当前位置: 仪器信息网 > 行业主题 > >

激光测长传感器

仪器信息网激光测长传感器专题为您提供2024年最新激光测长传感器价格报价、厂家品牌的相关信息, 包括激光测长传感器参数、型号等,不管是国产,还是进口品牌的激光测长传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光测长传感器相关的耗材配件、试剂标物,还有激光测长传感器相关的最新资讯、资料,以及激光测长传感器相关的解决方案。

激光测长传感器相关的资讯

  • 高精度激光水气传感器成功应用
    p 日前,“高精度激光调制吸收水气传感器应用技术”科技成果在北京通过专家评审,中科院院士姚建铨等评委会专家一致认为,该系统首次在国内无人机高空湿度测量、文物领域高湿环境监测等开展应用,在文物领域的应用填补了国内外空白,达国际先进水平。而市场上存在的传统测量方法在低温、高湿情况下,存在分辨率低、迟滞和误差大等问题。/pp 北京航天易联科技公司总经理李刚说,该传感器将国外传统水气传感器误差从± 5%提升到本传感器的± 1.5% 将传统传感器响应时间从10—30秒提升至100毫秒,实现了传感器技术的跨越 由于采用半导体光源,光源发出的检测气体特定光谱效率高,并使用信号处理算法,检测精度极高,可达1ppm(百万分之一)量级等。/pp  此技术由北京航天易联科技发展有限公司、中科院半导体研究所、中科院电工研究所联合研发,具有多项核心自主知识产权。经多年研究和大量试验、测试,该传感器有稳定性和防爆性好、寿命长,环境适应性好等优势,可应用于气象环保、文物保护、石油化工等领域的湿气监测。/ppbr//ppbr//p
  • 我国首个碱金属原子光学传感器专用激光器诞生
    日前,中科院长春光机所在国内首次研制出碱金属原子光学传感技术专用的795nm和894nm 垂直腔面发射激光器(VCSEL)。该器件采用完全自主的结构设计、材料生长和芯片工艺研制而成,芯片体积仅为0.05立方毫米(0.5mmx0.5mmx0.2mm)。器件高稳定单模态激光输出高于0.2毫瓦,工作电流低于1.5毫安,功耗低于3毫瓦,工作温度超过100℃,可作为核心光源用于芯片级原子钟、原子磁力计、原子陀螺仪等碱金属原子传感器。  基于原子光学技术的精密传感需要一些特定的波长(如795nm和894nm等)并且满足窄线宽、低功耗、可直接调制、单模和稳定偏振态的光源来激发碱金属原子。传统灯泵浦光源方案的传感器存在的体积大、功耗高、稳定性差等问题一直是困扰原子光学传感器小型化的主要难题。垂直腔面发射激光器(VCSEL)作为一种新型的半导体激光器,具有窄线宽、低功耗、高调制频率、小体积和容易集成等特征,因此基于VCSEL的相干布居俘获(CPT)方法使得原子光学器件的微型化和低功耗应用成为可能。  目前,国外只有个别实验室和公司具有制作该类原子光学传感器专用VCSEL的能力。中科院长春光机所大功率半导体激光组在十余年研究基础上成功制备出性能符合要求的VCSEL器件,为国内原子传感器的研制提供了必需的核心元器件并掌握了自主知识产权,目前正在与国内相关单位开展合作研究,促进芯片级原子传感器的产品开发。这些产品将应用于航天、国防以及民用领域,例如:精密计时技术、单兵卫星精确定位,长航时远距离惯性导航,高灵敏度水下金属磁场测量等。   795nm VCSEL 芯片(左)和TO46封装器件(右)
  • 四方光电激光扬尘传感器助力打赢蓝天保卫战
    p  根据“两会”期间公布的2020年政府工作报告,今年要实现单位国内生产总值能耗和主要污染物排放量继续下降 深化重点地区大气污染治理攻坚 要打好蓝天、碧水、净土保卫战,实现污染防治攻坚战阶段性目标。br//pp  2020年是打赢蓝天保卫战、“十三五”规划的全面收官之年,我国大气污染治理进入攻坚“深水期”,剩下的都是难啃的“硬骨头”。作为一直以来的重点和难点,扬尘污染治理已然成为大气污染防治目标完成与否的关键点之一。/pp  扬尘治理,需对症下药 而把脉问诊,监测为先。高性能的扬尘传感器对实现扬尘全面监测、精准治理、降低成本等多方面的重要性不言而喻。/pp  span style="color: rgb(0, 176, 240) "strong扬尘传感器的需求及应用现状/strong/span/pp  行业发展初期,扬尘监测设备多基于β射线吸收法,然而受仪器体积较大、成本高昂等因素掣肘,量大面广的需求无法得到真正满足。/pp  基于光散射原理的粉尘传感器,在民用室内检测应用中,经历了从采用LED光源和扩散式采样,用于粉尘浓度变化的趋势检测,到升级为激光光源和风扇采样,可以精确检测PM2.5数值的创新发展过程。然而针对室外扬尘监测还需要PM10和TSP的精准监测要求,则无法得到满足。/pp  因此,能够同时准确测量PM2.5/PM10/TSP、体积小、购买和维护成本低成为了扬尘监测设备配套传感器面临的主要挑战。/pp  span style="color: rgb(0, 176, 240) "strong室外扬尘颗粒物监测的技术难点/strong/span/pp  ① 与β射线原理的设备保持较高的线性相关性/pp  国站监测设备采用的是β射线原理,其他的扬尘监测站的监测数据必须要与其保持高度一致性,但由于原理上的差异,要做到这一点,传感器需要采用更高性能的器件,有效提升颗粒物识别的能力。/pp  ② 满足室外-30℃~70℃的工作温度要求/pp  温度对传感器激光管的影响非常大,然而室外温度范围更宽,夏天在太阳下暴晒,温度可能会到达70℃ 冬天北方严寒地区最低温度可能达到零下30℃。这就要求传感器在此温度下不仅能够正常工作,还要确保检测的准确性。/pp  ③检测精度不受水雾影响/pp  由于室外环境经常会遇到凝霜与露水的情况,这些水汽进入到传感器后会严重影响到传感器的测量值,甚至会造成传感器永久损坏。/pp  ④长期使用,精度不受积灰影响/pp  扬尘传感器工作在室外,大颗粒的灰尘经过传感器采样风道内会受到重力影响附着在传感器内部,长期使用,会使得灰尘在传感器内部大量堆积,影响到测量准确性。/pp  span style="color: rgb(0, 176, 240) "strong四方光电激光扬尘传感器的技术特点/strong/span/pp  四方光电基于创新的光散射技术研究,陆续推出红外粉尘传感器、激光粉尘传感器等系列传感器产品,广泛应用于室内、室外及车内检测等领域。/pp  在此基础上,四方光电针对扬尘传感器的应用场景,以及不同地方标准需求,推动技术革新升级,成功研发扬尘颗粒物传感器PM3003S及 PM3006。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/578caa97-49a6-4d7e-9c5f-e5fc398bc203.jpg" title="222_副本.jpg" alt="222_副本.jpg"//pp style="text-align: center "图1:PM3006S(左)及 PM3006(右)激光扬尘传感器/pp  strong1、 扬尘颗粒物智能识别技术(API技术)/strong/pp  PM3003S,PM3006采用了独特的API(Auto Particle Identification,自动颗粒识别)技术,在多种尘源下进行标定,根据检测到的颗粒物分布进行自动判断,确保PM2.5、PM10和TSP的检测精度。/pp style="text-align: center"img style="width: 580px height: 393px " src="https://img1.17img.cn/17img/images/202006/uepic/bb9423a3-a58f-4a20-924e-5ae69424f42a.jpg" title="11.jpg" width="580" height="393" border="0" vspace="0" alt="11.jpg"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202006/uepic/8ddb10c0-114d-496b-bd0c-6b33eaad613f.jpg" title="22.jpg"//pp  strong2、 高温、恒功率、线型激光管/strong/pp  PM3003S、 PM3006激光扬尘传感器采用了工作温度在-30~70℃的恒功率、线型光源,其光功率高达100mW,相比点光源高出20倍以上,原始信号更强,大大提升了颗粒物的识别效率。同时对光源采用了恒功率控制,保证原始信号的稳定输出,确保测量的稳定性。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/e6860d1a-bc80-4215-b684-13ef739fa43c.jpg" title="33_副本.jpg" alt="33_副本.jpg"//pp style="text-align: center "图2:室外扬尘传感器与民用粉尘传感器光源差别,左:高功率线型光源,右:低功率点光源/pp  strong3、 自带除水雾装置,不受水汽影响。/strong/pp  四方光电研制的PM3003S、 PM3006激光扬尘传感器前端配套了除湿装置,防止室外环境中细小的水珠进入检测气室,消除水汽对扬尘传感器的精度影响。