当前位置: 仪器信息网 > 行业主题 > >

激光颗粒测试仪

仪器信息网激光颗粒测试仪专题为您提供2024年最新激光颗粒测试仪价格报价、厂家品牌的相关信息, 包括激光颗粒测试仪参数、型号等,不管是国产,还是进口品牌的激光颗粒测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光颗粒测试仪相关的耗材配件、试剂标物,还有激光颗粒测试仪相关的最新资讯、资料,以及激光颗粒测试仪相关的解决方案。

激光颗粒测试仪相关的论坛

  • 【讨论】光阻法颗粒测试与激光法颗粒测试的比较

    各位前辈,晚生最近查阅关于颗粒计数测试的一些资料,发现在光学方面主要有:光阻法、激光法。理论上讲光阻法测量下限不如激光法,不过光阻法也有不少仪器。那么光阻法优势在哪里和激光法测微粒有什么区别,两者在价位上是否有很大差异?另外光阻法原理测量时根据遮光区大小来测量粒径的,那么对于不同透明度的待测液体怎么处理?比如测水和油的颗粒数,透明度不同,即使颗粒相同,测量结果也会不同吧。 本人新手,希望各位大侠不吝赐教,欢迎各位讨论。

  • 用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型任中京 王少清( 山东建材学院科研处 济南250022)提要:激光颗粒大小测试的结果与颗粒形状密切相关。通过对椭圆衍射谱的研究, 提出在激光粒度分析中以椭圆谱代替球形颗粒谱。计算机模拟计算与对金刚砂实测的结果表明椭圆衍射模型可以有效地抑制粒度反演结果的展宽, 更准确地获得非球形颗粒群的粒度分布。关键词 激光衍射, 椭圆模型, 颗粒大小分析, 颗粒形状, 反演1 引言  由于颗粒大小对粉末材料的重要影响, 颗粒粒度测试在建材、化工、石油等许多领域已经成为一种不可缺少的检测技术。由于颗粒形状的多样性, 无论何种测量方法, 均需要颗粒模型。通常假定颗粒为球体, 与被测颗粒等体积的球体直径称为粒径, 或称等效粒径 。然而球体模型在激光衍射(散射) 粒度分析技术中却遇到严重困难—对非球形颗粒测试常常产生较大误差, 表现为所测得的粒度分布较真实分布有展宽且偏小。来自日本和美国的颗粒测试报告也有相同的倾向 。从光学原理上看,激光粒度分析技术是通过检测颗粒群的衍射谱来反演颗粒群的尺寸分布的。非球形颗粒的衍射谱与球体有很大不同: 前者是非圆对称的, 而后者是圆对称的。欲使二者具有可比性需要新的物理模型, 新的模型应满足: 1) 更加逼近真实颗粒;2)对一系列颗粒有普遍的适用性;3)可给出衍射谱解析式;4)在激光测粒技术中能校正颗粒形状引起的测量误差;5)能函盖球体模型。本文将证明椭圆衍射模型是满足以上条件的最佳选择。2 非球形颗粒衍射模型的椭圆屏逼近颗粒虽然是三维物体, 但是在激光测粒技术中其横截面是使光波发生衍射的主要几何因素, 因此只需研究与入射光垂直的颗粒横截面。球体衍射模型即是取颗粒的体积等效球的投影圆作为该颗粒的衍射模型。如图1 所示, 将形状任意颗粒的横截面视为一衍射屏。可分别做出其轮廓的最大内接圆和最小外接圆。设外圆直径为2b, 内圆直径为2a。分别以2a, 2b 为长短轴做椭圆。下面将证明该椭圆屏即为与图1 所示的颗粒横截面等效的非圆屏的最佳解析逼近。2. 1非圆屏与椭圆屏的几何关系由图1 可见,与非球颗粒相对应的椭圆屏的面积S e 恰好为其横截面外接圆与内接圆面积的几何中值,而与该椭圆屏面积相等的圆( 面积等效圆) 的直径Do 恰好为其长短轴2a 与2b 的几何中值。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281105_441929_388_3.jpg此颗粒对球体的偏离可用形状系数K 表示, K 定义为:K=b/a[fon

