当前位置: 仪器信息网 > 行业主题 > >

激光脉冲测量仪

仪器信息网激光脉冲测量仪专题为您提供2024年最新激光脉冲测量仪价格报价、厂家品牌的相关信息, 包括激光脉冲测量仪参数、型号等,不管是国产,还是进口品牌的激光脉冲测量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光脉冲测量仪相关的耗材配件、试剂标物,还有激光脉冲测量仪相关的最新资讯、资料,以及激光脉冲测量仪相关的解决方案。

激光脉冲测量仪相关的论坛

  • 【分享】我国超短脉冲激光测量研究达到国际领先水平

    日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题 “飞秒脉冲激光参数测量新技术研究”通过了专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。  飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在1飞秒内,光只能走0.3微米,相当于一根头发丝的百分之一!飞秒脉冲是人类目前在实验室条件下能获得的在可见光至近红外波段的最短脉冲,它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到很广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。

  • 世界最快激光脉冲定格超速运行电子原子(图)

    2012年10月22日 07:10 新浪科技微博 http://i1.sinaimg.cn/IT/2012/1022/U7917P2DT20121022070621.jpg世界最快激光脉冲定格超速运行电子原子http://i3.sinaimg.cn/IT/2012/1022/U7917P2DT20121022070632.jpg世界最快激光脉冲定格超速运行电子原子  新浪科技讯 北京时间10月22日消息,据物理学家组织网报道,世界最快的激光脉冲能够定格正在超速运行的电子和原子,美国亚利桑那大学的物理学家利用这种脉冲已经捕捉到分子分裂、电子从原子里逃逸出来的动态画面。他们的研究有助于我们更好地了解分子过程,并最终在很多可能的应用中控制它们。  1878年,当时的一系列照片立刻解决了一个长期存在的谜题:是不是正在飞奔的马始终都有一部分身体接触到地面?结果证明不是。爱德华-穆布里奇在赛马跑道旁拍摄的这一系列图片,标志着高速摄影时代的开始。大约134年后,亚利桑那大学物理学系的研究人员解决了一个类似的谜题,这次是一个超速运行的氧分子取代了马,超快、高能激光脉冲取代了穆布里奇的感光乳剂板。阿尔文-桑德胡及其科研组利用持续时间仅为0.0000000000000002秒的极端紫外线光脉冲,设法定格氧分子在很短时间内被高能击中后产生的超速动作。由于科学家正在试着从电子级别更好地了解量子过程,甚至最终控制这一过程,设计出新的光源,组合出新分子,或者是设计出新型超速电子元件,以及无数其他可能的发明,因此观察原子和分子里发生的极短事件变得越来越重要。  虽然桑德胡的科研组在产生世界最短光脉冲方面,并不是世界纪录保持者,但他们是最先把这些当做工具,用来解决很多悬而未决的科学问题的人。该科研组的最新成果,是展示氧分子在吸收过多能量而无法保持两个原子之间的稳定性后,突然裂开的实时快照系列。该研究成果发表在《物理评论快报》上。揭开这么短时间内的分子过程,有助于科学家更好地了解地球大气层里的臭氧形成和被摧毁背后的微观动态。桑德胡把这一原理比喻成是设法给快速飞向击球手的棒球拍照。他说:“如果我们利用常规相机,拍到的照片会非常模糊,或者棒球根本显示不出来。但是我们想很详细地研究这个球,它的表面、它的缝合线,以及在任何特定时间它的确切位置。要做到这些有两种方法。你可以制造一个拥有很快快门,能够在球做任何运动前迅速开启和关闭的相机。或者利用称之为动态镜检查(Stroboscopy)的技术,你用光照射这个棒球很短时间,并在这个时间内给它拍照。”  但是用原子或者电子取代棒球时,这种类比是不成立的。因为微观物体的运行速度非常非常快,利用机械或者电子元件根本捕捉不到它们。桑德胡称,定格原子级别的动作的唯一方法,就是利用持续时间只有几毫微微秒或者阿秒(比毫微微秒短1000倍)的光脉冲。举例说明这种光脉冲的持续时间,就是1阿秒相对于1秒,相当于1秒相对于宇宙的年龄。为了产生阿秒时长的光爆,必须发出持续时间只有毫微微秒的强烈激光脉冲。桑德胡实验室采用的毫微微秒激光脉冲释放的能量是1太瓦,相当于整个美国的电力网,只是前者持续时间非常短暂。虽然毫微微秒激光脉冲足以分辨分子运动,例如我们眼睛里的视紫红质,它们能在200毫微微秒内改变结构,对进入眼睛的光子做出响应,但是毫微微秒激光脉冲在捕捉更亮、运行速度更快的电子运动时,并不用“切开”它。  桑德胡实验室的研究生尼兰加-施瓦伦说:“我能在激光脉冲产生的强电场环境下,实时研究氦的原子结构发生了什么变化。”桑德胡科研组把这项有关阿秒电子动力学的突破性研究的成果,发表在早些时候的《物理评论快报》上。在他们的最新研究中,该科研组已经解决一个长期存在的争论,即被高能光子击中后,氧原子分裂需要1100毫微微秒。以前对这一现象的测量结果存在很大不同,最大相差100倍。这项研究的另一个创新之处,是它为测量电子摆脱超受激原子需要多长时间提供了方法。迄今为止这一过程只进行了理论模拟。桑德胡的科研组发现,这种自发电子发射发生在大约90毫微微秒内。他解释说:“我们经常假设,如果你把足够多的能量输入到一个分子里,就能迫使电子挣脱它的束缚。但是我们通过研究观察到,分子把过剩能量转移给周围的其他电子和附近的原子,试图与它们分享能量,保住它的电子,直到它突然分裂的最后一刻。”  研究生、这篇论文的第一作者亨利-提莫斯应用阿秒激光研究氧分子的动态。他说:“我们对受激分子的物理性质了解的不多,这是因为它们很难用数学方法进行模拟。你促使氧分子达到这种高能状态时,它有多种途径可以用来释放过剩能量。我们能够对每条路径进行单独分析,并分析电子脱离原子时会出现什么情况。”据桑德胡说,追踪分子、原子和电子的运动,对了解天然或人造物体的物理及化学过程非常重要。他解释说:“高能紫外线持续轰击我们的大气层,刺激它里面的分子。导致这些分子分裂成过激原子,这促使臭氧形成或分解。这些现象对了解上层大气的化学性质有分歧。能够测量最短时间段内分子内的电子和原子的动态,对我们更好地了解这些分子的基本相互作用有帮助。不过更重要的是,它将为我们提供控制或改变这些原子或分子的动态性质的方法,因为现在我们已经拥有一种光脉冲,它能对实时运动产生影响。我们不再只是在这些现象发生后,才开始研究它们之间的相互作用。事实上我们正在设法了解这种互动,并力求控制它,例如控制某一方向的化学反应。”  迄今为止产生的最短激光脉冲持续67阿秒。据桑德胡说,就连持续时间更短的“仄普托秒”激光脉冲也并非不可能产生,但是现在阿秒是人们关注的焦点。他说:“我们正在研究阿秒,是因为我们想了解比分子运动更快的过程。影响我们的生活的实际方面和我们身边的技术,都受到电子和电子运动的制约。未来我们感兴趣的问题,是很多电子彼此结合在一起,结果会出现什么情况?现在这方面的试验具有很大挑战性,理论性模拟根本不可能实现。这也是我们拥有高能和短时分辨率的原因。事实上现在我们已经能够实时查看这些过程。”(秋凌)

