当前位置: 仪器信息网 > 行业主题 > >

激光粒径测试仪

仪器信息网激光粒径测试仪专题为您提供2024年最新激光粒径测试仪价格报价、厂家品牌的相关信息, 包括激光粒径测试仪参数、型号等,不管是国产,还是进口品牌的激光粒径测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光粒径测试仪相关的耗材配件、试剂标物,还有激光粒径测试仪相关的最新资讯、资料,以及激光粒径测试仪相关的解决方案。

激光粒径测试仪相关的资讯

  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style="text-indent: 2em "涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。/pp style="text-indent: 2em "激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。/pp style="text-indent: 2em "/pp style="text-indent: 2em "1 实验部分/pp style="text-indent: 2em "1.1 主要原料及仪器br//pp style="text-indent: 2em "钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。/pp style="text-indent: 2em "1.2 试验方法/pp style="text-indent: 2em "(1) 干法测试/pp style="text-indent: 2em "称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。span style="text-indent: 2em "(2) 湿法测试/span/pp style="text-indent: 2em "湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。span style="text-indent: 2em "1.3 粒径分布参数/span/pp style="text-indent: 2em "Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。/pp style="text-indent: 2em "2 结果与讨论/pp style="text-indent: 2em "2.1 钛白粉粒径分布的测试/pp style="text-indent: 2em "2.1.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title="1.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。/pp style="text-indent: 2em "2.1.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title="2.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。/pp style="text-indent: 2em "2.1.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title="3.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。/pp style="text-indent: 2em "2.1.4 钛白粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。/pp style="text-indent: 2em "2.2 滑石粉粒径分布的测试/pp style="text-indent: 2em "2.2.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title="4.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。/pp style="text-indent: 2em "2.2.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.4 滑石粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。/pp style="text-indent: 2em "2.3 石墨烯粒度分布的测试/pp style="text-indent: 2em "2.3.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title="7.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。/pp style="text-indent: 2em "2.3.2 湿法测试(不加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title="8.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。/pp style="text-indent: 2em "2.3.3 湿法测试(加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title="9.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。/pp style="text-indent: 2em "2.3.4 石墨烯2种测试方法之间的差异/pp style="text-indent: 2em "从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。/pp style="text-indent: 2em "2.4 涂料粒径分析干法和湿法之间的差异/pp style="text-indent: 2em "干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。/pp style="text-indent: 2em "2.5 干法和湿法测试的重复性比较/pp style="text-indent: 2em "2.5.1 干法测试重复性/pp style="text-indent: 2em "重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title="10.webp.jpg"//pp/pp style="text-indent: 2em "2.5.2 湿法测试重复性/pp style="text-indent: 2em "选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title="11.webp.jpg"//pp/pp style="text-indent: 2em "目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。/pp style="text-indent: 2em "影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。/pp style="text-indent: 2em "3 结语/pp style="text-indent: 2em "讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。/pp style="text-indent: 2em "在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。/p
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 全自动激光粒度仪散射理论的应用
    由于运用光散射参数的组合不同,形成了众多基于散射的颗粒粒径测量理论,米氏散射理论,夫朗和费衍射,衍射式散射,全散射,角散射等,不同理论的运用形成了多种粒度测试仪器共存的现状。  米氏理论是对均质的球形颗粒在平行单色光照射下的电磁方程的精确解,它适用于一切大小和不同折射率的球形颗粒。而夫朗和费衍射理论只是经典米氏理论的一个近似或一个特例,仅当颗粒直径与入射光波长相比很大时才能适用。这就决定了基于夫朗和费衍射理论的激光粒度仪的测量下限不能很小。正因如此,应用经典米氏散射理论的激光粒度仪以其适用范围广,在小粒径范围测量的极高精度,受到了广泛认可。
  • 2013年颗粒测试仪器年度盘点
    激光粒度仪  目前,激光粒度仪核心技术发展已相当成熟,且国内外暂无突破性的激光粒度仪新技术问世,因此,近年来激光粒度仪生产商推向市场的新品多为升级产品,追求测量范围更宽、精度更高。LA-960激光粒度仪(详细性能参数)  例如,HORIBA在BCEIA 2013期间推出了LA950激光粒度仪的升级版LA960。LA960特别为大颗粒样品单独设置了进样系统,因此配有两个单独的干法进样器,这使得LA960拥有超宽的颗粒粒径测量范围(0.01-5000&mu m),测量精度可达到± 0.6%。EliteZizer多角度粒度分析仪(详细性能参数)  2013年7月,美国布鲁克海文推出的EliteZizer多角度粒度分析仪结合了背向光散射技术与传统动态光散射技术,具备15° 、90° 与173° 三个散射角度,可同时兼顾大、小颗粒的散射光信号。该新品的另一大特点是高浓度粒度分析,浓度测量上限可达到40%w/v。  除新品策略外,激光粒度仪生产商的关注重点开始转向&ldquo 捆绑式&rdquo 合作。  例如,2013年5月,占据市场份额最大的激光粒度仪生产商马尔文,与耐驰研磨与分散事业部达成市场合作协议。借此协议,马尔文的Mastersizer 3000激光粒度仪将作为耐驰研磨机输出颗粒的常规粒径检测仪器,在耐驰全球主要的市场(包括中国在内)的测试实验室推广使用。  作为颗粒测试仪器市场中的主流产品,当前市场中激光粒度仪产品的质量成熟度较高,用户更换仪器的周期较长,因此,激光粒度仪在国内部分传统应用行业的市场饱和度不断增高。有业内专家表示,受我国光伏行业持续低迷的影响,激光粒度仪在国内磨料行业的销量不断缩减。2013年中国激光粒度仪的市场销量基本与去年持平,未有明显增长。  不过,该专家还表示,激光粒度仪的应用非常广泛,光伏行业的不景气并不影响中国激光粒度仪市场的大环境。随着我国医药、涂料、石油化工等行业的需求不断提升,国内激光粒度仪市场将有希望进一步打开,激光粒度仪生产商应该注重这些领域的开发应用工作。  纳米粒度仪  相比激光粒度仪市场的&ldquo 冷清&rdquo ,2013年的纳米粒度仪市场活跃度比较高。业内专家表示,纳米粒度仪的价格较高,其用户主要集中在仪器采购经费充足的科研院所和高校。借助于纳米技术、生命科学的研究热潮,近年来,中国纳米粒度仪市场销量不断提升,已成为各大颗粒测试仪器生产商关注的焦点。  2013年9月,马尔文以1500万英镑成功收购NanoSight,通过获取NanoSight的独特纳米颗粒跟踪分析技术,实现了与自身纳米粒度仪zetasizer系列的互补。借此交易,马尔文即将推出NanoSight系列纳米颗粒测量系统,继续巩固其在中国乃至全球的市场地位。DelsaMax Pro纳米粒度及Zeta电位仪(详细性能参数)  贝克曼库尔特在Pittcon 2013推出DelsaMax系列纳米粒度及Zeta电位仪,DelsaMax系列拥有一个光源和两个独立检测系统,可以实现并行测量,即一次加样可同步进行纳米粒径测量与Zeta电位分析,且测量时间仅需1秒钟,属于世界首创。SALD-7500nano纳米粒度仪(详细性能参数)  2013年8月,岛津在中国市场推出了一款纳米粒度仪SALD-7500nano,并在此基础上打造出了一款Aggregates Sizer凝集性评价系统。该评价系统是专门针对生物医药品推出的,特别适用于SVP(0.1~10&mu m)区域聚合体的粒度及浓度分析测定,能够在最短的1秒间隔定量监测聚合过程。Winner801光子相关纳米粒度仪(详细性能参数)  相对于国外厂商的活跃,今年国内的纳米粒度仪生产商也有很大突破。2013年年底,济南微纳承担的&ldquo 基于动态光散射原理的光子相关纳米粒度仪&rdquo 项目通过专家验收。据了解,该项目研制出了国内首款采用数字相关器的纳米粒度仪Winner801,据业内专家表示,这款Winner801光子相关纳米粒度仪还是经得起市场考验的。另据消息,济南微纳目前正准备上市前的最后工作 若济南微纳成功上市,其将成为国内第一家上市的颗粒测试仪器厂商。  颗粒图像分析仪  对于不规则形状的颗粒样品,单一地测试其粒度分布,并不能完全体现其物理特性,颗粒的形状特征对样品的物理特性也有很大影响。颗粒图像分析仪就是这样一种兼备粒度粒形测试功能的颗粒测试仪器。随着动态图像处理技术的引入,颗粒图像分析仪近些年有了快速的发展。BT-2800动态图像粒度粒形分析系统(详细性能参数)  不规则形状的颗粒测试过程容易出现离焦现象,而丹东百特2013年推出的BT-2800动态图像粒度粒形分析系统则选择采用了鞘流技术(流体聚焦技术),该技术使颗粒队列正好位于镜头的焦平面上,避免了离焦现象。同时采用高速CCD、精密柱塞泵和快速颗粒图像识别技术,BT-2800每分钟能拍摄并处理1-5万个颗粒,特别适用于针状颗粒样品的长径比分析。BT-2900干法图像粒度粒形分析系统(详细性能参数)  丹东百特同期推出的BT-2900干法图像粒度粒形分析系统可以说是BT-2800的互补型产品,属于干法进样系统。该产品是在在颗粒自由下落过程中随机拍摄通过镜头的颗粒图像,并进行快速识别和处理,丹东百特对此形容为&ldquo 瀑布&rdquo 分散技术,适用于粗的、粒状材料的粒度粒形分析。  还值得一提的是,一直专注于颗粒测试仪器&ldquo 精耕细作&rdquo 的丹东百特,2013年还&ldquo 跨行&rdquo 研发了PM2.5监测仪器,目前第一版PM2.5样机已在多个监测单位安装试用。或许是看中了目前环境空气监测仪器市场的大好商机,抑或是基于自身多年累积的颗粒测试技术研发经验,丹东百特&ldquo 冒险&rdquo 挤进这个早已高手云集的中国环境监测仪器市场。丹东百特的PM2.5监测仪器能否经得起时间和市场的考验?不妨让我们拭目以待!  颗粒计数器Multisizer4库尔特颗粒计数及粒度分析仪(详细性能参数)  2013年4月,贝克曼库尔特还推出了一款Multisizer4库尔特颗粒计数及粒度分析仪。Multisizer4是其经典产品Multisizer3的升级版,继续沿用库尔特原理,还引入了数码脉冲处理器(DPP)技术,提高了Multisizer4灵敏度,可广泛应用在生物技术、细胞生物学、石油化工等行业。  2013年年底,丹纳赫集团(贝克曼库尔特母公司)决定重新定义颗粒特性业务,将贝克曼库尔特的颗粒特性业务与哈希公司的颗粒计数业务进行合并,哈希公司颗粒计数业务员工将逐渐整合进贝克曼库尔特的颗粒特性团队,此举将有助于进一步扩大颗粒计数与分析市场份额。pld-0201液压油污染度检测仪(详细性能参数)  油液中颗粒物质是液压系统发生故障及液压元件过早磨损或损坏的主要原因,因此,油液中颗粒污染物质控制与检测是现代液压系统及润滑系统式工况检测和故障诊断的必备手段。2013年3月,英国普洛帝推出了一款pld-0201液压油污染度检测仪。其采用光阻法(遮光式)原理,可以对液压油、润滑油等油液进行固体颗粒污染度检测,及对有机液体、聚合物溶液进行不溶性微粒的检测。  在线粒度测试仪  此前,曾有业内人士预测,在线颗粒测试的需求量将远远大于实验室,未来在线颗粒测试技术将成为颗粒行业竞争的焦点。 APAS在线粒度分析仪(详细性能参数)  随着技术的进步,在线测量颗粒的大小分布变的相对简单。但是对于不规则的结晶颗粒,基于衍射方法或某些反射法原理的仪器测量精度有时并不能满足用户需求。2013年开始在中国上市德国sequip的APAS在线粒度分析仪采用了高速扫描办法,测量出颗粒的投影面积,并由此准确得到了不规则颗粒的大小和分布,检测下限可达到120nm。(编辑:刘玉兰)
  • 成都精新:激光粒度仪测试原料药样品经验谈
    p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "在制药行业中,粉体的颗粒特性已成为胶囊、药片、口服制剂等产品开发和质量控制中至关重要的因素之一。原料药的粒度分布会对产品的性能产生显著的影响,如:溶解度、生物利用度、含量均匀度、稳定性等。此外,原料药和辅料的粒度分布也会影响药物的可生产性,如:颗粒流动性、总混均匀度、可压性等,最终可能影响药物的安全性、有效性和质量。所以无论是制粉还是制粒都对药物的粒度分布有一个很严格的要求。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/872d1979-fedc-4a32-883a-a72710391b9c.jpg" title="图片1.jpg" alt="图片1.jpg"//pp style="text-align: center text-indent: 0em "span style="font-family: 宋体, SimSun "strong图1 显微镜下采集的原料药颗粒形貌/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun color: rgb(0, 176, 240) font-size: 18px "strong粒度测试方法选择依据大揭秘/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "原料药和辅料的粒度测试,要根据它的特性选择合适的粒度测试方法。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "首次测量样品的第一步就是决定在湿状态下还是在干状态下分析样品。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "如一些样品易和湿分散介质起反应,比如可能溶解或和液体接触时膨胀,就应选择干法测试。干法测试的方法是:采用空压机气体为分散介质,利用紊流分散原理,配合高精度进料装置和粉料喷射枪(专利),无油静音气源,保证样品被充分分散,得到准确的粒度数据。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "如样品能在水中均匀分散,且不溶解或膨胀,应选择湿法测试,尤其是液体或乳液类原料。湿法测试的方法是:将样粉放入样品池,进行超声波分散、机械搅拌循环测试。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 18px "strongspan style="font-family: 宋体, SimSun color: rgb(0, 176, 240) "取样、分散小技巧分享/span/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "粒度测试还应有完善的粒度分析标准,包括取样、分散方法、仪器参数设置、管理员进入密码、数据分析和说明等。其中取样和分散至关重要,关系到样品最终测试的准确性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "strong1、取样/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "药物的粒度测量是通过对少量的样品,进行粒度分布测试来表征大量粉体粒度分布的,因此要求所测的样品必须具有充分的代表性。取样应注意以下几点:/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "①从生产线中取样时要从料流中截断料流取样。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "②从大堆物料中取样时要从不同深度、不同部位多点取样。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "③从实验室样品中取样首先要混合均匀,多点(至少四个点)取样。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "④从悬浮液中取样时应充分搅拌均匀,从液面到器皿底之间摇匀抽取。