激光速度干涉仪

仪器信息网激光速度干涉仪专题为您提供2024年最新激光速度干涉仪价格报价、厂家品牌的相关信息, 包括激光速度干涉仪参数、型号等,不管是国产,还是进口品牌的激光速度干涉仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光速度干涉仪相关的耗材配件、试剂标物,还有激光速度干涉仪相关的最新资讯、资料,以及激光速度干涉仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光速度干涉仪相关的厂商

  • 深圳市勤联科技有限公司是振联科技有限公司(香港)在深圳注册的公司,我公司主要提供国外先进无损探伤设备,国外原装进口高精度激光/光纤/电容/电涡流位移传感器,精密微型拉伸试验机,二维(2D)激光扫描仪,多普勒激光干涉仪,工业内窥镜,RF工业内窥镜,NDK磁粉探伤设备,磁气测量仪,陀螺仪,记录器,动态/静态放大器,数据采集器,应变仪,精密转角/倾角/直线电位器, 精密计测器,应变片,扭力计,加速度计,称重传感器,编码器,磁粉/超声波探伤仪,土木方面传感器及地震震度开关,地震仪,远红外线碳纤维布。   主要品牌:RF,NDK,MTI,GRAPHTEC,KYOWA,SHOWA,CITIZEN,MIDORI,BANNER,AEC,SENSOTEC,HONTKO,GW等。   公司以人性、和谐、共享为企业文化,以诚信、满意、卓越为品质政策,以一支高素质、专业化的职员为经营团队,为您提供产品咨询、选型、解决方案和完美周到的售后服务。本着以客户为中心的宗旨,以我司在自动化领域三十余年的经验,为客户提供最合理的自动化解决方案,全方位契合客户需求,达到客户与公司"双赢"的目的。
    留言咨询
  • 瀚考克光电科技有限公司是专业从事光电检测设备,光学加工设备的销售服务商。公司主营产品:立式激光干涉仪,中心厚度测量仪,镜片边缘涂墨&检查机,中心偏差测量仪,数控非球面铣磨机,抛光机,单点金刚石车床,离子束加工机,轮廓仪,白光干涉仪,工具测量显微镜,显微硬度计。公司业务范围涵盖国内高校、研究所、以及精密光学加工制造企业。公司为以下欧美公司代理商:德国XONOX公司。
    留言咨询
  • 深圳智泰精密仪器有限公司本公司是一家专门从事研发、生产、销售二次元、三次元、光学影像测量仪、投影仪、3D激光扫描仪、白光干涉仪、ROHS荧光分析仪、各种检测设备的专业厂家、并且承接设备升级改造、专案机定制、提供专业测量方案。欢迎从事塑胶模具、五金加工、线路板制作等业行前来洽谈定购。智泰集团段生13556844151;QQ545974744http://3dfamily.com.cn
    留言咨询

激光速度干涉仪相关的仪器

  • 激光干涉仪 400-891-3319
    仪器简介:ML10 Gold 高性能激光干涉仪是机床、三坐标测量机及其它定位装置精度校准用的高性能仪器。由于采用了独特的专利设计及最新的光电子技术,使ML10 Gold 激光干涉仪比市场上其它型号的激光干涉仪具有更高的性能和更先进的任选功能。ML10 Gold 激光干涉仪提供有进行机器位置、几何精度测量的全套光学器件。 ML10 Gold 激光测量系统所有功能都设计与Laser 10 软件配合使用。除了测量和分析诊断功能外,此软件包的标准配置还包括动态测量、旋转轴测量、双轴测量和电子水平仪及千分表程序接口模块。 该激光干涉仪系统由激光头ML10 Gold、环境监测补偿器EC10,计算机接口卡PC10* 或PCM20* 及高精度的光学器件组成。全部器件放在一个配小车的提箱内,一人便可携带全部系统赴异地进行机器精度检定,大大改善了激光干涉仪的便携性。 该激光干涉仪系统通过接口与IBM 兼容的PC 机(包括笔记本计算机)连接,在灵活、直观的软件控制下进行自动测量,既节省了测量时间,又避免了人为误差,并能按国际上通行的标准进行数据分析处理,如ISO230-2、JIS-B6330、VDI3441、VDI2617、ASME B89等并适用中国国家标准GB17421-2000等,以便于按不同标准进行机床精度的评定和比较。技术参数:1.线性测量分辨率: 0.001&mu m2.线性测量范围: 40m(或任选80m)3.线性测量精度: ± 0.7ppm4.最高测量速度: 60m/min5.长期稳频精度: ± 0.05ppm主要特点:ML10 Gold是全球最畅销的用于长度计量的激光干涉仪,其最大的优点是所有测量功能均采用激光干涉原理,性能稳定,使用可靠,功能扩展性强,价格适中.