  • 当代激光颗粒分析技术的进展与应用

    当代激光颗粒分析技术的进展与应用

    当代激光颗粒分析技术的进展与应用任 中 京( 济南微纳颗粒仪器股份有限公司 济南 250022)摘 要:简要介绍了当代激光颗粒分析技术的最新主要的进展。内容涉及测试原理的发展、仪器结构的改进、数据处理技术的突破、多次散射的处理、样品分散系统的多样化、颗粒形状对测试的影响、颗粒散射模型、工业在线应用等一系列理论和应用问题。关键词:激光,粉体,颗粒,散射,测试1 前言著名物理学家费曼曾说: 假如由于某种大灾难,所有的科学知识都丢失了,只有一句话传给下一代,那么怎样才能用最少的词汇来表达最多的信息呢? 我相信这句话是原子的假设,所有的物体都是用原子构成的 。”可见物质组成在人类文明中具有多么重要的意义。20 世纪,人们对于宏观与微观的物理世界已经有了相当深入的了解,但是对于微观粒子到宏观物体之间的大量物理现象却知之甚少。颗粒正是二者之间的中介物。如大颗粒主要表现为固体特性。随着颗粒变小,流动性明显增强,很像液体;颗粒进一步变小,它将像气体一样到处飞扬了;颗粒尺度再小,它的表面积则迅速增大,表面的分子所处状态与大颗粒完全不同,颗粒的性质将发生突变,显示出某些令人震惊的量子特性! 现在, 世界上许多优秀的科学家正在这个介观领域辛勤耕耘,大量具有特殊性能的材料将在这一领域诞生。导致颗粒性质发生如此变化的第一特征是它的大小。颗粒大小在人们的生活和生产中也非常重要。如水泥颗粒磨细些,水泥早期强度将明显提高;药品粒度越细,人体对它的吸收越好;磁性记录材料越细,存储密度越高。这样的例子不胜枚举。因此,颗粒超细化已经成为提高材料性能的重要手段。颗粒大小测定受到人们重视也就不足为奇了。人们为了测定颗粒大小,几乎采用了可以想到的一切办法。由于篇幅所限,本文只介绍激光颗粒分析技术的概况。2 激光怎样测量颗粒大小激光测量颗粒大小的方法有多种,其中包括光散射、光衍射、多普勒效应、光子相关谱、光透法、消光法、光计数器、全息照相等,本文所说的激光颗粒分析专指通过检测颗粒群的散射谱分布,分析其大小及分布的激光散射( 衍射) 颗粒分析技术。众所周知,一束平行激光照射在颗粒上,将发生著名的夫琅禾费衍射,使用傅里叶变换透镜汇集衍射光,在透镜后焦面可得到此颗粒的衍射谱。如果颗粒是球体,则衍射谱是著名的Airy 图形,中心的Airy 斑直径与颗粒直径成反比。若将一同心环阵光电探测器置于后焦面用于衍射谱的检测,再配以信号处理系统, 即构成基本的激光衍射颗粒分析系统 (见图1) 。http://ng1.17img.cn/bbsfiles/images/2015/12/201512221524_579009_3049057_3.jpg当光束中无颗粒存在时,光会聚在探测器中心; 当小颗粒进入光束时, 探测器的光强分布较宽;当大颗粒进入光束时,探测器光强分布较窄。如果进入光束检测区的是具有一定粒度分布的颗粒群, 则探测器的输出为全部颗粒衍射谱的线性叠加,使用反演技术可根据衍射谱反求被测颗粒群的粒度分布 。激光衍射颗粒分析系统适用于粒度大于激光波长很多的颗粒,测量范围大约在6Lm 以上,测量上限决定于透镜焦距,已知最大可测到2000Lm.激光颗粒分析系统的优点是非常突出的,其中包括(1) 测量速度快,其他方法无法比拟;(2)测量过程自动化程度高,不受人为因素干扰,准确可靠;(3)衍射谱仅与颗粒大小有关,与颗粒的物理化学性质无关,因此适用面极广。3 从衍射到散射使用衍射原理的激光颗粒分析系统的主要缺点是在小颗粒范围测量误差很大,特别是无法测量亚微米颗粒的大小。随着颗粒技术的进步,颗粒粒度迅速向超细发展,夫琅禾费衍射已不能满足测试要求,必需采用更精确的Mie 理论。http://ng1.17img.cn/bbsfiles/images/2015/12/201512221525_579010_3049057_3.jpgMie 散射理论是球形颗粒对单色光的散射场分布的严格解析解。夫琅禾费衍射是Mie 散射理论在特定条件下的近似。Mie 散射理论指出,当颗粒直径比入射光波长小得多时,颗粒的前向散射与后向散射场分布对称;当颗粒直径与入射光波长近似时,前向散射比后向散射强,且散射场关于入射光轴呈周期分布;当颗粒直径比入射光波长大得多时,颗粒将只有前向散射场,这正与夫琅禾费衍射理论一致(见图2) 。由此可见,Mie 散射理论比夫琅禾费衍射理论适用范围更广,更精确。为了适应小颗粒散射谱的测量,光路也发生了重大变化,原平行光路由会聚光路取代。颗粒样品由置于透镜前改为透镜之后,可接收的散射角达到70b。