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "strong2、样品分散方法/strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "对于粒径小或有粘性的颗粒,这些颗粒有聚集的趋势,选择合适的样品分散方法至关重要,样品分散的目的是尽可能地减弱样品分析中颗粒的聚集,同时避免过度使用分散力而造成颗粒损耗。以湿法测试为例,常见的分散方式有:/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "1、介质湿润:粒度测量通常是将样品置于某种液体介质中,形成一定颗粒浓度的均匀悬浮液,这种均匀悬浮液通过测量窗口时就可以进行粒度测量。这里所用的液体是起媒介作用的物质,称为介质(可以是自来水、蒸馏水、纯净水等)。粒度测量的介质要求:①.纯净②不与被测样品发生化学反应。③使样品具有适当的沉降状态。④与样品具有良好亲和性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "2、搅拌:通过搅拌叶片产生的剪切力使颗粒与介质分散。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "3、超声波分散:通过超声波产生的高频率机械振动信号传输到介质中,将聚集颗粒分散。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "4、分散剂:分散剂是指加入到粒度测量介质中能提高颗粒表面与介质间亲和性,使颗粒/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "在介质中达到易浸润又保持分散状态的物质。常用的分散剂有六偏磷酸钠、焦磷酸钠、表面活性剂(包括洗涤剂)等。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 18px "strongspan style="font-family: 宋体, SimSun color: rgb(0, 176, 240) "仪器推荐/span/strong/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/e3b5c3d3-4b77-441d-9e41-070036056ae7.jpg" title="图片2.jpg" alt="图片2.jpg"//pp style="text-align: center text-indent: 0em "span style="font-family: 宋体, SimSun "strong图2 JL-6000 激光粒度仪主机、辅机组合说明/strong/span/pp style="text-indent: 0em "script src="https://p.bokecc.com/player?vid=389F5AC676FAE8E19C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptspan style="font-family: 宋体, SimSun "strongbr//strong/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "成都精新自主研发的JL-6000集干法测试和湿法测试于一体,满足了新药研发对于药物粒度的测试需求。软件按照SOP标准化流程操作,提供D10、D50、D90、D97等典型粒径值,并有体积平均粒径、面积平均粒径、比表面积,累计粒度分布曲线、粒度分布数据等,设置管理员权限和审计追踪。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/4065fc9c-5b28-466b-badd-befbe3fac3a8.jpg" title="图片3.jpg" alt="图片3.jpg"//pp style="text-align: center text-indent: 0em "strongspan style="font-family: 宋体, SimSun " /spanspan style="font-family: 宋体, SimSun text-indent: 2em "图3 粒度报告典型粒径值/span/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/344eb23c-0cec-44bb-8458-3f6eb2e0045b.jpg" title="图片4.jpg" alt="图片4.jpg"//pp style="text-align: center text-indent: 0em "strongspan style="font-family: 宋体, SimSun "图4 曲线区间粒度分布数据与直方图/span/strong/pp style="text-indent: 0em "strongspan style="font-family: 宋体, SimSun "br//span/strong/pp style="text-indent: 0em text-align: right "strongspan style="font-family: 宋体, SimSun "作者:李梅/span/strong/pp style="text-indent: 0em text-align: right "strongspan style="font-family: 宋体, SimSun "成都精新粉体有限公司测试中心工程师/span/strong/pp style="text-indent: 0em text-align: center "span style="font-size: 18px color: rgb(0, 0, 0) "strongspan style="font-size: 18px font-family: 宋体, SimSun "更多相关仪器欢迎点击进入仪器信息网a href="https://www.instrument.com.cn/zc/470.html" target="_self"span style="font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 240) "激光粒度仪专场/span/a了解/span/strong/span/pp style="text-align: left text-indent: 2em "strongspan style="font-family: 宋体, SimSun "(注:本文由成都精新供稿,不代表仪器信息网本网观点)/span/strong/p
  • 激光粒度分析仪在水泥行业的应用
    p style="text-indent: 2em "现如今水泥厂都偏向于将水泥磨细来提高水泥强度,其实水泥石强度并不一定随水泥细度的增加、组分水化活性的提高而提高。但颗粒越细,水化活性越高;最初的强度发展速率随细度增加而增长。在规范中,水泥细度通常用筛余或比表面积来衡量。实际上除了进行上述指标的控制,对于细度而言粒度分布(水泥行业称“颗粒级配”,这里统称“粒度”或“粒度分布”)也是重要因素。/pp style="text-indent: 2em "粒度分布是指组成水泥的所有颗粒中,不同粒径颗粒所占有的百分比。粒度分布的测定不仅是控制水泥颗粒细度的一种有效的方法,更重要的是它将对粉磨、分级等环节的优化提供准确的依据。水泥的粒度分布情况将极大地影响混凝土的强度。粒度分布的测量对最终产品的质量控制,以及在生产的过程中,如何使生产工艺最佳化,来提高产品的质量,同时在减少能耗,降低生产成本等方面均有极大的作用。/pp style="text-indent: 2em "大量研究表明,在原料及烧成条件确定的情况下,粒度决定水泥性能,同时物料的颗粒分布也能用来判断粉磨系统的性能。水泥颗粒只有发生水化,才对强度有贡献,而水化过程对一个单独的水泥颗粒而言又是由表及里,渐进发生的,1微米以下细颗粒由于在和水的拌和过程中就完全水化,对强度没有贡献。其含量增加,说明存在过粉磨,浪费了粉磨能量;同时显著增加了拌和的需水量,降低了浇筑性能。因此,该组分颗粒应尽可能减少。1~3微米颗粒含量高,3天强度就高,同时需水量会相应增加,浇筑性能下降。因此,该组分颗粒在3天强度能满足要求的前提下,也应尽可能低。大颗粒水化的慢,在后期才能逐渐发挥作用,特大颗粒只有表层被水化,内核只起骨架作用,对强度没有贡献。浇筑28天后的水化深度约为5.46µ m。这就意味着大于两倍水化深度(约11µ m)的颗粒,总是有一部分内核未水化。未被水化的内核在混凝土中只起骨架作用,对胶凝没有贡献。16、32和64µ m颗粒的水化率分别为97%、72%和43%,因此通常认为3~32µ m颗粒对28天强度起主要作用。32µ m以上颗粒,尤其是65µ m以上颗粒水化率较低,是对熟料的浪费,应尽可能降低。3~16µ m颗粒含量越高,熟料的作用发挥得越彻底,相同条件下混合材添加量就可以越高。32µ m以上颗粒含量过高,泌水性会增大。混合材在粒度上如果能与熟料互补,形成最佳堆积,则混合材的添加不仅不会降低水泥强度,而且还能增加强度。而传统的细度和比表面积同水泥的性能的相关性并不理想。因此,在现代水泥生产中,测定水泥的颗粒分布对水泥性能(比如强度、流动性、混合材的掺加比例等)有强烈影响。/pp style="text-indent: 2em "那么如何更好的测得水泥的粒度呢?现代比较流行的粒度测试仪器有:激光粒度仪、沉降粒度仪、电阻法颗粒计数器、显微颗粒图像分析仪以及纳米激光粒度仪等。其中用动态光散射原理的光子相关动态光散射仪的测量范围主要在亚微米和纳米级,显然不适合水泥的测量;沉降仪、电阻法计数器和图像仪的测量范围虽然主要在微米级,但它们的动态范围不够。所谓动态范围就是粒度仪器在一个量程内能测量的最大与最小粒径之比。前述三种仪器的动态范围均在20:1左右,而一个水泥样品的粒度分布范围大约在100:1左右,所以这三种仪器也难以满足水泥的粒度测试需要。激光粒度仪的动态范围可以达到1000:1以上,大于水泥的粒度分布范围;其次它在样品分散方式上还可用空气作为介质(干法分散),做到了既方便又低成本,测试速度快,测一个样品只需1min左右,而且测量的重复性好,D50的相对误差小于1%。因此激光粒度分析仪已逐渐成为水泥行业中一种日常的控制方式而得到广泛应用。/p
  • 干货|7大因素影响激光粒度测试结果
    p style="text-indent: 2em "编者按:粉体的粒度及粒度分布是衡量产品质量的关键性指标,而目前最火的粒度检测方法之一就是激光粒度仪了。这种粒度检测方法不受温度变化、介质黏度、试样密度及表面状态等诸多因素的影响,具有测试速度快、测量范围广、便捷易操作等特点。放眼市场,激光粒度仪的品牌和型号也可谓五花八门,琳琅满目。但值得称道的激光粒度仪虽然不胜枚举,却仍然会收到诸多因素的影响,造成检测结果的不稳定。太原理工大学矿业工程学院的专家张国强就深度剖析了7大影响激光粒度仪检测结果的因素。/pp style="text-indent: 2em "专家观点:/pp style="text-indent: 2em "目前市面上的激光粒度分析仪其基本原理均为米氏散射理论及其近似理论。包括测量纳米级颗粒所使用的动态光散射原理也是借助米氏散射理论而补充完善起来的 。米氏散射理论把待测颗粒等效成各向同性的球形粒子,在入射光照射下根据麦克斯韦电磁方程组,可以求出散射光强角分布的严格数学解。 利用米氏散射理论的基本公式进一步求出此时散射光强分布对应的颗粒粒径。米氏散射理论通过测量待测样品的散射光强分布巧妙地解决了超细颗粒的粒度测量问题,但由于基于米氏理论的激光粒度测量技术本身的复杂性,提前预先设定的边界条件并不能全面地反映实际样品的具体情况。 同时商品化的激光粒度分析仪由于受生产厂家技术实力水平的限制,导致各厂家仪器的内部构造与算法程序等方面均存在差异。/pp style="text-indent: 2em "为探究粉体粒度测试评价用标准样品的特性,为激光粒度分析仪生产厂家提供优化仪器性能的理论依据,为粒度检测用户提供评价激光粒度测试结果可靠性与准确性的依据。下面我将对激光粒度仪测试结果的重要影响因素进行分析:/pp style="text-indent: 2em "(1)复折射率/pp style="text-indent: 2em "激光散射法粒度测量的对象一般是微米级的粒子,这些粒子的光学常数并不能简单看成/pp style="text-indent: 2em "粒子材料的光学性质,而是指颗粒的复折射率n’,其定义为:n‘=n+ik。其中 n 为通常所说的折射率,虚部k表示光在介质中传播时光强衰减的快慢,即吸收系数,有时也被称作吸收率。/pp style="text-indent: 2em "复折射率的选择合适与否直接影响到粒度检测结果的准确性与可靠性,但是影响待测颗粒复折射率的因素较多,难以确定其准确值,所以到目前为止在激光粒度测量领域中仍旧没有确定复折射率的统一方法 。在实际的粒度检测过程中,一般只是对同种物质使用一个固定的复折射率,这样的测量结果必然会与样品的真实值有较大偏差。 但是如果针对不同粒/pp style="text-indent: 2em "度区间的颗粒都去寻找其复折射率,却又不现实的。/pp style="text-indent: 2em "(2)折射率/pp style="text-indent: 2em "Mie 散射理论是麦克斯韦电磁方程组的严格解,激光法检测的前提假设是粉体粒子是球形且各向同性的,大多数晶体在不同的方向上有不同的折射率。由于不同厂家的设备中光能探测器的数量、空间分布位置、灵敏度的不同也会导致检测结果的差异。/pp style="text-indent: 2em "(3)内置算法/pp style="text-indent: 2em "由于光强分布的差异,不同粒度仪生产厂家所采用的软件内置算法不同,造成系数矩阵的计算结果差异,由此给反演带来不同程度的误差。/pp style="text-indent: 2em "(4)内外复折射率/pp style="text-indent: 2em "球形石英粉等颗粒,在高温环境下烧灼成型。由于既要成球,又要熔透转变为非晶型或不定形,其技术难度很高。 所以在生产过程中会有部分无定形态的熔融石英包裹在结晶石英上,以及熔融石英内部含有空心气泡。这种颗粒被称为双层颗粒,颗粒内外复折射率不同,导致激光法测量时可能带来较大误差,据相关文献,最大误差可能超过 50%。/pp style="text-indent: 2em "(5)反常异动现象/pp style="text-indent: 2em "有研究者发发现在有些折射率下对于部分粒径区间,随着粒径的变小,散射光强分布主峰会向探测器内侧移动,而正常情况下应向探测器外侧移动,从而影响粒度检测的结果。 这种现象被称为散射光能分布的反常移动现象。/pp style="text-indent: 2em "(6)分散状态/pp style="text-indent: 2em "使用激光粒度仪检测过程中,需注意保证待测颗粒处于良好的分散状态。 当前市面上的主流激光粒度仪, 基本上都带有离心循环分散和超声分散两种分散模式,所以对于这种类型仪器的用户,不建议测试前的机外分散, 因为在用烧杯将分散后的溶液导入循环槽的过程中极易在杯底残留部分大颗粒,导致测试结果产生误差。 在仪器中分散样品时,应注意根据物料性质调整超声和离心循环分散的功率,太大容易导致气泡的产生,太小则容易导致分散效果变差和大颗粒沉底。/pp style="text-indent: 2em "(7)仪器的保养程度/pp style="text-indent: 2em "激光粒度仪的保养程度,对检测结果有较大影响。激光粒度仪需要定期标定维护。在实际的使用过程中发现,部分样品极易在测试过程中附着在仪器的管路内部,从而混入之后的测试样品中带来测试误差。而仪器自带的清洗功能很难解决这类问题,需要在激光粒度测量中引起足够重视。/pp style="text-indent: 2em "鉴于激光粒度测量过程中的影响因素过多,各种样品不同粒级区间的复折射率难以确定,所以目前来看并没有可靠地依据来证明激光粒度测试的准确性,这也是激光粒度检测急需解决的问题。在对粉体粒度要求较高的领域,可以采用多种粒度检测手段,综合比较检测结果,来得到较为可靠的粉体粒度值。此外研制并推广国家及行业内认可的激光粒度分析标准样品,也是一个解决激光粒度检测差异性的实用方法。/p
  • 激光粒度原理及应用
    p  粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。/pp  激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。/pp  strong激光粒度仪的光学结构/strong/pp  激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。/pp  strong激光粒度仪的原理/strong/pp  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。/pp  米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。/pp  为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。/pp  strong激光粒度仪测试对象/strong/pp  1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。/pp  2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。/pp  3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。/pp  strong激光粒度仪的应用领域/strong/pp  1、高校材料/pp  2、化工等学院实验室/pp  3、大型企业实验室/pp  4、重点实验室/pp  5、研究机构/pp  文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115)/ppbr//p
  • 激光粒度测试数据异常的原因及应对方法
    在粒度测试过程中,有时会出现数据异常的情况,如重复性不好、同一个样品结果与之前有差异等。这样的情况一般是由以下几个原因造成的。1、环境异常:粒度仪的使用环境应该满足以下条件,一是室温在10℃~30℃之间,并且介质温度要与室温相同或相近,若介质与室温温相差过大会导致样品池结雾而影响测试结果。二是实验台要稳固,周围无振动源。振动会使仪器测试过程中光路发生变化,导致测试结果不稳。三是电源电压要稳定且有良好的接地,电压不稳会影响仪器内部电路运行的可靠性和光源的稳定性,从而使信号不稳或完全错误,从而导致结果异常。下图为样品池结雾时测试窗口异常的状态:环境异常的解决办法是对症下药,消除异常,如加装空调、加固工作台、远离振动源、远离电磁干扰设备(如电炉)、加装稳压电源、加装接地等。2、折射率发生改变:现代激光粒度仪一般采用Mie散射理论,选择正确的折射率直接决定了测试结果的准确性,正确的折射率可以通过系统或测量来得到。下图是同一样品不同折射率时的测试结果差异。 折射率发生变化的原因是测试不同的样品时忘记把上一个样品的折射率修改成现在样品的折射率,解决办法是严格按操作规范进行操作,要认真细致,不马马虎虎。3、保养维护不当:激光粒度仪是精密仪器,日常使用要按照操作规程使用,日常保养和维护不当会产生样品池污染、样品池划伤、透镜污染、管路脏、光电探测器损坏、使用腐蚀性介质测试导致循环系统损坏等,这些原因都会导致仪器测试结果异常。下图为样品池或者透镜脏时测试仪器背景。解决方法是定期清洗样品池和管路,及时更换划伤的样品池、不在非耐腐蚀循环泵中使用腐蚀性介质、不用汽油擦仪器表面、不随便打开仪器上盖、不使杂物掉到循环池中等。4、样品制备原因:一是取样不具有代表性(包括从车间里取样和实验室缩分)。二是所用的介质不合适。三是分散剂的种类和用量不正确。四是超声分散时间和强度不一致等。下图是同一种样品分散前后的对比图像。 解决方法还是对症下药,一是从车间取样时要尽量从料流中取样而不要在堆积状态下取样,如果不得不在堆积状态下取样,必须进行多点取样(至少4点),即从不同位置、不同深度取样后混合到一起。二是从实验室样品中取测试样时,要先搅拌均匀,用小勺多点(至少4点)取样放到仪器中进行分散测试。三是悬浮液取样时,要先用电动搅拌器搅拌均匀,然后用液体取样器从中部抽取。对比重较大、较粗、粒度分布很宽的特殊样品,要先加很少量的介质制成膏状物,混合均匀后再取样。四是介质要纯净、不与颗粒发生物理和化学反应、对颗粒表面具有良好的润湿作用、使颗粒具有适当的悬浮状态、介质与室温的温差要尽量小等。五是干法粒度测试时对气体介质的要求是纯净、干燥、无油、压力适中等。六是选择合适的分散剂并控制好用量。七是确定并使用最佳超声功率和时间。以上四个方面讨论了激光粒度测试过程中出现数据异常的常见原因,并给出了相应的解决方法。但引起数据异常的原因很多,情况也不一样,本文无法一一列举,如出现类似问题,可求教于专业人士,丹东百特也愿意以“专业、迅速、热情、周到”的服务理念,为您排忧解难。 (本文作者:百特售后服务工程师 管青宇)