    留言咨询
  • 镭测科技Leice激光干涉仪LH2000双频激光干涉仪 满足计量检测用户更稳定、更高精度、更便利的使用要求; 以光刻机用激光干涉测量系统为基础, 在保留高稳定性、高精度、高采样速率卓越性能的同时, 将光源和测量信号接收处理单元集成在主机里, 一体化设计为用户提供更加方便、易用、友好的使用体验; 典型频差7±0.5 MHz,测速高达2m/s。 系统组成: LH2000激光测头及附件 环境补偿单元 LaserLC测量软件 线性位移测量镜组(选配:角度、直线度、垂直度、平面度测量镜组等) 光学调整附件 三脚架及其他测量附件镭测科技Leice激光干涉仪LH2000双频激光干涉仪参数激光头尺寸330mm×110mm×95mm激光头重量3.3kg激光光束直径6mm激光功率 0.5mw真空波长632.99nm频差可定制 典型值7±0.5 MHz工作温度范围+10℃~+30℃储存温度范围+15℃~+45℃激光稳频精度±0.02ppm线性测量范围40m线性测量精度±0.1ppm(真空中)±0.4ppm*(使用LC-2000环境补偿器)分辨率1nm测量速度2m/s工作电源220V/50Hz北京镭测科技有限公司为您提供镭测科技Leice激光干涉仪LH2000双频激光干涉仪,镭测科技LH2000双频激光干涉仪产地为北京,属于国产激光干涉仪,更多激光干涉仪的参数、价格、型号、原理等信息欢迎您访问北京镭测科技有限公司官方网站。
    留言咨询
  • 机床校准激光干涉仪 400-860-5168转6117
    中图仪器SJ6000机床校准激光干涉仪是一种能够测量机床精度的高精度测量装置。具有测量精度高、测量范围大、测量速度快、高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。它利用激光干涉现象来实现非接触式测量,具有高精度、高分辨率、快速测量等优点,在机床加工领域有着广泛的应用。在SJ6000激光干涉仪动态测量软件配合下,还可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。测量原理SJ6000机床校准激光干涉仪的测量原理主要包括相位测量和位移测量。相位测量是通过测量干涉条纹的相位差来计算被测量物体的形状、位置等参数;位移测量是通过测量干涉条纹的位移来确定物体的位移量。这两种测量原理在不同应用场景下有着各自的优势和适用性。产品优势1、激光干涉仪具有非常高的测量精度和重复性。2、激光干涉仪可以实现非接触式测量,不会对被测量物体造成损伤。3、激光干涉仪具有实时性测量能力,能够同时测量多个位置或参数,提高测量效率。产品应用1.测量机床导轨的直线度和平行度。导轨是机床中的重要零部件,直线度和平行度的误差会直接影响机床的加工精度和稳定性。激光干涉仪可以通过测量导轨上的干涉条纹来确定其直线度和平行度的偏差,从而指导后续的优化和调整。2.测量机床工作台的平面度和垂直度。机床工作台的平面度和垂直度直接影响工件的加工精度和质量。通过SJ6000机床校准激光干涉仪测量工作台上的干涉条纹,可以快速发现工作台的不平整和非垂直状态,并及时进行调整和修正,确保工件的加工精度和稳定性。3.测量机床主轴的同心度和轴向垂直度。机床主轴的同心度和轴向垂直度是决定机床加工精度的关键因素。通过激光干涉仪测量主轴上的干涉条纹,可以准确判断主轴的同心度和轴向垂直度是否达到标准要求,从而为后续的机床调整和校准提供依据。4.