经改进的颗粒分析新光路测量范围从0.1um 至数百um,只要改变样品位置即可方便地调节测量范围,不必更换透镜 。至此,Mie 散射理论正式担当了颗粒分析的主角。4 多重散射激光散射颗粒分析在原理上要求被测颗粒无重叠随机分散在与光路垂直的同一平面内。但是这一要求在实际上很难做到,例如干粉从喷嘴喷出往往呈三维分布,前面的颗粒使平行激光发生散射,散射光遇到后面的颗粒再次散射,此过程经历多次,散射谱分布大大展宽,这种现象称为多重散射。可以证明,N 次散射光场的复振幅是单次散射光场的复振幅的N重卷积。颗粒分布得越厚,散射谱展宽越严重,颗粒分析结果将严重地向小颗粒偏移。为了抑制多重散射,人们曾采用了多种办法。我国学者分析了多重散射与颗粒浓度的关系,发现颗粒三维分布时仍存在最佳衍射浓度,在此浓度下,多重散射可以得到有效抑制。颗粒分布越厚,最佳衍射浓度则越小。在此理论指导下,我国研制的干粉激光颗粒分析仪,其测量结果可以同湿法激光颗粒分析仪相比。5 反演——追求真实的努力我们的测量对象很少有单一粒径的颗粒集合,往往是有一定粒度分布的颗粒群。我们所测得的谱分布是由颗粒分布函数为权重的颗粒散射谱分布对所有粒径的积分。在颗粒分析中的反演运算即通过所测谱分布反求粒度分布(颗粒的散射谱分布作为理论已知)。反演正确与否直接关系到此技术的成败。本文不想全面论述反演技术,只简要介绍两种反演思路。流行的一种方法是先假定被测颗粒粒度服从某种分布函数( 如正态分布、对数正态分布、R - R 分布等,然后叠代求取分布参数。如果预先的假定是错的,那么反演结果必错。怎样才能获得真实可靠的结果呢? 我国研究人员发展了一种无约束自由拟合反演技术,即对粒度分布函数不作任何约束,令每一权重因子独立地逼近最佳值。此技术已在仪器上应用并取得良好效果,提高了颗粒大小分辨率,保证了反演结果的真实可靠性。此技术在其他场合也有应用价值。6 大小与形状有关吗?通常认为物体的大小与物体的形状是互不相关的两个概念。近期关于颗粒学的研究表明,颗粒大小的表征不仅与颗粒形状有关,而且与颗粒测试的方法有关,这恐怕是人们预料不到的。以沉降法为例来说明。在重力场中,某非球形颗粒A 的最终沉降速度与另一同质球体B的最终沉降速度相同,则定义颗粒A 的粒径即为颗粒B 的球体直径,称为沉降粒径。二者实际体积并不相同。与此相反,体积相同的两颗粒,若形状不同,一为球体另一为非球体,则其沉降粒径也不同。由此看来颗粒大小与形状有关。与沉降法类似,激光散射法所测粒径也与形状有关。截面积相同的两颗粒,非球体的衍射谱比球体的谱宽。若用球体衍射谱度量非球体,则测试结果偏小。为了解决这种矛盾,我国学者引入椭圆颗粒衍射模型,即取非球体颗粒的最小外圆直径为长轴,取其最大内圆直径为短轴,所作椭圆即为该颗粒的椭圆模型。颗粒的球体模型发展到椭圆模型是颗粒学的一个进步,椭圆模型引入的实质就是承认颗粒大小与颗粒形状有关,并把形状因素引入大小度量的范畴。椭圆模型的引入,为激光颗粒分析用于非球形颗粒奠定了理论基础,并有效地提高了测量精度。7 从实验室到工业生产第一线事实上颗粒测试生产线早已需要一种颗粒在线检测设备。例如粉磨设备的主要功能是将原料磨细,因此颗粒大小就成为粉磨工艺的首要检测指标,但是无论是沉降法还是库尔特法,无论是图像法还是超声波法,均难担此重任。目前人们只能靠检测磨机负荷与监听磨机发出的声音来判断它的工作状态,至于产品粒度则需数小时一次间隔取样,到试验室分析,再返回现场调整磨机,由于检测不及时,导致产品过粗或过粉磨现象司空见惯,造成的浪费无法计算。现在,激光颗粒分析技术的出现与成熟,为颗粒在线测试提供了可能。激光颗粒分析技术除前面谈到的许多优点外,还有一些优点尚未引起人们的注意:(1)它可用于运动颗粒群的实时颗粒分析;(2)它不但适用于液体中的颗粒,也适用于气体中的颗粒。所有这些优点都注定了这种测试方法必定要在现代化的颗粒生产线担任在线粒度测试的主角。此技术在粉磨系统的应用必将改变磨机的控制模式,磨机将发挥出更大的潜力,能耗也将得到最大限度的节约。我国在气流粉碎机方面的粒度在线测控研究工作业已取得可喜的成果。预计不久,选粉、造粒、喷雾、干燥、结晶等许多工艺过程都将由激光颗粒分析仪担当在线分析的重任。到那时,此种技术的潜力才可得到较为充分的发挥。8 结束语激光颗粒分析技术的研究从70 年代起步,到今天才不过20 年的时间,它已经在测量精度、测量速度、分辨能力、动态检测能力等方面远远超过传统分析方法,在世界许多实验室与生产企业应用表现出无可比拟的优越性,越来越多的产品正在选择激光颗粒分析技术作为产品检验标准。此种

