微滤系统

仪器信息网微滤系统专题为您提供2024年最新微滤系统价格报价、厂家品牌的相关信息, 包括微滤系统参数、型号等,不管是国产,还是进口品牌的微滤系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微滤系统相关的耗材配件、试剂标物,还有微滤系统相关的最新资讯、资料,以及微滤系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

微滤系统相关的厂商

  • 上海达滤实业有限公司是一家在国内较早从事各类水处理设备的开发、设计、研制、生产、销售的高新技术企业。多年来公司始终以追求精良的产品品质、优质完善的售后服务及合理实惠的产品价格为经营理念不断地开拓创新,在国内外享有广泛的赞誉。  经多年的不断发展,目前产品已形成五大类:1.微滤系列 – 各种不同材质微孔膜折叠筒式滤芯和各类深层过滤芯;2.超滤系列 – PP、PVC、PAN和其他材质中空纤维超滤膜组件;3.PP、PE、NYLON材质液体过滤袋;4.各种规格不锈钢芯式和袋式过滤器;5.SDI污染指数仪,实验室玻璃过滤器及各类家用净水器.“服务一流,信誉第一”是我司一贯宗旨,本公司全体员工将以优质先进的产品、优厚完善的服务,继续为广大新老客户服务,并为人们渴望生存环境的改善和对高品质生活的追求而尽心竭力!
    留言咨询
  • 南京欧铠环境科技有限公司是一家专业从事过滤技术、水处理技术开发和应用的高科技工程公司,公司拥有一批具有成熟膜技术应用经验和精通生物工程及化学技术的中高级专业技术人员,为全国各地众多科研院所、生物医药、农检畜牧、电子化工等行业提供了实验、中试、生产等纯水、超纯水成套系统的设计制造和技术培训等全方位服务。公司秉承“科技铸就品质、责任成就品牌”的经营理念,与美国陶氏、丹麦格兰富、美国颇尔、贺利氏、德国赛多利斯等国际著名厂商及高校技术合作,不断开拓新的应用领域,为过滤技术革新做出贡献。公司以利用微滤、超滤、纳滤、反渗透、离子交换、EDI工艺技术制造纯水、超纯水设备为主,同时承接各种过滤、膜分离系统工程、污水处理工程设计及相关技术咨询服务等。 我们的目标是不断将世界上最先进、最可靠、最经济的过滤、膜分离技术带给客户,满足客户生产、实验需求。
    留言咨询
  • 全国免费销售咨询热线:400-630-7761公司官网:https://www.leica-microsystems.com.cn/徕卡显微系统(Leica Microsystems)是德国著名的光学制造企业。具有160年显微镜制造历史,现主要生产显微镜, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公历史及荣誉产品1847年 成立光学研究所 1849年 生产出第一台工业用显微镜 1872年 发明并生产出第一台偏光显微镜 1876年 生产出第一台荧光显微镜 1881年 生产出第一台商用扫描电镜 1887年 生产出第10,000台 1907年 生产出第100,000台 1911年 世界上第一台135照相机 1921年 第一台光学经纬仪 1996年 第一台立体荧光组合 2003年 美国宇航局将徕卡的全自动显微镜随卫星送入太空,实现地面遥控 2005年推出创新的激光显微切割系统:卓越的宽带共聚焦系统。内置活细胞工作站: 2006年组织病理学网络解决方案:徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖): 2007年徕卡 TCS STED 光学显微镜的超分辨率显微技术超越了极限。 徕卡显微系统公司新成立生物系统部门:推出电子显微镜样本制备的三种新产品 2008年徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。徕卡 TCS SP5 X 超连续谱共聚焦显微镜荣获2008年度《科学家》杂志十大创新奖。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。推出让神经外科医生看得更清楚、更详细的徕卡 M720 OH5 小巧的神经外科显微镜, 2009年新一代光学显微镜取得独家许可证:Max Planck Innovation 为徕卡显微系统的全新 GSDIM(紧随基态淬灭显微技术的单分子返回)超分辨率技术颁发独家许可证。 2010年远程医疗服务概念奖:徕卡显微系统公司在年度互联世界大会上获得 M2M 价值链金奖,Axeda Corporation 被誉为徕卡获得此奖项的一大助力。Kavo Dental 和徕卡显微系统在牙科显微镜领域开展合作。Frost & Sullivan 公司颁发组织诊断奖:徕卡生物系统公司获得研究和咨询公司 Frost & Sullivan 颁发的北美组织诊断产品战略奖。 