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/0c10a2cf-ddd2-450c-bf4b-330c21a12571.jpg" title="44_副本.jpg" alt="44_副本.jpg"//pp  strong4、 创新结构设计,长效防积灰。/strong/pp  PM3003S、 PM3006激光扬尘传感器通过流体力学仿真对采样风道进行了长效防积灰结构设计,经过实际验证,可以减少室外环境对传感器检测精确度的影响,降低后期维护成本。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/efa66063-7146-489b-88b2-af426b89892a.jpg" title="66.jpg" alt="66.jpg"//pp  我国室外扬尘网格化监测经历了早期的β射线吸收法,到采用民用净化器大量应用的激光粉尘传感器的过程。在使用过程中发现,民用的激光粉尘传感器不仅不能满足-30~70℃室外环境温度的全天候使用要求,同时还必须面对监测场所,特别是建设工地经常喷洒降霾的水雾影响,或者下雨潮湿的气候环境等。这种环境下,水雾经常被判断为严重雾霾造成爆表。同时网格化室外粉尘监控希望得到局部的可以与国家大气环境监测网数据具备的PM2.5/PM10/TSP的多项参数对比, 民用激光传感器由于激光功率小,采样流量小, PM10分辨率很低,无法提供准确的PM10, 通常采用根据PM2.5的数字进行比例计算,造成PM10监测数据失真。四方光电研制的PM3003S、 PM3006激光扬尘传感器通过采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样机构、高湿度环境的水雾去除装置等,低成本地实现了对室外扬尘粉尘与β射线吸收法达到0.9相关系数的高精度测量。/ppbr//p
  • Advacam公司近日签下自由电子激光探测器(AGIDP)倒焊与传感器制造合同
    Advacam公司近日签下自由电子激光探测器(AGIDP)倒焊与传感器制造合同 ADVACA近日签下了AGIDP模块的倒接合同。AGIDP是增益自适应、积分、像素探测器的缩写,是一种为欧洲X射线自由 电子激光设计的X射线成像探测器,该X射线自由电子激光器位于德国汉堡的DESY。我们可以将AGIDP探测器系统理解为超高速的相机,而这一相机的时间分辨率为数百纳米秒。 “AGIPD是一种高速,低噪的积分探测器,并且在每一像素上都拥有自适应增益放大器。当它探测单个光子事件,并调节增益状态使动态范围优于10^4(@12KeV)时,其所产生的等效噪音是小于1keV的。在Burst模式下,该系统可在运行频率高达6.5 MHz的同时储存352张图像的,完全能够适用于帧频为4.5MHz的欧洲X光自由电子激光器。点击了解更多” 制作过程包括倒装焊接技术制成162个2×8多芯片硅模块,以及在25个传感器晶片上加工,大小为10.77 cm x 2.8 cm,厚度为500um的的单片硅传感器。目前使用硅传感器的混合像素探测器的发展趋势是生产更大的模组,而这些传感器已经是Advacam采用基于步进光刻技术所制造的最大的传感器了。在过去的两年里,硅传感器的制造工艺已经得到了完善,并有望获得高质量的图形和高的电产量。最终,该模块将被用于研究待测样品在7至15 keV的散射花样。(图1 对于首批AGIDP2×8硅模块中某一样品进行的辐射测试。可看出凸点键合成品率近乎完美。) 将项目授予Advacam公司,意味着公司将被视为一个值得信赖的像素探测器装配和传感器制造的合作伙伴。类似的倒装焊接技术曾在过去被成功使用过,但Advacam是首个将倒装焊接技术和传感器制造服务结合的公司。该产品是对小型R&D活动的一个成功延续,这一活动是为DESY和工业领域的客户所设计的。AGIDP业务预计将会创造该公司2019年25%至35%的营业额。图二 一批2x8 Si AGIPD模块准备运往DESY
  • 科技部重大专项“激光高温湿度传感器研发”启动
    9月19日,国家科技部重大科学仪器设备开发专项——“面向复杂工况的激光高温湿度传感器研制及产业化”项目启动仪式在北京召开。该项目牵头单位——北京航天易联科技发展有限公司项目负责人在启动仪式上宣布:将用两年时间,突破包括湿度大动态范围自适应测量技术在内的4项关键技术、成功研制工作温度在20℃~350℃的激光高温湿度传感器并最终实现产品化和工业化推广应用。p style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/b65a533d-af10-4879-9e93-fcc6b8f4c5f8.jpg" title="1_副本.jpg"//pp style="text-align: center "项目启动会现场/pp  “激光高温湿度传感器研制及产业化”项目的主要任务是研发面向复杂工况条件的激光高温湿度传感器。该类激光湿度传感器基于TDLAS技术(可调谐半导体激光吸收光谱技术的简称)实现湿度的测量。19日上午举行的启动仪式上,该项目专家组负责人、我国著名激光和非线性光学专家、中科院院士姚建铨言简意赅地介绍了TDLAS技术的基本原理:即基于每种气体存在吸收特定波长光的现象,通过特殊波长的激光光源照射气体,气体吸收使之强度变弱,判断变弱程度计算气体浓度。相比于传统测量方式,在高温环境下使用该技术进行湿度测量,具有无交叉干扰、测量范围大、精度高、实时测量等优势,可实现高温湿度实时监测。该传感器一旦研制成功,可提升我国高温湿度监测水平,提高环保排放测算准确性、工业过程节能减排。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/129a5385-e382-4fc9-9137-e4a0196ea234.jpg" title="2_副本.jpg"//pp style="text-align: center "中科院院士姚建铨担任该项目技术专家组组长/pp  启动仪式上,来自科技部、航天科技集团、北京经济技术开发区、中国航天空气动力技术研究院的相关领导参加了该活动。科技部高技术研究发展中心的专家介绍了项目研制及产业化相关政策并同时表示,开展该仪器专项研制就是要解决我国环保、工业过程控制等多个领域高温湿度准确测量的难题。“高温环境下湿度测量,其准确性直接影响环保领域计算排放总量或工业生产领域过程控制效率。以环保领域为例,工业锅炉排放的污染物浓度测算需要测量烟气湿度。因此,烟气含湿量测量的准确性直接影响排放总量,影响国家环保指标考核。” 高温湿度测量如此重要,但其技术实现的难度却非常大,正因为如此,该项目于今年8月获批科技部重大科学仪器设备开发专项申请。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/1b8a8bca-d7e5-4b8a-9dae-a47cb33ad7d1.jpg" title="3_副本.jpg"//pp style="text-align: center "项目组负责人、北京航天易联科技发展有限公司总经理李刚在汇报项目实施方案/pp  根据国家重大专项研发的相关要求,此次启动仪式一项重要议题就是由项目牵头单位——北京航天易联科技发展有限公司向技术专家组和用户委员会汇报项目具体实施方案。此前,航天易联已经开展四年 TDLAS技术研发,具备相关基础,并于2016年6月开展高精度TDLAS湿度测量技术的成果评价,技术水平达到国际先进。该公司负责人李刚在汇报中对研究背景、目标、研究内容、技术路线、科研团队及研究基础、预期成果、项目研究周期等做了详尽汇报。据他介绍,项目组将围绕测量环境湿度大、工况干扰因素多(腐蚀气、静电、烟尘、液滴等)、缺乏高温高湿标定技术及恶劣工况下器件可靠性等关键问题,突破湿度大动态范围自适应测量技术、复杂工况多波长测量控制技术及激光器温度电流控制技术,研制工作温度20℃~350℃的激光高温湿度传感器,开展示范应用改进优化,达到烟道气、废气、锅炉汽等高温湿度实时测量的目的,实现最终传感器产品化、产业化。/pp  来自环境监测、无线电、仪表仪器等相关领域的技术专家组和由电力、环保、航天、石化等行业用户组成的用户委员听取了项目组汇报,审阅论证材料并进行质询,同时针对产品示范应用阶段提出了相关建议。经过项目组答疑,专家组和用户委员会讨论后认为:方案目标准确,内容翔实,技术路线可行,一致同意该方案通过评审,建议尽快组织实施,围绕典型代表性工况开展更具针对性的设计开发、示范应用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/e5c3f041-6316-4495-ae98-f28eafd252ed.jpg" title="4_副本.jpg"//pp style="text-align: center "与会嘉宾了解TDLAS产品/pp  据了解,该项目研发是航天易联与中科院半导体研究所、中科院电工研究所、武汉市天虹仪表有限责任公司的强强联合。北京航天易联科技发展有限公司是航天科技集团公司第十一研究院控股公司,具有四年TDLAS技术研发基础,拥有三款具有自主知识产权产品,承担项目传感器研制和产业化工作 中科院半导体研究所在半导体激光器研发领域一直处于我国领先行列,为本项目研制小型化半导体激光器 中科院电工研究所长期从事电力电子控制研究,擅长信号处理、仪器设计,为本项目开发核心算法和测量技术 武汉市天虹仪表有限责任公司在环保仪器设备领域有近二十年的科研开发经验,为本项目现场测试、示范应用推广提供有力支撑。/pp  在项目实施方案中,研发团队提出:将在两年时间内,将本项目开发的激光高温湿度传感器应用在便携式烟道气参数测量仪、烟气排放连续监测系统和工业过程气湿度分析仪器中,开展5项示范应用,解决我国环保、工业过程控制等多个领域高温湿度准确测量难题。同时,形成自主知识产权,申请发明专利3项,文章1~3篇,标准1项。完成传感器质量体系文件,技术就绪度达到9级,开展产业化推广,项目完成后三年内实现年销售500套,年销售额2500万。/p
