化机理具有极大的学术意义。但是,甲烷分子很难吸附在催化剂表面上,因此很难直接观察到它在氧化物表面的活化过程。而氧化物表面(尤其碱性氧化物表面)的氧物种研究由于表面存在一层稳定的碳酸盐使得对其研究十分困难。鉴于上述原因,氧化物表面氧物种的研究一直没有取得重大进展。近年来采用了“化学捕集”技术、同位素交换技术和低温原位红外光谱方法相结合应用于上述研究取得了一些关于表面氧物种和甲烷活化的重要信息。3 原位红外光谱应用于反应机理研究长期以来人们研究了各种分子在催化剂表面的吸附态并获得了许多重要的信息,但是这些信息都是在反应没有发生时测得的。而反应条件下的吸附物种的类型、结构、性能与吸附条件下的吸附物种的类型、结构、性能有很大差别,因此,仅利用吸附条件下分别测得的吸附物种信息无法准确阐明反应机理,为此,进行反应条件下吸附物种的研究十分必要。而在反应条件下催化剂表面吸附的物种并未都参与反应,因此如何在多种吸附物种中识别出参与反应的“中间物种”是非常重要的课题。原位红外光谱可以测量催化剂在反应状态下吸附物种的动态行为,因此可以获得催化剂表面物种的动态信息,并可据此推断反应机理。详细介绍原位红外光谱表征高真空系统是用于测定催化剂表面组成、吸附、酸性、物种、表面羟基及反应机理的专用设备,包括高真空系统和原位红外吸收池两部分,可以配合Bruker布鲁克等主要红外光谱仪进行氨、吡啶、一氧化碳、一氧化氮、甲醇、乙醇等化合物的化学吸附测定及反应机理研究。催化剂表征对于了解催化剂结构和组成在预处理、诱导期和反应条件下以及再生过程中所发生的变化是至关重要的。催化反应机理的知识、特别是结构、动态学和沿催化反应途径中生成的反应中间物的能量学可为开发新催化剂和改良现有催化剂提供更深刻的认识。原位谱学观察又是阐明反应机理、分子与催化剂相互作用的动态学和中间物结构的有效技术。这些研究还可以提供有关催化剂和底物相互作用及有关活化势垒的热力学方面信息。反应机理和动力学的研究,特别是对催化反应中间物的原位观察,对发展催化科学是非常必要的。因为这样的研究结果提供了催化作用的全面知识,并有助于阐明催化剂结构和功能的关系。高真空系统由玻璃四级扩散泵、真空泵、精密真空表、电离规、集气瓶、球形安瓶、制备瓶、可伐、真空活塞等组成。该系统的高真空是通过一台优质低噪声的机械泵和一台玻璃四级扩散泵组成的机组而获得。原位红外吸收池由石英制成,分样品台和真空密封窗口两部分。样品台带有加热组件、热电偶、冷却系统和气体引入系统;真空密封窗口由冷却系统和CaF2窗片组成。该吸收池采用透射模式进行红外光谱表征,可对样品进行焙烧、流动氧化还原、抽空脱气、吸附反应等处理过程,可随时移入或移出到红外光谱仪的光路中,也可利用配备的延长管路进行原位表征实验。样品的加热采用程序升温方法控制温度,温度可达450℃。标准配置的吸收池窗口材料为CaF2,工作区间为4000—1000cm-1,也可按用户需要配置其他窗口材料。表1 红外窗口材料的性质材料使用范围cm-1反射损失*(1000cm-1)溶解度 g/100ml@20oC相对价格物理性质NaCl5000至6257.5%401.0溶于水,硬但易抛光和切割,潮解慢KBr5000至4008.5%701.2溶于水,较软但易抛光和切割,潮解慢,价格高,范围宽CsI5000至18011.5%807.8溶于水,软且易划伤,不能切割,潮解慢CaF25000至10005.5%难溶3.5难溶于水,耐酸碱,不潮解,忌用于铵盐溶液BaF25000至7507.5%不溶6.2类似于CaF2,对热和机械振动敏感SrF25000至8506%不溶5.1类似于CaF2,对热和机械振动敏感AgCl5000至45019.5%不溶6.6不溶于水但溶于酸和NH4Cl溶液,可延展,长期暴露于紫外光变暗,腐蚀金属及合金AgBr5000至28025%难溶难溶于水,软且易划伤,冷变形长期暴露于紫外光变暗KRS-55000至25028%0.19.1微溶水,溶于碱但不溶于酸, 软且易划伤,冷变形,剧毒Infrasil(SiO2)5000至2850NA不溶不溶于水,溶于HF溶液,微溶于碱难切割Poly-ethylene625至10NA不溶1.6不溶于水,耐溶剂,软易溶胀,难清洗,可压片*两个面上的反射损失, NA 不透明. 玻璃高真空系统部分组成及说明请参阅图1所示,本玻璃高真空实验测试系统,主要应用红外光谱催化剂原位表征、催化剂表面吸附物种和催化剂表征方面(探针分子的红外光谱)以及反应动态学方面的研究。