2011年学习、分享、贡献。 科学实验室 (Science Lab) 正式上线:徕卡生物系统(努斯洛赫)公司荣获2011年度卓越制造 (MX) 奖:徕卡生物系统公司获得2011年度“客户导向”类别的卓越制造奖。 2012年徕卡显微系统公司总部荣获2012年度卓越制造奖:位于德国韦茨拉尔的徕卡显微系统运营部门由于采用看板管理体系而荣获“物流和运营管理”卓越制造奖。徕卡 GSD 超分辨率显微镜获得三项大奖:《R&D》杂志为卓越技术创新颁发的百大科技研发奖、相关的三项“编辑选择奖”之一、美国杂志《今日显微镜》(Microscopy Today) 颁发的2012度十大创新奖。 2013年徕卡 SR GSD 3D 超分辨率显微镜获奖徕卡生物系统公司和徕卡显微系统公司巩固在巴西的市场地位:收购合作超过25年的经销商 Aotec,推动公司在拉丁美洲的发展。 2014年超分辨率显微镜之父斯特凡黑尔 (Stefan Hell) 荣获诺贝尔奖:斯特凡黑尔因研制出超分辨率荧光显微镜而荣获诺贝尔化学奖。 他与徕卡显微系统公司合作,将该原理转化为第一款商用 STED 显微镜。徕卡 TCS SP8 STED 3X 荣获两大奖项:《科学家》杂志十大创新奖和《R&D》杂志百大科技研发奖均将超分辨率显微镜评定为改变生命科学家工作方式的创新成果之一。日本宇宙航空研究开发机构的宇航员若田光一 (Koichi Wakata) 使用徕卡 DMI6000 B 研究用倒置显微镜在国际空间站进行了活细胞实验。 2015年首台结合光刺激的高压冷冻仪是一项非常精确的技术徕卡显微系统公司收购光学相干断层扫描 (OCT) 公司 Bioptigen: 2016年徕卡显微系统公司独家获得了哥伦比亚大学 SCAPE 生命科学应用显微技术许可证,同时独家获得了伦敦帝国理工学院 (Imperial College) 的斜面显微镜 (OPM) 许可证。徕卡 EZ4 W 教育用体视显微镜获得世界教具联合会 (Worlddidac) 大奖:新的图像注入技术可引导外科医生进行手术:CaptiView 技术可将来自图像导航手术 (IGS) 软件的图像注入显微镜目镜。 2017年全新 SP8 DIVE 系统的推出,徕卡显微系统公司提供了世界上首个可调光谱解决方案,可实现多色、多光子深层组织成像。 徕卡的 DMi8 S 成像解决方案将速度提高了5倍,并将可视区域扩大了1万倍。为获得超分辨率和纳米显微成像而添加的 Infinity TIRF 模块能够以单分子分辨率同时进行多色成像, 由此开启宽视场成像的新篇章。 2018年LIGHTNING 从以前不可见或不可探测的精细结构和细节中提取有价值的图像信息,将传统共焦范围以内和衍射极限以外的成像能力扩展到120纳米。SP8 FALCON(快速寿命对比)系统的寿命对比记录速度比以前的解决方案快10倍。 细胞培养实验室的日常工作实现数字化PAULA(个人自动化实验室助手)有助于加快执行日常细胞培养工作并将结果标准化快速获取阵列断层扫描的高质量连续切片ARTOS 3D ,标志着超薄切片机切片质量和速度的新水平。随着 PROvido 多学科显微镜的推出,徕卡显微系统公司在广泛的外科应用中增强了术中成像能力。 2019年实现 3D 生物学相关样本宽视场成像THUNDER 成像系统使用户能够实时清晰地看到生物学相关模型(例如模式生物、组织切片和 3D 细胞培养物)厚样本内部深处的微小细节。 2020年STELLARIS是一个经彻底重新设计的共聚焦显微镜平台,可与所有徕卡模块(包括FLIM、STED、 DLS和CRS)结合使用。术中光学相干断层扫描(OCT)成像系统EnFocus 2021年Aivia以显微镜中的自动图像分析推动研究工作,强大的人工智能(AI)引导式图像分析与可视化解决方案相结合,助力数据驱动的科学探索。Cell DIVE超多标组织成像分析整体解决方案是基于抗体标记的超多标平台,适用于癌症研究。Emspira 3数码显微镜——启发灵感的简单检查方法该系统荣获2022年红点产品设计大奖, 不仅采用创新的模块化设计,而且提供广泛的配件和照明选项。2022年Mica——徕卡创新推出的多模态显微成像分析中枢,让所有生命科学研究人员都能理解空间环境LAS X Coral Cryo:基于插值的三维目标定位,沿着x轴和y轴对切片进行多层扫描(z-stack)。这些标记可在所有相关窗口中交互式移动具有高精度共聚焦三维目标定位功能的Coral Cryo工作流程解决方案徕卡很自豪能成为丹纳赫的一员:丹纳赫是全球科学与技术的创新者,我们与丹纳赫在生物技术、诊断和生命科学领域的其他业务共同释放尖端科学和技术的变革潜力,每天改善数十亿人的生活。
    留言咨询