  • 张福根教授:不同激光粒度仪测试结果不一致的深层原因分析
    p style="text-indent: 2em "在粒度测量的诸多手段中,激光粒度仪无疑占据着统治地位。但在激光粒度仪的实际应用中,人们经常遇到一个令人困惑的现象:同一个样品给不同品牌甚至同一品牌不同型号的激光粒度仪测量时,所得结果有很大差异(指大于合理的允许误差范围)。span style="text-indent: 2em "剔除取样代表性、操作过失等人为因素的影响,作者认为这种差异本质上来自于当前各种激光粒度仪的内在技术缺陷。/span/pp style="text-indent: 2em "span style="text-indent: 2em "本文首先简述激光粒度仪的工作原理,阐明在理想条件下不同仪器应该能得到相同的测试结果的道理。然后讨论当前具有代表性的几种激光粒度仪的光学系统缺陷,这些缺陷造成承载被测颗粒大小信息的散射光分布信号不能被完全接收,从而导致最终的误差。不同仪器有不同的光学缺陷以及为弥补光学缺陷采取了各自独立的软件修饰方法,导致相互间结果出现差异。/span/pp style="text-indent: 2em "span style="text-indent: 2em "另外作者所在研究团队发现,对透明颗粒,激光粒度仪得以建立的基本物理规律(颗粒越小,散射角度越大)在有些粒径区间并不成立,我们称之为爱里斑的反常变化(ACAD)现象[1]。如果用通常的(把散射光分布转换成粒度分布)反演算法,该现象会导致反常区域内测量结果的不稳定或明显偏离真实(例如出现不应有的多峰分布)。为了掩饰这种偏差,不同的仪器厂家也用了不同的修饰方法,从而导致相互之间结果的不可比。下文将逐一展开讨论。/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="font-size: 18px color: rgb(0, 176, 80) "一、激光粒度仪的工作原理/span/strong/h1p style="text-indent: 2em "激光粒度仪所依据的物理原理是:当光束照射到颗粒上时,会偏离原来的传播方向。当颗粒较大,尤其当颗粒具有较强的吸收性时,这种偏离的规律可以用光的衍射理论[2]描述,因此该仪器在诞生时的正式名称是“激光衍射法粒度分析仪”。但是在更一般的情况下,例如颗粒尺寸小于光波长,或者颗粒尺寸与光波长的尺度相近,并且对照明光透明,衍射理论不再适用,这时就需要用严格建立在麦克斯韦电磁波理论基础上的米氏散射理论[3]来描述。近年来国际上越来越多地把这种仪器称为“静态光散射法粒度分析仪”。/pp style="text-indent: 2em "这里强调“静态”,是因为还有一种“动态”光散射粒度仪,又称为“动态光散射纳米粒度仪”。这是两种不同原理、适用于不同粒径范围的粒度分析仪,但都用激光作为光源,且都利用了颗粒的散射光信号。静态光散射粒度仪认为在某个测量点上,散射光的信号不随时间变化(因而是静态的),测量粒度是利用不同散射角上的散射光信号,即散射光的空间分布;而动态光散射粒度仪是在一个固定的散射角上测量散射光随时间的变化。/pp style="text-indent: 2em "在一定条件下,颗粒越大,散射光的分布范围越广,见图1。当颗粒为理想圆球时(粒度测量中,都假设颗粒是理想圆球),散射光斑由中心的亮斑和外围一系列明暗相间的同心圆环组成,这样的光斑称为“爱里斑(Airy Disk)[2]”。中心亮斑包含了衍射光(从一般意义上说,颗粒的散射光可近似看成衍射光和几何散射光的相干叠加,但是几何散射光不包含颗粒大小的信息,换言之,颗粒大小信息只包含在衍射光的分布中)总能量的83.8%[2],因此通常把中心亮斑的角半径(从光斑中心点到第一个暗环的角距离)作为爱里斑的半径,或作为颗粒对光的散射角,如图1中的。业界普遍认为:颗粒越小,越大。或者说:颗粒大小与爱里斑大小有一一对应关系。span style="text-indent: 2em " /span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/0a92c26f-9514-44bb-81eb-2b9a575840f3.jpg" title="1.jpg" alt="1.jpg"//pp style="text-indent: 0em text-align: center "strong图1 颗粒对光的散射现象示意图/strong/pp style="text-indent: 2em "激光粒度仪的原理图见图2。从激光器发出的细激光束经过空间滤波和准直,成为一束平行、纯净的扩展光束,然后照射到测量池内。被测颗粒分散悬浮在池内的分散介质(例如,水)中。入射光如果遇到颗粒,就被散射,形成散射光;没有遇到颗粒的光仍然是平行光,沿着原来的方向传播。后者经过傅里叶透镜后被会聚到光电探测器的中心,并穿过中心上的小孔,被中心探测器接收。散射光经过傅里叶透镜后,相同散射角的光被聚焦到探测器的同一点上。因此探测器上的一个点代表一个散射角。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/30adc066-e066-49ea-a9b0-fa68ea9f5877.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center text-indent: 0em "strong图2 激光粒度仪工作原理示意图/strong/pp style="text-indent: 2em "探测器由多个独立的探测单元组成,每个单元对应一个散射角区间。单元序号从探测器的中心往外,逐渐增大。探测单元的中心对应的散射角以及单元的接收面积均随着序号增大呈指数式增大。每个单元输出的光电信号正比于投射到该单元上的散射光功率(习惯上称为“光能”)。所有单元输出的信号组成了散射光能分布。虽然任意大小的颗粒的散射光斑的中心亮斑都是中心强而边缘弱,但是散射光能分布的峰值则总是处在某个探测单元上。颗粒越小,散射光斑越大,散射光能分布的峰值就越往外,如图3所示。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/44cd191a-2d5a-4371-8182-a1550ac56046.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 0em text-align: center "strong图3 散射光能分布示例/strong/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 664px height: 461px " src="https://img1.17img.cn/17img/images/202008/uepic/8cf88b1b-9997-41d5-888c-b955ff8a0543.jpg" title="4.png" alt="4.png" width="664" height="461" border="0" vspace="0"//pp style="text-indent: 2em "从形式上看,仪器通过测量直接得到散射光的分布后,求解上述线性方程组,就可得到粒度分布 ,即粒度分布。但实际上该方程的系数矩阵的阶数高达30以上,通常是病态的,不能直接求解,而只能通过一种特定的迭代算法求出。这个迭代算法是激光粒度仪的关键技术之一,称作“反演算法”。/pp style="text-indent: 2em " 由于现实的仪器都存在测量误差,即直接测量得到的散射光分布 与被测颗粒散射形成的真实的散射光分布有一定的偏差,因而通过反演计算获得的粒度分布也与真实的粒度分布有一定的偏差。在此将反演计算得到的粒度分布记为 , 与之对应的光能分布为/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 664px height: 279px " src="https://img1.17img.cn/17img/images/202008/uepic/023a9645-5777-486c-b9ed-bd67278142bf.jpg" title="5.png" alt="5.png" width="664" height="279" border="0" vspace="0"//pp style="text-indent: 2em "从以上叙述可以看出,激光粒度仪能给出准确测量结果的要素有三:/pp style="text-indent: 2em "(1)获得足够准确的散射光能分布;/pp style="text-indent: 2em "(2)粒径与散射光能分布之间有足够好的一一对应关系(下文称为“特异性”)/pp style="text-indent: 2em "(3)反演算法合格(通过模拟计算可以验证)/pp style="text-indent: 2em "激光粒度仪经过几十年的发展,已经有多种公开报道的可用于实际的反演算法[4],实现上述第(3)条并不难。所以,只要第(1)、(2)条得到满足,就可获得足够准确的粒度分布数据。而正确的结果只有一个,因此如果不同的激光粒度仪都能给出正确的结果,那么这些结果在合理的误差范围内就应该是一致的。下面看一个实测的例子:/pp style="text-indent: 2em " 图4是两种不同仪器测量同一样品的测量数据。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202008/uepic/930ad661-7e73-4959-ac40-7bbf2d0edac8.jpg" title="6.jpg" alt="6.jpg" style="text-indent: 2em max-width: 100% max-height: 100% "//pp style="text-align: center text-indent: 0em "(a)真理光学LT2200仪器的测量结果/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/248a96bb-e7d6-4c67-abda-dab786cc7b47.jpg" title="7.jpg" alt="7.jpg"//pp style="text-indent: 0em text-align: center "(b)某国外仪器的测量结果/pp style="text-align: center text-indent: 0em "strong图4 两种激光粒度仪测同一种陶瓷介子粉的测试报告/strongbr//pp style="text-indent: 2em "这两种仪器给出的D50值分别为75.76µ m和75.93µ m,相对误差0.2%;D90值分别为127.02 µ m和126.13 µ m,相对误差0.7%;D10值分别为41.51µ m和44.28µ m,相对误差6.5%。可见这两个结果的吻合度相当好。/pp style="text-indent: 2em "下文讨论造成仪器之间结果不一致的两个内在因素。span style="text-indent: 2em " /span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 80) font-size: 18px "二、大角散射光测量盲区对亚微米颗粒测量的影响/span/h1p style="text-indent: 2em "颗粒的散射光分布在0到180° 的所有方向上。当颗粒远大于光波长时,散射光的中心光斑主要分布在前向较小的角度上。随着颗粒的减小,散射光的分布范围逐步扩大,直至后向(大于90° )。因此,一台理想的激光粒度仪应该能够在全角度上测量散射光。然而目前商品化的激光粒度仪都不能完全覆盖0到180° 的范围。/pp style="text-indent: 2em "图2所示的激光粒度仪的光学系统是经典的光学系统。早期的激光粒度仪几乎全都采用这种光路。它只能测量前向的散射光,其最大散射角的接收能力受傅里叶透镜的孔径限制。现存的采用经典光路的仪器的透镜孔径对测量池中心的最大张(半)角,从空气中看为40° 。如果颗粒悬浮在水介质中,那么从水中看,该系统能接收的最大散射角只有29° 。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/70eab1d0-34e5-4aca-bcbe-278bb8d77fe9.jpg" title="8.jpg" alt="8.jpg"//pp style="text-indent: 0em text-align: center "strong图5 逆傅里叶变换系统示意图/strong/pp style="text-indent: 2em "图5是当前较流行的一种光学系统,称为“逆傅里叶变换系统”。它用会聚光照明被测颗粒。通过数学推导可以知道,在小散射角上,它与经典傅里叶变换系统一样,也能实现同方向散射光的理想聚焦。但在大角度上聚焦不良,不过可通过光学计算,在散射光能矩阵上对聚焦不良带来的不利影响加以弥补。它的好处是突破了傅里叶透镜孔径对系统接收角的制约,扩展了激光粒度仪的测量角。/pp style="text-indent: 2em "虽然突破了傅里叶透镜孔径的限制,它的测量角的上限还要受光线全反射规律的限制。假设颗粒处在水中,散射光从水中传播到玻璃再到空气,经过了两次折射。由于空气的折射率低于水的折射率,由光的折射定律可以知道,光线在空气中的出射角总是大于水中的入射角。当照明光垂直入射到测量池时,水中散射光的散射角等于散射光对玻璃的入射角。当水中的散射角约为49° 时,空气中的出射角等于90° ,如图6(a)所示。/pp style="text-indent: 2em "散射角再增大时,散射光将被玻璃/空气界面完全反射,不能出射到空气中。这种现象称为“光的全反射”,而此时的入射角称为“全反射的临界角”。实际的激光粒度仪不可能把探测单元放置在90° 的位置。例如某国外仪器空气中的最大角探测器位置为60° (见图6(b)),对应于水中的散射角为41° 。所以该仪器能接收的最大前向散射角是41° 。在后向上也放置了最大60° 的探测器,故后向只能接收139° (=180° 41° )以上的 散射光。这样,这种光学系统就存在41° 到139° 的测量盲区,盲区跨度共98° ,见图8(a)。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 314px " src="https://img1.17img.cn/17img/images/202008/uepic/3e096d92-88f4-479c-9808-233c5400f1a1.jpg" title="9.png" alt="9.png" width="500" height="314" border="0" vspace="0"//pp style="text-indent: 2em "真理光学提出了一种斜置的梯形窗口方案,见图7。在该方案中,窗口玻璃倾斜10° 放置,可把散射光的临界角扩展7° 左右,同时前向玻璃加厚,把玻璃/空气界面的一部分做成30° 的斜面,使原本在玻璃/空气界面上接近或大于临界角的散射光的入射角小于临界角。这种结构能让可接收的最大散射角(在水中看)扩展到80° ,后向的最小散射角则减到45° ,测量盲区为80° 到135° ,盲区跨度共55° ,见图8(b)。 /pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 557px " src="https://img1.17img.cn/17img/images/202008/uepic/bf64a724-c11f-4ca3-b5ce-44dfb1b6587d.jpg" title="10.jpg" alt="10.jpg" width="500" height="557" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "strong图7 斜置的梯形测量窗口示意图/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/b795291d-52ad-4d40-9fc4-b8e3ad37af0a.jpg" title="11.jpg" alt="11.jpg"//pp style="text-indent: 0em text-align: center "strong图8 两种典型的逆傅里叶变换系统的散射光测量盲区/strong/pp style="text-indent: 2em "图9(a)是0.3,0.25,… , 0.05 µ m的颗粒产生的理想的散射光能分布图,其中假设探测器的面积和位置如本文第1节所述,光波长为0.633 µ m,颗粒折射率为1.59,介质折射率为1.33。如果采用通常的逆傅里叶变换系统接收,能得到的实际散射光能分布范围如图9(b)所示。用这种光路测量散射光,丢失了0.3 µ m及以细颗粒散射光能分布的所有峰值信息,而峰值信息所包含的粒度特征最多,即特异性最强。图9(c) 是斜置梯形窗口系统能获得的散射光能分布曲线,基本包含了所有颗粒的峰值信息。据此可以大体推断,后者对测量0.3µ m以细颗粒有更好的效果。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/7b617d96-cd21-42fe-ab14-c07932f50905.jpg" title="12.jpg" alt="12.jpg"//pp style="text-indent: 0em text-align: center "(a)散射光的全角度分布图/pp style="text-indent: 0em text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/b791938f-c40a-433b-a01b-6ad5838f5343.jpg" title="13.jpg" alt="13.jpg"/ /strong/pp style="text-indent: 0em text-align: center "(b)通常的逆傅里叶变换系统能接收的散射光分布/pp style="text-indent: 0em text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/eb6b3e68-866c-42e1-8601-4780c83d6dfa.jpg" title="14.jpg" alt="14.jpg"//strong (c)采用斜置梯形窗口的逆傅里叶变换系统能接收的散射光分布/pp style="text-align: center text-indent: 0em "strong图9 多种细颗粒(小于0.3µ m)的散射光能分布以及实际被接收到的光能分布/strong/pp style="text-indent: 2em "下面举一个实际测量例子。样品是一种水性石墨烯。图10(a)是用真理光学LT3600Plus仪器(采用了斜置梯形窗口技术)测得的粒度分布。图10(b)是对应的实测光能分布与反演拟合的光能分布的对比。所得结果D50、D10、D90分别为0.135µ m、0.047 µ m和0.405 µ m,粒度分布曲线呈单峰,拟合残差1.27%,数值在合理范围内。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/56de073e-fb37-4161-82b2-065fa3ae79bb.jpg" title="15.jpg" alt="15.jpg"//pp style="text-indent: 0em text-align: center "strong图10 一种水性石墨样品用真理光学LT3600Plus测量的结果/strong/pp style="text-indent: 0em text-align: center "strong(a)粒度分布;(b)实测光能与拟合光能对比曲线/strong/pp style="text-indent: 2em "图11是某国外仪器(采用通常的逆傅里叶变换光学系统)对上述水性石墨烯的测量结果。