  • 激光粒度仪测试结果准确性的判断?

    我在欧美克还有马尔文的激光粒度仪器上对粉体的粒度进行测试,但是结果相差比较大,虽然有些粉体厂家已经告诉一些粉体的粒度,但是这个数值也不一定准确~另外我问过一些技术人员,听他们说从SEM图像上观察到的颗粒尺寸并不能作为激光粒度的参考,所以想问到底怎么来判定哪个的测试结果更准确些呢?另外不同的激光粒度测试仪所测出的粒度不同,那么对于这么大的不确定性,是不是说激光粒度仪测试的粒度只能进行对比测试,比如说测试不同条件下制备不同粉体颗粒尺寸的相对大小,而不能定量的确定每种条件下粒度的实际值?

  • 【求助】激光衍射粒度分布测试仪

    我单位需购买一台激光衍射粒度分布测试仪,测试样品为对苯二甲酸,现用筛分法测定粒度分布,粒度从45um到大于250um,平均粒度在110--130um之间。现要求如下:1当然要准确。2分析速度快。3能同时给出体积比和重量比 4仪器操作简单,但用工作站控制。 5仪器维护方便,比如样品池易清洗,更换镜头方便或不用换镜头。初步打算选择英国马尔文公司Mastersizer 2000型或美国贝克曼LS系列。请各位老大给个建议,特别是用过的老大!!!如果那位有LS系列的详细资料请发给我邮箱zyxdbox@yeah.net谢谢!!!!