微滤系统相关的仪器

  • Pellicon 2盒式微滤膜包共有Mini(0.1 m2),Cassette(0.5 m2)和Maxi(2.5 m2或者2.0 m2(V筛网))四种规格,并装配聚偏二氟乙烯(PVDF)Durapore膜,多种孔径(0.1 µm,0.22 µm,0.45 µm和0.65 µm)及三种筛网流道(A,C,V)以满足不同工艺需求。固定的流道长度,稳定的流道高度使其拥有优异的线性放大性能。特点及优势:- 可靠的复合膜技术,获得最优产品收率- 方便小试,结果可预测,真正实现线性放大- 高通量,高处理能力- 坚固可靠,耐受高操作压力、温度(4-50 ºC),耐受苛刻清洗条件- 耐受反压,保护膜包- 多种筛网流道选择,使您的工艺最优化了解更多: 更多相关参数和系统配置,请联系默克。
    留言咨询
  • Pellicon XL 50微滤膜包装有聚偏二氟乙烯Durapore膜,面积为50 cm2: Durapore膜 – 极低的蛋白吸附;高通量;高效截留 膜孔径范围0.10-0.65 µm。Pellicon XL 50膜包外部为聚丙烯密封,标准Lure-lock接口,不需要夹具即可独立使用。广泛应用于超滤/微滤工艺的研发和小试。 了解更多: 更多信息也可参见本页面核心参数 – 样本下载中的Datasheet。
    留言咨询
  • ProstakTM 膜堆采用热熔法将膜热熔在聚丙烯支撑层上,然后将 4 层、10 层或20 层膜熔合成膜堆,不使用任何粘合剂,只有膜和聚丙烯组成,具有耐强有机溶剂和耐高温灭菌的独特性能( 耐高温灭菌的聚偏二氟乙烯材质 ProstakTM MF 可以耐受 126°C、60 分钟高温灭菌,至少20 次)。 ProstakTM MF 膜堆用于哺乳动物细胞、细菌、菌丝体细胞的收集,乳液和胶体悬浮液、其它高固体悬浮液、蛋白沉淀的澄清。 了解更多:
    留言咨询