  • 重要通知!天美收回英国爱丁堡公司 气体激光器、气体传感器 两个产品线代理权
    2019年起,天美(中国)科学仪器有限公司将全面收回英国Edinburgh Instruments (爱丁堡仪器有限公司,以下简写为EI)气体激光器和气体传感器的代理权。至此,爱丁堡仪器所有生产线产品都将由天美自己的销售团队负责销售和服务。  自2013年天美集团收购爱丁堡之后,EI已成为天美集团的全资子公司。不过天美的销售团队之前只负责最大业务部门—光谱产品的销售。这次销售渠道整合,将爱丁堡仪器的气体激光器、气体传感器两大产品线收回,相信能够带给用户更好的技术支持和服务。  EI气体激光器主要生产并供应各类红外及远红外气体激光器,其中包括CO激光器、CO2激光器、脉冲TEA-CO2激光器及远红外太赫兹(THz)激光器。其产品具有波长可调,光束质量优良,稳定性高等特点,在科研领域具有广泛应用。  EI在气体传感探测领域,积累具有30余年丰富的生产制造经验,具有高技术的工作团专长于NDIR气体传感器设计生产一系列的NDIR气体分析仪和OEM气体传感器,产品出口到50多个国家。可广泛应用于农业,畜牧业,泄露检测,垃圾填满,水质检测/TOC等众多工业生产领域。 气体传感器 https://www.instrument.com.cn/netshow/SH103008/Product-C0-38314-0-1.htm 气体激光器 https://www.instrument.com.cn/netshow/SH103008/Product-C0-38315-0-1.htm (如需了解更多产品型号及信息,可通过仪器信息网和天美公司官网咨询)关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 选择紫外或紫外可见传感器时需要了解的 5 个问题
    分光光度法可适用于在线仪器,是监控水和污水处理设备的重要方法。分光光度法是一种测定分子对光的吸光度的方法,此方法在在线传感器上的应用已越来越准确和可靠。WTW IQ SensorNet系列紫外(UV) 和紫外可见(UV Vis)传感器具有适用于特定污水处理应用的内置出厂校准,不仅提高准确性,还可减少校准的频次。内置UltraCleanTM超声波清洗,减少校准频次的同时完全去除更换损耗品的必要(如试剂或刮刷),最大限度减轻了维护工作。本系列传感器甚至还支持通过单个传感器测量多个不同参数,如硝酸盐、亚硝酸盐、总悬浮物 (TSS)、紫外线透射率(UVT-254)、化学需氧量(COD)、生化需氧量(BOD)、总有机碳量 (TOC)和其他碳参数。 本系列传感器是水和污水处理设备的一项重要投资,为操作人员提供极大便利。但是如何选择合适的传感器?为确保选择最符合应用的传感器,来看一下选择紫外可见传感器时需要考虑的5个问题。紫外和紫外可见传感器的优势1、无需试剂,即可在线进行硝酸盐、亚硝酸盐、COD、BOD、TOC、UVT-254、NOx和TSS测量2、单个传感器最多可测量并显示五个参数3、UltraClean™ 超声波清洁技术可防止结垢,维护较为简单4、持久耐用的材质:钛和PEEK(聚醚醚酮)即使在最恶劣的条件下仍可保持稳定5、紫外和紫外可见传感器每次测量可扫描256个波长,从而实现更好的准确度和浊度补偿6、工厂已针对过程中的位置进行了校准(进水、二级处理、出水)7、用户可自行校准,从而在应用情况不理想时提高准确度参数硝酸盐:来自硝化过程中NH4转化的人类排泄物的生物污染物。亚硝酸盐:来自人类排泄物的生物污染物,是硝化过程中NH4和NO3的中间型。生化需氧量:微生物在分解流水中的有机废物时消耗的氧气量。被看做是对存在的有机物的量化,并且排放量受到国家污染排放消除系统(NPDES)的排放限制。总有机碳:样品中有机结合的碳量。被认为是对存在的有机物的量化和水质指标。与BOD或COD相比,该测试通常是表示有机物的一种更方便直接的方式。紫外线透射率:在254mm 波长处透射的紫外线百分比。该参数用于指示水中的有机物含量,通常与BOD、COD和TOC相关。该测量值通常用于在消毒过程中自动控制紫外线剂量。总悬浮物固体:水样中被过滤器捕集的悬浮颗粒的净重。该参数通常用作水质的指标,并用于定量分析活性污泥系统(混合液悬浮物,MLSS)中存在的微生物。需要测量什么及测量原因选择紫外或紫外可见传感器时,需要搞清楚的首要问题是测量什么及原因。需要测量什么参数?应用场景是什么?如何使用传感器?取决于应用场景,通过单个传感器监控多个参数可能更为有益。以下是紫外可见传感器在污水处理中最常见的一些应用。 氮硝酸盐氮和亚硝酸盐氮是生物脱氮除磷(BNR)应用中常见的测量参数。硝酸盐在工艺优化中扮演着多种角色,如确保高效地完成硝化、监控硝酸盐去除、控制脱氧区的碳投加量以及确保出水中的氮含量达到排放标准。亚硝酸盐的使用情况较少,因为它是硝化工艺的中间阶段。如果污水处理设备出现亚硝酸盐积累问题或使用快捷反硝化工艺,监控亚硝酸盐将会很有用处。碳碳参数在污水处理中同样具有广泛应用。COD、BOD和TOC是量化样品内碳含量的常见测量参数,其中BOD和TOC专属于有机碳。例如,通常会测量二级处理中的COD来监控有机物负荷。在二级处理中,COD可指示一级或二级处理的效率,或量化需要碳源(反硝化和除磷)的生物处理工艺中的有机碳含量。此外,监控污水处理厂收集系统或进水设施中的COD有助于确定重度负荷来源或提供预警探测。长期以来,这些碳参数的测定都需要昂贵或耗时的实验室程序,因此难以实际使用。如今,借助在线紫外可见传感器,我们便可以利用这些参数实现原本难以实现的工艺控制和预警检测。紫外和紫外可见传感器具有广泛的应用,在某些情况下,通过单个传感器获得多个参数将对操作人员有所助益。例如,TSS是曝气池的常见测量参数,指示微生物浓度(MLSS –混合液悬浮物)。利用包括 TSS与COD组合的传感器,操作人员即可获得用于监控食料与微生物比(F/M 比)的必要信息。使用单个传感器监控多个参数可从单个传感器获得更多有用数据,从而带来附加值。选择紫外可见传感器时,确保查看各传感器的可测参数列表(表1)。单波长传感器和光谱传感器有什么不同?一些制造商仅生产单波长传感器,而其他像WTW一样的制造商除单波长传感器外还生产光谱传感器,后者可提供更多参数和更高的准确性。前面我们一直在谈论光谱传感器,在光谱传感器中,每次测量时都将扫描256个波长的紫外光和可见光以获得所需参数的浓度。此类传感器通过测量每种波长处的吸光率来生成“光谱足迹”。然后,根据传感器中编制的算法将每个“光谱足迹”计算为以 mg/L 为单位的浓度(Smith, 2019)。相比于单波长传感器,光谱测量的精度和准确度更高,因为物质分子会吸收一段波长范围内的光,而并非仅吸收单个波长。附加波长具有许多优势,包括为每个参数提供更多吸收数据、使用一系列波长进行浊度修正,甚至有助于检测不同形式的有机分子。紫外可见光谱传感器扫描的256个波长跨越紫外和可见光范围,从200至720nm(图1)。紫外光谱传感器扫描的256个波长范围为200-390nm。在这个波长范围内,紫外传感器将能够同时测定并区分硝酸盐和亚硝酸盐。硝酸盐和亚硝酸盐通常吸收短波长紫外光(250nm),有机分子的吸收峰主要出现在250-350nm的紫外波长范围内。380 - 720nm范围内的光吸收来自每次测量时都会测量和进行修正的浊度 (Smith, 2019)。不过,我们仍然有两种使用对单个波长的吸收率来确定特定参数浓度的单波长传感器。UVT-254传感器(或 SAC-254)测量 254nm 波长处的透光率或吸光度(%)。254nm的紫外光能够被有机分子吸收,因此该传感器对测定饮用水和污水内的有机物浓度趋势非常有用。使用 UVT-254传感器,可以输出经过准确校准的COD、BOD和TOC相关值,还会再测一个波长 (550nm) 用于浊度修正。NOx传感器使用单个波长测量硝酸盐(NO3-N)和亚硝酸盐 (NO2-N) 的总和,这足以满足一些生物脱氮除磷应用中的氮监控需求。尽管单波长传感器可以提供有用的数据和趋势,但与光谱传感器相比,其准确度和可重复性不佳。使用单波长进行测量和浊度修正时,此类传感器可能无法检测到某些形式的有机分子,无法区分硝酸盐和亚硝酸盐,也无法准确补偿浊度。单波长和光谱传感器各有优势,所以哪种更适合您的应用呢?使用单波长传感器能够以适中的价格获得有机物或氮氧化物的趋势数据,并且甚至有些应用专门需要用到单波长传感器,例如紫外线消毒需要UVT-254。然而,光谱传感器已针对特定应用(进水、二级处理、出水)进行校准,并且由于此类传感器扫描256个波长,从而准确性、可靠性都比单波长传感器更高,浊度修正也更准确。测量光程是什么?