其它除了上述应用,激光干涉仪还可以用于测量机床各个部件之间的相对位置和尺寸关系,从而检测和纠正机床的装配误差。此外,激光干涉仪还可以用于检测机床在运行过程中的变形和振动情况,及时发现机床的故障和异常状态,保证机床的稳定性和可靠性。对数控机床进行螺距误差补偿部分技术规格稳频精度0.05ppm动态采集频率50 kHz预热时间≤ 6分钟工作温度范围(0~40)℃存储温度范围(-20~70)℃环境湿度(0~95)%RH线性测量距离(0~80)m (无需远距离线性附件)线性测量精度0.5ppm (0~40)℃角度轴向量程(0~15)m角度测量精度±(0.02%R+0.1+0.024M)″平面度轴向量程(0~15)m平面度测量精度±(0.2%R+0.02M2)μm (R为显示值,单位:μm;M为测量距离,单位:m)直线度轴向量程短距离(0.1~4.0)m 长距离(1.0~20.0)m直线度测量精度短距离±(0.5+0.25%R+0.15M2) μm长距离±(5.0+2.5%R+0.015M2) μm垂直度轴向量程短距离(0.1~3.0)m 长距离(1.0~15.0)m垂直度测量精度短距离±(2.5+0.25%R+0.8M)μm/m 长距离±(2.5+2.5%R+0.08M)μm/m注意事项:平面度测量配置需求:平面度镜组+角度镜组平行度测量配置需求:依据轴向量程范围,选择相应直线度镜组即可短垂直度测量(0.1~3.0)m配置需求:短直线度镜组+垂直度镜组长垂直度测量(1.0~20.0)m配置需求:长直线度镜组+垂直度镜组直线度附件:主要应用于Z轴的直线度测量和垂直度测量恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询

激光速度干涉仪相关的资讯

  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2 双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1 ~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • “全息干涉仪”让宇宙探测跨进量子级
    引力波模拟图  据近日美国《基督教科学箴言报》在线版文章称,德国引力波探测器GEO 600的一项奇怪发现,不但可能冲击现有宇宙理论,还引发美国费米国家实验室的科学家们开始建造一个“全息干涉仪”,将探测深入到“普朗克长度”,以便更进一步观察宇宙的时空结构及这一结构中的波动――引力波。  引力波被称为“爱因斯坦广义相对论中最后一个尚未被证明是对的组成部分”,新探测仪器的出现有可能使人们直接观测到时间的不连续性,亦将带领人们发掘宇宙起源最深处的奥秘。  激光干涉追寻时空波纹  引力波其实是爱因斯坦对于万有引力本质的理解。他认为引力场有一种跟电磁波一样的波动,是为引力波。而引力波表现为时空曲率的扰动,以行进波的形式向外传递,其传播速度等于光速。  按道理,引力波存在且无处不在,深空中的突变性事件,如超新星爆发、黑洞形成、大型天体相撞这些过程,都能辐射出较强引力波。但事实上,以往在地球上进行的引力波直接搜寻的所有努力都以失败告终。其原因在于,波动虽能造成地球上各处相对距离的变动,但当它们到达地球的时候已经变得非常弱了,对于地球上最先进的引力波探测器来说,其变动的数量级小于一颗质子直径的千分之一。因而尽管引力波毫不模糊且被公认,却一直只能是广义相对论的预言。  但科学家们可不满足于这一点。