微滤系统相关的资讯

  • 成果速览|基于微滤-单细胞弹射分选技术的肿瘤早筛研究入选IEEE MEMS 2023国际顶级会议
    第36届IEEE International MicroElectro Mechanical Systems Conference (IEEE MEMS 2023)将于1月15-19日在德国慕尼黑召开。IEEE MEMS是微纳系统领域最具影响的国际会议,从1987年以来至今已举办36届,长期以来以创新性高、中选率低著称,是微机电系统(MEMS)领域的顶尖会议。近日,由中科院长春光机所李备研究员团队与北京大学王玮教授团队合作,在MEMS上发表了题为"PICKING SINGLE CELLS FROM 10 ML SAMPLE BASED ON A MICROFILTRATION- LIFT COMBINATION PLATFORM"的文章,文章旨在基于微滤-LIFT组合平台从 10 mL 样品中分离单细胞。循环肿瘤细胞(CTC)是外周血中丰度极低的稀有细胞,并且显示出广泛的分子异质性。迄今为止,已经提出了许多CTC分离方法,如梯度离心法,过滤,微流控技术和标记免疫亲和技术,它们已实现了细胞捕获。然而,由于非特异性捕获的白细胞(WBC)引入的污染,CTC相关研究在CTC的定量表征阶段相对停滞。众所周知,仅仅计数CTC并不能反映肿瘤生物学的异质性。为了揭示CTC的异质性,迫切需要开发一种单个CTC分离方法,以更好地了解单个CTC在分子生物学水平中的作用。目前,单CTC拾取的工作原理包括手动显微操作,激光捕获显微切割(LCM),机械细胞选择器和激光诱导前向转移(LIFT)。不幸的是,广泛使用的手动显微拾取细胞的效率很低,这极大地影响了其实际应用。据报道,由于切割面积大,LCM和机械单元拾取器倾向于每次拾取收集多个细胞。相比之下,激光诱导前向转移(LIFT)技术可以在高分辨率下自动拾取单个细胞。因此,LIFT是从预处理样品中挑选单CTC的一种很有前途的方法。图1:微滤-激光诱导前向转移(微滤-LIFT)组合平台的示意图(a-d):(a)双层微孔阵列器件封装,(b-c)基于尺寸的细胞分离和富集,(d)单细胞的识别和拾取。L1 至 L4,镜片 HP,半波片 PBS,偏振分束器 M1到 M3,镜子 DM,二向色镜 EF,发射滤光片 MO1至MO2,显微镜物镜。上部(e-f)和下部(g-h)滤膜的照片和SEM图像在这项研究中,我们开发了一种新型的微滤-激光诱导前向转移(微滤-LIFT)组合平台,该平台允许从大体积样品(超过 10 mL)中高通量分离和自动拾取单个 CTC。微滤-LIFT平台将双层微孔阵列滤膜与荧光识别LIFT系统耦合。除了计数之外,该平台的初步性能表明,在重力下,微孔阵列过滤器可以快速分离和浓缩目标细胞,并使用LIFT技术在几秒钟内以单细胞分辨率精确拾取。微滤-LIFT平台为高效的单CTC拾取提供了独特的途径,为CTC的生物学特性分析奠定了基础。该研究中应用长光辰英核心产品—PRECI SCS单细胞分选仪PRECI SCS单细胞分选仪成果与讨论通过 COMSOL 仿真分析,以评估单细胞拾取过程中对细胞的损伤(图2a)。激光作用金属膜温度约为2700°C(图2b),而距离金属层0.6μm的液体在100 ns内低于27°C(图2b)。脉冲激光器的传输时间(6 ns)远小于100 ns。整个流体域的温度变化如图2c所示,表明LIFT操作对目标细胞是安全的。图 2:细胞分选过程的有限元分析。分拣过程中的温度场模型(a)和分拣过程中不同位置的温度场随时间变化(b)。激光烧蚀金属膜的最高温度小于2700°C,而距离金属层0.6 μm的液体在100 ns内保持在27°C以下。(c)整个流体域在不同时间的温度变化。超过0.6um的激光烧蚀金属膜的液体域温度低于27°C。下图显示了微滤-LIFT平台用于单细胞拾取的整个过程。过滤后,将接触的双层微孔阵列过滤器连接到LIFT系统的透明载玻片上(见图3(a)和(j))。通过荧光染色法鉴定靶细胞,如图3(b-c)、(f-g)和(k-l)所示。然后目标单细胞瞬间以350 nJ从微滤装置转移(参见图3(m))。图3(n)显示成功拾取目标细胞,并在载玻片正下方的细胞接收器上找到细胞(见图3(o-p))。接触的双层微孔阵列过滤器能够在30 s内使用LIFT系统拾取单个细胞,而单层微孔阵列过滤器只能在6分钟内移动细胞。图 3:用于单细胞拾取的微孔 LIFT平台的动态过程。(a-i)基于单层微孔阵列过滤器的单细胞拾取:目标细胞拾取失败,细胞在开始时没有移动(a-e),而细胞在一段时间后产生小位移(f-i),由于液层随着时间的推移而减少。(j-p)基于接触双层微孔阵列过滤器的单细胞拾取:由于上部微孔阵列可以切割捕获细胞的液体层,因此实现了目标细胞拾取。拾取的单个细胞由细胞接收器(o-p)接收。细胞用细胞追踪器绿色和Hoechst预染。
  • OPTON微观世界|电镜下的净水器滤芯
    随着全民健康消费理念的日益普及,健康类家电需求升温,其中净化类型的家电,如家用净水器等。近年来呈现爆发式增长。虽然净水器进入我国只有短短二十余年的历史,但是其发展速度却非常惊人。净水器最主要的作用就是改善自来水,能够生饮、替代桶装水、更廉价、更卫生。净水器的关键部件就是滤芯。不论是什么品牌的净水器,其功效皆由滤芯的种类和品质决定。另外很多小区周围水站的桶装水,也是由自来水经过滤芯过滤得到的。客户订A品牌的水,水站就用A品牌的的滤芯过滤水,订B品牌的水,就用B品牌的滤芯过滤。所以滤芯是净水的关键。那么市场上不同类型的净水器太多了,要怎样区分怎样选择呢?这里小编带大家梳理一下,关于净水器滤芯的小知识!其实呢,净水器的主要滤芯主要有这几种类型:PP棉,活性炭,微滤MF/超滤UF/纳NF滤膜,反渗透膜(RO)。其中PP棉滤芯主要拦截大颗粒污染物,活性炭可以吸附异味,而更关键的技术则在于滤膜类的滤芯。