  • 颗粒度测试

    大家好,我想自己研发颗粒度测试仪器,主要用来测量发电机内机油的机械杂质颗粒含量。我对这个行业不熟悉,请行家多多指点。做激光的好还是做图象计数的好?感觉这个项目有难度,尤其是那个测粒度的传感器,粒度计数器之内的,不知道哪里有现成的传感器买不?

  • 激光粒度仪

    激光粒度仪粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。激光粒度仪的光学结构·  激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。激光粒度仪的原理·  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。  米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该[font=

  • 【讨论】细颗粒粉末激光问题

    我现在分析的细颗粒粉末激光后面老是拖尾,感觉夹粗很严重的样子,我是用水为分散介质,现怀疑是分散介质不对,感觉像样品外超后又重新凝聚,不知道应该用哪种分散介质比较好呢?我用的是马尔文2000的仪器。中粗颗粒又不会,头疼呀!哪位大师碰到这种情况或有好的分散剂分享下先!

  • 激光粒度仪在粒度分布测量时颗粒“浓度”的含义

    [font=微软雅黑]粒度分布测量中所显示的“浓度”一般是所接收的光信号的大小,是与颗粒数目有关的量,一般称光学浓度而不是百分比浓度。[/font][font=微软雅黑]对激光法来说,悬浮液中颗粒数越多,光学浓度越大(但如果颗粒太多,光被超量遮挡,光学浓度反而减小);对沉降法来说,悬浮液中颗粒数 越多,光学浓度越小。[/font][align=center][img]http://img48.chem17.com/9/20180927/636736432186110191244.png[/img][/align]

  • 【分享】激光粒度测试!

    转载一篇资料和大家分享!粒度是反映固体颗粒的大小及其均匀程度的主要指标.如FCC催化剂制备原料:分子筛、高岭土、拟薄水铝石等,这些原料对于粒度的分布要求十分严格,它们直接影响催化剂的制备效果.而成品FCC催化剂的粒度分布影响其在工业生产中的使用性能,因此激光粒度测试技术在颗粒的制备和生产中显得尤为重要.本文以马尔文公司生产的MICRO-PLUS型激光粒度仪为例,此仪器应用费朗霍夫理论,全量程米氏理论,由粒度仪和计算机两部分组成,测试范围:0.05~550,um.从分析参数的设置、样品的分散与采集、标样的准备以及其它可能影响测试结果的因素等方面进行了分析,以期在颗粒的测试和表征过程中得到比较准确的粒度分布数据提供依据.