于是,基于激光干涉原理的引力波探测器被建造出来。这一类型的探测器通过测量两条激光束相遇时所形成的干涉图像的变化来探测引力波,干涉图像依赖于激光束的传播距离,当引力波穿过时激光束的传播距离会相应变化。  因为目标是非常微弱的信号,引力波探测器的敏感度需达到几乎难以想象的程度。以德国引力波探测器GEO 600来讲,其对距离上极微小的变化都非常敏锐,甚至可探测到日地距离所发生的原子半径级别的变化。不过,这种激光干涉计的探测器灵敏度要与激光传播的距离成比例的话,一般来讲其尺寸都非常可观。  “奇怪波动”挑战现有认知  德国的GEO 600并不是新产物了,其已默默工作有些时日。然而,在近期利用其搜寻引力波的过程中,物理学家偶然发现了令人迷惑的现象――这一高科技设备虽然还没有找到引力波存在的证据,但却发现了大量的噪音。  这就有必要简单描述一下这类探测器的工作过程。以GEO 600为例,其要实现功能,需要发射一束激光穿过600米的隧道,再将激光分裂成两束,经过反射的一束以及未经反射的一束均进入干涉仪。当引力波经过这部分空间的时候,两束激光之间的微小位移将会由干涉仪进行探测。即便这种距离的变化非常之微妙,但如果引力波探测器有结果,那就很可能是引力波通过时引起的。  而今GEO 600的“噪音”让研究人员无从解释,在剔除了所有人为因素的影响之后仍不得要领,他们于是向费米实验室的科学家克雷格・ 霍根寻求帮助,希望他利用量子力学上的专业知识帮助阐明这一不规则的噪音。  霍根反馈的意见让人震撼又迷惑。他说:“看上去GEO 600受到了时空微观量子级别的冲击。”换句话说,GEO 600探测到的并不是来自什么噪音源,而是时空本身发生的量子级别波动。  这一看法的深层意义在于:根据爱因斯坦对宇宙的认知,时空应该是连续平滑的,而照霍根的结论推测时空实际上是不连续的,是由一系列量子点组成。其直指爱因斯坦的理论需要修正。  全新探测器进入量子尺度  量子力学的测不准原理意味着一些基本量度如长度和时间具有测不准性。而测不准的程度由普朗克常数确定,该常数可以定出最小长度量子――“普朗克长度”,比其更短的长度是没有意义的。  现在,要证明“奇怪波动”的来源,研究人员就需要深入到“普朗克长度”――10-35米进行探测,而GEO 600实验中探测到的噪音尺度不到10-15米。因此需要提升引力波探测仪的分辨率,这导致了“全息干涉仪”的产生。  “全息干涉仪”是利用全息照相的方法来进行干涉计量,其与一般光学干涉检测方法很相似,但获得相干光的方式不同。光学干涉检测方法获得相干光的方式如前所述,一般是将同一束光的振幅分为两个部分,但全息干涉计量术则是将同一束光在不同时间的波前来进行干涉,可以看作是一种波前的时间分割法。这就使相干光束由同一光学系统所产生,可以消除系统误差。  霍根认为,GEO 600在其尺度上发现的噪音是由于宇宙“视界”(天文学中黑洞的边界,在此边界以内的光无法逃离)的全息投射造成的。霍根比喻说,这就像一张图片越放大就会越模糊甚至像素化,宇宙“视界”投射其实发生在普朗克尺度中,所以在我们所身处的时空尺度上,这一投射发生了模糊。  而要验证霍根的结论,目前最值得依赖的就是这台“全息干涉仪”。其现正由费米实验室全力打造,它必将比GEO 600探测到更小的尺度,从而进入到量子尺度。如果霍根的看法是正确的,探测器将能探测到时空结构中的量子噪声,给我们现有对宇宙的认知带来巨大的冲击。
  • 应用解读:皮米精度激光干涉仪如何实现高精度实时位移反馈?