为什么很重要?测量光程是指光源和探测器之间的距离,在分光光度法测量中非常重要。测量光程(又称狭缝宽度)是根据比尔-朗伯定律计算光吸收率时的一个计算因子,并且受样品水浊度的影响极大。因此,紫外可见传感器通常具有固定的测量光程,并针对特定应用提供不同的狭缝。IQ SensorNet紫外可见传感器有2种测量光程可供选择:1mm和5mm(图 2)。1mm狭缝用于监控未经处理的污水和二级处理,因为这些应用通常浊度较高。5mm狭缝用于监控处理后的出水、低浊度污水,有时还可用于监控一些地表水或饮用水应用。取决于应用类型,其他制造商可能还会提供10-50mm的测量光程。选择YSI紫外可见传感器时,注意701型号传感器为 1mm测量光程(适用于未经处理的污水或活性污泥),705型号传感器为5mm 测量光程(适用于低浊度的处理后出水)。如何安装紫外可见传感器?紫外可见传感器一般比其他在线传感器更大、更沉,因此在确定安装选项时应特别考虑。与所有在线传感器相同,应基于安全性和可达性来选择安装位置和方式。要确保可以轻松接触到传感器,以便偶尔进行维护,因此有足够的操作空间非常重要。传感器的安装位置应符合要求的扶手和过道安全标准。同样,紫外可见传感器的安装也应易于使用,并使传感器易于操作。最后一点,由于传感器可能比较沉,安装的稳固性也非常重要,必须能够承受相应重量,尤其是对于存在堵塞问题的污水设备。紫外可见传感器在污水中最常见的安装方式为浸入式安装。浸入式安装通过将传感器直接浸入集水池或水流中,直接测量过程用水。WTW紫外可见传感器提供两种沉浸式安装选项:刚性安装或摆动/链条安装。刚性安装包括将紫外可见传感器固定至一个金属杆上,然后将金属杆安装至护栏或墙壁上。当需要较稳固的解决方案,如水比较湍急或水中有堵塞时,这种安装类型是最佳选择。对于一般的沉浸式安装应用,摆动和链条安装更具优势。使用这种安装,传感器将更容易操作,因为传感器悬挂在链条末端,通过链条便可轻松地在集水池中进行升降。摆动臂将传感器伸出集水池外面,但是也可容易接近,只需将传感器摆动至靠近护栏的位置就能够拆下传感器进行维护。 对于像处理后的污水出水、污水回用或饮用水等清水应用,流通池可能是最佳选择。在这些应用中,由于缺乏合适的位置或因NSF要求,不能使用沉浸式安装。使用流通池时,紫外可见传感器将采用壁挂式安装,流通池会形成一个腔体让水流经光学窗口。水流持续运送至传感器进行测量,然后排出。无论将WTW紫外可见传感器用于清水还是污水应用,选择最适合的安装选项都非常重要,这样既能够确保传感器正常运行,还可将维修工作量保持在最低限度。 如何维护?尽管紫外可见传感器的维护要求不高,且不需要试剂,但仍然需要偶尔进行保养以优化运行。相比于其他在线传感器,WTW紫外可见传感器具有所需维护工作量最少的巨大优势。本系列传感器具有内置的独特自动超声波清洗系统UltraCleanTM技术。该系统不仅有助于保持测试窗口长久清洁,而且整个系统都置于传感器内部,所以没有需要更换的密封件或挂刷。保持紫外可见传感器清洁对传感器性能至关重要。因此,紫外可见传感器通常带有自动清洁系统,这可有效降低传感器总的维护时间。WTW提供两种类型的自动清洁系统:一种是所有传感器中都已内置的UltraClean;另一种是空气清洁系统。UltraClean超声波清洁系统轻微振动传感器的光学窗口,清除堆积的固体。这种技术已被证明在具有较多固体的污水应用中非常成功,WTW的ViSolid(TSS)和VisoTurb(浊度)传感器中同样也应用了此技术。WTW紫外可见传感器的另一个自动清洁选项是空气清洁系统。该系统使用空气压缩机定期向光学窗口上喷放压缩空气,清除任何可能干扰测量的固体。WTW空气清洁系统直接与传感器相连,并且可以通过控制器进行编程控制,根据所需时间间隔进行清洁。两种自动清洁系统都能使传感器在废水应用中保持数周的准确读数。自动清洁系统非常有助于减少整体维护时间,但是为了达到最佳性能,仍然需要偶尔进行手动清洁。每两周从测量环境中取出紫外可见传感器进行一次手动清洁,可大大减少潜在的测量问题。手动清洁非常简捷,整个过程只需1分钟,包括用清水冲洗测量狭缝、使用清洗液清洗、用软布擦亮镜片然后彻底冲洗干净。此外,还应保持日常维护以确保传感器清洁。维护的另一方面是校准和验证。WTW紫外可见传感器使用实验室参照样品进行校准,用于调整传感器的原始信号与实验室浓度值相关联的斜率。如前文所述,光谱传感器已针对特定应用进行出厂校准,但也可以自行校准,使传感器的测量适应过程用水。单波长传感器也可对主要参数进行校准,但相关值(BOD、TSS、TOC 等)必须根据实验室测量值进行准确校准。应根据需要进行校准,例如当传感器首次安装、移动到新位置或传感器对参考样品的测量不准确时。WTW紫外可见传感器具有双通道测量系统,其中一个相同的参比通道用于监控并校正光源灯或探测器的老化,防止任何潜在校准漂移。这样可免去常规校准的麻烦,但是仍建议使用实验室参考样品对传感器测量值进行常规验证,以确保传感器的准确性。
  • 空天院高光谱激光雷达团队 揭示新型主动光学传感器高光谱激光雷达辐射效应产生机制
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室牛铮研究员团队,在新型主动光学传感器高光谱激光雷达(hyperspectral LiDAR, HSL)辐射效应产生机制及相应校正算法研究方面取得重要进展。距离效应和入射角效应作为高光谱激光雷达面临的两大几何辐射效应,严重限制了其在定量遥感方面的应用。该团队研究发现,高光谱激光雷达距离效应和入射角效应分析及校正可以独立进行,并提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应,发展了一种改进的Poullain算法用以目标入射角效应分析和校正。上述研究得到了国家自然科学基金重点项目“植被生理生化垂直分布信息遥感辐射传输机理与反演研究”的支持,有关成果发表在遥感领域国际顶级期刊ISPRS Journal of Photogrammetry and Remote Sensing和IEEE Transactions on Geoscience and Remote Sensing上,第一作者为实验室博士研究生白杰。面对高光谱激光雷达主要几何辐射效应即距离效应和入射角效应校正的技术难题,团队自2020年起开展科技攻关,发现距离效应源于系统本身,所有波长拥有统一的距离效应函数,在此基础上提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应 而对于不同种类植被叶片目标,因其表面微观尺度物理结构和内部生化参数不同,因此通常表现出不同的入射角效应,该效应与被测目标种类在高光谱激光雷达条件下二向反射特性密切相关,因此该团队指出关于高光谱激光雷达入射角效应,更准确的表述应为“某一目标高光谱激光雷达入射角效应”,并发展了一种新的改进的Poullain算法,用以目标入射角效应校正。与传统基于各向同性散射假设的朗伯余弦定律和原始Poullain算法相比,该算法考虑了目标粗糙度因子和漫反射系数在不同入射角和波长下的异质性,更加符合自然目标物回波强度的反射特征,不同植被叶片实验显示,相对于标准0度入射角下的回波强度和反射率,校正结果标准差减少了30%~60%。有关算法为后续植被三维生化参数准确反演提供了重要的理论基础和技术支撑。目前,实验室已经完成具备高速采集能力的第二代高光谱激光雷达系统设计与研制工作,正在开展性能测试,预计2023年底投入使用。早在2014年,遥感科学国家重点实验室就设计、研制了具有完全自主知识产权的国际上首台32波段高光谱激光雷达系统。自此,相关团队围绕这一新型传感器持续开展研究,在高光谱激光雷达系统设计研制、数据获取与处理、辐射信息提取、辐射效应校正及植被三维生理生化参数反演等方面取得了丰富的研究成果,为我国抢占高光谱激光雷达设备研制与应用这一领域做出系统性贡献。
  • 无锡中科光电“基于激光光散射谱技术的智能传感器的产业化”项目 入选国家火炬计划
    近期,科技部印发了2014年度国家星火计划、火炬计划、重点新产品计划和软科学研究计划立项清单。无锡中科光电技术有限公司的“基于激光光散射谱技术的智能传感器的产业化”成功入围国家火炬计划创新性产业集群项目。 本项目产品创新采用双波长三通道探测技术,发射20mJ高能量双波长激光,其中355nm激光因波长与细颗粒物直径相仿,散射截面大,回波信号强,特别适合灰霾等细颗粒物的探测;同时,532nm波长是人眼最敏感的波段,这一波长的颗粒物消光与大气能见度息息相关,其测量结果与视觉主观感受基本一致。接收望远镜收集颗粒物和云等对激光的后向散射回波,通过355nm回波信号以及532nm的垂直和平行偏振信号,分析颗粒物消光和退偏振特性,再结合其它信息,反演出颗粒物质量浓度的空间分布和边界输送通量。解决了微脉冲雷达霾层穿透能力差、回波信号弱、反演精度低的缺点,同时提高了对细颗粒物的探测能力,最小可探测粒径达5nm。 注:国家火炬计划项目,是以国内外市场需求为导向,以国家、地方和行业的科技攻关计划、高新技术研究开发计划成果及其他科研成果为依托,以发展高新技术产品、 形成产业为目标,择优评选并组织开发的具有先进水平和广阔的国内外市场及较好经济效益的高科技项目。其重点发展领域是:新材料、生物技术、电子与信息、光 机电一体化、新能源、高效节能与环保。
  • 涉及半导体、激光器、传感器等,美商务部对俄罗斯出口实施全面限制