不同分离膜滤芯的孔径大小和可透过的物质,如下图所示:小编特地采购了PP棉滤芯、中空纤维滤芯以及反渗透滤芯,将他们剖开,用电镜来解析他们的微观形貌。PP棉空隙尺寸较大,所以只能拦截较大的颗粒物,如泥沙、隐孢子虫、毛发、红虫和一些悬浮物。 接下来流经活性炭,吸附水中异色异味,祛除余氯。之后流经下一级滤芯---微滤或超滤膜滤芯。根据膜组件的结构,这类膜有中空纤维状式、管式和平板式等,小编买到了是中空纤维膜,一般净水器中多用这种结构。 超滤膜可以拦截水中的胶体、细菌和大分子,但还有一些对人体有害的金属离子和盐离子,就需要反渗透膜的帮忙了!小编把买到的反渗透膜揭开,发现它有两层结构:放在电镜下观察,其中一层表面全是微孔,主要起过滤作用:另一层起支撑作用:膜表面孔径大小,是否均匀,是区分其质量好坏的重要指标之一。扫描电镜可以直观观察滤膜孔径以及滤膜层间结构,是评价滤膜工艺和质量的好帮手。实际生活中,除去个别水污染的事件,一般自来水管道中的水,都能够达到标准要求。小编认为可以根据不同地区的水质和家庭需求购买净水器。如果地区水质较好,管道条件也好,那么家里可以只装一个反渗透膜,可以直饮,PP棉超滤微滤膜滤芯的对这类水的净水效用不大;如果地区水质较差,或者管道陈旧,有污染的风险,可以选择功能较多的综合性净水器,同时要记得及时更换滤芯哦!参考文献:段文松, 王振中. 超滤膜结构参数特性的分析研究[J]. 江苏环境科技, 2007(02):13-15.
  • 3D打印微型旋转过滤器,可重复用于芯片实验室的微粒过滤
    来自中科大、合肥工业大学和日本RIKEN高级光子学中心的研究人员制造了一种磁驱动旋转微过滤器,可用于过滤微流体设备内的颗粒。他们通过创造一种磁性材料制成了微小的转动过滤器,这种材料可以与一种称为双光子聚合的非常精确的3D打印技术一起使用。作为利用便携性、安全性和效率优势的微型实验室平台,片上实验室系统已广泛应用于各个领域。近年来,得益于飞秒激光微纳制造技术的不断进步,用于三维(3D)高精度加工、微光学、微流体等多种功能微元件和微机械可以通过简单的程序集成到微芯片中,实现分子检测、细胞操作、催化反应等应用。常见的功能性微芯片之一是微分选装置,对分离颗粒和富集特殊细胞具有重要意义,并已成功应用于单细胞分析、药物筛选、血细胞分离等。目前的微流控分选方法可分为主动分选和被动分选。前者需要使用外部设备或外力,操作复杂,需要昂贵的设备。同时,后者在集成无源微器件的微流控芯片中实现了无外力的细胞或颗粒分选。微米级微孔过滤器是一种传统的被动分选装置,可以根据孔径大小对颗粒或细胞进行分选。由于过滤器中的孔的数量和形状不能在分选过程中动态改变,因此无法灵活地按需分选不同的颗粒或细胞,从而限制了微芯片的使用。因此,开发一种可以自由切换过滤、通过、选择性过滤等过滤模式的多功能过滤器,可以使应用多样化。在该研究中,来自中科大、合肥工业大学和日本RIKEN高级光子学中心的研究人员使用飞秒激光双光子聚合在微流控芯片中制造了磁性旋转微过滤器。研究人员首先合成了磁性纳米颗粒,将其混合在光刻胶中以制备磁性光刻胶。为了聚合制备的磁性光刻胶,优化了激光功率密度、脉冲数和扫描间隔等不同工艺参数。然后在载玻片上制作旋转微过滤器,并测试其磁驱动性能。最后,将旋转微过滤器集成到微流控芯片中。在恒定磁场下证明了微流控芯片内部过滤器对“过滤”和“通过”模式的磁响应。过滤性能是用在酒精溶液中含有直径为 2.5 和 8.0 µm 的聚苯乙烯 (PS) 球体的悬浮液来测试的,显示完全过滤了 8.0 µm 的颗粒。设想这种磁驱动旋转微过滤器可以在血细胞分选、微粒纯化和循环肿瘤细胞分离方面提供广泛的应用。▲图1. 磁驱动旋转微过滤器的制造过程和磁性颗粒的表征。(a) 具有可切换模式功能的磁驱动旋转微过滤器的制造过程示意图。(b) [Math Processing Error] 纳米粒子的 XRD 图。(c) 小熊猫的 SEM 图像。EDX 映射图像说明来自印刷的小熊猫的 (d) 覆盖层、(e) 碳和 (f) 铁。比例尺:5 µm。他们使用双光子聚合创建了新的过滤器,它使用聚焦的飞秒激光束来固化或聚合一种称为光刻胶的液体光敏材料。由于双光子吸收,聚合可以以非常精确的方式完成,从而能够制造微米级的复杂结构。图2. 双光子示意图为了制造微过滤器,研究人员合成了磁性纳米粒子并将它们与光刻胶混合。制造旋转式微过滤器要求它们优化用于聚合的激光功率密度、脉冲数和扫描间隔。在载玻片上测试其磁驱动特性后,他们将微过滤器集成到微流体装置中。多种过滤模式为了过滤较大的颗粒,应用垂直于微通道的磁场。过滤过程完成后,可以通过施加平行于微通道的磁场释放大颗粒,这将使微过滤器旋转 90°。然后可以根据需要重复过滤过程。研究人员使用混合在酒精溶液中的直径为 8.0 和 2.5 微米的聚苯乙烯颗粒验证了过滤器的过滤性能。“很明显,小于孔径的颗粒很容易通过微过滤器,而较大的颗粒则被过滤掉,”中国科学技术大学的张晨初说。“在通过模式下,过滤器捕获的任何较大颗粒都会被流体冲走,从而防止过滤器堵塞并允许重复使用微过滤器。”▲图3. 磁力旋转微滤器的参数优化与设计。(a) 不同激光功率密度下最小脉冲数的聚合窗口。(b) 磁旋转微过滤器的示意图。【数学加工误差】为外径,【数学加工误差】为轴套内径。盖玻片上的磁性旋转微过滤器 (c) 和通道中的 (d) 的 SEM 图像。所有比例尺:10 µm。▲图4. 制造的微过滤器的磁驱动旋转。(a) 在平面上操纵磁旋转微过滤器的示意图。(b) 通过施加不同方向的均匀磁场,在平坦表面上的液体环境中操作磁旋转微过滤器的演示。(c) 磁性操纵通道中旋转微过滤器的示意图。(d) 和 (e) 在充满乙醇的微通道中展示磁性旋转微过滤器的旋转以切换模式。该研究得到了中国国家自然科学基金、中国国家重点研发项目、中国博士后科学基金和中央大学基础研究基金的支持,相关成果发表在光学学会杂志Optics Letters上。