    “坐标”这个概念源于解析几何,其基本思想是构建坐标系,将点与实数联系起来,进而可以将平面上的曲线用代数方程表示。坐标的概念应用到工业生产中解决了大量实际问题,例如,坐标测量机可采集被测工件表面上的被测点的坐标值,并投射到空间坐标系中,构建工件的空间模型等诸多案例。坐标测量机还被用于产品质量控制,测量磨损,制造精度,产品形貌,对称性,角度等工业产品参数,因此需要非常高的移动精度,才能确保测量的准确性。德国attocube公司推出的IDS3010皮米精度位移测量激光干涉仪就是辅助坐标测量机提高测量精度的有力手段。图1 皮米精度位移测量激光干涉仪IDS3010IDS3010皮米精度位移测量激光干涉仪是如何帮助坐标测量机实现高精度的呢?图2 IDS3010激光干涉仪集成到坐标测量机探测臂上通常坐标测量机要求探测臂位移精度高于1微米,现在坐标测量机位移反馈大多是通过玻璃分划尺来实现的。玻璃分划尺是常用的一种位置测量的方法,分划尺在坐标测量机上位于龙门处,一般情况下,采用玻璃分划尺探测的不是探测臂本身,而是坐标测量机龙门处的位置变化。实际上, 坐标测量机的探测臂与龙门之间有一定长度的距离,它们的位置变化会因存在例如振动、位置差等而有所不同,因此只凭借龙门处位置变化来判断真实的位移反馈是不准确的,影响到实际样品的测量精度。图3 IDS3010激光干涉仪集成到坐标测量机上。坐标测量机通过干涉仪探头的配合,可反馈探测臂的位移。德国attocube公司的IDS3010皮米精度位移测量激光干涉仪通过非接触式方法测量,可以直接测量探测臂的运动,避免龙门处探测误差,实现高精度测量。如图3,激光探头位于坐标测量机侧边,M12/C7.6激光探头出射的激光可以被探测臂上的反射镜(直径3mm)反射回激光探头,IDS3010干涉仪通过分析干涉信号从而进行位置测量。探测臂能够移动0.8米距离,移动精度达到10微米。干涉仪能够实时测量该探测臂的位移以及振动等信息。图4 IDS3010实时位置测量软件WAVE测量数据。扩展图为中间区域的数据放大。IDS3010配置的软件WAVE可以实时观测与保存测量数据。如图4,坐标测量机的运动数据被测量并记录。图中所示,前15秒与终10秒间的数据是0.8m距离的往复运动。中间时间的数据看似没有变化,但通过WAVE软件的放大功能,我们发现中间时间的探测臂其实进行了10微米的步进运动。同时,通过WAVE软件我们也可以观测到步进运动的详细变化过程。每一个步进大约2秒,在运动初始的时候位移有超过,在大约0.4秒的短时间内位移被调整为10微米的步进长度。而在步进的末尾,也有小幅的位置噪音,该噪音一般是由于振动引入。这对于探测样品位移以及振动信息具有重大意义。IDS3010技术特点:IDS3010皮米精度位移测量激光干涉仪具有体积小、适合集成到工业应用与同步辐射应用中的特点,同时,测量精度高,分辨率高达1 pm,是适合工业集成与工业网络无缝对接的理想产品。除与坐标测量机结合使用外,在工业中的其他应用实例也非常广泛,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等等。+ 测量精度高,分辨率高达1 pm+ 测量速度快,采样带宽10MHz+ 样品大移动速度 2m/s+ 光纤式激光探头尺寸小,灵活性高+ 兼容超高真空,低温,强辐射等端环境+ 其可靠与稳定+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 多功能实时测量界面,包含HSSL、AquadB、CANopen、Profibus、EtherCAT、Biss-C等界面相关产品及链接:1、皮米精度位移激光干涉器attoFPSensor:http://www.instrument.com.cn/netshow/C159543.htm2、EcoSmart Drive系列纳米精度位移台:http://www.instrument.com.cn/netshow/C168197.htm3、低温强磁场纳米精度位移台:http://www.instrument.com.cn/netshow/C80795.htm

激光速度干涉仪相关的方案

激光速度干涉仪相关的资料

激光速度干涉仪相关的论坛

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • 激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。[align=center][img=,578,450]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201754505855_5264_3712_3.jpg!w578x450.jpg[/img][/align]  激光干涉仪最典型的应用就是测量机床精度,本文讲解如何使用激光干涉仪测量五轴机床平移轴直线度误差。  对于平移轴而言,每根轴均有两个直线度误差,因此三根轴有六个直线度误差,均可采用激光干涉仪分别测得。  