    24日,美国商务部通过其工业和安全局(BIS)对俄罗斯进一步入侵乌克兰做出了回应,实施了一系列全面的严格出口管制,这将严重限制俄罗斯获得维持其侵略性军事能力所需的技术和其他物品。这些控制措施主要针对俄罗斯的国防、航空航天和海事部门,并将切断俄罗斯获得重要技术投入的机会,使其工业基础的关键部门萎缩,并削弱其在世界舞台上施加影响的战略野心。国际清算银行的行动,以及财政部的行动,是拜登-哈里斯政府对俄罗斯侵略迅速而严厉回应的一部分。当天宣布的出口管制措施是商务部出口当局对美国物品(包括技术)以及针对单个国家使用美国设备,软件和蓝图生产的外国物品的最全面应用。国际清算银行针对俄罗斯的出口管制措施对莫斯科国防、航空航天和海运业所依赖的敏感物品实施了拒绝政策。这些物品,其中许多以前在运往俄罗斯时不受控制,包括半导体,计算机,电信,信息安全设备,激光器和传感器。制裁措施还对49个俄罗斯军事最终用户实施了严格的控制,这些最终用户已被添加到BIS的实体清单中。欧盟、日本、澳大利亚、英国、加拿大和新西兰已宣布计划实施实质上类似的限制,并免除对其本国生产的物品的新要求。
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 四方光电扬尘传感器荣获中国传感器与物联网产业联盟应用创新奖
    p  中国传感器与物联网产业联盟组织的首届“SIA感知领航优秀项目征集”活动评选结果本周出炉,四方光电激光扬尘传感器PM3006,通过采用独特的激光散射测量技术,实现了室外扬尘在线监测、大气网格化监测、室外公共场所等户外极端工况下空气品质中PM2.5、PM10和TSP多参数的同时准确测量,并在国内外多个项目中得以成熟应用,经过专家组的评选,最终荣获“应用创新优秀项目奖”。/pp  我国室外扬尘及网格化监测领域,早期多采用称重法和β射线吸收法的监测仪,该设备无法实现在线实时监测,投入费用昂贵且后期维护成本高,无法大批量得到应用。而民用净化器中大量应用的激光粉尘传感器,又因为存在无法满足室外-30~70℃全天候的温度环境,及无法满足建设工地等实际使用场景经常喷洒降霾的水雾影响或者下雨潮湿的高湿环境要求而难以得到使用。在户外环境下使用民用空气净化器上的传感器,室外的高温和低温都容易使传感器损坏,水雾也经常被误判为雾霾而造成爆表。同时与国家大气环境监测网提供的PM2.5/PM10/TSP的多项数据对比,民用激光粉尘传感器由于激光功率小、采样流量小,导致PM10计数率很少,因此PM10的分辨率很低,很多厂家只能根据PM2.5的数值按照比例计算出PM10和TSP,这样的监测数据存在严重失真。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/c279e9b9-a525-43ca-82b0-f5bb97aa49c7.jpg" title="图1.png" alt="图1.png"//pp  通过对激光散射探测技术(LSD)近10年的技术积累和对应用市场客户真实需求的把握,四方光电研制出了扬尘传感器-PM3006,其采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样装置、高湿度环境的水雾去除装置等,开创新的低成本实现了对室外扬尘的准确测量,PM2.5和PM10的实时监测数值与β射线吸收法监测设备,准确测量的相关性可以达到0.9以上。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/e1766e01-f47b-4bc6-a759-1aa4ccc14219.jpg" title="图2..jpg" alt="图2..jpg"//pp  扬尘传感器PM3006得以成功量产并批量应用积累的经验,为进一步满足用户差异化的使用需求,四方光电进一步开发出了可以搭配气泵使用的扬尘传感器PM3003S,及完全不受流量变化而影响测量精度的扬尘传感器PM3006S-P。br//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/4b7c34ab-586e-4207-bf4f-c1c59ad862b1.jpg" title="图4 (2).jpg" alt="图4 (2).jpg"//pp /pp  为了更好的满足客户设计及计量的需求,四方光电在核心传感器的基础上开发出了在线扬尘监测模组,方便客户更容易及更快速的实现监测系统的设计,大大缩短开发周期。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/3d17b26d-18cb-40e4-9c30-8e13cb82cb7b.jpg" title="图5.jpg" alt="图5.jpg"//pp  自2003年创立至今,四方光电始终坚持核心技术创新之路,除光散射探测(LSD)之外,公司还掌握了非分光红外(NDIR)、超声波(Ultrasonic)、紫外差分吸收光谱(UV-DOAS)、热导(TCD)、激光拉曼(LRD)等核心气体传感技术,形成了气体传感器、气体分析仪器两大类产业生态,产品广泛应用于国内外的空气质量监测(室内、室外、汽车)、固定和移动污染源监测、工业过程节能减排监测、健康医疗和智慧计量等领域。/p
  • 立仪科技获数千万A轮融资,专注研发光谱共焦传感器
    3D工业视觉传感器供应商立仪科技获得浩澜资本独家投资的数千万人民币的A轮融资,据悉,本轮融资将主要用于市场拓展、新品研发及补充流动资金。立仪科技成立于2014年,是一家专注于精密光学检测的公司,旗下有光谱共焦传感器等产品。公司的点共焦传感器已经量产,且服务多家头部客户;线共焦产品原型机已打样,正研发商业量产版本。主流的3D工业视觉的技术路线包括线激光、光谱共焦、条纹结构光、TOF、双目等技术路线。光谱共焦传感器是目前市场精度最高且能应用于各种特性的表面和复杂形状测量场景的新型传感器,其市场主要被基恩士等国外厂商占据,但国产率较低。光谱共焦传感器的原理是通过使用特殊的透镜及光学系统,拉开不同颜色光的焦点分布范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射波的波长,就可以得到被测物体到透镜的精确距离。光谱共焦目前正处于技术迭代周期。激光技术的研发目前已逐渐见顶,而市场对测量传感器的需求越来越广,市场需求正从人工监测向自动化监测产品发展。与传统的激光相比,光谱共焦技术精度较高,且材料适应性更广,稳定性更高。立仪科技创始人兼CEO刘杰波表示:“我们之前曾做过三维激光扫描研究,过程中意识到激光扫描很难完成一些对高精度扫描有需求的测试任务,便开始向光谱共焦转向。”目前,立仪科技有点共焦位移和线共焦位移两类传感器产品,产品型号超百种。点共焦传感器上,立仪科技在拿到天使轮融资后,于2019年完成点共焦原型产品的量产。至今,公司的点共焦已经迭代到第三代,进入华为、三星、苹果供应链。除在产品设计上有着多项创新外,公司还开发了为国外禁止出口的激光干涉光谱共焦校准仪等专用仪器工装,且工艺经过量产验证,能帮助产品更好生产。在性能上,其传感器可以做到光强提高200%,线性度提高200%,反射干扰降低50%。价格上,产品售价比国外产品低。产品示意图公司2020年开始研发线共焦产品,目前已有原型机,是已能完成三维形状物体的扫描,具有精度高材料适应性好、无盲区、效率高等优点,可广泛应用于半导体、新能源、3C等领域。本轮融资完成后,立仪科技也将集中精力,研发商业化量产版本线共焦产品。未来,公司还将继续研发高光谱+AI传感器和光纤传感器。
  • 北京怀柔仪器和传感器有限公司受邀参加超强激光源助力怀柔高端科研装置发展院士专家圆桌论坛并做特邀报告
    2023年11月10日,北京光学学会与北京工业大学科协、北京工业大学理学部、北京市科学技术协会创新服务中心等单位在中国科技会堂联合主办“超强激光源助力怀柔高端科研装置发展院士专家圆桌论坛。北京怀柔仪器和传感器公司受邀参会。 为具体贯彻北京市科协引导高端智力资源为重点区域及行业高科技企业发展出谋划策的精神,此次论坛邀请北 京光学学会理事长、中科院理化技术研究所研究员许祖彦院士、中国光学光电子行业协会名誉理事长、中国电科集团公司第十一研究所首席专家周寿桓院士、北京科技社团中心副主任李纯鸣、北京市科学技术协会创新服务中心王妮娜部长、北京光学学会常务副理事长、北京工业大学副校长翟天瑞教授、北京大学电子信息工程学院张志刚教授等多位业内知名专家出席并致辞。 此次论坛包括三个特邀报告和一个圆桌对话环节,论坛特邀报告环节由大会执行主席北京交通大学延凤平教授主持。中国工程院许祖彦院士做了《深紫外激光仪器》的报告,系统介绍了深紫外前沿科学装备的发展及在国家重大专项的支持下,我国在紫外科学装备研制领域的成果。中国电子科技集团公司第十一研究所眭晓林研究员代周寿桓院士做了《基于光频调制的动目标指示(MTI)激光雷达》的报告,介绍为了解决动目标指示(MTI)激光雷达出现的盲距和距离模糊问题,对激光测距发射波形、本振波形以及解算方法进行的研究。 北京怀柔仪器和传感器有限公司总工程师刘海锋《激光技术与光学仪器在大科学装置中的应用机遇与挑战》报告,全面介绍了怀柔科学城和怀柔大科学装置布局,超强激光与加速科学、超快激光、激光时空测量、生物医学成像、地球数值模拟等大科学装置对激光技术和光学仪器的需求,及面临的重大机遇和挑战,刘海锋总工程师向全国的专家学者、企业家、在校生发出邀请,欢迎大家莅临怀柔共享怀柔科学城大装置资源和发展机遇,共同建设北京怀柔综合性国家科学中心和北京国际科技创新中心。 