微滤系统相关的方案

  • 钨灯丝扫描电镜在过滤膜技术中的应用
    膜的过滤是固液分离技术,它是以膜孔把水滤过,将水中杂质截留,而没有化学变化,处理简易的技术。当然过滤膜除用作水处理以外,还可用于超纯水制造和海水淡化,一般采用反渗透膜(纳诺滤膜)。另外用于粪尿处理、城市中水道处理、各种废水处理等,一般采用超滤膜和微滤膜。在工业上,可用于管道水或油废物处理、乳制品制造、半导体制造、食品制造、纸张制造及药品制造等,也一般采用超滤膜和微滤膜。
  • 岛津微小样品测试系统测定小样品的透射率
    本文使用岛津UV-3600 Plus及微小样品测试系统测试了5 mm直径的手机镜头滤光片的透光特性。实验结果表明,微小样品测试系统操作简单方便,且其光聚焦能力,可实现光斑小至1.3 mm直径时仍保持低噪声水平,重复测试结果良好,对微小样品的准确测试具有极大的帮助。
  • 微波消解浓缩乳清蛋白
    生产浓缩乳清蛋白是采用浓缩乳清蛋白粉中低温工艺喷雾干燥,因此保持了蛋白质的天然形式,具有极好的溶解性能。浓缩乳清蛋白广泛用于食品加工业,比如火腿、乳蛋糕、糖果、蟹肉棒、蛋糕、婴儿配方奶粉、运动饮料、配方营养饲料等。大部分浓缩乳清蛋白粉含有5-7%的乳脂,这些乳脂是奶油分离机无法去除的。因此,最先进的浓缩乳清蛋白生产工艺在超滤之前采用微滤分离乳脂,制得几乎不含乳脂的浓缩乳清蛋白。这种高品质蛋白质非常适合于配制运动饮料,比如健身者饮用的饮料。为了检测浓缩乳清蛋白中的多种重金属含量,我们选择微波消解对其进行前处理,探索最适合的消解参数,该方法还有回收率高、空白低等特点,有利于后续对多种无机元素的快速准确测定。