原理:带有圆孔的是直线度干涉镜,其与待测轴相连一同运动;长条镜是直线度反射镜静止安装,其是对称结构,上下左右均对称。当一束激光从源头发出射入干涉镜,干涉镜将光束分成两束,形成一个很小的角度分别去往反射镜,由于反射镜上下对称,因此两束光被反射后又回到干涉镜,汇合成一股光束,去往激光头的探测器。当运动轴产生直线度误差时,会使得干涉镜相对于反射镜在水平横向方向发生相对运动,而反射镜是左右对称的(左右的镜片不在同一平面,有一定的角度),因此会使得两束分开的光束光程具有差别,根据此差别,即可测得运动轴产生的直线度误差。[align=center][img=,678,333]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755021895_7221_3712_3.jpg!w678x333.jpg[/img][/align][align=center]▲ 直线度测量的光路原理构建图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755111914_6482_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的横向直线度测量示意图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755345695_9383_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的纵向直线度测量示意图[/align]  根据直线度误差测量原理可知,测量过程中不可避免的会引入斜率误差。该误差是由于测量直线度反射镜的光学轴线最初与待测轴不平行,为调整平行而引起的。如图 所示,A 为干涉镜和反射镜的距离,B 为激光头到干涉镜的距离(其中干涉镜是固定在运动轴上的)。在一开始,反射镜的光学轴线处于旋转前的位置,而由于机床运动轴与其之间存在的夹角θ,[img]http://www.chotest.com/Upload/2019/10/201910173125514.jpg[/img][align=center][img]http://www.chotest.com/Upload/2019/10/201910177031118.png[/img][/align]  因为斜率误差是稳定误差,因此可以采取上述的公式将其从直线度测量结果中分离出来,亦可以采用两端法拟合或者最小二乘法拟合将其分离出去。  两端法拟合:即是将所有采集来的数据第一点和最后一点相连决定一直线,再将所有采集来的数据去除掉拟合的直线信息,由此得出的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910170000002.png[/img][/align]最小二乘法拟合:将采集回来的所有数据通过最小化误差的平方和方式来寻找数据的最佳函数匹配,而后将采集值与匹配函数对应值相比较,剩余的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910171562522.png[/img][/align]附:SJ6000激光干涉仪直线度测量精度。[table][tr][td][align=center]轴向量程[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量精度[/align][/td][td][align=center]分辨力[/align][/td][/tr][tr][td][align=center]短距离[/align][/td][td][align=center](0.1~4.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(0.5+0.25%R+0.15M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.01μm[/align][/td][/tr][tr][td][align=center]长距离[/align][/td][td][align=center](1.0~20.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(5.0+2.5%R+0.015M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.1μm[/align][/td][/tr][tr][td=5,1]注:R为显示值,单位:μm;M为测量距离,单位:m[/td][/tr][/table]

  • 【资料】求助--激光干涉仪

    [em10] 用于机床定位精度检测和重复定位精度检测的激光干涉仪什么牌子的好呀?在Renishaw和API之间徘徊,那位前辈能给指点一二?