  • 颗粒测试技术的进展与展望

    颗粒测试技术的进展与展望摘 要:本文简述了当今颗粒测试技术六个方面的进展,对颗粒测试技术的近期发展趋势作了简短的展望,提出了七个颗粒测试领域需要统一认识的基本问题,对促进颗粒测试技术发展提出了几点建议.关键词:颗粒测试;技术进展;发展趋势;基本问题;知识产权1 前 言随着颗粒技术的发展,颗粒测试技术已经受到广泛的关注与重视. 本文就目前颗粒测试领域的新进展,谈一点个人的浅见,请各位指教. 本文谈及的问题有:颗粒测试技术进展、颗粒测试技术展望、颗粒测试的基本问题和促进颗粒测试技术发展的几点建议.2 颗粒测试技术进展近年来颗粒测试技术进展很快,表现在以下几个方面:1) 激光粒度测试技术更加成熟,激光衍射/散射技术,现在已经成为颗粒测试的主流. 其主要特点:测试速度快,重复性好,分辨率高,测试范围广得到了进一步的发挥.激光粒度分析技术最近几年的主要进展在于提高分辨率和扩大测量范围. 探测器尺寸增加,附加探头的使用扩大了测量范围;多种激光光源的使用、多镜头、会聚光路、多量程、可移动样品窗的使用提高了分辨率,采样速度的提高则进一步改善了仪器的重复性. 英国马尔文公司GM2000系列激光粒度仪采用高能量蓝光辅助光源和汇聚光学系统,测量范围达到0.02?2000微米,不需更换透镜. 贝克曼库尔特公司采用多波长偏振光双镜头技术将测量范围扩展到0.04?2000微米.代表了当前的先进水平. 国产的激光粒度仪在制作工艺和自动化程度上尚有欠缺,但大多数在重复性准确度方面也达到了13320国际标准的要求. 目前激光粒度分析仪在技术上,已经达到了相当成熟的阶段.米氏理论模型可以提高仪器的分辨率,但是需要事先了解被测样品的折射率和吸收系数,才可能获得正确的结果.测试结果的优劣不仅取决于测试系统和计算模型,更加取决于样品的分散状态.激光粒度仪对样品的分散要求是,分散而不分离. 仪器厂家应更加注意样品分散系统设计. 尽量避免小颗粒团聚,大颗粒沉降,大小颗粒离析,样品输运过程的损耗,外界杂质的侵入. 对于不同样品选用不同的分散剂和不同的分散操作应该引起测试者的注意.任何原理的仪器测试范围都不是可以无限扩展的. 静态光散射原理的激光粒度分析向纳米颗粒的扩展和向毫米方向的扩展极限值得探讨. 毫米级的颗粒只需光学成像技术就可以轻易解决的测量问题采用激光散射原理则并不是优势所在.2) 图像颗粒分析技术东山再起图像颗粒分析技术是一种传统的颗粒测试技术,由于样品制备操作较繁琐、代表性差、曾经作为一种辅助手段而存在,他的直观的特点没有发挥出来.为了解决采样代表性问题,有人使用图像拼接技术或者多幅图像数据累加技术可以有效提高分析粒子数量,采用标准分析处理模式的图像仪则可以将操作误差减小,这些改进取得了一定的效果.最近几年动态图像处理技术的出现使传统度颗粒图像分析仪备受关注,大有东山再起之势. 动态图像处理的核心是采用颗粒同步频闪捕捉技术,拍摄运动颗粒图像,因此减少了载玻片上样品制备的繁琐操作,提高了采样的代表性,而且可用于运动颗粒在线测量. 这就大大扩展了图像分析技术的应用范围和可操作性. 荷兰安米德公司的粒度粒形分析仪是有代表性的产品。它采用CCD+频闪技术测颗粒形状、采用光束扫描技术测颗粒大小。可测最大粒径为6毫米。如果颗粒在光学采样过程不发生离析现象,此种仪器在微米与毫米级颗粒测量中可能会得到广泛的应用.颗粒图像分析技术需要解决的另一个问题是三维测量. 动态颗粒图像采集由于颗粒采集的各向同性因此可以解决在载波片上颗粒方位的偏析问题,但是仍然无法解决如片状颗粒厚度问题. 厚度测量对于金属颜料,云母、特种石墨都是一个急需解决的实际问题.3) 颗粒计数器不可替代颗粒本身是离散的个体,因此对颗粒分级计数是一种最好的测量方法. 库尔特电阻法在生物等领域得到广范应用已经成为磨料和某些行业的测试标准. 但是他受到导电介质的限制和小孔的约束,在某些行业推广受到阻力.最近光学计数器在市场上异军突起,他将在高精度和极低浓度颗粒测量场合发挥不可替代的作用. 美国Haic Royco 公司颗粒计数器/尘埃粒子计数器是才进中国不久的老产品;美国PSS(Particle Sizing Systems)公司采用单粒子光学传感(SPOS)技术生产的系列仪器可用于湿法、干法、油品等各种场合的颗粒计数。国内颗粒计数器的研究工作起步并不晚,但是除了欧美克的电阻法计数器外,尚未见光学计数器商业化的产品。4) 纳米颗粒测试技术有待突破纳米颗粒测试越来越受到重视.电镜是一种测试纳米颗粒粒度与形态最常用的方法.电镜样品制备对于测试结果有重要影响,北京科技大学在拍摄高质量电镜照片方面作了出色的工作. 由于电镜昂贵的价格和严格的使用条件,以及取样代表性问题,电镜在企业推广不是最佳选择.根据动态光散射原理设计的纳米级颗粒测试技术是一种新技术,近年来获得了快速发展.马尔文,布鲁克海文、贝克曼库尔特等公司提供了优秀的商品,马尔文公司已将动态光散射的测量范围扩展到亚纳米范围,HPPS高性能高浓度纳米粒度和Zeta电位分析仪测试范围0.6-6000纳米,可以测量大分子真溶液粒径。国内开展此项技术研究的单位日益增多,上海理工大学、浙江大学、北京大学、清华大学、济南大学等许多高校都有学者和研究生在做工作. 数字相关器仍然是制约国产动态光散射仪器的瓶颈技术,如果数字相关器问题得到解决,中国自己的动态光散射纳米粒度仪出现在市场上将不会太远.X射线的波长比纳米还要短,因此X射线小角散射是一种测量纳米颗粒的理想方法,(类似于激光衍射原理)国外有商品仪器. 国内,此方法已经列入国家开发计划,国家钢铁研究总院对此方法研究已经作了大量工作,但是尚未见商品问世.5) 光子相关技术独树一帜动态光散射原理纳米颗粒测试采用的技术主要是光子相关谱,光子相关技术是一种70年代兴起的超灵敏探测技术,他根据光子信号的时间序列的相关性检测被测信号的多普勒频移或时间周期性,比通常的光谱仪分辨率高一个数量级,因此此技术也被用于颗粒运动速度的测定和其他场合. 上海理工大学浙江大学利用此原理已经研制成功在线用的颗粒粒度与颗粒流速的探针. 它可用于物料管道内部检测物料的平均大小和物料的流速. 对于在线控制具有指导意义。有报道称使用光子探测技术可以对高压空气喷嘴中的颗粒计数,说明颗粒测试正在向更加精密更加灵敏的方向发展.6) 颗粒在线测试技术正在兴起