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

  • 【资料】单片机脉搏测量仪详细介绍

    本文介绍一种用单片机制作的脉搏测量仪,只要把手指放在传感器内,很快就可以精确测出每分钟脉搏数,测量的结果用三位数字显示出来。  电路工作原理  电路原理见附图。电路由传感器电路、信号放大和整形电路、单片机电路、数码显示电路等四部分组成。file:///C:/Documents%20and%20Settings/Administrator/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/O9EZM3GH/20100418141025_4599.jpg传感器由红外线发射二极管和接收二极管组成,测量原理如下:将手指放在红外线发射二极管和接收二极管之间,血管中血液的流量随着心脏的跳动变化,由于手指放在光的传递路径中,血管中血液饱和度的变化将引起光的传递强度变化,此变化和心跳的节拍相对应,因此红外接收二极管的电流也跟着心跳的节拍改变,使得红外接收二极管输出与心跳节拍相对应的脉冲信号。该脉冲信号经F1~F3、R3~R5。C1、C2等组成的低通放大器放大,F4、R6、R7、C3组成的放大器进一步放大后,送给由F5、F6、RP1、R8等组成的施密特触发器整形后输出,作为单片机的外部中断信号。电路中的可变电阻RP1用来调整施密特触发器的阈值压。  IC2、X1、R10、C5等组成单片机电路。单片机对由P3.2输入的脉冲信号进行计算处理后,送到数码管显示。发光二极管VD3作脉搏测量状态显示,脉搏每跳动一次,VD3点亮一次。  三只数码管VT1~VT3、R12-R21等组成数码显示电路。本机采用动态扫描显示方式,使用共阳数码管,P3.3~P3.5口作三只数码管的动态扫描位驱动码输出,通过三极管VT1-VT3驱动数码管。P1.0-P1.6口作数码管段码输出。  软件设计  程序用C语言编写,由主程序、外部中断服务程序、定时器TO中断服务程序、延时子程序等模块组成。主程序主要完成程序的初始化。外部中断0服务程序由测量、计算、读数等部分组成。定时中断服务程序由计时、动态扫描显示、无测试信号判断等部分组成。程序中用变量n对时间计数,用变量m对脉搏脉冲信号个数计数。  从P3.2口输入的与脉搏相对应的脉冲信号作为外部中断0的请求中断信号,外部中断采用边沿触发的方式。由于脉冲信号的频率很低,所以不适宜用计数的方法进行测量,故而采用测脉冲周期的方法进行测量,即用脉冲来控制计时信号,通过计时数计算出脉冲周期,再由脉冲周期计算出频率,从P3.2口每输入一次脉冲信号就能显示一次脉搏数。  定时器TO的中断时间为5ms,每中断一次计时变量n加1,因此计时的基本单位为5ms,例如一个脉搏脉冲周期对应的n值为240,则对应的时间为1.2s,由此可得每分钟脉搏数为50。如果n的值达到2000,即10秒钟仍没有发生外部中断,则表示没有脉搏脉冲信号输入,于是n被清零,测量结果显示也为0。  读数采用三位数码显示。定时器TO每中断一次显示一个位,因此3次中断就可以刷新一次数据,即15ms刷新一次数据。安装与调试  传感器的制作是一个关键。可将红外线发射二极管和接收二极管分别固定在一个塑料夹子的两侧,用时只需将夹子夹在手指上即可。制作时注意保证红外线接收二极管在使用时不要受到外界光线的干扰。  调试的主要工作是通过对RP1的调节来调整电路的灵敏度,RP1的阻值越小灵敏度越高,反之灵敏度越低。调试时可通过VD3的发光状态进行观察,如果脉搏跳动时VD3不跟随发光,则说明灵敏度偏低,不易检测到脉搏信号;如果在没有脉搏跳动时VD3偶尔也点亮发光,说明灵敏度偏高,容易受到干扰。

  • 【求助】GC进样中的液体闪烁测量仪

    听工程师提到[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]进样中吹扫捕集法中有一个液相闪烁测量仪,这个东西是干什么的啊?有没有大侠尽可能详细的介绍介绍啊?急啊!我在百度上查到这些: 液体闪烁测量仪原理为通过闪烁体(液体状态)将放射能转变为光子,然后将光子导入光电倍增管的光阴极,在高压作用下,将光子转变成光电子,经过光电倍增管,最后在阳极上产生一个电脉冲,通过计数装置将脉冲记录。液体闪烁测量仪解决了β粒子,尤其是低能β粒子的测量问题。由于样品均匀分散在闪烁体中,对低能β粒子(例如3H、14C)测量效率高。 在吹扫捕集法中它起什么作用呢?

  • 关于激光脉冲法测试热扩散的几点疑问

    关于激光脉冲法测试热扩散的几点疑问

    众所周知,激光脉冲法测试原理是试样在绝热条件下前表面受瞬时脉冲热流加热根据试样背表面温度随时间的变化情况,确定试样的热扩散率。问题: 1 每种材料吸收激光的速度对测试结果有影响吗? 2 材料有没有反光的问题,如果是镜面,存在部分反光,那吸收的激光能量就没有那么多了,这样对最终测试结果有没有影响? 3 再添加一问题,采用激光脉冲法测试透明半透明材料时,在脉冲照射后样品起始升温的区域存在基线的“跃迁”,这个“跃迁”是什么导致的?耐驰说明书上写这种情况需要选择辐射模型+脉冲修正,难道说这个跃迁是材料本身辐射导致的?怎么产生辐射的?http://ng1.17img.cn/bbsfiles/images/2013/03/201303272042_432667_1698940_3.jpg