激光速度干涉仪相关的耗材

  • 全光纤麦克尔逊干涉仪MFI
    全光纤迈克逊干涉仪-MFI Michelson Fiber Interferometer产品介绍:量青光电提供的美国Optiphase公司全光纤迈克逊干涉仪(Fiber Michelson Interferometer)不但可以用来作为精密的测试测量仪器,还可以应用在精密的干涉传感系统。光纤干涉仪内部采用PZ1小尺寸光纤拉伸器(参见PZ1光纤拉伸器产品资料),内置的PZT通过前面板的BNC连接器驱动。全光纤迈克逊干涉仪标准产品的工作波长从1064nm到1550nm。每个光纤干涉仪都具有“零米”光路偏差的设计,用于方便用户根据不同的测试应用来改变光路延迟长度。标准产品的延迟光纤长度为50米,我们能够根据用户的实际要求提供各种定制的光纤干涉仪,请联系我们的销售人员.产品参数:参数单位指标产品型号MFI-10-50MFI-13-50MFI-15-50工作波长nm106413101550调制常数rad/V2.52.01.6两臂光路失配长度(无延迟)m0m0m0m两臂光路失陪长度偏差cm+/-10cm+/-10cm+/-10cm调制器接口BNCBNCBNC光纤类型HI-1060(或指定)SMF-28eSMF-28e光路接口FC/APCFC/APCFC/APC最大功率承受能力mW250250250封装尺寸(长x宽x高)mm260x160x90260x160x90260x160x90重量kg~2.7~2.7~2.7可定制的延迟范围m0.5m~1000m标准产品的延迟长度m50光纤连接器FC/APC产品应用:激光器相位噪声测试激光器频率噪声测试干涉型光纤传感系统模拟科研实验室应用应用列举:1.激光器相位/频率噪声测试(1)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。OPD-4000解调输出电压应用到PZ1光纤拉伸器的BNC接口上,作为PZ1光纤拉伸器的驱动电压。OPD-4000的相位解调输出可以选择数字信号输出或者模拟信号输出,数字信号输出通过PC进行后续处理,模拟信号通过信号分析仪进行分析。2.激光器相位/频率噪声测试(2)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。通过为PZ1型光纤拉伸器BNC接口提供控制电压保持其处于正交偏置(Quadrature Bias)。输出光信号由光接收机接收处理,输出信号进一步处理。3.光纤干涉仪传感器模拟(3)输入光信号代表干涉型光纤传感器的光源。选择合适的延迟光纤线圈,延迟长度作为需要模拟的传感器的长度。输出光信号通过光接收器件到信号分析仪进行处理分析。订货信息:MFI-10-50:1064nm光纤迈克逊干涉仪MFI-13-50:1310nm光纤迈克逊干涉仪MFI-15-50:1550nm光纤迈克逊干涉仪
  • TYDEX太赫兹扫描法布里 - 珀罗干涉仪
    太赫兹扫描法布里 - 珀罗干涉仪太赫兹扫描法布里 - 珀罗干涉仪(TSFPI)设计用于测量窄带THz辐射的波长和强度。 TSFPI可以与脉冲以及连续的窄带THz辐射源一起使用。TSFPI由两个半透明的平行硅镜组成,其中一个安装在电机驱动的线性驱动器上。THz辐射参数的测量是通过移动反射镜的平移(扫描)来完成的,如图2所示。1。图1. TSFPI的原理图。TSFPI可与以下来源一起使用:?回旋管 ?光泵浦亚毫米波激光器 ?返波振荡器 ?自由电子激光器 ?差频THz发生器 ?混频太赫兹发生器 量子级联激光器 ?p-Ge激光器 ?新型太赫兹源。太赫兹扫描法布里-珀罗干涉仪还能够测量宽带太赫兹源的波长和强度,以及根据法布里-珀罗干涉仪透射光谱(图2)过滤太赫兹辐射。TSFPI支持许多镜像转换模式,例如将镜像移动到给定位置,将镜像转换为给定的距离、连续的和循环的转换。镜像转换速度,转换的间隔,开始和结束位置也可以调整。