圆桌对话环节由北京大学张志刚教授主持。中科院半导体研究所全固态光源实验室主任林学春研究员、中科院物理研究所滕浩研究员、北京工业大学科协秘书长、北京工业大学科学技术发展院闫健卓副院长、北京工业大学怀柔科教融汇基地筹建办公室吴奇副主任、大恒星图(北京)激光技术有限公司杨帅帅总经理、北京光学学会常务副秘书长万玉红教授作为特邀嘉宾发言。各位专家围绕怀柔大科学装置的建设与运营、超强激光技术如何助力怀柔大科学装置发展、怀柔科学园区科研合作、科技创新、科技成果转化模式等问题进行了探讨。在张志刚教授风趣幽默的主持下,大恒星图杨帅帅总经理分享了来怀柔“图”什么的思考,在怀柔科研创业的美好经历和成绩,同时对园区运营单位给予的贴心帮助和专业服务表达衷心感谢。刘海锋总工程师还细心解答了张志刚教授关于怀柔区轨道交通规划、怀柔区人才政策、多模态跨尺度生物医学成像装置进展、太瓦激光器产业化前景等问题,为来怀工作科研、创新创业的人士提供了专业指导,广泛引起了在场专家、企业家来怀柔调研考察的热情。 在京高校、科研院所、怀柔科学城科技企业等各领域专家、嘉宾60余人现场参加此次圆桌论坛,相关领域专家学者逾万人通过蔻享学术线上直播参与本论坛。与会人员论坛期间与报告人展开了积极的讨论、探讨合作意向,受益匪浅。本次院士专家圆桌论坛为与会者提供了一个了解科学前沿、展示研究成果、推进产学研用合作的高水平交流平台,为激光技术助力怀柔科学城发展注入了新鲜的活力。北京怀柔综合性国家科学中心 怀柔科学城是北京加强全国科技创新中心建设主平台“三城一区”之一,规划范围约100.9平方公里,以怀柔区为主,并拓展到密云区的部分地区。战略定位是世界级原始创新承载区,是国家发展改革委、科技部联合批复的北京怀柔综合性国家科学中心的集中承载地,综合性国家科学中心是怀柔科学城的显著特色和明显标志。主要围绕物质科学、信息与智能科学、空间科学、生命科学、地球系统科学五大科学方向,力争实现率先突破。重点推进“五个一批”,即:建成一批国家重大科技基础设施和交叉研究平台;吸引一批科学家、科技领军人才、青年科技人才和创新创业团队;集聚一批高水平的科研院所、高等学校、创新型企业;开展一批基础研究、前沿交叉、战略高技术和颠覆性技术等科技创新活动;产出一批具有世界领先水平的科技成果,提高我国在基础前沿和交叉科学领域的原始创新能力和科技综合实力。北京怀柔仪器和传感器有限公司:北京怀柔仪器和传感器有限公司是怀柔区高端仪器装备和传感器产业研究与产业发展国有平台公司,未来将持续围绕北京怀柔综合性国家科学中心建设,聚焦高端仪器装备和传感器等硬科技领域,以“科创平台+科技服务+基金投资”为核心业务及抓手,提供专业化研究与咨询服务、专业化中试平台服务,应用场景构建服务等,引导高端仪器和传感器产业领域的技术、人才、资本、服务等创新要素聚集,打造产业发展创新生态。
  • 大连理工大学陈珂:高精度光纤光声气体传感器及装置
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。大连理工大学 陈珂副教授本次会议中大连理工大学陈珂副教授介绍了其课题组在光纤光声气体传感技术及应用方面开展的一系列工作(点击回看》》》),得到与会老师的关注和认可。会后,我们也再次邀请陈珂副教授分享大连理工大学光纤光声传感研究团队的系列成果。1、成果简介大连理工大学光纤光声传感研究团队开展了光纤声波/振动传感技术和光声光谱微量气体检测技术的应用基础研究工作。在光纤传感技术研究方面,首次提出并设计了超高灵敏度光纤悬臂梁声波传感器,信噪比相比于传统电学麦克风提高了1-2个数量级;研制出超高速振动/声波传感解调仪器,采用光谱解调法实现了200 kHz的解调速度,将解调算法集成到FPGA中,大幅度提升了解调的稳定性。在光声光谱技术研究方面,将光纤声波传感器用于光声信号探测,提出了干涉型光纤声波锁相探测方法,设计了新型的光纤悬臂梁增强型光声光谱仪器,实现了对多种微量气体的超高灵敏度检测。研究了基于光纤光声传感的变压器油中溶解气体原位检测技术,研究了气体绝缘设备中六氟化硫分解产物的光纤光声检测技术,并在多个变电站开展了示范应用。根据变压器油中溶解气分析和煤矿瓦斯突出应用需求设计了多套激光光声光谱多组分气体分析仪器,掌握了目前世界上唯一的高瓦斯背景中多组分微量气体光学检测技术。成果1:光纤振动/声波传感器及解调仪器设计的光纤振动/声波传感器采用MEMS悬臂梁结构,具有灵敏度高、稳定性好的特点。研制了基于光谱解调的超高速光纤法布里-珀罗(F-P)传感解调仪,在FPGA中集成光谱采集、光谱相位解调等功能,显著提升了解调速度和稳定性。成果2:光声光谱变压器油中溶解气体分析仪针对高电压油浸式变压器油中溶解气体分析需求,研制了多套激光光声光谱气体分析仪。其中对油中溶解乙炔气体的检测极限达到0.05μL/L。,同时课题组还开发了光声光谱油中溶解气体原位检测仪,可以直接将光声传感器安装于变压器取油口。 成果3:光纤光声传感解调仪器本团队创新性地将光纤F-P声波传感器用于微弱光声信号探测,研制了多套光纤光声传感解调仪器。在FPGA中集成了相位解调算法、数字锁相、激光调制等功能。对乙炔气体的检测极限可达到ppt量级。 成果4:光声光谱煤矿自然发火监测仪研制的光声光谱煤矿自然发火监测仪,可对多种特征气体进行同时测量。检测指标如下:乙炔:0.5ppm;乙烯:1ppm;一氧化碳:1ppm;乙烷:5ppm;甲烷:0.1%;二氧化碳:0.1%成果5:高精度光声光谱环境气体分析仪开发的二氧化氮和二氧化硫气体分析仪,可对环境中痕量气体进行实时监测。二氧化氮气和二氧化硫气体的检测限分别达到1ppb和10ppb。下图中实验数据是开发的二氧化氮气体分析仪与环境监控站的对比结果。成果6:多通道同步FPGA数字锁相放大器针对光谱探测中微弱光信号检测需求,开发了多通道同步FPGA数字锁相放大器。采用定制的线阵探测器对光谱进行同步快速读取,光功率检测极限达到10fW量级,动态范围达到120dB。 2、产业化探索本团队开发的光谱检测、光纤传感类检测仪器具有较高的技术成熟度。在电力、石化等行业具有较好的应用前景。3、课题组未来研究计划光声光谱与光纤传感技术结合后,具有本质安全、抗电磁干扰、灵敏度高、可远距离探测以及多点测量等优势。本课题组将重点研究光纤光声传感技术中的基础科学问题以及工程应用关键技术。欢迎电力、石化、煤矿和环境监测等相关科研院所和公司联系我们。联系人:陈珂(大连理工大学)Email:chenke@dlut.edu.cn课题组介绍陈珂,大连理工大学光电工程与仪器科学学院副教授,博士生导师,大连市青年科技之星,光纤光声传感团队负责人,主要从事光纤传感、激光光谱和微弱信号检测等方面的研究工作。担任中国光学工程学会光谱技术及应用专委会委员,中国电气工程学会测试技术及仪表专委会状态监测学组委员,国家自然科学基金通讯评审专家。工作近8年来,共主持科研项目32项,其中,国家自然科学基金面上项目等国家级项目2项,省部级项目2项,大连市高层次人才创新支持计划项目1项,企业合作项目20余项;在Analytical Chemistry、Optics Letters等期刊上发表SCI/EI论文93篇,其中第一/通讯作者论文63篇;已申请和授权发明专利43项,其中第一发明人专利21项。
  • 商用表面增强拉曼光谱传感器面世
    据每日科学网日前报道,新加坡研究人员利用黄金纳米阵列开发出适于商业应用的高性能表面增强拉曼光谱传感器。  表面增强拉曼光谱技术(SERS)是在印度科学家拉曼1928年发现拉曼散射现象的基础上发展起来的。利用拉曼光谱技术可以非常方便地鉴定物质成分,现已成为探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的有效工具,广泛应用于癌症诊断和食品检测等领域。不过,由于很多分子直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,将这些分子吸附在纳米金属表面,在特定波长的激光照射下,利用表面增强拉曼光谱传感器检测出待检物质。  新加坡科技研究院(A*STAR)材料工程研究所的研究人员制造出一种非常密集且有规律的黄金纳米阵列,在自组装和传感等方面具有独特的优点。此外,他们还成功将该纳米阵列置于光纤端头涂层中,使得该技术有望在遥感监测危险废弃物方面具有广泛的应用前景。  研究人员在涂有自聚物纳米粒子的表面进行纳米阵列的自组装,较小的黄金纳米粒子会自发附着。仅仅依靠涂层和吸附这些简单的过程,就可稳定高产地形成小于10纳米的纳米簇。通过调整聚合物的规模和密度等特征,研究人员可以调节纳米簇的大小和密度,使表面增强拉曼散射达到最大化。该技术的效率非常高:涂满100毫米直径的晶片,或200光纤端头,仅需要不超过10毫克的聚合物和100毫克的黄金纳米粒子,而聚合物和纳米粒子均可低成本大量生产。  由于纳米阵列的形成过程完全是自组装过程,因此该技术不需要专门的设备或特定的无尘室,非常适合低成本商业化生产。目前该技术已在新加坡、美国和中国申请了专利。
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 打造智能传感产业大平台、大中心、大生态,2021世界传感器大会展会盛况直击!