  • 【求助】用激光粒度仪测定土壤颗粒分布怎样前处理?

    我现在想测定土壤的颗粒分布((Clay%,Silt%,Sand%),看到有的文献用激光粒度仪,但实验室老师说这个还要前处理一下,好像需要用什么溶剂来分散,我还没有找到[size=4][b]具体[/b][/size]的前处理方法,各位有谁做过的,再次请求你们的帮助了,谢谢了!!!

  • 【原创】给大家推荐一款激光颗粒计数器

    给大家推荐一款美国进口的液体中颗粒物测定仪,希望对大家有帮助PC-2200激光颗粒计数器用于测定水及各种液体中颗粒物的数量及粒径大小,粒径范围0.5-100µm.既可测定流动液体也可测定容器内的静止液体.特点:* 易于用户自行校准* SuperCount软件* 结构紧凑,便于携带* 快速测定颗粒数量及粒径* 对流动液体无交叉污染* 无需样品冲洗http://www.morechina.com.cn/Spectrex/images/pc-2200_1.jpg工作原理:采用"近前向光散射"原理,旋转激光束通过流通池的玻璃器壁,当光束通过中心"感测区"时,PC-2200同时测出悬浮颗粒的的数量和粒径大小.光脉冲产生的模拟信号输入计算机并进行数字化.http://www.morechina.com.cn/Spectrex/images/pc-2200_2.jpghttp://www.morechina.com.cn/Spectrex/images/pc-2200_3.jpg校准:每套仪器提供3个密封的校准标准.每个校准标准含有精确数量和已知粒径的聚苯乙烯球体颗粒,可进行NIST溯源,采用惰性氩气密封.该标准的稳定性经证实超过10年,10分钟内即可提供有效的校准.应用:* 水处理厂* 大学实验室* 制药厂* 炼油厂和钻井现场* 装瓶和饮料操作* 海洋学研究* 液压机液体和石油质量控制* 液相色谱法溶剂质量控制* 冷却塔和废水过滤器效率* 颗粒凝聚研究* 泥沙和沉淀物粒径筛分* 颗粒沉淀特性研究* 腐蚀性化学品和溶剂粒径筛分* 小瓶和安瓿针剂检查* 去离子水和酸性试验* 细胞计数SuperCount 软件显示以下测定数据:* 颗粒数量* 平均直径* 质量分布* 百分比分布* 标准偏差* 总悬浮固体技术参数:* 仪器尺寸:120×355×114mm* 测量瓶尺寸:15-60mm内径* 测量瓶材料:透明,无划痕玻璃瓶* 重量:2.7Kg* 电源:230VAC/50Hz* 可测粒径范围:0.5-100µm选配附件:http://www.morechina.com.cn/Spectrex/images/pc-2200_4.jpghttp://www.morechina.com.cn/Spectrex/images/pc-2200_5.jpghttp://www.morechina.com.cn/Spectrex/images/pc-2200_6.jpg不透明度指示计5ml小瓶附件流通池