图11(a)和(d)都是该仪器在同一次取样进行多次测量时给出来的粒度分布数据,两个结果来回跳动;图(b)和(d)是对应的实测光能和拟合光能分布的对比曲线。按照结果1,D50、D10、D90分别为0.084µ m、0.055µ m和0.477 µ m;按照结果2,D50、D10、D90分别为0.119µ m、0.062 µ m和0.227 µ m。span style="text-indent: 2em " /span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/b824343e-5812-45c4-bce0-b2e068f7388c.jpg" title="16.jpg" alt="16.jpg"//pp style="text-indent: 0em text-align: center "strong图11 一种水性石墨样品用某国外仪器测量的结果/strong/pp style="text-indent: 0em text-align: center "strong(a)粒度分布1;(b)实测光能与拟合光能对比曲线1/strong/pp style="text-indent: 0em text-align: center "strong(c)粒度分布2;(b)实测光能与拟合光能对比曲线2/strong/pp style="text-indent: 2em "和图10所示结果对比,看得出来两种仪器的结果相差颇大。不过可以基本判定真理光学仪器的结果更加可靠。理据是:真理光学的结果(A)结果稳定,(B)粒度分布的峰形比较合理,(C)拟合残差比较小;而国外仪器的结果(A)测量结果在两组数之间来回跳动,很不稳定,(B)其中一种结果是双峰,不符合常理,(C)两种结果的光能拟合情况都很差,残差都在7%以上。/pp style="text-indent: 2em "各家仪器都有自己独特的光路,但都未能完全解决全角度测量问题,不过各家解决的程度有不同,因而遇到颗粒很小的情况时,有的测量结果更接近真实,有的有较大偏离,从而造成结果不一致。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-family: arial, helvetica, sans-serif "strongspan style="font-size: 18px color: rgb(0, 176, 80) "三、爱里斑的反常变化(ACAD)对0.4µ m10µ m粒度测量的困扰/span/strong/span/h1p style="text-indent: 2em "strong3.1 ACAD现象及其规律/strong /pp style="text-indent: 2em "自激光粒度仪诞生直到前不久的近50年来,业内人士都不曾怀疑过这样的光散射规律: 颗粒越小,散射光的分布范围越大(爱里斑越大),即散射光的分布范围随着颗粒的减小而单调增大,从而保证了颗粒大小与散射光分布之间的一一对应关系。这是激光粒度仪能够正常工作的物理基础。但是真理光学和天津大学的联合研究团队却发现[ 1],对于透明颗粒,上述规律在某些特定的粒径区间不成立,即有时会出现颗粒越小,爱里斑也越小的现象。/pp style="text-indent: 2em "图12是波长取0.633µ m,颗粒折射率1.59,介质折射率1.33时,2至4µ m之间的各种颗粒的散射光斑图样。其中3µ m颗粒的爱里斑尺寸是7.98° ,而3.5µ m颗粒的爱里斑尺寸则是13.31° ,出现了反常现象,我们称之为爱里斑的反常变化(Anomalous Change of Airy Disk,ACAD)。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/a3b9bd33-50a4-4238-b6bb-c7e195895891.jpg" title="17.jpg" alt="17.jpg"//pp style="text-indent: 0em text-align: center "strong图12 爱里斑的反常变化现象/strong/pp style="text-indent: 0em text-align: center "img style="max-width: 100% max-height: 100% width: 664px height: 94px " src="https://img1.17img.cn/17img/images/202008/uepic/5466a2bf-0e34-4d60-aef8-563ced5c2c4e.jpg" title="AAA.png" alt="AAA.png" width="664" height="94" border="0" vspace="0"//pp style="text-indent: 2em "蓝色曲线是采用米氏理论计算得到的爱里斑尺寸随无因次参量变化的曲线,红色曲线则是用夫琅禾费衍射理论计算得到的爱里斑尺寸变化曲线。由于米氏理论是物理学界公认的严格理论,因此蓝色曲线的结果反映了爱里斑变化的真实情况。图中的m表示颗粒相对于分散介质的相对折射率(本例中,实部为1.59/1.33=1.20),其虚部为0,表示颗粒是透明的。从中可以看出,爱里斑尺寸随着粒径的增大而振荡变化。虽然总体趋势是减小的,但在某些局部是增大的,我们把这样的区域称为反常区,而把反常区内蓝色曲线和红色曲线的交点称作反常区的中心,图中共有3个反常区。/pp style="text-indent: 2em "我们进一步推导出反常区中心位置的一般公式:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/3b4b49c7-4e34-4f6b-b133-0b17f2954913.jpg" title="BBB.png" alt="BBB.png"//pp style="text-indent: 2em "(1)爱里斑的反常现象存在于任意的透明颗粒中。/pp style="text-indent: 2em "(2)对任一给定的折射率,都有无数多个反常区。/pp style="text-indent: 2em "(3)即使相对折射率小于1,例如水中的气泡,也会发生反常现象。/pp style="text-indent: 2em "不过由于粒径分段时,序号越大,段间隔也越大,所以会干扰粒度分布反演计算的主要是第一个反常区,令k=1,得/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/50c20884-7c84-4285-96c8-2c29163bf224.jpg" title="ccc.png" alt="ccc.png"//pp style="text-indent: 2em "从上式可以计算任意折射率的透明颗粒的第一个反常区中心位置。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/f6019ad6-a2d4-490a-b435-dd01f6457d90.jpg" title="18.jpg" alt="18.jpg"//pp style="text-indent: 0em text-align: center "strong图13 爱里斑尺寸随无因次参量的变化/strong/pp style="text-indent: 2em "颗粒如果具有吸收性,那么随着吸收系数的增大,反常现象会逐步减弱,直至消失。在图14中,图(a)表示颗粒吸收系数为0.05时的爱里斑大小随无因次参量的变化曲线,可以看出,曲线的振荡幅度显著减小;图(b)表示颗粒吸收系数为0.10时,曲线的振荡完全消失。/pp style="text-indent: 2em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/03a274c8-4d56-4052-9c0a-25e6d8498cb5.jpg" title="19.jpg" alt="19.jpg"//pp style="text-indent: 0em text-align: center "strong图14 反常现象随着颗粒吸收系数的增大而减弱/strong/pp style="text-indent: 2em "strong3.2 ACAD对粒度测量的困扰 /strong/pp style="text-indent: 2em "ACAD将导致在反常区附近一个爱里斑尺寸最多可对应3个不同的粒径。如图15,等3个不同的无因次参量对应的爱里斑尺寸都是10° 。从散射光能分布看,反常现象会导致光能分布峰值位置出现颠倒。在正常的散射情况下,颗粒越大,散射光能的峰值位置越靠近坐标的中心;而在图16中,4.0µ m颗粒的峰值位置在3.5微米峰值位置的外侧。可见不论从散射光强分布(爱里斑)角度还是散射光能分布角度看,ACAD都导致了颗粒尺寸与散射光场分布的一一对应关系的破坏,从而使处在反常区的颗粒的粒度测量结果变得不稳定或者结果不真实(一般体现为粒度分布曲线的振荡,见图17)。文献[5]对此有更严谨的论证。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/cad6ffb6-1581-412f-b399-14274f5b71a8.jpg" title="20.jpg" alt="20.jpg"//pp style="text-indent: 0em text-align: center "strong图15 同一爱里斑尺寸对应3个不同的粒径 /strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/9c4d156e-24cb-451f-bed2-8d6cd2ffae49.jpg" title="21.jpg" alt="21.jpg"//pp style="text-indent: 0em text-align: center "strong图16 在反常区附近散射光能分布的峰值位置出现了颠倒/strong/pp style="text-indent: 2em "span style="text-indent: 2em "图17 是某国外仪器用“通用模式”测量3.0µ m聚苯乙烯微粒标样的结果,出现了两个峰,并且两个峰的峰值位置都不在3.0µ m上。聚苯乙烯颗粒的折射率为1.59,分散在水中时,相对折射率为1.20。从表1可以查到,反常中心位置为3.20 µ m。可见该颗粒正好处在反常区中心附近,故而得不到正确的测量结果。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/ff19f16e-aa24-4082-b60b-1e56c8b82ed9.jpg" title="22.jpg" alt="22.jpg"//pp style="text-indent: 0em text-align: center "strong图17 某国外仪器用“通用模式”测量3.0µ m聚苯乙烯微粒标样的结果/strong/pp style="text-indent: 2em "尽管ACAD作为一种客观的物理现象,一直都存在,并且困扰着激光衍射法粒度测量技术的应用,但是在本团队的论文发表前,都没有公开的相关报导,仪器制造商更没有提出解决这一困扰的根本办法。目前所做的,对单分散样品(大多指标准微粒),厂家提供的操作指引上指定选“单峰窄分布”模式,这时对聚苯乙烯材料的3µ m标样,进行“特殊处理”,以得到看上去正确的结果。对一般的透明样品,如果粒径分布范围部分或全部处在反常区,则在进行反演分析时,人为给折射率加上一个虚部,例如,0.1。对一个给定的颗粒折射率,只要人为加上去的吸收系数足够大,那么在计算散射矩阵(各种粒径散射光能分布的组合)时,光能分布峰值位置颠倒的情况就会消失。但颗粒实际还是无吸收的,强行认为颗粒有吸收,将造成实测的光能分布与反演计算时认为的光能分布不相符。在不加修饰的情况下,反演结果将在粒径1µ m附近鼓起一个假峰(Ghost Peak)。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/0f7136f6-c723-48ff-88e4-db914e4f69ac.jpg" title="23.jpg" alt="23.jpg"//pp style="text-align: center text-indent: 0em "strong图18 人为给透明颗粒加吸收系数造成反演数据出现假峰/strong/pp style="text-indent: 2em "下面用一个数值模拟的例子进行说明。图18(a)中的蓝色曲线是事先设定的一种颗粒样品的粒度分布。假设颗粒透明,折射率为1.50,处在水介质中。它对应的散射光能分布如图(b)中的蓝色曲线所示。假如给颗粒加上一个0.1的吸收系数,那么该颗粒样品产生的散射光能分布如图(b)中的红色曲线所示。蓝、红两种曲线相比,蓝色曲线在35到45单元之间鼓起一个小峰,这个小峰等效于一定比例的绿色曲线,也可视为某种粒度分布对应的散射光能分布。图18(b)中三种曲线或散射光能分布用公式可表达为/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 600px height: 21px " src="https://img1.17img.cn/17img/images/202008/uepic/4c2c1f38-4beb-4d73-8420-e51489fb0299.jpg" title="24.png" alt="24.png" width="600" height="21" border="0" vspace="0"/br//pp style="text-indent: 2em "式中,是esubR/sub、esub0/sub、esubD/sub是归一化、矢量形式的散射光能分布,分别表示无吸收颗粒的散射光能分布(即本实验设定颗粒真实的光能分布)、吸收系数为0.1时相同颗粒样品产生的散射光能分布,以及这两种光能分布之差。后者等效于一个粒径1µ m左右的颗粒样品产生的散射光能分布。因此,如果用0.1吸收的散射矩阵去反演计算一个透明颗粒样品产生的光能分布,如图18(b)中蓝色曲线所示的散射光分布,就会得到图18(a)中红色曲线所示的粒度分布,这个粒度分布相较于蓝色曲线所示的粒度分布(即原本的粒度分布),在1µ m附近多了一个假峰。/pp style="text-indent: 2em "下面再举一个实际测试的例子。图19是一种陶瓷泥浆样品实际测量得到的粒度分布曲线。蓝色曲线表示吸收系数取0得到的粒度分布,红色曲线表示吸收系数取0.1得到的粒度分布。两条曲线相比,红色曲线在1µ m附近颗粒含量明显偏高。/pp style="text-indent: 2em "所以给透明颗粒人为加吸收系数,虽然能掩饰ACAD带来的测试结果不稳定或者振荡,但同时会使1µ m附近产生一个假的峰,或者引起1µ m附近颗粒含量的测试值高于实际值。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/6aa48cfb-e661-4bd7-a47b-55c4fda3bf9d.jpg" title="25.jpg" alt="25.jpg"//pp style="text-indent: 0em text-align: center "strong图19 一种陶瓷泥浆样品的实测粒度分布/strong/pp style="text-indent: 2em "为了修饰这个假峰,某国外仪器在算法上强行抹平这个假峰。但这会带来新的问题:如果被测样品在1µ m附近真的有一个峰,也会被强行抹掉,从而造成测量结果的失真。/pp style="text-indent: 2em "图20是一种人为配制出来的三个峰的二氧化硅样品。用国外仪器测量时,如果取“通用模式”,则结果如图(a)所示,只有一个峰;如果取“多峰窄分布模式”,则在主峰的右侧(大颗粒侧)出现一个小峰。该样品用真理光学LT3600测量时,共有3个峰:在主峰的左右各有一个小峰,左侧的小峰在1到3µ m之间。图21是该样品的电镜照片。从图(a)460倍放大照片看,确实存在30µ m左右的大颗粒;从图(b)8000倍放大照片看,也存在1µ m到2µ m颗粒。可见1到3µ m的颗粒是真实存在的,而国外仪器没有测到这些颗粒。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/3e8ab13f-8d7a-4661-a744-51e8adb0ea73.jpg" title="26.jpg" alt="26.jpg"//pp style="text-indent: 0em text-align: center "strong图20 一种二氧化硅样品“”的粒度测量结果/strongstrong style="text-indent: 0em " img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/616caea4-21d1-4f17-bf0c-d4ef061356e1.jpg" title="27.jpg" alt="27.jpg"//strong/pp style="text-indent: 0em text-align: center "strong图21 一种二氧化硅样品的电子显微镜照片/strong/pp style="text-indent: 2em "从本节的讨论可以看出,当被测的透明颗粒处在反常区时,通常的反演算法得出的粒度分布是不稳定或者振荡的。目前大多数仪器厂家的处理办法是,在反演计算时给颗粒加上吸收系数。这会使得反演得到的粒度分布曲线稳定、平滑,但是同时在1µ m附近鼓起一个假的峰,或者1µ m附近颗粒含量变高。也有的厂家在算法上强行抹平这个假峰,但会导致仪器在1µ m附近测量灵敏度降低。真理光学团队在对ACAD规律透彻理解的基础上,改进了反演算法,使其能在大多数情况下对处在反常区的透明颗粒进行真实的粒度分布反演,如图20(c)的结果。对3µ m聚苯乙烯标样也能成功反演。/pp style="text-indent: 2em "所以,由于ACAD的困扰,造成各个仪器厂家采取了不同的、有些是修饰性的(并非符合科学的)算法,从而导致相互间结果不一致。/pp style="text-indent: 2em "strong3.3 ACAD影响的粒径范围以及对激光粒度仪用户的建议/strongspan style="text-indent: 2em " /span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202008/uepic/d97f35cb-9fbe-4a00-9be0-546df3eb57ae.jpg" title="28.png" alt="28.png" width="664" height="112" border="0" vspace="0" style="text-indent: 2em max-width: 100% max-height: 100% width: 664px height: 112px "//pp style="text-indent: 2em "如果介质折射率区1.33,空气中波长取0.633 µ m,那么可以得到如表1所示的分别用无因次参量和粒径表达的各种折射率下第1个反常区中心位置的数值。/pp style="text-align: center text-indent: 0em "strong表1 各种折射率下的反常区中心位置/strong/pp style="text-align:center"strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/a349395c-f611-4105-900a-8013cc4eb93d.jpg" title="29.png" alt="29.png"//strong/pp style="text-indent: 2em "假设颗粒分散在水中,那么m=1.05对应于绝对折射率1.40,接近已知固体材料折射率的下限,此时反常区的中心粒径为13.0µ m。m=2.40对应于绝对折射率3.19,接近已知固体材料折射率的上限,此时反常区的中心粒径为0.396µ m。在颗粒折射率未知的情况下,如果被测颗粒的粒径大于13 µ m,那么就可确定颗粒不在反常区内,不论用哪家的粒度仪,都不必给颗粒人为地加吸收系数(颗粒实际有吸收的情况除外),这样各种激光粒度仪得到的粒度测试结果应该是基本一致的,就如本文图4所举的例子。/pp style="text-indent: 2em "如果颗粒折射率已知,又是不吸收的,可以查表1或者用本小节的公式计算第1个反常区中心的位置,如果被测粒径分布不在反常区中心附近,那么也不必人为给颗粒加吸收系数,这样可以得到更真实因而也更可比的结果。