图2.TFP光谱仪测量的镜面间距为500μm的TSFPI透射光谱Menlo Systems TERA K8。图3示出了由TSFPI执行的光泵浦超声波波长激光器的振荡波长的测量结果。 从图中可以看出,相邻TSFPI透射zui大值之间的距离约为216μm(433μm-216μm=217μm 647μm-433μm=214μm 865μm-647μm=218μm),其对应于 一半的激光波长。 此结果与理论TSFPI透射zui大值一致:λ= 2 * d / m,其中d是TSFPI反射镜之间的间距,单位为μm,m是干涉级数,λ是以μm为单位测量的波长。图3.光声探测器Tydex GP-1P与TSFPI反射镜间距的信号幅度。 太赫兹辐射是由光泵浦的亚毫米波激光器产生的,λlas=432μm。规格规格Value工作频率范围THz0,1-15自由光谱范围,太赫兹0,01-1,8毫米镜之间的间距0-9,5间距设置精度,μm± 1.25光轴高度,毫米110自由孔径,毫米52尺寸(长x宽x高),毫米232х151х120质量,公斤5,0主要特征:?TSFPI广泛操作范围,0.1 - 15 THz ?高击穿阈值 ?大光圈,52毫米 ?镜面定位精度高,±1.25μm?易于使用。TSFPI包包括以下内容:?TSFPI干涉仪装置 ?电源和控制装置 ?镜像转换控制软件 ?电缆 ?用户指南。TSFPI以下配件可以单独提供:?光声Golay探测器GC-1P / T / D ?0.1-15 THz范围内指定波长的BPF(带通滤波器) ?低通滤光片(LPF)过滤IR辐射,其截止频率分别为:23.4 THz,23.3 THz,23.1 THz,14.3 THz,10.9 THz,8.8 THz,5.5 THz,4.3 THz,4 THz,3.2 THz ?一组透射率为1%,3%,10%和30%的衰减器 ?TPX和HRFZ-Si镜片。
  • 中红外法布里-珀罗F-P干涉仪( F-P标准具/多光束干涉仪 2.5-14um)
    总览法布里-珀罗干涉仪(英文:Fabry–Pérot interferometer),是一种由两块平行的玻璃板组成的多光束干涉仪。其中两块玻璃板相对的内表面都具有高反射率。当两块玻璃板间用固定长度的空心间隔物来间隔固定时,它也被称作法布里-珀罗标准具或直接简称为标准具。F-P(法布里-珀罗)标准具因为平板反射率高,多光束等倾斜干涉条纹极窄,所以是一种高分辨率的光谱仪器。可用于高分辨光谱学,和研究波长非常靠近的谱线,诸如元素的同位素光谱、光谱的超精细结构、光散射时微小的频移,原子移动引起的谱线多普勒位移,和谱线内部的结构形状;也可用作高分辨光学滤波器、构造精密波长计;在激光系统中它经常用于腔内压窄谱线或使激光系统单模运行,可作为宽带皮秒激光器中带宽控制以及调谐器件,分析、检测激光中的光谱(纵模、横模)成分.技术参数产品特点适用于中红外平行度好端面平整度高表面质量好产品应用波长锁定器 波分复用电信网 手持光谱分析仪 光纤光栅传感系统 可调谐滤波器激光器 可调谐滤光片技术参数技术参数技术指标工作波段近红外1.3-2.0um,中红外2.5-14um直径25.4mm+/-0.05mm通光孔径22.9mm长度100mm+/-0.2mm平行度5-10 arc sec端面平整度中红外 1/4 lambda;近红外 1/10 lambda表面质量中红外80-50;近红外60-40管壳铜精细度(FSR)0.012cm-1实验测试:测试步骤:1,安装1532nm激光器,连接电源,USB线2,激光器输出连接到光纤准直器3,用BNC转BNC线连接信号发生器到激光器驱动的低频调制端口4,用BNC转BNC线连接探测器到示波器的通道2端口5,打开激光器,打开信号发生器(三角波调制,频率1KHZ,电压幅值500mW)6,激光器发出的光通过标准具,打在探测器光敏面上,通过调整标准具的角度,在示波器上查看调制波形测试结果:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制