    2021年11月1-3日,由中国科学技术协会、河南省人民政府主办,中国仪器仪表学会、郑州市人民政府、河南省科学技术协会、河南省工业和信息化厅、河南省发展和改革委员会、河南省科学技术厅、中共河南省委外事工作委员会办公室承办的2021世界传感器大会-展览会在河南省郑州国际会展中心隆重举办!本次展览会近10000平展出面积,近200家国内外企业积极参展,展览会将以传感器研发创新为核心,以传感器系统集成与应用为切入点,涉及传感器应用、标准发展和相关元器件,产业链上下游的关联企业同台展示传感器产业生态圈。松下作为中国工业自动化生产的行业领军者,通过精研传感器科技、精化传感器生产进一步占领传感器产业发展高地,现场展示CMOS型微型激光位移传感器HG-C、接触式数字位移传感器HG-S、超高速・高精度激光位移传感器 HL-C2等最新成品和技术。西门子作为世界500强,这次参展的产品主要有压力、温度、流量,分析表等。在行业中应用广泛,比如石化、冶金、电力、水行业等。易福门展示的产品有位置类的:电感式接近开关,光电开关,激光测距传感器;过程类的:液位、压力、流量、温度传感器;以及R360移动控制器,安全光幕,安全继电器、振动传感器等新产品。万可现场展示了丰富的自动化控制技术产品、工业接口模块及采用笼式弹簧连接技术的轨装式接线端子等创新产品,可满足物流行业智能化发展对设备的自动化及电气连接提出的更高要求。作为电子测试测量行业的佼佼者,福禄克公司的6个事业部联合参展,将携众多重量级产品亮相此次展会。届时用户将有机会近距离的了解到福禄克高端产品,同时现场将会有专家为用户答疑解惑。作为大会东道主的汉威科技集团,本部坐落于河南郑州。本届大会上,汉威携各类优质高效的传感器及其检测方案、物联网解决方案及其行业垂直应用等在2021世界传感器大会 1003 展位上精彩亮相,吸引了众多嘉宾驻足。产品介绍,应用交流,使得这抹蓝色成为现场最具人气的展台。目前高通除了展示汉字库信息处理芯片以外,有6000多家应用案例,在这个应用案例的过程当中,接触到各行各业,高通并做了很多终端的产品和部件,如今物联网已经遍布全世界,而且物联网的应用会越来越广。现场直播逛展环节世界传感器大会已经连续成功举办三届,依托“一会、一赛、一展”等系列活动,吸引了一大批权威的院士专家和知名的企业关注郑州,聚集了智能传感器产业发展的郑州共识,促进了人才成果、项目研发机构、技术标准等创新资源的聚集共享,大会已经成为国内外传感器产业创新发展的知名盛会。
  • 基于表面增强拉曼光谱的新传感器或彻底改变新冠筛查方式
    随着技术的进步以及相关应用的拓展,拉曼光谱技术呈现了越来越诱人的应用前景,特别是在生命科学领域,不仅引领了前沿研究,而且与人类的生活越来越贴近。拉曼光谱作为一种无损、无需标记的分析方法,能够从分子层面对生命科学领域的样品提供丰富的信息,可在不损伤细胞的条件下实时动态地监测细胞分子结构变化,而且拉曼成像还可以提高疾病的早期检测技术水平。疾病快速筛查、手术辅助治疗、癌症标志物检测等领域的一系列应用已经为大家勾画了美好的蓝图,让大家对其产生了更多期待。随着新冠疫情的蔓延,新冠病毒检测新方法的开发一直是大家关注的焦点。不少业内人士都表示,希望拉曼光谱技术可以在新冠病毒检测方面发挥作用,据悉目前国内外有不少单位或者课题组正在开展相关的研究。据科技日报报道,美国约翰斯霍普金斯大学开发出一种基于表面增强拉曼光谱方法的新冠病毒传感器,可同时提高准确性和检测速度,有望彻底改变病毒检测方式。据介绍,该传感器基于大面积纳米压印光刻、表面增强拉曼光谱和机器学习技术,可通过一次性芯片形式在刚性或柔性表面进行大规模测试。它不需要样品制备和操作专业知识,与现有的检测方法相比具有强大的优势,特别适用于大规模群体检测。该技术的关键是研究人员开发的大面积、柔性场增强金属绝缘体天线(FEMIA) 阵列。唾液样本被放置在材料上并使用表面增强拉曼光谱进行分析,该光谱使用激光来检查样本分子如何振动。由于纳米结构的FEMIA显著增强了病毒的拉曼信号,因此该系统可快速检测病毒的存在,即使样本中仅存在少量痕迹。该系统的另一项重大创新是使用先进的机器学习算法来检测光谱数据中非常微妙的特征,使研究人员能够查明病毒的存在和浓度。传感器材料可放置在从门把手、建筑物入口到口罩等任何类型的表面上。图片来源:KAM SANG KWOK和AISHWARYA PANTULA/约翰斯霍普金斯大学“这项技术就像在设备上滴一滴唾液,然后得到阴性或阳性结果一样简单。”约翰斯霍普金斯大学机械工程副教授伊桑巴曼说,其新颖之处在于这是一种无标记技术,这意味着不需要分子标记或抗体功能化等额外化学修饰。传感器最终可用于可穿戴设备。巴曼称,这项新技术产品尚未在市场上销售,它弥补了两种最广泛使用的新冠病毒检测方式的局限性。PCR(聚合酶链式反应)检测非常准确,但需要复杂的样品制备,在实验室处理结果需要数小时甚至数天;另一种抗原检测则在检测早期感染和无症状病例方面不太成功,还可能导致错误的结果。新传感器几乎与PCR检测一样敏感,并且与快速抗原检测一样方便。在初始检测期间,该传感器在检测唾液样本中的新冠病毒方面表现出92%的准确度,与PCR检测不相上下。该传感器在快速确定其他病毒方面也非常成功,包括H1N1和寨卡病毒。“我们的平台超越了当前的新冠病毒检测。”巴曼说,“我们可将其用于针对不同病毒的广泛检测,例如,区分新冠病毒和H1N1,甚至是变体。这是当前快速测试无法轻易解决的主要问题。”
  • 小型传感器监测食品污染
    新华网首尔12月25日电 韩国工程师日前说,他们发明了一种小型传感器,可以作出准确、实时的回应,有助于开展食品安全和环境保护工作。 设在大田、由郑奉铉领导的韩国生命科学和生物技术研究所说,该设备使用了世界上最小的生物芯片传感器,还利用表面等离子体共振(SPR)技术来监测DNA和蛋白质是否存在受污染迹象。 研究人员计划利用SPR技术及相关的生物芯片,通过接收被扫描物体表面反射的激光共振信号,来辨别分子层面的结构。 该研究所首席研究员郑奉铉说,这种新装置一只手就能提起来,与那些只能用在实验室的笨重机器形成鲜明对比。这种装置可以进行需要迅速反应的“即时检验”,这在应对与食品有关的问题及环境问题时至关重要。 专家说,这种生物芯片传感器经过改造,也有助于制药和检测供水系统,还可能应用于军事领域。 研究人员说,一旦研发成功,这种机器可以创造价值5000亿韩元(约合3.72亿美元)的全球市场,因为对高科技分析机器存在很大需求。 这家由韩国教育科技部提供科研经费的国有生物工程实验室说,它已经为这一生物芯片的主要部件申请了知识产权保护,其中包括高速转镜和电子束调制装置。
  • 应用案例 | Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP
    近日,来自山西大学激光光谱研究所、光学协同创新中心,-巴里大学和巴里理工大学跨校物理系波利森斯实验室的联合研究团队发表了《Ppb级中红外石英增强光声传感器,用于使用T型音叉调谐探测DMMP》论文。二甲基甲基膦酸酯(DMMP)被广泛认为是最具代表性的模拟物,已开发并广泛用于DMMP检测的各种气体分析技术。气相色谱(GC)和质谱(MS)分析可以高敏感地鉴定不同的有机磷化合物,但它们在原位监测方面具有几个缺点,包括昂贵和耗时。此外,色谱分析必须由熟练的人员在专门的实验室中进行,不适合小型化。相比,光声光谱(PAS)是DMMP气体水平监测最有前景的技术之一,因为它具有高灵敏度、选择性和快速响应的优势。作为PAS的一种变体,石英增强光声光谱(QEPAS)技术自2002年首次报道以来迅速发展,其中超窄带石英调谐叉(QTF)与两个作为锐利共振声学换能器的声学微共振器(AmRs)在声学上耦合,用于检测声音信号,而不是传统的宽带麦克风。与体积超过10 cm3的传统光声池相比,小体积的QTF更有利于DMMP检测设备的小型化和快速响应。此外,QEPAS技术的显著特点是激发波长的独立性,这意味着可以使用相同的光谱声学器测量具有不同特征吸收光谱的痕量气体。DMMP在9–11.5 µ m的中红外区域显示出强烈的光吸收特征,因此使用高性能中红外量子级联激光器(QCLs)可以在理论上实现高灵敏度的检测。然而,中红外QCL输出光束通常具有较大的发散角,这使得将中红外激光束耦合到具有300微米叉间距的QTF中成为巨大的挑战,因为任何误散射光束击中QTF都会产生大的背景信号。在本研究中,我们展示了种基于定制T型QTF和中红外量子级联激光器(QCL)的小型化集成QEPAS DMMP传感器。T型QTF的叉间距为0.8毫米,具有约15,000的高品质因数,避免了由误散射光引起的背景信号,从而在ppb水平上获得最佳检测限。通过使用掺入DMMP的真实室外空气对传感器进行测试,以验证其有效性。实验部分:检测波长和光学激发源的选择强有力的靶向吸收带对于DMMP检测至关重要,因为实际应用需要具有亚百万分之一灵敏度的传感装置。由于其高输出功率、紧凑性和窄的光谱线宽,QCLs在中红外光谱区域已成为最多功能的半导体激发源。考虑到激发波长和激光源的大小,宁波海尔欣光电科技有限公司为该实验提供了一个发射波长为9.5 µ m,线宽为2 MHz的QCL激光器(QC-Qube 200831-AC712)作为DMMP-QEPAS传感器的激发源,其输出功率稳定性2%,一个具有极低电流噪声和温漂的QCL激光器驱动电路(QC750-Touch&trade ),在室温下操作,以稳定发射波长。通过激光驱动电路将QCL的温度设定为25.5℃。如图2所示,所使用的QCL激光器的输出波长是驱动电流的函数,并且其波长调谐范围落在所选吸收带中(图1中的绿色框区域)。图2中绘制了QCL激光器的平均功率与驱动电流之间的线性关系,表现出良好的线性关系。此外,该激光源的小尺寸是一个显著特点,外部尺寸约为300 cm3(65 × 65 × 70 mm3),使激光源能够实现紧凑的气体传感器。Fig. 1. Absorption spectra of 1-ppm DMMP/N2 gas mixture (red) obtained by the FTIR spectrometer and absorption spectra of 300-ppm H2O (blue) and 5- ppm CO2 (orange) based on HITRAN database. Inset: DMMP absorption band in the range of 1040–1065 cm&minus 1 and wavelength tuning range of the used QCL laser.Fig. 2. QCL emission wavelength and output optical power as a function of driving current in amplitude modulation operating mode with a duty cycle of 50 %. QCL laser: HealthyPhoton, QC-Qube QCL laser driving circuit:: Healthy Photon, QC750-Touch&trade 结论基于QEPAS的传感器由于其波长独立性具有很高的多功能性,这使得通过替换激光源可以检测各种神经毒剂。在本研究中,首次开发了一种紧凑尺寸和可靠性能的ppb级QEPAS DMMP传感器。选择了9.56 µ m的激发波长,这是最强的DMMP吸收带,不受H2O和CO2的干扰。优化了主要系统参数,包括激光激发功率、气体压力和调制频率。最终,在0至1.5 ppm范围内验证了传感器的线性,并在300毫秒的积分时间下实现了6 ppb的最低检测限。我们使用真实室外空气作为载气检测了500 ppb的DMMP,并获得了与以零气作为载气时相同的信号幅度,从而验证了传感器的高选择性。参考Ppb-level mid-IR quartz-enhanced photoacoustic sensor for sarin simulant detection using a T-shaped tuning fork, Sensors & Actuators: B. Chemical 390 (2023) 133937, https://doi.org/10.1016/j.snb.2023.133937