  • 美制造迄今最大激光脉冲:500万亿瓦特功率

    2012年07月18日 08:08 新浪科技微博http://i1.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075512.jpg  未来能源?美国国家点火装置负责人摩西表示:“它正全面运作。科学家在清洁聚变能源的探索上迈出重要一步。”http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075533.jpg  这个脉冲只持续230亿分之一秒。这个激光阵列不是朝着一个目标发射的。但2年内,科学家将朝着一个1毫米氢球发射这192束激光。http://i2.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075553.jpg  一位艺术家的构想图展示了美国国家点火装置“点燃”192束激光阵列时产生的反应。本月制造的这个脉冲并非针对一个目标,但科学家最后会在一个1毫米氢球中用这些激光引发一个聚变反应。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080555.jpg  一名工作人员正在检查加利福尼亚州的美国国家点火装置的设备。美国国家点火装置的目标是成为首个用聚变反应实现“得失相当”目标的设施,从而产生比这些激光所消耗的还要多的能量。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080614.jpg这个巨大高能设施将在接下来2年内尝试激光聚变。这项技术被看作清洁能源的“圣杯”。http://i1.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080633.jpg美国国家点火装置的设备:3月15日的结果表明,科学家距“聚变点火”的目标又近了一步。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080654.jpg这些激光只持续230亿分之一秒,产生的能量却比整个美国在任何特定时间所用的电量多1000多倍。  新浪科技讯 北京时间7月18日消息,据国外媒体报道,位于加利福尼亚州、体育场大小的美国国家点火装置本月制造出人类历史上能量最大的激光脉冲。7月5日,192束激光融合成一个紫外线激光脉冲,产生500万亿瓦特峰值功率,这比美国在任何特定时刻内使用的总电量还要高1000多倍。  对旨在用类似于发生在氢弹中的核聚变反应产生巨大能量的“聚变”设备来说,这个脉冲的产生具有重大历史意义。美国国家点火装置负责人爱德华-摩西表示:“它正全面运作。科学家在清洁聚变能源的探索上迈出了重要一步。”  麻省理工学院高级研究科学家理查德-帕特拉索表示:“这个500万亿瓦功率的激光脉冲是美国国家点火装置研究小组的非凡成就----在实验中创造出迄今为止只出现于恒星内部深处的史无前例的聚变反应。对美国和世界各地像我们一样在极端条件下不懈追求基础科学和实验室聚变点火目标的科学家来说,这是一个非同寻常、令人兴奋的成就。”  加利福尼亚大学伯克利分校天文学、地球与行星学教授雷蒙德-简罗茨表示:“美国国家点火装置成功制造出500万亿瓦功率、具有里程碑意义的激光脉冲,这是世界上经过最严格的控制产生的能量最大的激光。”  这个脉冲只持续了230亿分之一秒。这个激光阵列并未朝着目标物发射,但2年内,科学家将朝着一个1毫米氢球发射这192束激光。美国国家点火装置的科学家希望它将来点燃聚变反应堆的聚变,从而释放出比这些激光所输入的能量还要多的能量。  受控的核聚变可以生成一种从50年代以来科学家一种试图制造出来的清洁能源,但在氢弹中核聚变是不受控制的。由于激光脉冲的持续时间极其短暂,所以所需总能量并不像听起来的那么多,它们被储存在美国国家点火装置电池一样的巨大容器中。 美国国家点火装置负责人摩西表示:“该事件在国家点火计划对聚变点火的探索中是个重要里程碑。国家点火装置用单个激光束进行过许多次类似的能量生成示范,但用192束激光在这个音障上进行操作还是头一次。”点火将成为一种释放出远超过“得失相当点”的巨大能量的自持反应。  美国国家点火装置试用了超重氢和在“重水”中发现的氢同位素重氢的小球,通过激光器把这些小球压缩到起初尺寸的数百分之一大。这个反应把这些原子融合成氮原子,释放出移动迅速、名为中子的亚原子粒子,这可能用于给水加热和为蒸汽轮机提供动力。  但聚变并非没有争议。美国国家点火装置还参与了美国的武器研发计划。这个聚变过程还被用于氢弹中。美国国家点火装置在这个国家的“库存维护与管理计划”中扮演着重要角色,以确保核军火库发挥它应有的作用。绿色和平组织等环境机构认为应把聚变研究的经费转移到研发风力和波浪发电等技术上来。(孝文)

  • 【资料】电子测量仪器的分类及应用

    电子测量仪器按其工作原理与用途,大致划为以下几类。1.多用电表  模拟式电压表、模拟多用表(即指针式万用表VOM)、数字电压表、数字多用表(即数字万用表DMM)都属此类。这是经常使用仪表。它可以用来测量交流/直流电压、交流/直流电流、电阻阻值、电容器容量、电感量、音频电平、频率、晶体管NPN或PNP电流放大倍数β值等。2.示波器  示波器是一种测量电压波形的电子仪器,它可以把被测电压信号随时间变化的规律,用图形显示出来。使用示波器不仅可以直观而形象地观察被测物理量的变化全貌,而且可以通过它显示的波形,测量电压和电流,进行频率和相位的比较,以及描绘特性曲线等。3.信号发生器  信号发生器(包括函数发生器)为检修、调试电子设备和仪器仪表时提供信号源。它是一种能够产生一定波形、频率和幅度的振荡器。例如:产生正弦波、方波、三角波、斜波和矩形脉冲波等。4.晶体管特性图示仪  晶体管特性图示仪是一种专用示波器,它能直接观察各种晶体管特性曲线及曲性簇。例如:晶体管共射、共基和共集三种接法的输入、输出特性及反馈特性;二极管的正向、反向特性;稳压管的稳压或齐纳特性;它可以测量晶体管的击穿电压、饱和电流、自或a参数等。5.兆欧表  兆欧表(俗称摇表)是一种检查电气设备、测量高电阻的简便直读式仪表,通常用来测量电路、电机绕组、电缆等绝缘电阻。兆欧表大多采用手摇发电机供电,故称摇表。由于它的刻度是以兆欧(MΩ)为单位,故称兆欧表。6.红外测试仪  红外测试仪是一种非接触式测温仪器,它包括光学系统、电子线路,在将信息进行调制、线性化处理后达到指示、显示及控制的目的。目前已应用的红外测温仪有光子测温和热测温仪两种,主要用于电热炉、农作物、铁路钢轨、深埋地下超高压电缆接头、消防、气体分析、激光接收等温度测量及控制场合。7.集成电路测试仪  该类仪器可对TI1、PM0S、CM0S数字集成电路功能和参数测试,还可判断抹去字的芯片型号及对集成电路在线功能测试、在线状态测试。8.LCR参数测试仪  电感、电容、电阻参数测量仪,不仅能自动判断元件性质,而且能将符号图形显示出来,并显示出其值。其还能测量Q、D、Z、Lp、Ls、Cp、Cs、Kp、Ks等参数,且显示出等效电路图形。9.频谱分析仪  频谱分析仪在频域信号分析、测试、研究、维修中有着广泛的应用。它能同时测量信号的幅度及频率,测试比较多路信号及分析信号的组成。还可测试手机逻辑和射频电路的信号。例如:逻辑电路的控制信号、基带信号,射频电路的本振信号、中频信号、发射信号等。  除以上常用的电子测量仪器外,还有时间测量仪、电桥、相位计、动态分析器、光学测量仪、应变仪、流量仪等。

  • 【转帖】电子测量仪器的分类及应用

    电子测量仪器的分类及应用电子测量仪器按其工作原理与用途,大致划为以下几类。  1.多用电表  模拟式电压表、模拟多用表(即指针式万用表VOM)、数字电压表、数字多用表(即数字万用表DMM)都属此类。这是经常使用仪表。它可以用来测量交流/直流电压、交流/直流电流、电阻阻值、电容器容量、电感量、音频电平、频率、晶体管NPN或PNP电流放大倍数β值等。   2.示波器  示波器是一种测量电压波形的电子仪器,它可以把被测电压信号随时间变化的规律,用图形显示出来。使用示波器不仅可以直观而形象地观察被测物理量的变化全貌,而且可以通过它显示的波形,测量电压和电流,进行频率和相位的比较,以及描绘特性曲线等。   3.信号发生器  信号发生器(包括函数发生器)为检修、调试电子设备和仪器时提供信号源。它是一种能够产生一定波形、频率和幅度的振荡器。例如:产生正弦波、方波、三角波、斜波和矩形脉冲波等。   4.晶体管特性图示仪   晶体管特性图示仪是一种专用示波器,它能直接观察各种晶体管特性曲线及曲性簇。例如:晶体管共射、共基和共集三种接法的输入、输出特性及反馈特性;二极管的正向、反向特性;稳压管的稳压或齐纳特性;它可以测量晶体管的击穿电压、饱和电流、β或α参数等。   5.兆欧表  兆欧表(俗称摇表)是一种检查电气设备、测量高电阻的简便直读式仪表,通常用来测量电路、电机绕组、电缆等绝缘电阻。兆欧表大多采用手摇发电机供电,故称摇表。由于它的刻度是以兆欧(MΩ)为单位,故称兆欧表。  6.红外测试仪  红外测试仪是一种非接触式测温仪器,它包括光学系统、电子线路,在将信息进行调制、线性化处理后达到指示、显示及控制的目的。目前已应用的红外测温仪有光子测温和热测温仪两种,主要用于电热炉、农作物、铁路钢轨、深埋地下超高压电缆接头、消防、气体分析、激光接收等温度测量及控制场合。   7.集成电路测试仪   该类仪器可对TTL、PMOS、CMOS数字集成电路功能和参数测试,还可判断抹去字的芯片型号及对集成电路在线功能测试、在线状态测试。    8.LCR参数测试仪  电感、电容、电阻参数测量仪,不仅能自动判断元件性质,而且能将符号图形显示出来,并显示出其值。其还能测量Q、D、Z、Lp、Ls、Cp、Cs、Kp、Ks等参数,且显示出等效电路图形。   9.频谱分析仪  频谱分析仪在频域信号分析、测试、研究、维修中有着广泛的应用。它能同时测量信号的幅度及频率,测试比较多路信号及分析信号的组成。还可测试手机逻辑和射频电路的信号。例如:逻辑电路的控制信号、基带信号,射频电路的本振信号、中频信号、发射信号等。   除以上常用的电子测量仪器外,还有时间测量仪、电桥、相位计、动态分析器、光学测量仪、应变仪、流量仪等。

  • 【求助】怎样针对脉冲信号测量发光光谱??