微滤系统相关的资料

微滤系统相关的论坛

  • 【转帖】超滤与微滤的区别

    超过滤(简称超滤)和微孔过滤(简称微滤)也是以压力差为推动力的膜分离过程,一般用于液相分离,也可用于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分离,比如空气中细菌与微粒的去除。超滤所用的膜为非对称膜,其表面活性分离层平均孔径约为10一200A,能够截留分子量为500以上的大分子与胶体微粒,所用操作压差在0.1—0.5MPa。原料液在压差作用下,其中溶剂透过膜上的微孔流到膜的低限侧,为透过液,大分子物质或胶体微粒被膜截留,不能透过膜,从而实现原料液中大分子物质与胶体物质和溶剂的分离。超滤膜对大分子物质的截留机理主要是筛分作用,决定截留效果的主要是膜的表面活性层上孔的大小与形状。除了筛分作用外,膜表面、微孔内的吸附和粒子在膜孔中的滞留也使大分子被截留。实践证明,有的情况下,膜表面的物化性质对超滤分离有重要影响,因为超滤处理的是大分子溶液,溶液的渗透压对过程有影响。从这一意义上说,它与反渗透类似。但是,由于溶质分子量大、渗透压低,可以不考虑渗透压的影响。微滤所用的膜为微孔膜,平均孔径0.02—10 ,能够截留直径0.05—10 的微粒或分子量大于100万的高分子物质,操作压差一般为0.01~0.2MPa。原料液在压差作用下,其中水(溶剂)透过膜上的微孔流到膜的低压侧,为透过液,大于膜孔的微粒被截留,从而实现原料液中的微粒与溶剂的分离。微滤过程对微粒的截留机理是筛分作用,决定膜的分离效果是膜的物理结构,孔的形状和大小。超滤膜一般为非对称膜,其制造方法与反渗透法类似。超滤膜的活性分离层上有无数不规则的小孔,且孔径大小不一,很难确定其孔径,也很难用孔径去判断其分离能力,故超滤膜的分离能力均用截留分子量来予以表述。定义能截留90%的物质的分子量为膜的截留分子量。工业产品一般均是用截留分子量方法表示其产品的分离能力,但用截留分子量表示膜性能亦不是完美的方法,因为除了分子大小以外,分子的结构形状,刚性等对截留性能也有影响,显然当分子量一定,刚性分子较之易变形的分子,球形和有侧链的分子较之线性分子有更大的截留率。目前用作超滤膜的材料主要有聚砜、聚砜酰胺、聚丙烯氰、聚偏氟乙烯、醋酸纤维素等。微滤膜一般均为均匀的多孔膜,孔径较大,可用多种方法测定,可直接用测得的孔径来表示其膜孔的大小。超滤、微滤和反渗透均是以压差作为推动力的膜分离过程,它们组成了可以分离溶液中的离子、分子、固体微粒的这样一个三级分离过程,其分工及范围见图10—14。根据所要分离物质的不同,选用不同的方法。但也需说明,这三种分离方法之间的分界并不十分严格。下表列出超滤、微滤和反渗透过程的原理和操作性能,以资比较。 过程与操作 与反渗透过程相似,微滤、超滤过程也必须克服浓差极化和膜孔堵塞带来的影响。一般而言,超滤和微滤的膜孔堵塞问题十分严重,往往需要高压反冲技术予以再生。因此在设计微滤、超滤过程时,除象设计反渗透过程一样,注意膜面流速的选择,料液的湍动、预处理以及膜的清洗等因素以外,尚需特别注意对膜的反冲洗以恢复膜的通量。由于超滤过程膜通量远高于反渗透过程,因此其浓差极化更为明显,很容易在膜面形成一层凝胶层,此后膜通量将不再随压差增加而升高,这一渗透量称之为临界渗透通量。对于一定浓度的某种溶液而言,压差达到一定值后渗透通量达到临界值,所以实际操作应选在接近临界渗透通量附近操作,此时压差一般在0.4—0.6MPa,过高的压力不仅无益而且有害。超滤过程操作一般均呈错流,即料液与膜面平行流动,料液流速影响着膜面边界层的厚度,提高膜面流速有利于降低浓差极化影响,提高过滤通量,这与反渗透过程机理是类似的。微滤过程以前大都采用折褶筒过滤,属终端过滤,对于固相含量高的料液无法处理,近年来发展起来的错流微滤技术的过滤过程类似于反渗透和超滤,设计时可以借鉴。微滤、超滤过程的操作压力、温度以及料液预处理、膜清洗过程的原理与反渗透极为相似,但其操作过程亦有自己的特点。 超滤过程流程与反渗透类似,采用错流操作,常用的操作模式有三种。⑴、单段间歇操作:如图10—15所示,在超滤过程中,为了减轻浓差极化的影响,膜组件必需保持较高的料液流速,但膜的渗透通量较小,所以料液必需在膜组件中循环多次才能使料液浓缩到要求的程度,这是工业过滤装置最基本的特征。图示两种回路的区别在于闭式回路中料液从膜组件出来后不进料液槽而直接流至循环泵人口,这样输送大量循环液所需能量仅仅是克服料液流动系统的能量损失,而开式回路中的循环泵除了需提供料液流动系统的能量损失外,还必需提供超滤所需的推动力即压差,所以闭式回路的能耗低。间歇操作适用于实验室或小规模间歇生产产品的处理。⑵、单段连续操作:如图10—16所示,与间歇操作相比,其特点是超滤过程始终处于接近浓缩液的浓度下进行,因此渗透量与截留率均较低,为了克服此缺点,可采用多段连续操作。⑶、多段连续操作:如图10—17所示,各段循环液的浓度依次升高,最后一段引出浓缩液,因此前面几段中料液可以在较低的浓度下操作。这种连续多段操作适用于大规模工业生产。应用 1)、超滤的应用超滤技术广泛用于微粒的脱除,包括细菌、病毒、热源和其它异物的除去,在食品工业、电子工业、水处理工程、医药、化工等领域已经获得广泛的应用,并在快速发展着。在水处理领域中,超滤技术可以除去水中的细菌、病毒、热源和其它胶体物质,因此用于制取电子工业超纯水、医药工业中的注射剂、各种工业用水的净化以及饮用水的净化。在食品工业中,乳制品、果汁、酒、调味品等生产中逐步采用超滤技术,如牛奶或乳清中蛋白和低分子量的乳糖与水的分离,果汁澄清和去菌消毒,酒中有色蛋白、多糖及其它胶体杂质的去除等,酱油、醋中细菌的脱除,较传统方法显示出经济、可靠、保证质量等优点。在医药和生物化工生产中,常需要对热敏性物质进行分离提纯,超滤技术对此显示其突出的优点。用超滤来分离浓缩生物活性物(如酶、病毒、核酸、特殊蛋白等)是相当合适的从动、植物中提取的药物(如生物碱、荷尔蒙等),其提取液中常有大分子或固体物质,很多情况下可以用超滤来分离,使产品质量得到提高。在废水处理领域,超滤技术用于电镀过程淋洗水的处理是成功的例子之一。在汽车和家具等金属制品的生产过程中,用电泳法将涂料沉积到金属表面上后,必需用清水将产品上吸着的电镀液洗掉。洗涤得到含涂料1~2%的淋洗废水,用超滤装置分离出清水,涂料得到浓缩后可以重新用于电涂,所得清水也可以直接用于清洗,即可实现水的循环使用。目前国内外大多数汽车工厂使用此法处理电涂淋洗水。超滤技术也可用于纺织厂废水处理。纺织厂退浆液中含有聚乙烯醇(PVA),用超滤装置回收PVA,清水回收使用,而浓缩后的PVA浓缩液可重新上浆使用。随着新型膜材料(功能高分子、无机材料)的开发,膜的耐温、耐压、耐溶剂性能得以大幅度提高,超滤技术在石油化工、化学工业以及更多的领域应用将更为广泛。2)、微滤的应用微滤主要用于除去溶液中大于0.05 左右的超细粒子,其应用十分广泛,在目前膜过程面业销售额中占首位。在水的精制过程中,微滤技术可以除去细菌和固体杂质,可用于医药、饮料用水的生产。在电子工业超纯水制备中,微滤可用于超滤和反渗透过程的预处理和产品的终端保安过滤。微滤技术亦可用于啤酒、黄酒等各种酒类的过滤,以除去其中的酵母、霉菌和其它微生物,使产品澄清,并延长存放期。微滤技术在药物除菌、生物检测等领域也有广泛的应用。