span style="text-indent: 2em " /span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 16px color: rgb(0, 176, 80) "strong四、结语/strong/span/h1p style="text-indent: 2em "激光粒度测试技术发展到今天,还不能说是很完善的技术。本质原因是物理上存在两大缺陷:大角散射光测量盲区和爱里斑的反常变化(ACAD)。前者影响0.3µ m以细颗粒的测量,后者影响0.4µ m至13µ m颗粒的测量。所以,概略地说,对于13µ m以粗颗粒的测量,当前技术是比较成熟的,不同仪器的测量结果应该有较好的可比性。/pp style="text-indent: 2em "对0.3µ m以细颗粒的测量,有的厂家解决得好一些,有些差一些,但是都没有完全解决。这需要全体激光粒度仪厂家的共同努力。如果都能解决全散射角的测量问题,那么各家仪器的测量结果就应该是一致的。/pp style="text-indent: 2em "对0.4µ m至13µ m的颗粒,最根本的是要解决ACAD条件下的反演算法问题。目前真理光学已经较好地解决了这个问题,但其他品牌多采取人为加吸收系数的办法,这只让测试结果看上去比较正常,数值则已偏离实际;而且不同的厂家对由此引起1µ m附近的假峰的处理方法不一,造成相互间结果难以对比。对于用户来说,可参照表1的数据或者同一节中的公式,先查找或计算被测样品的反常区中心位置,如果被测粒度远离反常中心,则尽量不要给透明颗粒加吸收系数,这样能得到更真实的粒度结果,不同仪器的用户都能这么做,相互间的可比性也更好。/pp style="text-indent: 2em "最后,呼吁中国市场上的所有激光粒度仪厂家,能够正视激光粒度测试技术内在的缺陷问题,努力解决这些问题,尽快实现粒度测试结果的全面可比。span style="text-indent: 2em " /span/pp style="text-indent: 2em "strong参考文献/strong/pp style="text-indent: 2em "1. Linchao Pan et. al. Anomalous change of Airy disk with changing size of spherical particles. Journal of Quantitative Spectroscopy & Radiative Transfer 170 (2016) 83–89/pp style="text-indent: 2em "2. M. 玻恩,E. 沃耳夫. 光学原理(上册). 科学出版社 1978. P.517/pp style="text-indent: 2em "3. Van de Hulst HC. Light scattering by small particles. New York: Dover 1981/pp style="text-indent: 2em "4. Santer R , Herman M . Particle size distributions from forward scattered light/pp style="text-indent: 2em "using the Chahine inversion scheme. Appl Opt 1983 22:2294–301 ./pp style="text-indent: 2em "5. Linchao Pan et. al. Indetermination of particle sizing by laser diffraction in the/pp style="text-indent: 2em "anomalous size ranges. Journal of Quantitative Spectroscopy & Radiative Transfer 199 (2017) 20–25/pp style="text-indent: 2em "strong作者简介:/strong/pp style="text-indent: 2em text-align: justify "img style="max-width: 100% max-height: 100% float: left width: 110px height: 124px " src="https://img1.17img.cn/17img/images/202008/uepic/cb2b6104-1423-4066-b06f-ec34a1cec7f1.jpg" title="张福根:不同激光粒度仪测试结果不一致的深层原因分析.jpg" alt="张福根:不同激光粒度仪测试结果不一致的深层原因分析.jpg" width="110" height="124" border="0" vspace="0"/珠海真理光学仪器有限公司首席科学家,天津大学兼职教授、博导。主要从事颗粒表征、微粉材料制造和3D测量及显示技术的研究和产品开发。主持了多种型号的激光粒度仪、电阻法颗粒计数器、图像法粒度仪以及3D测量和显示设备。发表学术论文30多篇,获得专利授权30多项。曾担任中国颗粒学会副理事长、常务理事,现任全国颗粒表征与分检及筛网标准化技术委员会副主任委员,中国颗粒学会颗粒测试专委会副主任。/pp style="text-indent: 2em text-align: justify "(注:本文由张福根教授供稿,文章为张老师结合其所在团队的科研成果,与读者进行分享交流,不代表仪器信息网本网观点)/p
  • 青岛拍一拍你,欧美克高性能激光粒度仪亮相国际药机展
    5月10日,由中国制药装备行业协会主办的第60届全国制药机械博览会暨2021(春季)中国国际制药机械博览会在青岛世界博览城盛大启幕!作为国内的颗粒测量仪器制造商,珠海欧美克仪器有限公司(以下简称“欧美克”)携高性能激光粒度分析仪Topsizer亮相展会现场,与国内外药机企业共同探讨行业“质造”解决方案。作为国内药机行业具影响力的盛会之一,本届博览会展出面积超过13.5万平方米,来自25个国家和地区共计1484个国内外展商携产品汇集于此,展出设备涵盖原料药机械、制剂机械、制药用水、气设备、药用粉碎设备、饮片机械、药品包装机械、检测及实验室、工程、净化与环保设备、其他制药机械及设备9大类近万台(套),2场高质量的平行论坛和80余场技术交流会线上线下展播,聚焦行业关注话题,吸引了近6000人次的专业观众积极参与。随着中国制药装备产业在全球产业链的地位越发举足轻重,粒度控制的重要性已经是业内共识。2015、2020版《中国药典》采纳了激光衍射法,明确将激光粒度仪检测作为原料药辅药的要求方法。激光衍射法以其适用范围广(适用于固体粉末、悬液、乳剂颗粒检测)、测量范围宽(纳米级到毫米级)、准确性高、重现性好、操作简单、测试快速等优点,在制药行业获得广泛应用,需求增长明显。自2010年加入英国思百吉集团,欧美克仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,为行业客户提供物超所值的产品、服务及整体解决方案本次展会上,欧美克携主力产品Topsizer激光粒度分析仪亮相本次展会。Topsizer具有宽测量范围、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,更好地应用于日益精细化的制药行业领域。Topsizer激光粒度分析仪测试范围:0.02-2000um(湿法)0.1-2000um(干法)重复性:优于0.5%准确性:优于1%Topsizer激光粒度分析仪自面市以来,一直是广受客户欢迎的国产高性能激光粒度分析仪,其湿法测试范围0.02-2000um,干法测试范围0.1-2000um,对毫米级、亚微米等颗粒具有超强识别能力,同时还满足GMP认证对于药品检测的需求。最重要的是,Topsizer采用国际引进的红蓝光双色光源技术,高精度、耐用性的光学平台设计,保证了测试结果和分析能力与国内外、行业上下游黄金标准保持一致,这不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可避免粒径检测不准带来的经济损失和风险,无论在研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克医药行业主营产品此外,欧美克针对医药行业还推出了多款粉体特性测试仪,形成激光粒度分析仪、纳米粒度分析仪、粉体流动性测试仪、粉体振实密度测试仪、近红外光谱仪等六大产品矩阵,在追求精益生产的当下,为制药企业客户提供专业、先进、高效的粉体检测解决方案,共同探讨制药行业新一轮的“质造”变革!
  • 岛津SALD激光衍射粒度仪25周年优惠活动登场
    为综合・ 全面地捕捉粉体物性,岛津公司提供为数众多的粉体测试仪器,助推粉体技术的发展。2013年,岛津激光衍射粒度仪SALD产品系列迎来了25周年。25年来,岛津不断研发出性能更为卓越,使用更为方便、高效的激光粒度仪产品。 SALD-2300激光衍射粒度仪是岛津SALD系列的主力机型,获得世界各地用户的高度好评。SALD-2300可以提供更加广泛的测量范围,并可方便、高效的进行精密测定的粒度仪,其粒径测量范围可达17纳米到2500微米。并且,通过对光路和检测器的优化,灵敏度提高10倍,因此能够轻松应对浓度在0.1ppm到200000ppm之间的样品。 SALD-2300采用了单一高能半导体光源设计,在测定过程中无需切换光源,因此其最短测量间隔仅为1秒,并可连续进行测定,从而可快速对粒子发生的团聚或分散过程进行实时监测,确认样品的状态变化。该光源能量更高,可测定对光吸收严重的粒子,同时具有开机预热时间短,寿命更长的优点。 全新配备的Wing SALDII系列软件着重解决了激光粒度折射率选择的难题,独家配备了自动选择折射率功能。以往,人们都是使用文献中给出的折射率数据,但是折射率会受到粒子粒径和形状的影响,因此这种方法并不可靠。岛津公司在世界上首次在软件中开发了基于LDR原理(光强分布再计算)的自动折射率选择功能,能够根据样品所得粒度数据给出5种最佳推荐折射率,并给出置信度。 为了答谢广大用户多年来的支持,自2013年5月1日起至2013年12月31日,针对SALD-2300及进样器进行优惠促销。 SALD-2300+MS-23湿法测定系统 SALD-2300+DS5干法测定系统 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312· 浦西分公司 (021) 2201-3888· 广州分公司 (020) 8710-8661· 四川分公司 (028) 8619-8421· 沈阳分公司(024) 2341-4778· 西安分公司(029) 8838-6350· 乌鲁木齐分公司(0991) 230-6271· 昆明分公司(0871) 315-2986· 南京分公司(025) 8689-0258· 重庆分公司(023) 6380-6068· 深圳分公司(0755) 8287-7677· 武汉分公司(027) 8555-7910· 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • Bettersize2600激光粒度分析仪测试托拉塞米原料药
    托拉塞米为难溶性药物,原料药颗粒的大小不仅影响药品制备过程中的可加工性,更主要的是影响药物颗粒的溶解性,影响其生物等效性,因此对于托拉塞米颗粒粒度检测是非常重要的。本文使用Bettersize2600激光粒度分析仪测试两款托拉塞米颗粒的粒度,考察两款托拉塞米的差异。湿法或干法对粒度结果的影响湿法是把托拉塞米分散在水或有机溶剂中,通过搅拌、超声以及添加分散剂的方式使粉体颗粒达到良好的分散。图1. 1#托拉塞米样品随分散时间变化曲线(上) 2#托拉塞米样品随分散时间变化曲线(下)由上图来看,1#托拉塞米样品,随着分散时间的增加颗粒粒度逐渐变小,当超声时间达到90s以后基本达到稳定状态。而2#托拉塞米样品,随着分散的进行D10、D50和D90反而增大。图2. 1#托拉塞米样品(A)与2#托拉塞米样品(B)的显微图像这主要是由于两款托拉塞米微粉的粒径差异较大。1#托拉塞米颗粒较大,2#托拉塞米颗粒较小,小颗粒比表面积大,溶解较快,导致粒径逐渐变大。从样品的遮光率变化来看(图3所示),1#托拉塞米遮光率稳定不变,2#托拉塞米遮光率逐渐降低,也进一步证实了2#托拉塞米有溶解现象。图3. 1#与2#托拉塞米遮光率随时间变化曲线从湿法测试结果来看,1#托拉塞米分散90s后结果基本稳定,而2#托拉塞米由于有溶解现象,导致颗粒粒径逐渐变大,因此对于粒径较小的托拉塞米原料药不建议采用湿法测试。干法测试是把托拉塞米干粉直接放到干法进样器中,通过压缩空气将样品“吹过”测试区,从而实现粒度测试。干法测试时,气压将影响结果,我们先用压力滴定的方式,看看能不能找到结果稳定的压力。图4. 1#托拉塞米压力滴定曲线(上) 2#托拉塞米压力滴定曲线(下)从上面两个压力滴定曲线来看,1#托拉塞米随着分散压力增大颗粒粒度逐渐降低,无稳定的平台,这是因为1#托拉塞米的颗粒为片状。空气压力不断将颗粒打碎,导致无稳定的分散平台,这种现象在ISO13320中也给出提示,对1#托拉塞米分散压力选择要慎重。2#托拉塞米当分散压力在0.2~0.4MPa之间,粒度结果都处于相对稳定的状态,说明颗粒达到相对稳定的分散状态,未被进一步破碎,因此2#托拉塞米样品适合用干法激光粒度仪测试粒度。湿法和干法测试的粒度结果由于两款托拉塞米样品差异较大,建议选择丹东百特干湿法两用激光粒度仪Bettersize 2600激光粒度分析仪,用配备的湿法进样器测试颗粒较大的1#托拉塞米,用干法进样器测试颗粒较小的2#托拉塞米,这样对于两款原料药都可以得到较为准确的且具有良好重复性和准确性的粒度结果。图5. 1#托拉塞米样品粒度分布图(上) 2#托拉塞米样品粒度分布图(下)结论1.1#托拉塞米颗粒为片状,易碎,因此建议采用湿法激光粒度仪进行粒度测试,避免干法对颗粒造成破碎,从而影响粒度测试结果的准确性。2.2#托拉塞米样品颗粒较小,比表面积大,在水中有溶解现象,因此建议采用干法激光粒度仪进行粒度测试,避免因小颗粒快速溶解而影响粒度测试结果的准确性。3.选用既有干法进样器、又有湿法进样器的干湿法两用激光粒度仪Bettersize2600,能准确测试两款物性差异较大的托拉塞米样品的粒度。
  • 欧美克LS-909E干法激光粒度仪在粉末涂料行业的创新应用
    干法激光粒度仪在粉末涂料行业的应用随着近年来国家环保高压及绿色发展要求,我国“漆改粉”趋势加速,粉末涂料在整个涂料体系中所占份额越来越大。根据Global Market Insights,Inc.的报告,到2025年,全球粉末涂料市场预计将超过170亿美元。而从全球范围看,我国粉末涂料产销量已占全球60%左右,引领着全球粉末涂料发展! 与传统液态涂料相比,粉末涂料对材料的利用率很高(高达99%),任何过量喷涂都可以回收利用,从而大限度地减少了浪费;具有更广泛的颜色选择和纹理强化了粉末涂料成为液体涂料的有力替代品;粉末涂料具有可持续性、清洁性、安全性等特性,与替代涂料相比,粉末涂料具有优异的性能特征以及显著的成本优势,在农业和建筑、电器、汽车和运输等工业涂饰市场占15%以上并持续增长。 粉末涂料市场一直在发展,而保证粉末涂料质量检测的科学仪器也在不断创新发展。我们都知道,涂料颗粒的粒度分布对粉末涂料性能的影响有以下几大方面: 1、涂料颗粒粒径影响其带电性能 粉末涂料喷涂时的粘附力主要来源于静电荷的库仑力。涂料颗粒一般来说粒径越大带电性越好,但是颗粒的重力随粒径加大的增长速度大于库仑力的增长速度。也就是说颗粒大到一定程度后,重力会远大于库仑力,导致上粉率和涂覆效果会变差。故理想状态下的粉末涂料颗粒粒径应该尽量控制在10μm-60μm之间。粉末涂料太细或者太粗,涂装施工效率、质量就会下降。 图一 不同粒径涂料带电性能 2、影响涂料的流平性 粉末涂料吸附在工件上被加热后形成高粘度的流体状态,然后逐渐流平固化。通过研究流平时间的NIX和DODGE公式:t=kμR/γ(t是涂料颗粒聚结时间、k是常数、R是涂料颗粒半径、γ涂料的表面张力、μ涂料粘度),我们可以知道涂料颗粒粒径跟流平时间成正比。粉末涂料的粒度分布不均匀或者颗粒太粗,将严重影响流平性。 图二 粒度分布均匀的粉末涂料流平效果明显 3、影响涂层厚度 传统粉末涂料的平均粒径一般控制在30μm -50μm,涂层厚度一般在60μm -100μm之间。不同类型的工件需要的涂层厚度不同。同时涂层厚度也在很大程度上影响单位重量的粉末涂料能够涂覆的面积。因此粉末涂料的粒度分布可以说是直接影响涂料性能及经济性的重要参数。 4、影响涂料的储藏性能 根据部分行业专家的研究,粉末涂料存在一个临界粒径,大于这个粒径,粉末不易结块,反之则很容易结团。涂料产品的粒径不应该低于临界粒径,否则产品的储藏性将变得很差。 图三 粉末涂料显微图像 从上图的粉末涂料显微图像中我们可以看到其中有为数众多的小于5微米的“有害”颗粒,这些颗粒既浪费了原材料和能源,又严重影响涂料的存藏性能,应该尽量减少其含量。 因此,有效测定粉末颗粒的分布才能保证粉末涂料的高质量应用。激光粒度仪是当前流行的粒度测试仪器之一,其测试动态范围大、测试速度快、对使用环境要求不高、重复性好等优势满足了涂料行业的测量需求。但随着粉末涂料的异军突起,常用的湿法测试由于粉末涂料样品亲水性不好以及添加分散剂后容易产生气泡等原因,会导致测试结果不稳定,并容易造成结果拖尾。 而干法测试通过空气作为分散介质,在粒度检测时对粉末涂料样品进行干法分散处理,测试时即可以模拟粉末涂料在应用中的状态,得到的测试结果更好的反应粉体应用。在此基础上,粉末涂料行业用户也迫切地要求激光粒度仪具有方便快捷、数据报表呈现灵活等自动化、个性化特点的使用需求。而高性能、简单易用的全自动干法测试系统,智能多样化的软件功能正是LS-909E显著的优势,能为行业用户带来行云流水一般的实验体验。 图四 欧美克LS-909E干法激光粒度仪 欧美克LS-909E干法激光粒度仪正是基于粉末涂料用户对高性能干法仪器的需求而开发的一款性能卓越的粒度分析仪。 LS-909E干法进样系统由干法进样器、全封闭进样窗口、静音泵空压机、油水过滤器和吸尘器等部件构成。在硬件方面,主机装载了进口的高性能进口He-Ne气体激光发射器,结合永磁体空间滤波器设计及一体化激光发射器技术,保障了LS-909E激光粒度分析仪具有0.1-1400um的较宽测试范围及重现性小于1%的高分辨率可靠结果。 搭配欧美克DPF-110自动干法进样系统,样品池具有三重调节设计:进料速度由先进的压电陶瓷晶体精确控制,使测试遮光率易于控制并节省样品量;内置分散压和负压传感器,实时监控测样状态,并具有错误警示功能;干法窗口采用密闭管道式设计,结合窗口负压保护设计与大功率吸尘器粉尘回收装置,大限度回收样品,也使主机不受粉尘影响,极大减少了窗口维护及擦拭清洁工作,并提高了窗口玻璃的使用寿命,同时也提升了测试分析速度。以上多种特性共同保障了LS-909E干法测试对多种不同特性样品的适应性及良好的重现性和真实性。 在软件设计方面,LS-909E智能软件控制自动对中系统保证了精确的光学对中和多次测量的重现性。自动对中机构精度达0.2um,速度更快,既可作为自动测量的一部分,亦可在屏幕上单击鼠标来完成。结合智能判断对中软件功能,避免了传统粒度测量中因对中不良导致的结果偏差,并能延长对中机构寿命。 值得一提的是,LS-909E还配备有完善、开放的样品参数数据库,具有200多种常见材料光学参数,用户也可以自定义材料和折射率,包括折射率实部和虚部(对应样品的吸收率)。结合简单易操作的SOP标准操作流程,使分析测试流程标准化,减少人为因素的影响。同时提供多种测试报告模式和高度个性化的自定义功能:可提供通用测试报告、筛分测试报告、百分测试报告,并具有平均报告、统计报告、拟合报告功能,以及可自定义专业测试报告模板功能。测试报告支持pdf、excel、word及其他文本格式等丰富的导出格式,报告图表可直接右键保存。此外用户还能够在软件中同时查看多个测试报告结果,进行数据的图形比对和数值统计分析,对多个参数进行分类、排序、筛选,并能以表格形式输出。 其智能、友好、符合多种应用的计算机软件功能可定义测试报告模板,让粒度测试分析变得轻松可靠。 欧美克LS-909E的定位是一款高性价比干法激光粒度仪,甫一问世,已在第二十四届中国国际涂料展上得到了广大用户的高度关注和良好反响。粒度测试是一门涉及知识面极为宽广的技术学科,在每一个行业中都有极深入的应用研究,即使是在粒度检测行业打拼了二十多年的欧美克人也一直不断虚心前行,不断探索更智能化的解决方案、更高效的新技术及更全面的服务推向行业市场,为粉末涂料客户在现有和新的应用领域提供了显著的附加值,共同助力粉末涂料行业的创新发展!