    [size=4]我的实验过程中,样品需要用一个连续激光和一个脉冲激光同时辐照,测量其发光光谱,因为脉冲激光的强度相对较弱,因此为了得到比较好的光谱信号,我想测量样品的发光光谱时,只对脉冲激光的那个时间段测量。我用的脉冲激光的长度大概几个纳秒,如果能在这个范围,或者几百纳秒的范围内记录光谱就会得到比较好的信号,也就是说和光谱的测量和脉冲激光的脉冲同时进行。我现在有一个oceanoptics的HR4000光纤光谱仪,有什么办法可以实现我想要的测量要求哪??[/size]

  • 低场脉冲核磁共振分析测量仪的了解

    看到一些关于低场脉冲核磁共振的基础知识,跟大家分享一下,我还以为磁场强度越高的核磁共振检测效果越好呢,原来低场脉冲核磁共振也很有用途[em31]

  • 有激光脉冲法设备的朋友可以试着做做不同厚度金属材料的热扩散率,看看会是什么结果。

    激光脉冲法(热脉冲法)热扩散率测试是一种经典方法,目前市面上成熟设备也比较多,多数都标称可以测量到2000W/mK超高热导率,也就是说可以测量很高热扩散率材料。另外,目前激光脉冲法数据处理技术也非常成熟,可以进行各种修正,包括热脉冲宽度修正。基于以上提到的两点,那么就可以准确测量任何厚度金属材料厚度方向热扩散率。哪我们可以不妨做个试验,就是采用相同材质的金属材料(不透光)制成一系列厚度试样进行测量,如从1mm~6mm厚,相差1mm做6个试样分别在常温下进行测试,测试结果都应该一致。有条件的朋友可以具体做做,看看到底是什么结果,整个测试和分析也可以发表论文。

  • 美造出67阿秒迄今最短极紫外激光脉冲

    中国科技网讯 美国中弗罗里达大学(UCF)一个研究小组9月5日(北京时间)表示,他们造出了仅67阿秒(1阿秒=10-18秒)的极紫外激光脉冲,这是迄今为止最短的激光脉冲,之前纪录是80阿秒。该技术有望带来一种新工具,帮助科学家研究亚原子世界和迄今未知的量子力学行为。这一成果也标志着近4年来激光脉冲领域的首个重大突破。研究结果提前发表在《光学通信》网站上。 该成果的非凡意义还在于他们并没有使用特殊设备,如英里级的粒子加速器、体育场那么大的圆形同步加速器。UCF物理系教授常增虎(音译)和光学与光子学院同事们在该校弗罗里达阿秒科技(FAST)实验室,利用迄今最强激光在更小空间进行了高水平的研究。 常增虎的小组发明了一种叫做“双光栅”的技术,能将极紫外线以特殊方式切断,在尽可能最短的光脉冲内凝聚大量能量。除了生成了激光脉冲,他还制造了迄今最快的摄像机对光脉冲进行了检测。 “该研究造出了迄今最短的激光脉冲,为理解亚原子世界打开新的大门,让我们看到电子在原子、分子中的运动,跟踪化学反应过程。”UCF理学院院长、物理学家迈克尔·约翰逊说,“设想一下,现在我们可能看到量子力学过程了,这是令人震撼的。” 量子力学是研究微观物理学,尤其是微观水平的能量和物质。这一技术能帮助科学家理解构成世界的最小物质是怎样运作,还能帮助研究在特殊物理、生理过程中,如数据传输过程、治疗癌症或诊断疾病时递送标靶药物的过程中是如何利用能量的。 2001年时,科学家首次演示了阿秒级脉冲。自那时起,全世界科学家就在致力于制造这种最短脉冲激光,以往纪录是2008年德国马克斯·普朗克研究院创造的80阿秒脉冲。“自50多年前发明激光以来,人们对激光脉冲的要求越来越短。” UCF光学与光子学中心院长巴哈·萨雷说,“最新进展不仅让中弗罗里达大学跻身该领域前沿,也为人们打开了研究超快动态原子现象的新视野。”(记者毛黎 常丽君) 总编辑圈点 研究小尺度世界的运动规律,需要“超小号工具”。要干预和观察那些稍纵即逝的现象,就需要能量集中在极短时间的光脉冲。如果人们制造不出相应的光学机器,就没办法监测单个粒子,只能对粒子运动做出统计学意义上的描述;而在人们脑海中,基本粒子世界也只能是全景图,而不是精细的工笔画。美国研究小组的成果,让科学家向着观察量子尺度的运动又走近了一步。微观世界不为人知的景色,有望在极短激光的照射下现出真相。 《科技日报》(2012-09-06 一版)

  • 分享影像测量仪的性能特点

    影像测量仪应用在各个不同的精密产品的行业中,是院校、研究所和计量检定部门的计量室、试验室以及生产车间不可缺少的计量检测设备之一。  影像测量仪的性能:  1、影像测量仪具备基本的点、线、圆、两点距离、角度等基本测量功能及坐标平移的功能,能满足基本的二次元测量要求。  2、花岗石底座与立柱,机构稳定可靠  3、影像测量仪的X、Y轴装有光栅尺,定位精确。  4、Z轴采用交叉导轨加配重块的全新设计,镜头上下升降受力均衡,确保精度。  5、LED冷光源(表面光合轮廓光)避免工件受热变形。  6、激光定位指示器,精确制定当前测量位置,方便测量。  7、影像测量仪可以使用OVMLite软件。  8、影像测量仪的镜头:3DFAMILY-S型0.7X-4.5X连续变倍镜头,影像放大倍率:28X-180X。

  • 【求助】请问:可不可以用激光脉冲做光源,获取拉曼图谱?