  • 【实战宝典】膜分离系统应用澄清纯化技术-超/微滤膜系统及优点?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/2112837问题描述:[font=宋体]膜分离系统应用澄清纯化技术-超[/font][font='Times New Roman','serif']/[/font][font=宋体]微滤膜系统及优点?[/font]解答:[font=宋体][color=black][back=white]澄清纯化分离所采用的膜主要是超[/back][/color][/font][color=black][back=white]/[/back][/color][font=宋体][color=black][back=white]微滤膜,由于其所能截留的物质直径大小分布范围广,被广泛应用于固液分离、大小分子物质的分离、脱除色素、产品提纯、油水分离等工艺过程中。超[/back][/color][/font][color=black][back=white]/[/back][/color][font=宋体][color=black][back=white]微滤膜分离可取代传统工艺中的自然沉降、板框过滤、真空转鼓、离心机分离、溶媒萃取、树脂提纯、活性炭脱色等工艺过程。澄清纯化技术可采用的膜分离组件主要有:陶瓷膜、平板膜、不锈钢膜、中空纤维膜、卷式膜、管式膜。[/back][/color][/font][font=宋体][color=black][back=white]采用膜分离澄清纯化的优点:[/back][/color][/font][color=black][back=white]a) [/back][/color][font=宋体][color=black][back=white]可得到绝对的真溶液,产品稳定性好。[/back][/color][/font][color=black][back=white]b) [/back][/color][font=宋体][color=black][back=white]过滤分离收率高。[/back][/color][/font][color=black][back=white]c) [/back][/color][font=宋体][color=black][back=white]分离效果好,产品质量高,运行成本低。[/back][/color][/font][color=black][back=white]d) [/back][/color][font=宋体][color=black][back=white]缩短生产周期,降低生产成本。[/back][/color][/font][color=black][back=white]e) [/back][/color][font=宋体][color=black][back=white]过程无需添加化学药品、溶媒溶剂,不带入二次污染物质。[/back][/color][/font][color=black][back=white]f) [/back][/color][font=宋体][color=black][back=white]操作简便,占地面积小,劳动力成本低。[/back][/color][/font][color=black][back=white]g) [/back][/color][font=宋体][color=black][back=white]可拓展性好,容易实现工业化扩产需求。[/back][/color][/font][color=black][back=white]h) [/back][/color][font=宋体][color=black][back=white]设备可自动运行,稳定性好,维护方便。[/back][/color][/font]以上内容来自仪器信息网《样品前处理实战宝典》

微滤系统相关的耗材

  • MiniKap 终端微滤过滤器
    除菌级直流过滤Repligen中空纤维微滤过滤器是进行冷灭菌、样品澄清或终端过滤的理想选择。此类产品采用0.2μm孔径级别的混合纤维素酯DynaFibre中空纤维膜,呈“U”型封装在微型过滤器外壳内,使膜表面积(SA)和流量最大化,同时降低膜堵塞和蛋白吸附(MiniKap 终端净化过滤器 MiniKap中空纤维过滤器是进行水和气体过滤的绝佳选择,因采用0.2μm DynaFibre 和透气纤维,过滤效率极高。该过滤器采用MNPT、鲁尔锁或软管倒钩接头规格,可方便地进行连接使用。产品特性: 0.2μm孔径DynaFibre中空纤维膜 结构紧凑,过滤面积大 带自动透析纤维,有效避免“气堵” 高通量 通过美国药典(USP XXI版)VI级测试及认证 无热源,通过LAL测试 出厂前100%通过完整性测试 产品规格: 液体过滤孔径:0.2μm 气体过滤孔径:0.1μm(仅用于低湿度气体) 膜表面积:225或500cm^2 进/出端口:1/4"MNPT、软管倒钩或鲁尔锁 包装:6个/包,辐照灭菌或非灭菌型 结构材料: 中空纤维膜:混合纤维素酯 通气纤维:聚丙烯 灌封材料:聚氨酯 外壳:聚碳酸酯 端盖:透明或着色聚砜
  • 膜微滤玻璃器皿 | kt953825-0000
    产品特点:膜微滤玻璃器皿Membrane Microfiltration Glassware这种47mm的过滤装置带有熔块玻璃支架,推荐用于腐蚀性液体的常规过滤和LC溶剂中颗粒的去除。接地连接消除了使用硅胶或氯丁橡胶塞子时可能发生的邻苯二甲酸盐污染。支撑底座有一个粗孔隙玻璃熔块和一个完整的真空连接,位于滴头上方,以防止滤液液滴污染真空管道。每个设备包括一个漏斗,一个阳极化铝夹具,一个47mm熔块玻璃支撑底座,和一个过滤瓶。所有Kontes玻璃器皿均采用可高压灭菌的硼硅酸盐玻璃制成。订货信息:Membrane Microfiltration GlasswareCatalog #Product NameUnitsKT953825-0000300 mL Funnel, 1,000 mL Flaskea.KT953835-0000500 mL Funnel, 2,000 mL Flaskea.KT953845-00001000 mL Funnel, 4,000 mL Flaskea.KT676001-403540/35 PTFE Joint Sleeve6-pk.KT953830-0000Flask Cap, 40/35 Outer Jointea.KT953826-0000Fritted Glass Support, 47 mm, 40/35 Jointea.KT953761-0000Glass Funnel, 47 mm, 100 mLea.KT953751-0000Glass Funnel, 47 mm, 300 mLea.KT953771-0000Glass Funnel, 47 mm, 500 mLea.KT953781-0000Glass Funnel, 47 mm, 1,000 mLea.KT953827-0000Flask, 1,000 mL, 40/35 Jointea.KT953828-0000Flask, 2,000 mL, 40/35 Jointea.KT953829-0000Flask, 4,000 mL, 40/35 Jointea.KT953753-0000Aluminum Clamp, 47 mmea.
  • 102mm石英纤微滤膜
    TO-4,T-13,TO-9A 空气中半挥发性有机物、农残、二恶英等采样滤膜品牌:Munktell 产地:瑞典 尺寸:102mm 50Pcs/box高纯石英微纤维滤膜
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制