  • 使用激光粒度仪为什么要测试背景?

    使用激光粒度仪为什么要测试背景?

    使用激光粒度仪为什么要测试背景? 背景是激光透过纯净介质后在探测器上形成的固定的光信号,主要是探测光经过路径上的颗粒物(例如,样品池玻璃和透镜表面上的污渍、内部的瑕疵、介质中的残余颗粒等)对光的散射引起的。测量背景的目的的是在粒度测试(有样品)时扣除这些固定的、与样品无关的信号,以消除样品散射以外的杂散光对测试结果的影响。 激光粒度仪的背景值如果在大部分探测器上都偏高,而靠近中心的第1、2单元正常时,原因往往是样品池玻璃上的污渍、透镜上的灰尘、介质中残留的颗粒、介质温度低于室温引起的玻璃外表面的雾滴等;如果靠近探测器中心的探测单元,尤其是第1、2单元过高,一般是由光束对中不良引起的。如果所有探测单元的背景信号都过低,很可能是激光器功率下降或者滤波针孔偏移造成的。查清引起背景信号过高或过低的原因后,应排除上述问题,使背景强度恢复到正常状态。以winner2000ZDE智能湿法激光粒度仪分析仪操作软件为例:1.仪器加水排气泡后,第一环高于200,应该是光路没有对中,可进行光路对中。http://ng1.17img.cn/bbsfiles/images/2015/11/201511191111_574341_3049057_3.png2.仪器加水排气泡后,第二环往后背景都很高,应该是样品窗污染。可清洗样品窗。http://ng1.17img.cn/bbsfiles/images/2015/11/201511191111_574342_3049057_3.png3.经过调试后,背景达到以下情况,就可以进行背景测试。http://ng1.17img.cn/bbsfiles/images/2015/11/201511191117_574346_3049057_3.png

  • 好文推荐:《口罩颗粒物过滤效率测试仪校准方法研究》_等邹亚雄

    [font=Tahoma, &][color=#444444]邹亚雄 王婷 张明 刘巍 刘伟光 陈全森[/color][/font][font=Tahoma, &][color=#444444]青岛市计量技术研究院[/color][/font][font=Tahoma, &][color=#444444]摘要:口罩颗粒物过滤效率的检测过程比较复杂,涉及到气溶胶的发生、输送与上下游质量浓度的测量,影响过滤效率测量结果的因素包括试验气溶胶的粒径和分布、试验流量、气溶胶浓度测量等。为了确保测量结果的准确性和一致性,需要对过滤效率测试仪进行校准或验证。由于尚不存在具备计量溯源性的过滤效率标准试验设备或标准过滤膜,无法通过比较法对仪器进行直接校准,所以采用分部法对各影响因素进行评定,以判断测试仪是否满足口罩检测标准的要求。其中,气溶胶的粒径及分布采用了国际标准推荐的测试方法,而气溶胶浓度测量仪除进行示值误差[/color][/font][font=Tahoma, &][color=#444444]的校准外,还对上下游浓度测量值的相关性进行了评价。[/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制