    现在用的是连续激光,做为光源,激发样品。可以观测到,拉曼谱线中,两个比较强的拉曼峰。但是,其余几个较弱的拉曼峰,则完全被荧光湮灭。我考虑用大功率脉冲激光器做光源,进行外触发收集拉曼光。这样,积分时间设置得很短,同时激光脉冲的峰值功率很高,应该可以消灭荧光。不知道这样做,对不对?如果这样可以,请大家告诉我具体做法,需要注意事项。请大家指教。谢谢。

  • 【资料】工业应用中的三维几何测量仪器

    机床是制造业的母机,数控机床是机床产品的先进技术体现,特别是高档数控技术是装备制造业现代化的核心技术,是国家工业发展水平、综合国力的直接体现,此次展会汇集了当今世界机床发展和先进制造技术的最新成果,全面展示了我国数控机床产业近几年来高速发展的最新产品和技术。作为数控技术的重要环节——测量设备,在这次展会上展出了一批新技术、新产品,体现了当今测试计量技术发展动向和特点。 测量精度高  随着现代科技向高精度方向发展,机床作为装备工业的基础发展更应超前,而测量设备更由传统的微米、亚微米精度向着纳米量级精度方向发展。随着超精密加工技术的需要,数控精度愈来愈高,对测量设备的精度要求更高,这次展会展示了一批纳米量级的测量设备,除各种激光干涉仪外,光栅测量技术也达到纳米量级。如海德汉的LIP382超高精度直线光栅尺,其测量步距可以达到1nm。基于测量技术的发展,纳米量级的机床成为现实,如上海机床厂展出的纳米级精密微型数控磨床成为展会的一个亮点。测量速度高  现代制造业进行的是大规模、大批量、专业化生产,需要多参数、实时在线测量,故要求测试仪器的测量速度高、设备轻便、操作界面直观。如激光干涉测量技术作为精密测量的一种重要方法,各种激光干涉测量系统向着轻巧、便携、高测速的方向发展。雷尼绍XL-80干涉仪款型小巧,可提供4m/s最大的测量速度和50kHz记录速率,可实现1nm的分辨率;激光跟踪仪可实现快速数据采集与处理,有利于测量精度的提高。各种影像测量设备利用触摸屏可以方便直观地实现特征尺寸的测量。三维测量多样化  三维测量技术向着高精度、轻型化、现场化的方向发展。传统基于直角坐标的三坐标测量机经过50年的发展,其技术愈加成熟,测量更加快捷,功能更加强大。这次参展的国内外数十家坐标测量机生产厂商,各具特色,特别是国内很多厂家推出实用廉价的各种三坐标测量机,说明三坐标测量技术在我国已经走向全面实用化、特色化发展的道路。除直角坐标测量系统外,极坐标测量仪器体现出自身独特的优势,如FARO、ROMER等厂家生产的激光跟踪仪对大尺寸结构的装备现场具有方便灵活的特点。对于小尺寸测量,FARO、ROMER等生产的关节臂测量机因其低廉的成本、较高的精度、现场方便的操作等优势,在汽车等行业展现出广阔的应用前景。测量智能化  测量设备借助于计算机技术向着智能化、虚拟化的方向进一步发展。测量仪器的虚拟化、接口的标准化以及测量软件的模块化,加速了测量技术的发展,使测量仪器的应用更加方便、直观、智能。根据测量需求以及测量对象的不同,可基于同一软件平台使用不同的仪器协同工作,采用不同的测量软件模块,实现了广普测量仪器的网络化、协同化,提高了测量的自动化水平。在这次展会上,国内一些独立的测量软件公司进行了参展,对于测量设备的智能化、网络化具有推动作用。  这次展会展示了当今工业测量设备的新技术、新产品。但也同时看到,我国在测量仪器制造特别是高精度仪器制造方面缺乏自主创新的成果,一些高精度测量仪器在国内还没有相关单位能够生产。通过这次展会,对推动我国几何量测量设备的发展具有实际意义。

  • 【资料】影像测量仪的一些测量功能分析

    影像测量仪适用于电脑软件操作而且功能强大方便,可满足不同工件的不同需求。影像测量仪的一些测量功能如下:  1、影像测量仪能记录用户程序、编辑指令、教导执行;  2、测量仪能巨集指令,同一种工件批量测量更加方便快捷,提高测量效率;另一种是座标平移和座标摆正,同时也能提高测量效率;  3、影像测量仪还可以检测圆形物体的圆度、直线度、以及弧度;组合测量、中心点构造、交点构造,线构造、圆构造、角度构造;  4、能多点测量点、线、圆、孤、椭圆、矩形,提高测量精度;  5、测量数据直接输入到AutoCAD中,成为完整的工程图,而且测量数据可输入到Excel或Word中,进行统计分析,可割出简单的Xbar-S管制图,求出Ca,等各种参数;  6、影像测量仪有大地图导航功能、刀模具专用立体旋转灯、3D扫描系统、快速自动对焦、自动变倍镜头。  7、在影像仪下绘制的图像,可以直接保存为dxf文件,该文件可以在autocad软件中直接打开或者是导入到三维软件中;  8、影像测量仪若是在加了探针的情况下,还可以直接用探针打点然后导入到逆向工程软件做进一步处理!软件可以自由实现探针/影像相互转换!  9、平面度检测(可通过激光测头来检测产品平面度,推荐使用“七海光电”平面度检测激光测头

  • 厚度测量仪哪个品牌比较好?

    厚度的测量方法有多种,总体上分为非接触式与接触式,非接触式包括射线,涡流,超声波,红外等多种类型,接触式行业中也称为机械式测厚,分为点接触式与面接触式。厚度测量仪的用途:适用于塑料薄膜、薄片、隔膜、纸张、箔片、硅片等各种材料的厚度精确测量。  在选择厚度测厚仪这样的机械设备时,往往都通过比较做出选择,知名品牌也是参考的一点,但是设备的质量也尤为重要。大成精密厚度测量仪就符合这两点的厂家,在国内来说,他们做的是相当不错的,自主研发生产,质量高,进一步确保了高精度,高效率,高稳定性的测量。得到了得到了消费者的大力认可。[align=center][img]http://img.mp.sohu.com/upload/20170516/8bbeebc80b4b42248dbe8f8aabbea7dc_th.png[/img][/align]  厚度测量仪又叫金属厚度测量仪、钢管厚度测量仪、钢板厚度测量仪、厚度测量仪价格、厚度测量仪厂家、金属超声测厚仪、超声厚度测量仪、超声测厚仪价格、数显超声测厚仪、便携式测厚仪、超声波测厚仪价格、超声波测厚仪品牌、数显测厚仪、电子测厚仪、精密测厚仪、超声测厚计、超声测厚仪器、高温测厚仪、不锈钢测厚仪、模具测厚仪、带钢测厚仪、钢结构测厚仪、压力容器测厚仪、压力罐测厚仪、金属管道测厚仪、无损测厚仪是采用最新的高性能、低功耗微处理器技术,基于超声波测量原理,可以测量金属及其它多种材料的厚度,并可以对材料的声速进行测量。可以对生产设备中各种管道和压力容器进行厚度测量,监测它们在使用过程中受腐蚀后的减薄程度,也可以对各种板材和各种加工零件作精确测量。  超声波测量厚度的原理与光波测量原理相似,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。  厚度测量仪哪个品牌比较好?不同类型的测厚仪,对应不一样的行业,适用范围也有所不同,那么大家在选购测厚仪时,就需要对特定的测厚仪有所了解。如在选择厚度测量仪上有需要提供产品和知识帮助的友们,欢迎来电大成精密公司来咨询。