  • 研讨会预告| 一次分析,两种测试:全新在用润滑油粒径/颗粒计数和金属含量分析方法
    润滑油承担着减小机械摩擦、散热等重要功能,是重工业、军事、航空、基础建设等现代化工业发展中必不可少的用品。确定合适的更换润滑油的时机,既可以降低使用成本,还可以预防机械故障和严重事故。通常情况下油品中的金属元素代表了机械磨损情况,油品中的添加剂元素含量也能反映出在用油的降解情况,因此这两者都是在用润滑油监控的重要指标。除此之外,在用油中的颗粒普遍被认为是造成机械磨损的主要原因。因此,在用润滑油一般既要监测其中的元素含量,又要监测其颗粒数量及粒径的信息(ISO 4406代码)。在传统的方法里,粒径/颗粒计数测试和金属含量分析是两种完全独立的方法,需要对油样品进行两次样品制备,消耗的样品量大,前处理耗时长,产生的废液多。珀金埃尔默全新的LPC 500™ 液体颗粒计数器是业内体积最小的自动化颗粒计数系统,其与Avio 500电感耦合等离子体发射光谱仪油品系统联用,每个样品用量少于1毫升,仅需45秒就能够实现一次进样分析、完成粒径/颗粒计数和金属分析两种测试,并获得重复性优异的结果。为评估LPC 500的准确度,在全程8小时的分析中定期分析检定流体。通常采用ISO清洁度代码来评估油品颗粒数分布情况。表1列出了粒径大于4 μm、6 μm 和14 μm时,每毫升预期颗粒数以及对应的ISO 4406代码。表1. 检定流体COA结果和对应的ISO 4406代码粒径( μm(c))颗粒数(颗粒数/mL)ISO 4406代码412,5402165,186201444016图1. 检定流体的颗粒计数分析准确度,其中,粒径大于4 μm、6 μm和14 μm的颗粒结果均在+/- 1 ISO代码范围内图2. 齿轮油样的颗粒计数分析稳定性,其中,粒径大于4 μm、6 μm和14 μm的颗粒结果均在+/- 1 ISO代码范围内图3. 576份在用油样的整个8小时分析过程中,50 ppm QC稳定性为了让大家更好的了解LPC 500激光粒度仪新品的特点及润滑油分析解决方案,我们将于2019年11月29日下午举办《珀金埃尔默LPC500™ 及润滑油品分析解决方案介绍》在线讲座。欢迎大家报名参加。研讨会详情主题:珀金埃尔默LPC500™ 及润滑油品分析解决方案介绍时间:2019年11月29日 14:00-15:00讲者:杨柳 珀金埃尔默产品专家立即报名扫描上方二维码,即可预约线上研讨会,在直播期间与讲师积极互动,还可获得精美礼品了解更多相关资料,扫描下方二维码,即可下载《分析在用润滑油粒径/颗粒计数和金属含量的新方法》。立即扫码
  • 岛津推出激光粒度分析仪应用数据集册
    颗粒的粒度粒形是决定物料性能的重要参数之一,食品、医药、化工和电池等众多行业对颗粒的粒度粒形都有严格要求。有效地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今最流行的粒度测量仪器之一。 近年来,各种原辅料颗粒的粒度粒形也逐渐成为生产工艺过程中关注的重要参数之一,颗粒的粒径会直接或间接影响成品的质量和性能。有效准确地测量与控制颗粒粒度及其分布,对提高产品质量、降低能源消耗、控制环境污染、保护人类的健康等具有重要意义。目前国内外的使用激光粒度仪测试粒径分布的方法标准相对较少,当前的主要方法标准有: 岛津公司针对近年来激光粒度仪需求量日益增加的市场趋势,使用岛津不同型号激光粒度仪分别开展了粉体材料,医药研发和食品安全等相关领域的应用方法开发,并精心汇编了《岛津激光粒度分析仪应用数据集册》,应用报告题目如下: 1.岛津激光粒度仪系列产品介绍2.激光粒度仪在粉体材料中的应用 激光粒度测试中折射率的选择技巧SALD测定金属硅粉的粒径分布SALD测定磷酸铁锂的粒径分布SALD-2300测定二氧化钛粉末样品的粒径分布SALD-2300测定聚苯乙烯粉末树脂的粒径分布SALD-2300测定氧化铝浆料样品的粒径分布SALD-2300测定氧化锌固废粉末的粒径分布SALD-2300测定环氧树脂粉末的粒径分布激光粒度仪在涂料行业中的应用激光粒度仪在卫生陶瓷洁具行业的应用3.激光粒度仪在医药研发中的应用 干法激光粒度在制药行业的应用干法激光粒度仪在注射剂一致性评价中的应用SALD-2300测定原料药盐酸万古霉素样品的粒径分布SALD-2300测定药用辅料药吡哌酸样品的粒径分布Aggregates Sizer在疫苗聚集体评价系统中的应用4.激光粒度仪在食品安全中的应用 干法激光粒度在乳制品行业中的应用SALD-2300测定牛乳样品的粒径分布
  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • 阳屹沃尔奇发布口罩颗粒物过滤效率测试仪新品
    设备名称:口罩颗粒物过滤速率测试仪 设备型号:YY8130 设备标准:GB/T 19083-2010、YY/T 0469-2011、GB/T 32610-2016、GB 2626-2019等一、产品图片二、符合标准: GB/T 19083-2010 医用防护口罩技术要求 5.4过滤效率 YY/T 0469-2011 医用外科口罩 5.6.2颗粒过滤效率 GB/T 32610-2016 日常防护型口罩技术规范 附录A 过滤效率测试方法 GB 2626-2019 呼吸防护 自吸过滤式防颗粒物呼吸器 6.3过滤效率 GB 19082-2009 医用一次性防护服技术要求 5.7过滤效率 EN 1822-3:2012 EN 149-2001 EN 14683:2005 IEST-RP-CC021.1 NIOSH 42 CFR Part 84等三、产品参数:1、测试流量范围:0L/min~100L/min,精度2%2、气流通过的截面积为100cm23、阻力测试量程:0~250Pa,精度可达3Pa4、过滤效率测试范围:0~99.999%,分辨率0.001%5、测试粒径:0.3um6、气溶胶:氯化钠 7、发雾尘源: NaC18、测试时间:阻力单独测试5s,效率和阻力同时测试为 70s9、结构组成:进口气溶胶发生器,进口流量检测装置,进口颗粒物计数器 10、试样数量:1路11、电源:220V,50Hz,1KW12、外形尺寸:(800mm×700mm×1450mm)(长×宽×高)13、重量:约120Kg四、设备特点:1、 双粒子计数器 ,滤前、滤后同时检测(可选光度计法测量)2、0.3um, 0.5um, 1.0um, 2.5um, 5.0um, 10.0um粒径粒子过滤效率显示;3、配有7英寸触摸屏,检测结果直接显示于界面,用户可选择直接打印、导出或者保存;4、效率检测:采用进口品牌高精度尘埃粒子计数器,或光计度法粒子尝试计检测上下游粒子浓度,保证采样的准确,稳定;5、流量检测:系统测试流量主要由外部提供干燥洁净的压缩空气。内部有安装稳压稳流装置,保证检测流量的稳定性,并采用自动控制系统简单、快捷、稳定。6、阻力检测:滤材的阻力压差将通过其上下游测试仓的静压环来获取,并采用高精度进口品牌压差变送器,保证压差准确性及稳定性;7、操作简单:用户只需将试样放置于夹具中,按下按钮,调节测试流量后系统就会通过控制器自动测试阻力和效率,整个过程简单,快速、高效 五、随机配件:油雾发生器流量计压力传感器粒子计数器控制按钮触摸屏显示打印机紧急关闭/开启按钮真空泵流量控制阀和开/关开关创新点:1、 双粒子计数器 ,滤前、滤后同时检测(可选光度计法测量)2、0.3um, 0.5um, 1.0um, 2.5um, 5.0um, 10.0um粒径粒子过滤效率显示;3、配有7英寸触摸屏,检测结果直接显示于界面,用户可选择直接打印、导出或者保存;4、效率检测:采用进口品牌高精度尘埃粒子计数器,或光计度法粒子尝试计检测上下游粒子浓度,保证采样的准确,稳定;5、流量检测:系统测试流量主要由外部提供干燥洁净的压缩空气。内部有安装稳压稳流装置,保证检测流量的稳定性,并采用自动控制系统简单、快捷、稳定。6、阻力检测:滤材的阻力压差将通过其上下游测试仓的静压环来获取,并采用高精度进口品牌压差变送器,保证压差准确性及稳定性;7、操作简单:用户只需将试样放置于夹具中,按下按钮,调节测试流量后系统就会通过控制器自动测试阻力和效率,整个过程简单,快速、高效口罩颗粒物过滤效率测试仪
  • 激光粒度分析仪在色釉料中的应用
    激光粒度分析仪在色釉料中的应用色釉料是陶瓷制品的&ldquo 行头&rdquo ,直接关系到陶瓷产品的&ldquo 卖相&rdquo 。随着我国陶瓷产品产量和质量的迅速提高,色釉料行业在最近10多年也迅速发展壮大,现已成为陶瓷产业的重要分支。从形貌上看,色釉料是一种粉体,其粒度分布直接影响呈色特征和呈色强度,必须准确测定并加以严格控制。目前最先进的测试仪器是激光粒度分析仪,由于其具有测量范围宽、重复性好、速度快、操作容易等显著优点,非常适合色釉料行业的使用。激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。激光粒度仪的原理和结构决定了其的性能特点:1、能给出详尽的粒度分布数据,这些数据对确定色釉料颗粒的平均大小、均匀性、配料是非常有用的。2、测量范围大,能覆盖色釉料的整个粒度范围。3、测量速度快。4、重复性好、操作方便。总体来说,激光粒度仪是迄今为止最适合色釉料行业使用的粒度测试仪器。济南微纳颗粒仪器股份有限公司是一家专注颗粒测试的企业,研究颗粒检测技术已有30多年的历史。对于陶瓷行业的检测提供了完善的服务。以坚实的质量与优质的服务实践着。在陶瓷行业受到广大客户们的一致好评。微纳在以永不停歇的脚步与客户共创美好未来。 ---------------中国颗粒测试技术的领航者---------------济南微纳颗粒仪器股份有限公司是专门研发、生产、销售颗粒测试相关仪器设备的高科技企业。主要产品激光粒度仪,粒度仪,粒度分析仪,激光粒度分析仪,纳米激光粒度仪,颗粒图像分析仪,喷雾激光粒度仪等。销售热线:0531-88873312 公司网站:http://www.jnwinner.com 联系地址:济南市高新区大学科技园北区F座东二单元
  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • 如何选购激光粒度仪
    激光粒度仪主要由光学检测系统,分散进样系统及控制分析软件组成,而光学检测系统又包括光源,光路及检测器等关键部分。在选择激光粒度仪时要特别注意以下几点:  1、 光源  光源主要有氦氖气体激光器和半导体固体激光器两种 氦氖激光器具有线宽窄,单色性极好,而半导体激光器具有体积小,供电电压低,使用寿命较长,当颗粒较小时,根据瑞利散射理论,选用短波长的激光器更能提高小颗粒检测时的信号强度及信噪比。  2、 在光路配置上,需要考虑稳固的光学平台,自动对光功能,无需更换透镜就可以测量宽的粒径范围 如果需干法测量,粒径测量范围下限是否能达到0.1微米而同时上限可达1000微米以上。  3、 检测器是激光粒度仪的最关键部件之一,选择时不能只考虑检测器中检测单元的数量,还要看检测器的几何形状,排列方式,检测单元的面积及其真正的物理检测角度。   4、样品分散进样系统是保证样品正确分散和进样的重要附件,湿法分散进样器需要有内置超声和搅拌及足够力量的循环泵干法分散进样器需要有振动进样功能,样品池是否容易拆卸清洁也非常重要。  5、 软件是用于仪器控制和数据分析的,数据采集速度越快越好。如果颗粒粒径小于几十微米,在软件中需要有折射率和吸收率的数据库并能补充输入这些光学参数获得更为准确的结果。  6、 激光粒度仪测量的准确度和重现性或精度等指标,应该是针对标准样品,只在仪器样本上简单地标上0.5%或更小而不指明针对性,势必会误导  本文摘取自马尔文仪器有限公司资深工程师秦和义发表文章的部分内容  如果您觉得选购因素过多而无从下手,推荐您来激光粒度仪专场,包含马尔文、丹东百特、新帕泰克、麦奇克等近40家厂商的百余台主流产品。仪器信息为保证质量均经过人工严格审核,便捷导购,安心之选。  仪器信息网搜索:激光粒度仪 http://www.instrument.com.cn/zc/partical.asp
  • 百特智能激光粒度仪投放市场
    日前,百特智能激光粒度仪&mdash &mdash BT-9300Z激光粒度仪正式投入批量生产并投放市场,为国产高性能激光粒度仪增添了新的成员。该仪器具有以下突出特点,一是简化操作,减少人为误差,提高准确性和重复性,操作甚至简化到只需按一下鼠标,其余所有操作如进水、消泡、对中、背景、浓度调整、分散时间、测试过程、打印与保存结果、排放清洗等全部由电脑控制下自动完成。二是内置独立的吸水系统和水位探测系统,可以从放在地上的水桶里抽水,真正实现自动进水。三是内置80个探测器(前向68个,侧向8个,后向4个)和高精度的信号处理系统,具有很高的分辨率和稳定性,重复性误差小于1%;四是高精度的三维自动对中系统使仪器始终处于最佳状态;五是进口半导体激光器使仪器的性能更稳定,仪器寿命更长;此外,软件系统具有多语言功能、报告单转换(Excel、word 等格式)功能、报告单格式编辑功能、准确性标定(自校准)功能。使该仪器是集激光技术、软件技术、光电子技术和控制技术于一体的新一代高性能粒度测试仪器,测试范围达到0.1-460微米,是高等院校、研究院所、大中型企业的实验室粒度测试的理想仪器。
  • 激光粒度仪在粒度检测中的应用浅谈