该系统包括由机械真空泵A,真空波纹管B,可伐KF接头C,缓冲球D,组成一级真空泵,用于抽取低真空段,该部分真空可以抽取到1.0Pa;玻璃扩散泵E,用于提升真空度,提升真空度到10-2-10-3Pa,此为二级真空泵,液氮冷阱F,用于冷却系统中杂质气体,也有利于帮助提高真空度;真空规管G和精密真空表J,分别用于测量系统的高真空度及低真空度;玻璃球瓶H、I为储气瓶,用于储存备用纯化好的气体;玻璃管P为高真空部,为工作玻璃管,为该系统的核心部分;玻璃管Q为低真空部,用于连接测试样品池M,进气接口L,为工作管P服务,并实现高低真空的转换;玻璃制备瓶K,用于气体的纯化与制备;制备安瓶N,用于液体的纯化与制备;该系统全部采用玻璃真空阀门,更好的保证了气密性,02,03为三通玻璃真空阀门(详图2),01、04、05、06、07、08、09、10、11为二通玻璃真空阀门(详图3)。本实用新型中所采用的管路均为玻璃管路,所采用的阀门均为玻璃高真空阀门,真空阀门可以保证系统使用过程中不会产生漏气或缓慢渗漏的情形。图1-C中不锈钢管与玻璃管路采用可伐(Kovar)连接。
    留言咨询
  • 一、仪器简介:格哈特红外加热消解快速消化系统TTs125德国格哈特推出了其TURBOTHERM(特博森)系列红外消化系统的最新产品TTs。新的TTs是一款多功能红外消化系统,适合处理当今现代化实验室各种样品。取量大或者小的样品,以及易起泡的样品均可适用,如高脂肪高糖分食品、牛奶和乳制品、啤酒、污水和淤泥样品。 二、应用适用范围:粮食、食品、乳制品、饮料、麦芽、肉制品、水产品、植物、药品、菌类、生物质燃料、饲料、土壤、肥料、石油、煤炭、淀粉、橡胶、烟草、地质样品、污水淤泥、沉淀物、钢铁金属和化学品等各种样品凯氏定氮分析中的样品高温强酸消化。可使用带刻度消解管,亦可用于流动注射的样品消解。可用于重金属酸消解或湿灰化前处理。 主要特点:德国格哈特红外快速消化系统TTs1251、整体采用符合人体工程学的横向设计,操作更方便舒适安全。2、符合人体工程学可变倾角设计的全彩液晶显示操控系统,可人性化适应不同操作者情况。3、满足ISO 17025 规范的要求:可溯源,可设置不同访问权限的用户级别,具有密码保护功能,可记录及调取所有相关运行数据信息。前置USB接口方便数据导入导出。可存储99个程序,每个程序可设置多达40步,可显示实时运行消化状态。4、显示操控系统采用最新侧置设计,可有效避免前置所遇到的电子器件高温老化和酸腐蚀问题。5、采用先进的特殊红外激发材料,确保最高红外辐射效率的同时无惧磕碰,更经久耐用。红外直接辐射加热可减少加热及冷却时间,整体消化时间显著减少。全部样品加热至沸腾状态仅需10分钟。改良的特殊耐高温金属加热腔体,使加热均匀分布。6、可使用100ml-800ml体积的多达八种消化管,消化管采用Duran高质量玻璃制造。7、消化结束后,消化管架、排废罩和滴漏盘可放置在双层搁架上,节省了宝贵的通风橱空间,操作也简单方便安全。新增滴漏盘可内置存放设计,既方便消化时存放,节省空间,方便操作,亦可在消化时承接意外滴落的酸液,清洁维护消化腔时做为承水盘,便于清理。8、可全自动控制TURBOSOG 或者完全无水工作的VACUSOG涤气系统,用于收集和中和腐蚀性酸雾。9、具有配比较佳空白较低的凯氏消化片。 直接厂家技术支持,直接厂家专业服务。技术服务中心传承:专业售后服务水平,高度责任感。独特提供7X24小时在线技术服务!重支持,重维护,重培训。
    留言咨询
  • Reaction View原位在线反应红外监测系统美国REMSPEC的Reaction View在线原位反应红外监测系统在实验室和工艺领域有着广泛的应用,其广泛的光纤探头(ATR衰减全反射探头、透射探头、透反射探头、浸入式透反射探头、斜角反射探头、高温探头、高压探头等)可以适应任何类型的在线原位反应的检测要求。Reaction View在线原位反应监测是化学合成工艺的一个重要环节,专为实验室和实验性工厂而设计,能够通过坚固的插入式探头和直观的软件界面直接记录反应信息。REMSPEC围绕出色的分析性能、高可靠性和简单直观的设计理念设计在线原位红外检测产品,是一种可以在任何时间和场所使用的即插即用式解决方案,无需任何消耗品,并且无需系统维护。REMSPEC的Reaction View在线原位反应红外监测系统体积小巧,可以跻身于拥挤的通风橱中,系统跟踪的所有关键的光谱信息和化学反应过程信息都是实时信息,符合人体工程学的软件界面使用户能够快速地设置新的实验模版。可用于研究:氢化反应、格式反应、锂化、卤代以及酰氯参与的各种反应。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制