  • 激光闪光法标准测试规范:不同脉冲加热能量下热扩散系数测试的外推法

    激光闪光法标准测试规范:不同脉冲加热能量下热扩散系数测试的外推法

    [color=#cc0000]摘要:本文介绍了一种闪光法热扩散系数测试规范——闪光能量外推法,即在样品恒温阶段采用一系列不同大小的闪光脉冲加热能量进行测试,然后将相应的热扩散系数测试结果外推至零加热能量,由此准确得到与试验参数(样品厚度和加热能量)无关的热扩散系数准确值。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000]1.问题的提出[/color] 在采用闪光法测量材料热扩散系数过程中,诸如样品厚度和闪光脉冲加热能量这些试验参数的选择,使得测试人员最常面临的困惑就是试验参数选择合理性和测试结果的准确性,这种现象在实际测试中主要表现在以下几个方面: (1)对于相同材料和厚度的样品,设置不同闪光脉冲加热能量,往往会得到不同测试结果,无法判断加热能量参数选择的合理性和测试结果的准确性。 (2)对于未知材料,无法确定合理的样品厚度,往往造成不同样品厚度测试的热扩散系数有明显偏差。 (3)对于相同材料和厚度的样品,不同实验室采用不同型号闪光法仪器,经常会得出不同的测试结果,有时相互之间的偏差还很大。 (4)对于相同材料和厚度的样品,不同实验室采用相同型号闪光法仪器,也常会得出不同的测试结果。 总之,由于存在以上困惑,这就需要开发出一种闪光法测试规范来准确测量热扩散系数,而最终得到的热扩散系数与闪光法仪器的试验参数无关。也就是说,希望采用任何正常的闪光法设备和任意试验参数,都可以测量得到准确的热扩散系数。 本文将介绍一种闪光法热扩散系数测试规范——闪光能量外推法,即在样品恒温阶段采用一系列不同大小的闪光脉冲加热能量进行测试,然后将相应的热扩散系数测试结果外推至零加热能量,由此准确得到与试验参数(样品厚度和加热能量)无关的热扩散系数准确值。[color=#cc0000]2.外推法的基本原理[/color] 众所周知,闪光法测试中,根据温升曲线计算得到的热扩散系数取决于测试条件,如脉冲加热能量和样品厚度。图 2-1显示了温升曲线和热扩散系数随温度的变化曲线。[align=center][img=,690,341]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201616538529_4916_3384_3.png!w690x341.jpg[/img][/align][align=center][color=#cc0000]图 2-1 (a)温升曲线和(b)在Tbase附近温度对热扩散系数的依赖关系[/color][/align] 当在规定温度Tbase(脉冲加热前保持恒定)下进行激光测量时,样品温度会升高Tmax。热扩散系数是一种依赖于温度的物理性能,因此,样品背面温升曲线反映了测量过程中起始温度Tbase和最高温度Tmax之间热扩散系数的温度相关性,即闪光法热扩散系数测量结果是样品温度升高后的等效热扩散系数,而不是起始温度Tbase时样品的固有热扩散系数,由此所带来的误差就是等效热扩散系数与固有热扩散系数之间的差值,此差值就是常见闪光法热扩散系数测量误差的主要来源。 从图 2-1可以看出,当样品背面温升ΔT较大时,如果材料样品的热扩散系数对温度非常敏感,则等效热扩散系数与固有热扩散系数之间的差值将会较大。另外,较大ΔT可能会样品背温红外辐射器信号带来非线性影响,也会增大测量值偏差。 由此可见,由于背面温升ΔT的存在,对于某一样品厚度和加热能量下测试得到是等效热扩散系数,此等效热扩散系数取决于样品厚度、脉冲加热能量、脉冲光吸收率和样品体积热容。从理论上讲,背面温升ΔT越小,所测试的等效热扩散系数就越接近于固有热扩散系数。但在实际测试过程中,往往会选择较大的脉冲加热能量来获得漂亮的背面温升曲线,以提高背温信号的信噪比。由此可见,脉冲加热能量的大小与热扩散系数准确测量是一对矛盾。 为了解决上述试验参数对测量结果带来的影响,日本国家计量研究所(NMIJ)的Akoshima等人开发了一种外推法热扩散系数测试规范[1]。外推法的基本原理是在恒定温度Tbase下,假设样品厚度、脉冲光吸收率和样品体积热容不随温度发生改变,通过改变脉冲加热能量(即改变背面温升ΔT大小)测试得到一系列相应的等效热扩散系数。如图 2-2所示,以背面温升ΔT为横坐标、等效热扩散系数测量值为纵坐标,建立起等效热扩散系数与背面温升的线性函数关系,最终用此线性函数外推得到脉冲加热能量为零时的等效热扩散系数,由此认为此外推得到的热扩散系数即为样品材料在温度Tbase时的固有热扩散系数。[align=center][img=,690,402]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617142109_5211_3384_3.png!w690x402.jpg[/img][/align][align=center][color=#cc0000]图 2-2 不同加热能量时的等效热扩散系数测量结果和外推法示意图[/color][/align] 由此可见,通过外推法可以得到样品材料固有的热扩散系数,而且所得到的热扩散系数与样品厚度和脉冲加热能量无关,这样就可以在实际测试中消除了测试参数对热扩散系数测量结果的影响。[color=#cc0000]3.外推法的验证[/color] 为了全面验证外推法在闪光法热扩散系数测试中的有效性,日本国家计量研究所(NMIJ)和法国国家计量和测试实验室(LNE)开展了专门的比对测试研究[2],并计划将外推法补充到闪光法热扩散系数标准测试方法中。 对比测试选择了四种材料,分别是IG-110各项同性石墨、Armco铁、YSZ陶瓷和氮化硅,如图 3-1所示。这四种材料基本覆盖了10E-4~10E-6㎡/s范围的热扩散系数,并在脉冲光和探测光的透过性上非常有代表性,从而也代表了不同样品表面吸热涂层和遮光涂层的处理方式。[align=center][img=,690,161]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617320094_8341_3384_3.png!w690x161.jpg[/img][/align][align=center][color=#cc0000]图 3-1 外推法对比测试样品:从左到右的IG-110石墨、Armco铁、3YSZ和氮化硅 [/color][/align] 两个实验室分别在室温下分别对不同样品厚度的上述四种材料进行了测试,每种厚度样品采用不同脉冲加热能量测试表观热扩散系数,结果如图 3-2~图 3-5所示。然后针对每种厚度样品的表观热扩散系数测试结果计算获得零脉冲能量外推值。每个样品的外推值以及每个实验室的平均值和标准偏差如表 3-1所示。[align=center][color=#cc0000][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617457894_7515_3384_3.png!w690x255.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-2 两实验室分别在室温下对不同厚度IG-110石墨样品采用不同脉冲加热能量测试得到的测试值和外推值,符号表示测试值,线条表示线性回归函数[/color][/align][align=center][color=#cc0000][img=,690,256]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618077493_2590_3384_3.png!w690x256.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-3 两实验室分别在室温下对不同厚度Armco铁样品采用不同脉冲加热能量测试得到的测试值和外推值,符号表示测试值,线条表示线性回归函数[/color][/align][align=center][color=#cc0000][img=,690,253]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618183304_8193_3384_3.png!w690x253.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-4 两实验室分别在室温下对不同厚度3YSZ样品采用不同脉冲加热能量测试得到的测试值和外推值,样品表面带金和/或石墨涂层[/color][/align][align=center][color=#cc0000][img=,690,260]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618287874_3031_3384_3.png!w690x260.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-5 两实验室分别在室温下对不同厚度Si3N4样品采用不同脉冲加热能量测试得到的测试值和外推值,样品表面带金和/或石墨涂层 [/color][/align][align=center][color=#cc0000]表 3-1 两实验室对比测试四种材料的固有热扩散系数,根据室温下不同厚度样品测量的表观热扩散系数值的平均值进行估算(LNE 296K,NMIJ 298K)[/color][/align][align=center][img=,690,793]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618432974_4190_3384_3.png!w690x793.jpg[/img][/align] 在各向同性石墨的情况下(其显示出室温附近热扩散系数的强温度依赖性),从具有最大温升的温升曲线计算的表观热扩散系数比使用外推法估计的固有值小3%。由于NMIJ和LNE估计热扩散系数测量的典型不确定度约为2~3%,因此这种误差就非常明显。结果表明,外推法有助于获得固有热扩散系数,同时避免测量过程中由于样品温度变化造成的偏差。通过对两种半透明性材料(3YSZ和Si3N4)的测试对比,也证明了外推法有助于检测热扩散系数的估计值是否正确,并具有识别材料任何潜在半透明效应的功能。 通过上述NMIJ和LNE这两个国家计量机构对四种固体材料进行的热扩散系数测量,验证了外推法测试技术的有效性和准确性。尽管两实验室使用了不同的测试设备和不同的温升曲线分析方法,但两实验室测量的热扩散系数依然显示出很好的一致性。由此可以确认,结合了外推法的闪光法热扩散系数测量,在10E-4~10E-6㎡/s范围内的热扩散系数测试可以不受测量条件、仪器、分析方法和实验室的影响。[color=#cc0000]4.总结[/color] 热扩散系数是材料固有的特性,据此,热扩散率不取决于测量条件、形状和尺寸。然而众所周知,闪光法热扩散系数测试经常受到这些因素的影响,因此外推法的出现为解决上述问题提出了一个很好的解决方案。 自2005年外推法提出以来,在国际度量衡委员会(CIPM)温度测量咨询委员会第9工作组(CCT-WG9)组织的实验室间热扩散系数对比框架内,一直采用外推法这一试验规程进行所有的对比测试[3]。经过多年的验证试验和实际测试,证明了外推法主要有以下特点和优势: (1)外推法是一种通用性方法。在采用外推法测试材料热扩散系数过程中,尽管不同实验室和不同测试设备采用不同脉冲加热能量和不同数据处理方法会得到不同的外推斜率,反映了与测量仪器和所用评估方法相关的测量条件,但对应于固有热扩散系数的截距值与斜率无关。 (2)外推法对热扩散系数随温度变化敏感的材料更有效。从上述石墨与金属材料的对比测试可以看出,Armco铁的外推斜率要小于IG-110石墨外推斜率,石墨材料热扩散系数在对温度变化敏感的范围内,外推法对于更能显著提高测量的准确性。 (3)有助于识别潜在的材料半透明效应。采用外推法测量时,如果材料完全不透明则会得到与样品厚度无关的相同的外推值,反之则会看出明显的厚度变化所带来的半透明效应。这种功能在识别未知材料的潜在半透明性中非常有用。 (4)由于使用外推法只需在不同脉冲加热能量下进行测量,与样品厚度和数据处理方法无关,加上目前闪光法测试设备自动化程度很高,可以自动按照设定程序改变脉冲加热能量进行连续测量,因此只需选定一种厚度样品就可以快速准确的测定热扩散系数,既能保证测量准确性又能提高测试效率。另外,通过外推法还可以在大的信噪比下进行测量,解决了信噪比与测量精度的矛盾。[color=#cc0000]5.参考文献[/color][align=left](1) M. Akoshima, T. Baba, in Proceedings of Thermal Conductivity 28/Thermal Expansion 16, ed. by R.B. Dinwiddie, M.A. White, L. McElroy (DEStech Publications, Lancaster, 2006), p. 497–506[/align][align=left](2)Akoshima M, Hay B, Neda M, et al. Experimental verification to obtain intrinsic thermal diffusivity by laser-flash method[J]. International Journal of Thermophysics, 2013, 34(5): 778-791.[/align][align=left](3)Akoshima M, Hay B, Zhang J, et al. International comparison on thermal-diffusivity measurements for iron and isotropic graphite using the laser flash method in CCT-WG9[J]. International Journal of Thermophysics, 2013, 34(5): 763-777.[/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 十万分之一英寸的测量仪器