    p style="text-indent: 2em "编者按:谈到粒度,激光粒度仪怎能缺席?目前,在各行各业的粒度检测领域,激光粒度仪应用广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。/pp style="text-indent: 2em "那么激光粒度仪在粒度检测中到底是怎样应用的呢?我国颗粒学泰斗专家周素红研究员的论述,无疑将给我们带来启示……/pp style="text-indent: 2em "strong专家观点:/strong/pp style="text-indent: 2em "激光粒度分析方法是近年来发展较快的一种测试方法,其主要特点是:/pp style="text-indent: 2em "1)测量的粒径范围广, 可进行从纳米到微米量级如此宽范围的粒度分布。约为 :20nm ~ 2000μm , 某些情况下上限可达 3500μm /pp style="text-indent: 2em "2)适用范围广泛 , 不仅能测量固体颗粒 , 还能测量液体中的粒子 /pp style="text-indent: 2em "3)重现性好 ,与传统方法相比 ,激光粒度分析仪能给出准确可靠的测量结果 /pp style="text-indent: 2em "4)测量时间快,整个测量过程1-2分钟即可, 某些仪器已实现了实时检测和实时显示 ,可以让用户在整个测量过程中观察并监视样品。/pp style="text-indent: 2em "激光粒度分析不仅在先进的材料工程 、国防工业、军事科学、而且在众多传统产业中都有广泛的应用前景。特别是高新材料科学的研究与开发 ,产品的质量控制等 , 如 :陶瓷、粉末冶金、稀土 、电池、制药 、食品、饮料 、水泥 、涂料 、粘合剂 、颜料、塑料、保健及化妆品 。由于颗粒粒子的特异性能在于它的粒径十分细小,粒径大小是表征颗粒性能的一个重要参数, 因此 ,对颗粒粒径进行测量是开展材料检测、评价颗粒材料的重要指标。/pp style="text-indent: 2em "当光线照射到颗粒上时会发生散射 、衍射 。其衍射、散射光强度均与粒子的大小有关 。观测其光强度, 可应用夫琅和费衍射理论和 Mie 散射理论求得粒子径分布(激光衍射/散射法)。/pp style="text-indent: 2em "光入射到球形粒子时可产生三类光:1)在粒子表面 、通过粒子内部、经粒子内表面的反射光 2)通过粒子内部而折射出的光 3)在表面的衍射光 。这些现象与粒子的大小无关 。全都可以作为光散射处理 。一般地 , 光散射现象可以用经Maxwell 电磁方程式严密解出的 Mie 散射理论说明。但是, 实际使用起来过于复杂, 为了求得实际的光强度, 可根据入射波长 λ和粒子半径r 的关系 ,即 :r λ时,Rayleigh 散射理论r λ时,Fraunhofer 衍射理论在使用上述理论时 ,应考虑到光的波长和粒子径的关系, 在不同的领域使用不同的理论 。/pp style="text-indent: 2em "粒子径大于波长的时候, 由 Fraunhofer 衍射理论求得的衍射光强度和 Mie 散射理论求得的散射光强度大体是一致的。因此 ,可以把 Fraunhofer 衍射理论作为 Mie 散射理论的近似处理。这时 ,光散射(衍射)的方向几乎都集中在前方, 其强度与粒子径的大小有关 ,有很大的变化。即, 表示粒子径固有的光强度谱 。解出粒子的光强度分布(散射谱)就可以定出粒子径。当波长和粒子径很接近的时候 ,不能用 Fraunhofer 的近似式来表示散射强度 。这时有必要根据 Mie 散射理论作进一步讨论。在Mie 散射中的散射光强度由入射光波长(λ)、粒子径(a)、粒子和介质的相对折射率(m)来确定 。、/pp style="text-indent: 2em "激光粒度分析的应用领域极为广泛, 如 :1)医药中的粒度控制着药物的溶解速度和药效 2)催化剂的粒度影响着生成反应效率 3)制陶原料的粒度影响着烧结后的物理特性 4)矿物的粒度影响着长途海运的安全 5)食品的保质期受粒度影响 6)橡胶原料粒度影响着其寿命 7)电池原料的粒度影响着电池的充放电效率和寿命 8)涂料 、染料中的粒度影响着产品染色时的发色、光泽 、退色 9)塑料原料的粒度影响着塑料的透明度和加工以及使用性能。/p
  • Fritsch激光粒度仪免费测试公告
    各位尊敬的客户:  您好!  德国Fritsch GmbH是一家实验室样品处理以及粒度分析仪器设计和生产的专业性公司,凭借对客户认真负责的态度,已经在全球拥有了相当多的客户群。并且得到了客户的一致好评! 我司自2011年成为FRITSCH激光粒度仪在中国的独家代理商。 现代理的&ldquo analysette 22&rdquo 系列激光粒度仪有以下2种型号:型号量程MicroTec plus0.08-2000 umNanoTec湿法:0.01-2000 um干法:0.1-2000 um 以上产品均适用于干粉或悬浮液或乳剂中颗粒度分布测试。其中Micro Tec plus是德国FRITSCH公司最具代表性的新型大量程激光粒度仪,它除了将主流的反傅里叶技术与它专利的移动样品池技术相结合,使测量范围达到0.08um~2000um,以及利用高品质的零件将光学平台垂直设计节省了很多的空间之外,还具有以下优势: 选用了分辨率最好的光束,双激光束设计: 绿色 (532nm), 红色 (ca. 940nm); 可调节的超声波探头及水泵动力; 模块化设计,将干法分散仪、湿法分散仪、检测系统独立分开,并且在10-20S就能实现干、湿法的转换; 高效的自动光束测量阵列 可调节容积, 通过电脑可实现选择:300、400、500ml 适用于在水相及大多数有机相(例如异丙醇) 中使用 先进的曲光系统 测量时间ca. 10 sec. 测量单元使用 Cardridge-like 设计 - 易于转换改变 优秀的软件系统:采用图形设计的能够支持新32位操作系统的各项功能,标准功能非常广泛,用户也可在多处对程序机型修改从而满足不同的需要。德国FRITSCH公司一直为全球的用户提供免费的产品测试服务,在欧洲甚至有专门的实验车,可以亲临现场为用户服务。因为我们认为,只有经过实验,才能为用户选择最为合适的产品。为将这一服务带到中国,我司现已成立粒度分析实验室,为广大的国内用户提供免费的样品测试服务,您只需按照以下步骤即可轻松享受这一服务: 在《资料中心》下载《测试申请表》填写后发送至我司邮箱,我司工作人员会在3个工作日内主动与您联系;您也可直接拨打我司服务电话,由我司工作人员为您服务;经我司确认后,您可选择将样品邮寄或送至我司,我司热忱欢迎广大客户亲临我司参与检测过程;测试完成后我司可提供正式的检测分析报告。欢迎广大客户前来测试!我司联系方式:邮寄地址:北京市海淀区中关村东路18号财智国际大厦A座1505室电 话:010-82600826-19传 真:010-82382580E-MAIL:info@chinyee.cn lt@chinyee.cn
  • 法国Cilas公司推出全新激光粒度仪
    Cilas公司日前发布了全新的激光粒度仪产品线。新的cilas激光粒度仪在原有激光粒度仪最可信赖、高精确度和最易操作的基础上增加了更多自动化元素。包含多项最新专利的设计使其能够得到最高精确度和准确度的测试结果。  最新的符合工效学要求的取样界面使操作人员能够更高效的分析湿法和干法样品。短光具座专利技术使其坚固耐用,免校验。  Cilas公司新的产品线优势包括:将图像分析和激光衍射法完美的结合在一起。每一款Cilas激光粒度仪都可以配置形态专家图像分析系统。形态专家图像分析系统通过一个倒置的光学显微镜来分析颗粒的形态。这种综合的设计方式使样品同时可以进行粒径和形态的测定。每个系统都可以与干法和湿法模式进行完美的结合。这种专利的设计方式可以免去操作人员进行诸多手工调整的麻烦。分散模式之间的转换可以通过粒度专家软件进行完美的控制。新型干法喷射流分散系统内置一个新型文丘里管系统,增强了所有颗粒流参数的软件控制。新型的数字调节器精确的控制气压并使样品的分散达到最优。新的电路设计提高了系统的自动化水平。使用颗粒专家软件,所有的功能均可实现自动化。这种设计降低了能耗并且满足RoHS环境标准。  Cilas 新产品家族包括990, 1090 和1190激光粒度仪。三款激光粒度仪都可以配置湿法,干法,或是干湿两用。Cilas干湿两用机是目前市场上唯一一款干法和湿法分散模式完美结合的仪器。两种分散模式转换时无需进行硬件的重新排列。
  • 张福根专栏|激光粒度仪应用导论之报告解读篇
    粒度分析报告是激光粒度仪测量颗粒样品后输出的测量结果。本文对报告的内容进行解释,以便读者能够更好地理解和运用仪器的输出结果。粒度分布的物理意义粒度分布是指被测的颗粒样品中各种尺寸颗粒占总颗粒的百分比。它是颗粒测量结果的详尽描述。在表达粒度分布时,涉及两个带有主观性的处置:一是粒径的分段,二是计算相对含量时所用的计量单位。从理论上说,一个颗粒样品在一定的粒径范围内存在各种大小的颗粒,即粒径的分布应该是连续的。但在实际的处理中,我们只能把粒径表示为若干个分立的粒径段,然后计算各个粒径段上的颗粒含量。最简单的分档方法是均匀分档,即各个粒径段的长度是相等的,例如1-2,2-3,3-4(单位µ m)。在激光粒度仪中,通常用等比原则对粒径分段。这是因为激光粒度仪测量的动态范围大,例如0.1-1000µ m。如果按等长原则分段,则难以同时照顾小颗粒端和大颗粒端。比如,为了照顾小颗粒端,最小间隔最多只能取0.1µ m(从0.1µ m到0.2µ m,跨度已经很大),这时对最后一个粒径段来说,就是999.9µ m-1000µ m,这样处理粒径段的数量就会非常多,数据处理变得非常麻烦,也没有必要分这么细。表1是一个粒度分布表的示例,其分段就是按照等比原则,比例是1.128。表中第1个粒径点是0.109µ m(即x0,其余类推),第2个粒径点就是0.109× 1.128?0.123µ m,第3个粒径点是0.123× 1.128?0.139µ m??另一个主观性的处理是百分含量的计量单位。激光粒度仪中常用体积含量,即用每个粒径段内颗粒的体积占所有颗粒的总体积的百分比来表征粒度分布。有时会用颗粒数或颗粒表面积含量来表达粒度分布。计量的单位不同,会造成粒度分布结果形式上的巨大变化(详见进阶知识4)。【进阶知识3】设激光粒度仪设定的粒径分档如“进阶知识2”所示。第i档的平均粒径为:设第i档范围内,即粒径处在x(i-1)至xi的颗粒个数为Ni,则所有颗粒的总体积为(此处省略了常数π?6。以体积计算的第i档的颗粒相对含量为式中i=1,2,?,n.如此,数列(v1,v2,?vn)就组成了以体积计量的粒度分布。同理,按数量计的粒度分布为按表面积计的粒度分布为粒度分布表在激光粒度仪输出的测量报告中,粒度分布通常以粒度分布表或/及粒度分布曲线的形式给出。表1是粒度分布表的示例。表1粒度分布表示例粒径(µ m)微分(V%)累积(V%)粒径(µ m)微分(V%)累积(V%)粒径(µ m)微分(V%)累积(V%)0.10902.530.632.1658.8201000.123002.8560.812.9766.3801000.139003.2231.033.9974.9201000.157003.6371.35.2984.5501000.177004.1051.646.9495.4301000.199004.6332.069107.701000.225005.2292.5611.56121.501000.254005.9023.1514.71137.201000.287006.6613.8118.51154.801000.324007.5184.5323.04174.701000.365008.4855.2728.31197.201000.412009.5775.9934.3222.601000.4650010.816.6340.93251.201000.5250012.27.1448.07283.501000.5920013.777.4655.53319.901000.6690015.547.5563.08361.101000.7550017.547.3670.44407.501000.8520019.796.9177.35459.901000.9610022.346.283.55519.101001.0850.020.0225.215.388.86585.801001.2240.070.0928.464.2993.15661.201001.3820.130.2232.123.2596.4746.201001.5590.190.4136.252.2498.64842.201001.760.270.6840.911.1499.78950.501001.9860.371.0546.180.221001072.701002.2420.491.5352.1101001210.60100表中,黄色栏为粒径,紫色栏为微分分布数值,灰色栏为累积分布数值。微分分布表示一个粒径段上的颗粒占总颗粒的百分比,累积分布表示某一粒径以细颗粒占总颗粒的百分含量。微分分布和累积分布之间很容易转换:设微分分布为(v1,v2,?vn),累积分布为(c1,c2,?cn),则微分分布栏的每一格内的数值表示本格左边所示粒径(即xi)与上一行所示粒径(xi-1)之间的颗粒百分含量。例如表1第二栏(黄色)底部的数值为0.49,表示粒径为1.986到2.242µ m之间的颗粒含量为0.49%。黄色栏的顶部有“微分(V%)”字样,表示“微分分布,以颗粒体积计量,含量为百分含量”。灰色栏给出的累积分布数值,则表示从表中的最小粒径开始累积到该行左边隔一栏的位置所示的粒径的颗粒百分含量的总和。以表1第3栏底部的数值为例,1.53表示2.242µ m以细的颗粒总含量为1.53%。粒度分布曲线粒度分布曲线是粒度分布的图像法表达。相较于粒度分布表格,曲线具有形象、直观、一目了然的优点。粒度分布曲线也分为微分分布曲线与累积分布曲线两种,其物理意义与粒度分布表相同。下图是与表1对应的粒度分布曲线。粒度分布曲线示例【进阶知识4】以上给出的粒度分布是体积粒度分布(激光粒度仪最常用的表达形式),如果改为表面积分布或颗粒数分布,则同样的样品的测量结果,分布形式会有很大的不同(见下图)。同样的样品以不同计量单位显示的粒度分布平均粒径平均粒径的含义很容易理解,就是一个颗粒样品中所有颗粒直径的平均值。需要注意的是,平均值的计算是要经过加权的。同样的粒度分布,加权的方式不同,得出的结果也不同。最常用的是体积加权:式中,xi平均和vi的含义如“进阶知识3”所示。D[4,3]是体积加权平均(简称“体积平均”)的另一种说法,因为在体积加权的公式中,分子和分母分别有段平均粒径的4次方和3次方。在表1所示的粒度分布中,D[4,3]=14.17µ m类似地,对表面积加权的平均粒径和对颗粒个数加权的平均粒径分别为在表1所示的粒度分布中,D[3,2]=9.25µ m,D(1,0)=3.05µ m。可见D[4,3]>D[3,2]>D(1,0),这是普遍规律。对用户来说,究竟用哪一种平均粒径表征待测样品的平均粒径,要看用户的关注点。比如参与化学反应的颗粒,例如催化剂,就比较关注表面积平均径,即D[3,2]。激光粒度仪的输出报告中D[4,3]和D[3,2]一般都同时给出。D50又称“中位径”,也是平均粒径的一种表示。它的含义是粒度分布的累积百分比达到50%的点所对应的粒径(见下图)。换个通俗的话说,D50就是个头排在中间的那个颗粒的粒径,比它大和比它小的颗粒各占50%,所以可以代表平均粒径。当然,所谓各占50%也是跟计量的物理单位有关的,可以是体积各占50%,也可以是表面积各占50%,也可以是个数各占50%。计量单位不同,D50值也不同。如果粒度分布用的是体积分布,那么D50指的是体积各占50%。激光粒度仪一般默认体积分布。在表1所示的粒度分布中,D50=12.57µ m,这个数值与D[4,3](=14.17µ m)接近。当粒度分布曲线形状很对称时,D50与D[4,3]几乎相等。累积粒径的物理意义示意图粒度分布范围粒度分布范围是表征一个颗粒样品粒径均匀度的指标。在激光粒度仪中,一般默认用D10和D90分别表示粒度分布的下边界和上边界。D10的物理意义是:被测样品中小于D10的颗粒含量占10%。同理,D90表示小于D90的颗粒含量占90%,或者大于D90的颗粒含量占10%。D10偏离D50越多,表示小颗粒往细的方向延展越多;D90偏离D50越大,则表示大颗粒往粗的方向延展越多。在有些应用行业,也有用其他的累积粒径表示粒度分布的展宽情况的,比如在磨料行业,用D6(磨料行业习惯于从大往小累积,原始表述是D94,等于从小往大累积的D6,下同)表示下限,用D97表示上限。一般而言,累积粒径越靠近分布的边缘,其稳定性就越差。关于D100和D0的重要提醒:(1)激光粒度仪给出的D100(或称Dmax)并不代表被测的粉体产品中的最大颗粒的尺寸。这可以从两个层面去理解:从取样层面理解,测量所取样品量大约是毫克级的,而它所代表的产品量大约是千克至吨级的,取样比例低于百万分之一,因此一次取样要取到那个最大的颗粒的概率是百万分之一(理论上说最大的那个是唯一的,否则就不叫最大)量级,几乎不可能被取到。从测量的层面考虑,即使那个最大的颗粒被取到,以较典型的分布宽度(最大最小比)为10的样品为例,假设粒度分布在对数坐标(即粒径段等比划分)上是对称的,则最大粒与D50之比约为3.16,最大粒一个单位体积的消光面积是一个单位体积的平均大小颗粒的3.16分之一。设最大粒的体积含量是1000分之一(最大粒处在粒度分布右侧的末端,理论上含量占比比这个还要低得多),则最大粒产生的散射光大约是全部散射光的3000分之一。这么低的光能很容易被仪器的各种噪声(比如激光功率波动就大于千分之一,此外还有样品浓度的波动,电子噪声等)所淹没。(2)从激光粒度仪给出的粒度分布数据计算小颗粒的个数是不太靠谱的。这是因为激光粒度仪给出的原始粒度分布是体积分布。小颗粒端的体积的微小波动会引起颗粒数的巨大变化。设颗粒的平均粒径为5µ m,其粒度分布的尾端在0.5µ m,二者粒径比为10,体积比为1000。假设尾端的体积出现1000分之一的波动,则颗粒个数就会出现1倍的波动,1倍就是100%,是极大的波动,是难以接受的。在激光粒度仪给出的测试报告中,会给出两个参数表征颗粒的均匀性。最常用的参数有:宽度系数以及变异系数。它是用均方差形式表征的分布宽度,公式如下:编者按:本文无异于是激光粒度仪初阶使用者的必备宝典,然而激光粒度仪分析报告中提供的可不止是粒径和粒度分布的解析,你知道还有激光粒度仪还会提供哪些重要参数吗?对这些参数又该如何分析?请期待张福根博士系列专栏——激光粒度仪应用导论之参数拾遗篇。(作者:张福根)