    公司的很多尺寸规定的公差是万分之一英寸,即0.0001in,需要十万分之一精度的测量仪器,即0.00001in精度的测量仪器,请教各位量友,有没有什么推荐?单位目前使用的是显示为0.0001in的激光测径仪和显示为0.00001in,精度为0.0003in的二次元,不能保证0.0001in的公差。

  • 计量仪器ZT

    我国计量仪器和国外相比存在一定的差距,更严重的是,国外对一些敏感计量仪器限制进口,严重阻碍了我国经济建设和国防建设的发展。例如:我国激光参数计量测试仪器的发展较为落后,与国外发达国家相比存在明显的差距。目前,我国激光参数计量测试仪器的专业研发单位和供应商很少,仅中国计量科学研究院、中科院上海光机所、北京光电技术研究所、物科公司等少数几家,且研发工作处于十分零散的状态。其提供市场的计量测试设备也较片面,绝大多数只能用于较传统的激光产品的计量测试,对于新型激光器和激光产品常常不能提供有效的计量测试。表现在:(1)现有计量检测仪器无法对某些激光输出参量进行计量检测。目前对于激光脉冲宽度、峰值功率、脉冲激光瞬态功率—时间曲线等重要参数,国内尚没有研发出成型的计量检测仪器,对于此类激光参数难以进行计量检测。(2)现有计量检测仪器不适用于某些激光器的工作状态。对于目前大量使用的高脉冲重复率、高平均功率的激光器,国内现有的计量检测仪器难以适应其工作状态。具体而言,国内现有的激光能量计量仪器绝大部分仍是单脉冲测量仪器,在激光器重频工作状态下根本无法进行测量;少量可测重频激光的能量计,其最高使用频率也仅20~40Hz,对于很多高达百Hz乃至数千Hz的激光输出也不适用;在此种情况下国内一般只能使用激光功率计进行平均功率检测,而这种检测方式无法评估激光输出的脉冲能量的稳定性,同时此类激光往往有较高的输出峰值功率,一般激光功率计在测量时极易受到损伤。又如蓝光DVD使用的半导体激光器的测试仪器,国内外产品普遍采用光电探测器作为激光接受器,但国内探测器一般仅在632.8nm进行校准,且没有给出探测器的光谱响应度曲线,致使国产激光功率测量仪器无法准确测量蓝光DVD使用的半导体激光器的输出功率。(3)现有计量检测仪器的量限难以满足一些激光参数的测试要求。目前激光应用的领域十分广阔,某些应用(如激光测距、制导等)需要对极其微弱的光信号(低至10-14~10-15J)进行检测校准,而另一些应用(如万瓦级激光加工机、化学激光器等)又需要对极高的激光输出能量功率(10KW、1MJ)或极高的峰值功率进行检测。国内现有的激光计量检测仪器其测量下限一般仅在10-9W或10-8J量级,测量上限也仅在数千瓦和数百焦尔量级,无法满足上述应用的计量检测需求。同时,我国国产的激光测数计量测试仪器在新技术的消化、吸收和利用上也远远落后于国际仪器行业的发展水平。当国外先进的激光计量检测仪器在5~10年前,早已全面实现智能化,而向虚拟化、网络化仪器发展的今天,国产激光计量测试仪器大部分仍然停留在模拟集成电路和数字化仪器阶段,仅少量的发展至智能化仪器水平,落后国际水平至少15年。国产激光参数计量测试仪器不仅在测量性能上落后于国际水平,在使用功能上亦远远逊色。进口仪器在智能化的基础上利用仪器本身具备的数据处理能力,提供了丰富的测量数据表达形式,直观友好的人机界面,同时通过仪器具备组网功能,依靠主控计算机强大的处理能力,协调多台仪器进行多参数协同测试,利用神经网络、模糊逻辑等算法对获得的原始测量数据进行综合分析,得到精确的测量结果并给出用户习惯的数据表达方式。而国产仪器绝大部分功能单一,根本不具备基本数据处理能力和联机能力。近年来,国外激光参数测量仪器大量进入国内市场。国内传统的激光参数计量检测产品在性能指标、功能多样性、技术水平、工作可靠性、使用便捷程度等方面均存在较明显差距,仅仅依靠价格优势,勉强抵抗国外产品对我国激光参数计量测试仪器市场的冲击。从中国计量科学研究院每年进行校准的激光参数计量检测仪器的情况看,进口仪器设备所占比重已由1995年的不到10%,迅速增长到50%左右。目前激光产品研究和使用单位在经费许可的情况下几乎很少考虑采购国产测试仪器,国产仪器正受到进口仪器猛烈的冲击。在扫描探针显微镜方面(SPM),国内对SPM的研究应当说是比较早的,中国科学院白春礼院士首先研制出我国

  • 建筑声学测量仪器解决方案

    为了帮助客户更好地选用建筑声学测量仪器,我们根据相关标准要求,提出建筑声学测量仪器解决方案,主要包括以下内容:1 建筑声学测量总的仪器解决方案 适用建筑构件隔声测量、混响室吸声系数测量和室内混响时间测量。 建筑构件隔声测量根据传播途径的不同分为: 1)建筑构件的空气声隔声测量; 2)楼板撞击声隔声测量。 我公司提供的解决方案:选用AWA6290M型双通道分析仪、AWA5870B型功率放大器、AWA5510型12面体声源、AWA5560型标准撞击器,以及建筑声学测量软件。 与传统建筑声学仪器配置的比较: 1)设备少了许多,不再需要噪声发生器、滤波器、电平记录仪; 2)智能化程度高,由计算机直接计算各项测量指标,省力省时间; 3)混响时间测量既可以按中断声源法,也可按脉冲响应积分法; 4)同时测量出各个中心频率下的混响时间、隔声量和吸声系数,效率大大提高; 5)可以自动生成报表; 6)还可进行噪声的频谱分析等测量。如果用户需要对振动进行测量,只要增加振动测量通道和相应的软件。 7)当测量标准修订了,也可以通过软件升级或增加的办法,使它符合新标准的要求,而不需重新购买。2 测量混响时间简单解决方案 如果仅仅测量混响时间,只需选用AWA6291型实时信号分析仪,配置实时倍频程和1/3倍频程分析软件和混响时间测量软件。该配置的优点:1)使用设备非常简单,不再需要噪声发生器、滤波器、电平记录仪;2)按脉冲响应积分法测混响时间,准确性高,低频尤其明显;3)同时测量并直接计算所有频带的混响时间,省力省时间;4)该仪器还能进行噪声测量和实时倍频程和1/3倍频程分析。3 阻抗管法材料吸声系数测量解决方案 材料吸声系数的测量除了混响室法,还可采用阻抗管法。阻抗管法材料吸声系数的测量又分为: 1)驻波比法吸声系数测量方法 利用AWA6122A型驻波管吸声系数测试仪,测定垂直入射条件下吸声材料的吸声系数。测试仪软件根据测量到的峰声级值和谷声级值自动计算出吸声系数,并能生成吸声系数与频率的坐标曲线。 该方案的特点: ● 工作原理直观,尤适宜教学使用; ● 不另需要信号发生器、测量放大器、滤波器等设备; ●自动计算吸声材料各频率点的吸声系数,生成吸声系数频响曲线; ●只能一个一个频率点测量,而且要寻找波峰和波谷点,费时费力。 2)传递函数法测量吸声系数 选用AWA6290M型双通道分析仪或AWA6290B型四通道分析仪,相位配对的1/4″测量传声器和AWA14634E前置放大器,加上AWA8551系列阻抗管,配置信号发生软件、1/3 OCT分析软件、FFT 分析软件、传递函数吸声系数测量软件和四传声器隔声测量软件。不同测量要求选择选择不同配置。 该方案的特点: ●是一种更为方便、快捷、操作误差小、测量结果一致性好的吸声系数和声阻抗的近代测量技术; ●同时测量并计算所有频率点的吸声系数,生成吸声系数频响曲线; ●采用4传声器法还可测量材料的隔声系数; ●设备比较复杂,价格相对较高。

  • 【资料】温度测量仪

    温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

  • 关于物位测量仪表的一些基础信息

    基本概念: 物位是指物料相对于某一基准的位量,是液位、料位和相界而的总称。 (1)液位。储存在各种容器中的液体液面的相对高度或自然界的江、河、湖、海以及水库中液体表面的相对高度。 (2)料位。容器、堆场、仓库等所储存的固体颗粒、粉料等的相对高度或表面位置o (3)相界面位置。同一容器中储存的两种密度不同旦互不相溶的介质之间的分界面位置。通常指液—液相界面、液—固相界面。物位的测量即是指以上三种位置的测量,其结果常用绝对长度单位或百分数表示。测量固体料位的仪表称为料位计,测量液位的仪表称为液位计,测量相界面位置的仪表称界面计。根据我国生产的物位测量仪表系列和工厂实际应用情况,液位测量占有相当大的比例,故在此主要介绍工厂常用的液位测量仪表,其原理也适应其他物位测量。物位测量仪表的分类:物位测量方法很多,测量范围较广,可从儿毫米到几十米,甚至更高,且生产I艺对物位测量的要求也各不相同。因此,工业上所采用的物位测量仪友种类繁多,技其工作原理可分为:(1)直读式物位测量仪表。它利用连通器原理,通过与被测容器连通的玻璃管或玻璃板来直接显示容器中的液位高度,是最原始但仍应用较多的液位计。(2)静压式物仪测量仪表。它是利用液校或物料堆积对某定点产生压力,测量该点压力或测量该点与另一参考点的压差而间接测量物位的仪表。这类仪表共有压力计式物位计、差压式液位计和吹气式液位计3种。(3)浮力式物位测量仪表。这是一种依据力平衡原理,利用浮于一类悬浮物的位置随液面的变化而变化来反映液他的仪表。它又分为浮子式、浮筒式和杠杆浮球式3种。它们均可测量液位,且后两种还可测量液—液相界面。 (4)电气式物位测量仪表。它是将物位的变化转换为电量的变化,进行间接测量物位的仪表。根据电量参数的不同,可分为电容式、电阻式和电感式3种,其中电感式只能测量液位。(5)声学式物位测量仪表。利用超声波在介质中的传播速度及在不同相界面之间的反射特性来检测物位。它可分为气介式、液介式和固介式3种,其中气介式可测液位和料位;液介式可测液位和液—液相界面;固介式只能测液位,比如:防爆型超声波液位计(6)光学式物位测量仪表。它是利用物位对光波的遮断和反射原理来测量物位的。有激光式物位计,可测液位和料位,: (7)核辐射式物位测量仪表。放射性同位素所放出的射线穿过被测介质时.被吸收而减弱,其衰减的程度与被测介质的厚度(物位)有关。利用这种方法可实现液位和料位的非接触式检测。 除此以外,还有重锤式、音叉式和旋翼式3种机械式物位测量仪表,以及微波式、热电式、称重式、防爆型超声波液位计、射流式等多种类型,且新原理、新品种仍在不断发展之中。物位测量仪表按仪表的功能不同又可分为连续测量和位式测量两种.前者可实现物位连续测量、控制、指示、记录、远传、调节等,后者比较简单价廉,主要用于定点报警和自动进出物料的自动化系统。 返回——仪器仪表网

  • 【转帖】温度测量仪

    温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制