  • 雾化吸入式新冠疫苗来了!这些激光粒度仪厂商快人一步
    近日,在2021浦江创新论坛全体大会上,中国工程院院士、军事科学院研究员陈薇透露,其团队与康希诺合作研发的吸入式重组新冠病毒疫苗(腺病毒载体),已经获得了国家药监局扩大临床的批件,目前正在申请紧急使用授权。吸入式新冠疫苗,有何不同?雾化吸入式疫苗只需针剂疫苗的五分之一的剂量,且不用一瓶一瓶装,可有效解决疫苗瓶子的瓶颈问题。同时,减少疫苗用量意味着,1个剂量未来可以变成5个剂量,相当于在疫苗产能不变的情况下,实际供应量变成了原来的5倍,有望降低疫苗接种的成本,提高疫苗的可及性。所谓雾化吸入免疫,即采用雾化器将疫苗雾化成微小颗粒,通过呼吸吸入的方式进入呼吸道和肺部,从而激发黏膜免疫。吸入式疫苗就是通过口腔、鼻腔等黏膜部位给药,刺激鼻腔黏膜和呼吸道黏膜产生免疫反应的疫苗类型。相较注射式疫苗形成的体液免疫、细胞免疫,吸入式疫苗还可形成黏膜免疫,这三重免疫是最理想的状态。新冠病毒的感染部位是人体的呼吸道黏膜系统,如果能够建立起呼吸道黏膜的免疫屏障,对于预防病毒传播感染,将是一种非常有效的防控措施。粒度控制对吸入式疫苗免疫效果至关重要雾化吸入剂要发挥治疗作用,必须有效沉积到鼻腔或者呼吸道和肺部。雾化颗粒粒径是影响肺部沉积性能的主要因素,粒径的大小直接影响吸入颗粒在肺部沉积的位置和分布情况。对于吸入式新冠疫苗,需要控制其雾化形成的雾滴粒径大小,粒度测试是吸入式新冠疫苗研发和质量控制中不可缺少的重要环节。中国药典规定,吸入制剂中原料药物粒度大小通常应控制在10μm以下,其中大多数应在5μm以下;吸入制剂的雾滴(粒)大小,在生产过程中可以采用合适的显微镜法或光阻、光散射及光衍射法进行测定。其中,激光衍射法具有测量速度快、粒级分级多,准确度和重复性好,且操作简便等优点,是目前应用最广泛的粒度测试方法,是雾化吸入制剂研发和生产过程中进行快速的处方筛选、装置评价和质量控制的理想方法。吸入式新冠疫苗仍采用腺病毒载体的疫苗的生产路线,吸入式腺病毒载体疫苗与年初获得附条件批准上市的注射式腺病毒载体疫苗,在毒种、细胞库、原液生产工艺、制剂生产工艺、制剂配方等均相同。因此,吸入式新冠疫苗一旦获得使用授权,可立即进行大规模生产,助力全球疫情防控。而吸入式疫苗的大规模生产,也将为激光粒度仪生产厂商带来商机,激光粒度仪仪器厂商应抢占先机,乘势而为。吸入式雾化颗粒粒度表征解决方案近日,针对吸入式疫苗雾化颗粒粒度表征,多家激光粒度仪厂商纷纷推出详细解决方案,助力吸入式新冠疫苗研发。欢迎其他相关厂商补充完善。1、马尔文帕纳科马尔文帕纳科 Spraytec 实时高速喷雾粒度仪是专为鼻喷和吸入制剂设计的粒径分析仪。0.1-2000μm的超宽动态测量范围和最高10 kHz 超高采样频率,能够产生 100 微秒时间间隔的粒径大小分布,通过实时记录喷雾粒径随时间变化的过程对雾化和分散的动态过程进行精确分析。Spraytec实时高速喷雾粒度仪2、德国新帕泰克 德国新帕泰克 HELOS & INHALER 激光衍射粒度仪,专门针对干粉吸入剂DPI、定量吸入气雾剂MDI、雾化吸入溶液Nebulizer、柔雾剂Soft mist和喷雾器分析开发的粒径分析仪。能够实现在 0.25 - 1750μm 范围内的粒度测量。采用新帕泰克专业的人工喉管以及泵系统完美连接,确保吸入测试条件符合要求,并且通过适配器可与各种不同的吸入装置适配,广泛应用于气雾剂装置的开发与评估、处方研究的粒度分析等。HELOS & INHALER 气雾激光粒度仪3、麦奇克AEROTRAC II 能应用于不同的领域,包括来自喷嘴的液滴、雾化器、杀虫剂、护肤液、加湿器、喷雾分离器、粉体涂料和不同的粉体。AEROTRAC II 光学系统的优势是具有非常宽的测量空间,并且提供多种类型的测量,提供不同的附件以适合不同客户的应用。Microtrac 喷雾粒度分析仪AEROTRAC II4、济南微纳颗粒济南微纳颗粒仪器股份有限公司研究开发的Winner311XP喷雾激光粒度分析仪能够对雾化液滴、烟雾、油雾等雾滴颗粒的粒度分布进行快速准确的测试分析并给出测试报告。Win311XP喷雾激光粒度仪是以Mie散射为原理,可以对各种小型喷雾装置进行测试,融和了济南微纳多种研发技术,外观小巧,能很好地对小型喷雾粒度进行测试,并实现数据的快速采集,能够可靠地在喷雾过程中实时连续测量雾化液滴的粒度分布,1分钟内即可完成测量,并提供详细的数据报告。能够有效指导生产厂家进行成品检验和科技研发。Winner311XP喷雾激光粒度分析仪更多请查看激光粒度仪专场:https://www.instrument.com.cn/zc/470.html
  • “移情别恋” 这5种粉体已投向激光粒度仪怀抱
    p style="text-indent: 2em "随着科学技术的发展和工业工艺精细化程度的不断提升,产品呼唤的质量及性能要求日益提升,粉体材料的热度不断上升,同时对粉体粒度检测的要求也越来越高。在众多粒度检测方法中,激光粒度仪在各行各业的粒度检测中都有着广泛的应用,适用的粉体多如繁星,能力也在不断升级,成为了当下最受宠的粒度检测方法之一。在化工和矿业等领域,很多粉体的粒度检测本来是常用筛分法、沉降法等方法,但良禽择木而栖,现在也都渐渐走向了激光粒度仪的怀抱。仪器信息网选取了上述行业中5种常用的粉体进行探讨,它们移情别恋的故事这就为您奉上。/pp style="text-indent: 2em "(1)铝粉/pp style="text-indent: 2em "氧化铝是一种应用最广泛的催化剂载体,价格便宜,能够通过改变条件来制备各种催化反应所要求的不同的晶相、比表面积和孔分布的载体。铝粉作为生产氧化铝载体的重要原料,其规格对氧化铝载体的最终性能有重要影响。/pp style="text-indent: 2em "铝粉的粒径正是衡量铝粉质量的一项重要指标:粒径过小,合成溶胶反应较剧烈,反应温度不易控制且存在安全隐患;粒径过大,反应不易完全,会造成溶胶铝含量偏低而影响产品性能,而且使粒子间的空隙变大,接触点变小,填充密度随之减少,强度也随之降低。检测铝粉粒度的传统方法是筛分法,但速度慢,精度差,重复性低。相比之下,激光光散射法突破了筛层数的限制,测量范围大幅扩大,且为连续分布。具有较好的测量重复性,结果准确,可满足铝粉粒度的测定要求。/pp style="text-indent: 2em "不过需要注意的是,用激光粒度仪,通过测定散射光能的分布计算出被测样品的粒径大小,其中散射光的强度和空间分布与被测颗粒的大小和含量有关。因此,确保粉体能均匀分散在分散介质中,粒子不团聚,不与分散介质发生化学反应是准确测定样品粒度的前提。/pp style="text-indent: 2em "对于铝粉的粒度检测方法,筛分法和激光极度以检测方法都有相应的行业标准出台,分别是YS/T 617.6-2007《铝、镁及其合金粉理化性能测定方法 第6部分:粒度分布的测定 筛分法》和YS/T 617.7-2007《铝、镁及其合金粉理化性能测定方法 第7部分:粒度分布的测定 激光散射/衍射法》。/pp style="text-indent: 2em "(2)钛白粉/pp style="text-indent: 2em "钛白粉是塑料中是重要的添加剂,粒度大小和粒度分布对钛白粉的白度、光泽度、耐候性等性能有重要影响。6、70年代,国内外一些钛白粉厂多采用沉降法和电子显微镜法测定钛白粉粒度分布 。沉降法影响因素较多, 测定结果有很大差别 电子显微镜法测定粒度分布, 必须借助大量统计工具, 才能得到较为接近实际情况的粒度分布, 否则有局限性。相比之下,激光粒度仪法简捷 、快速 、准确度高、重现性好,对钛白粉粒度分布的测定适用性极好 ,有利于指导钛白生产和成品质量评定。使用激光粒度仪测量钛白粉最好的方法是先确定分散剂 、分散剂浓度及分散时间等影响因素,并建立稳定的测量体系。目前钛白粉的粒度检测尚无相关的标准出台。/pp style="text-indent: 2em "(3)硅粉/pp style="text-indent: 2em "硅粉是合成甲基氯硅烷的主要原料之一,硅粉粒径的大小直接影响到甲基氯硅烷的选择性及收率,故在甲基氯硅烷生产过程中必须对硅粉的粒度及分布情况进行测定。目前,常用的硅粉检测方法为筛分法,但该法噪声大,粉尘污染严重,且会在检测过程中造成样品损失,回收率低,在潮湿环境下硅粉易受潮,也会使测试结果产生偏差。/pp style="text-indent: 2em "激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。其测试速度快、重复性好、操作简单,已被应用于硅粉的粒度测试上。激光粒度仪测定硅粉的较佳仪器条件为: 遮光率 15%,超声时间 3 min,当搅拌速度为 1 500 r/min 时,获得的检测结果准确可靠。与钛白粉一样,化工用硅粉的粒度检测也尚无相关的标准出台。/pp style="text-indent: 2em "(4)碳酸钙粉/pp style="text-indent: 2em "碳酸钙( CaCO3 )粉主要存在于天然矿石中,目前是一种应用较广泛的环保型钻井液加重材料。在钻井钻进储层段时,钻完井液会侵入油层中,而小于孔喉直径的钻井液材料则会进入油层造成伤害,颗粒愈小,侵入深度愈大。固相颗粒的伤害对裂缝油藏更为突出。因此,对固相颗粒的控制,减少钻井液中固相含量,特别是超细钻井液材料的颗粒含量,使/pp style="text-indent: 2em "它们保持一个合理的级配,是减少钻井液固相对油层伤害的重要措施。/pp style="text-indent: 2em "过去通常采用沉降法测定碳酸钙粉末粒度,但沉降法的实验步骤繁琐,且重复性较低。当前随着激光衍射技术的不断更新,使用激光粒度分析仪已经完全可以代替传统的筛析和沉降方法,激光粒度分析仪具有较好的数据采集和处理系统,测试过程结束后,直接计算分析出实验数据所需结果并可以分类保存、一键打印实验结果,样品测试时间仅为数分钟 ,远远低于沉降法测量,大大缩短了测量周期。/pp style="text-indent: 2em "针对碳酸钙粉,目前已有国标GB/T 15057.11-1994《化工用石灰石粒度的测定》出台。但所规定的方法也仅为筛分法。/pp style="text-indent: 2em "(5)细精粉/pp style="text-indent: 2em "粒度是衡量铁矿石质量的一项重要指标 , 在铁矿石贸易合同中 ,贸易双方对粒度指标的要求都比较严格 ,粒度分布直接关系到铁矿石价格 。而细精粉是铁矿石中价格最贵的品种之一 , 而最能表现其质量除了铁品位就是它的目级粒度。通常目级粒度的测试是用筛分仪进行测试。筛分作为一种古老的方法, 它最大的优点在于廉价, 所以适用于矿业中较大颗粒粒度测试 。目前进口铁矿中粒度测试都采用网筛进行筛分,但是也有许多的缺点 :①干式条件下测量小于 1mm的矿石比较困难 ②干式条件下测量粘性较大或成团的矿石比较困难 ③筛分时间长短受人为因素控制 ,可比性、可靠性下降。/pp style="text-indent: 2em "随着科学技术的发展,激光光衍射 (或称小角激光光散射)等 ,已成为粒度测试的首选方法,不需要对照标准来校准仪器 很宽的动态范围 灵活性高 可以直接测量干粉 具有高度的再现性 可以测量整个样品 测量方法是非破坏性和非侵入性的 速度较快 分辨率高。不过细精粉的粒度分布均匀, 都在 1mm以下 ,而激光粒度仪的测试范围在 0.02 ~ 2mm, 因此,激光粒度仪在细精粉粒度检测中的应用有一定的范围条件:当测试时间 20s、泵速2 500r/min时,激光粒度仪可适用于铁矿石目级粒度的测定,而且结果比机筛的结果更加真实。/pp style="text-indent: 2em "在细精粉等铁矿石粉体的粒度检测标准中,目前针对筛分法已有国标GB/T 10322.7-2016,《铁矿石和直接还原铁 粒度分布的筛分测定》出台。另有商业检测标准,SN/T 4844-2017《铁矿石安全卫生检验技术规范 第7部分:质量评价 粒度分布》现行,但尚无相关的激光散射/衍射法粒度检测标准出台。/pp style="text-indent: 2em "上述5大粉体的粒度检测都已经或正在展现出对激光粒度仪的青睐,但铝粉外,似乎并无相应的激光散射/衍射法粒度检测标准出台,这对于各激光粒度仪厂商也不失为一种参与行业建设的机遇。/p
  • TSI 激光粒子计数器系列全面升级
    AEROTRAK 手持式激光粒子计数器  型号9303 3通道基本型  TSI AeroTrak 9303 手持式激光粒子计数器给客户提供一款操作更加灵活、价格更加富有吸引力的高性能手持粒子计数器方便进行粒子污染物控制。9303采用的高耐磨注塑设计更加方便手持。仪器可同时显示3个粒径尺寸。中间通道用户可以从0.5, 1.0, 2.0或2.5mm之中选择 。  标准1年保修  型号9306 6通道标准型  9306提供6个粒径通道同时显示。3.7-inch彩色触摸屏和Mirosoft WindowsCE操作界面,使操作更方便,超大的10,000数据内存可通过USB接口或可通过USB接口或可选外置打印机直接输出,同时可连接温度/湿度探头(选件),并包含内部报警功能。  保修期延长为2年  AEROTRAK 便携式激光粒子计数器  型号9310/9510和型号9350/9550  TSI AeroTrak 9310和9510便携式激光粒子计数器给客户提供更加操作灵活功能更加强大的大流量的便携式粒子计数器方便进行粒子污染物控制。它们既可作为单机工作也可以组建厂房的监测系统。该几款仪器采用一体轻型化设计使移动和操作更加容易。直读式按键使操作更加简单。10,000个数据内存可通过屏幕显示并可通过 USB和Ethernet进行下载。  仪器可同时显示6个粒径尺寸。并支持声音报警功能。  标准的2年保修外,TSI提供全套的技术服务和支持。  AEROTRAK 典型应用:  洁净厂房内的颗粒物测试 空气粒子研究 暴露性评估 室内空气质量评估。也应用于过滤器性能测试 洁净度评价及污染物迁徙研究等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制