  • “疏水分子筛”助力安光所研发抗湿型高性能硫化氢传感器
    近日,安光所利用“疏水分子筛”研发抗湿型高性能硫化氢(H2S)传感器,相关成果以“基于Pt锚定CuCrO2(铜铬氧)的高性能H2S气体传感器”,“PDMS(聚二甲基硅氧烷)膜在抗湿、高选择H2S气体传感器中的双重功能”为题,分别发表于ACS Applied Materials & Interfaces和Chemical Communication杂志上。   H2S是一种无色、易燃易爆、有强腐蚀性的剧毒气体,广泛存在于石化、天然气、矿井、下水道、养殖场、废水处理厂、垃圾填埋场等半封闭和高湿度场所。近年来,半导体型H2S传感器取得了长足的进展,包括铜铁矿、氧化锌(ZnO)、氧化铜(CuO)在内的多种氧化物在干燥空气中都对H2S具有较高的响应。然而,传感器在实际使用时必须暴露在湿度环境中,环境中的水汽是一种强干扰性气体,且水汽(湿度)随时间、地点、季节、天气等因素急剧变化,这给传感器的浓度标定带来了较大干扰。此外,H2S是一种强腐蚀性气体,且腐蚀性随湿度增加而增大,导致传感器在高湿度环境下快速腐蚀中毒、寿命大幅缩短,成为传感器走向实际应用的一个重要挑战。   为解决上述问题,安光所激光中心孟钢研究员团队在前期基于Pt单原子敏化CuCrO2的高灵敏H2S传感器基础上,通过热蒸发法在CuCrO2敏感层上蒸镀了一层基于聚二甲基硅氧烷(PDMS)的疏水、透气薄膜。PDMS性质稳定、本征疏水,可有效隔绝环境中水汽的侵入,减弱环境湿度对传感器的影响,同时显著提升传感器在湿度环境中的长期稳定性;此外,PDMS膜中大量微孔可有效阻挡甲硫醇分子(结构、性质同H2S极相似,直径略大),充当“分子筛”的作用,进一步提升了传感器对H2S的选择性,实现了“一石二鸟”的功效。基于PDMS包覆CuCrO2的H2S传感器,工作温度较低(100 ℃)、湿度影响小、响应高(50%相对湿度下对5 ppm H2S的响应高达151)、选择性高、长期稳定性好,为H2S传感器在石化、天然气等领域的实际应用奠定了重要基础。   以上研究工作由中科院国际合作及安徽光机所所长基金等项目资助。
  • 韩国研发出小型传感器监测食品污染
    韩国研究人员日前宣布,他们发明了一种小型生物芯片传感器,可快速、准确地对食品和环境污染进行检测。  据韩联社报道,由郑奉铉领导的韩国生命科学和生物技术研究所研发的这种生物芯片传感器利用表面等离子体共振技术,即通过接收被扫描物体表面反射的激光共振信号来辨别 分子层面的结构,从而检测被测对象的DNA和蛋白质是否受到污染。  郑奉铉说,与那些只能用在实验室的笨重检测设备相比,这种可单手提起的新装置可进行“即时检验”,大大提高了检测效率。这种生物芯片传感器经过改造后,还可用于药品、供水系统的检测,甚至可以应用于军事领域。  据悉,韩国生命科学和生物技术研究所已为这种生物芯片传感器的主要部件申请了知识产权保护。
  • 俄开发新型生物传感器:大客流环境即时监测感染性病毒
    近期,俄罗斯科学家开发出了一种新的激光技术,用于制造新颖的光学生物传感器,这种传感器能够在几秒钟内识别感染性疾病。该装置通过红外光来显示有害的细菌和病毒,可以在大型的交通枢纽,如机场等需要不断监测大量的客流的环境下得到广泛应用。  这项研究发表在《激光物理快报》杂志上。该传感器是由一个规则微穿孔化的银纳米薄膜沉积在由天然矿物萤石支撑的透明基板上制作而成。生物材料样本,如刮下的鼻粘膜的样品被放置在薄膜上。然后,这一薄膜曝光在一个普通实验室中的红外光谱仪的红外光中。通过获取通过样品的光谱,研究人员可以推断出特定的细菌或病毒的存在。  为了证明新型生物传感平台可以立即检测病原微生物,科学家们使用了一种常见的细菌进行实验,金黄色葡萄球菌。  这种快速分析可能被广泛应用于大型交通枢纽,如机场这种需要不断对流通乘客进行健康监测的环境下。目前,这种还是通过热成像摄像机跟踪体温来实现。一个发烧的乘客可能是一个潜在的感染源。在这种情况下,一个清晰的分析是必要的,要辨别出来该人是否实际上是生病了,还是什么别的原因。利用现有的方法调查生物材料,如聚合酶链式反应方法要需要几天。与之相反的是,这种新技术可以立即提供出检测的结果。  这项研究由机械与光学大学、国家核研究大学、列别捷夫物理研究所、莫斯科物理技术研究所的科学家主导进行,并与莫斯科传染病临床医院展开了密切合作。  这种新的生物传感器的另一个优点是它的灵敏度。“光学生物传感器,使用我们的技术可以检测单个细菌,”Sergey Kudryashov说,他是机械与光学大学激光技术与仪器学院和列别捷夫物理研究所气体激光器实验室的领导研究员。“在一些公共机构,如幼儿园、学校内传染病的早期诊断,特别对于高校的季节性流行病有很好的帮助。对于在传染病医院的医生来说,这种技术可以是一个宝贵的资产,可用于早期和更快的诊断。”  该生物传感器的灵敏度归功于银质薄膜的光栅状结构。当红外线通过传感器时,它会定期地分布在表面上。随着光照强度变高微孔会转变成热点。生物材料中含有的微生物会在热点中有效地填充孔和吸附,这增加了他们的检测的概率。  数以百万计的微观孔利用激光进行切割,这是通过衍射光学元件进行空间复用成微束,使研究人员能够使传感器的生产自动化和更迅速。  “到现在为止,这样的传感器只能通过高倍率放大的电子显微镜才能看到,所以实际的实验室分析是不可能的。我们的方法可以允许这种微孔结构覆盖更大的面积,扩展到一平方厘米面积,用以制作出应用在实际实验应用传感的原型,以方便生物材料更好的适配,”Sergey Kudryashov说。  对于光学生物传感的反洗方法并不是新创的,而只是实施过程中效果不佳。这是由于一个事实,早期的技术并不能制造真正的原型,即可用在实验室环境中进行测试和临床中实践。  这在把这项新技术用于医疗实践之前,提出了另一个科学家必须进行解决重大的挑战,细菌(红外光谱库)的参考数据库的建立,即被用来与从红外光谱仪形成的数据进行比较。  红外光谱仪的读数总是要与这种光谱数据库进行比较,即某些官能团分子的红外活性指纹的目录库。例如,在研究中使用的金黄色葡萄球菌,有它自己的指纹,来自胡萝卜素的类胡萝卜素片段,而胡萝卜素即是负责其颜色的一种物质。  科学家们希望在未来,由于较低的生产成本和快速的制造工艺,以及更常见的基板材料的使用,新的光学生物传感器平台将得到广泛的实际应用。此外,根据研究人员的说明,一旦光谱库被校准,传感器将能够识别不仅是致病微生物的类型,且会包括它们的近似类型。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 董事长专访 | 四方光电熊友辉:引领气体传感器核心技术,解决环保产业关键问题
    导 读在作为环保产业年度重要展示平台的“环博会”上,四方光电现场展示了烟气排放监测、发动机排放气体监测、室外扬尘监测、油烟监测、温室气体监测、工业过程在线气体监测等气体成分及流量测量的解决方案。其中,包括满足碳排放监测要求的烟气分析解决方案首次亮相,在业界引起了不小的轰动。站在“十四五”的开局之年,环保产业又迎来了新的发展突破口。四方光电将如何助力国家“双碳”目标的达成?面对新的发展形势,四方光电又将如何适应新形势,做好布局与规划?四方光电董事长熊友辉博士接受了环保在线记者专访。四方光电董事长 熊友辉博士深耕气体传感器创新领域,构筑核心技术“护城河”  熊友辉博士告诉环保在线记者,四方光电长期专注于气体传感器的科技创新,从创立的2003到2011年,四方光电主要发展基于核心气体传感器的工业过程和环境监测气体分析仪器,并逐步启动民用气体传感器产业配套 2012到2020年,四方光电积极发挥核心技术及质量体系的优势,发力智能家居、智慧医疗、汽车电子等领域,逐步形成了智能气体传感器与高端气体分析仪器双轮驱动的发展格局。  2003年,四方光电成功开发基于电调制非分光红外气体传感器,该产品于2004年通过湖北省科技厅组织的科技成果鉴定,达到国际先进技术,此后该产品获得“国家重点新产品”证书。针对双光束NDIR 气体传感器测量二氧化硫(SO2)、一氧化氮(NO)、一氧化碳(CO)、甲烷(CH4)存在水汽(H2O)、二氧化碳(CO2)等的较强干扰,同时测量低端分辨率不高的缺点,公司通过对微流量芯片-微流量红外探测器-微流红外气体传感器(micro-flow NDIR)的深度开发,已经成为在技术上可以与国际上气体分析仪器巨头并肩的厂家之一。微流红外气体传感器项目也于2020年获得工信部强基工程-传感器“一条龙”示范项目。通过十余年的持续创新,目前四方光电已形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。通过使用上述一种或多种技术组合,四方光电能够根据客户需求提供多种产品。  熊友辉博士表示,当前四方光电的环境监测气体分析仪器产品主要应用于烟气、尾气监测领域。其中烟气监测领域产品包括红外(紫外)烟气传感器模组、红外(紫外)烟气分析仪、烟气排放连续监测系统(CEMS)及船舶废气排放连续监测系统。主要检测对象是二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)、二氧化碳(CO2)、氧气(O2)、颗粒物(PM)的浓度,应用于火力发电厂、炼钢厂、垃圾焚化厂等产生污染气体的工业企业等固定污染源及大型船舶等移动污染源。在尾气监测领域,公司采用高性能双光束NDIR检测一氧化碳(CO)、二氧化碳(CO2)、碳氢化合物(HC) 采用微流红外、非分光紫外(NDUV)、紫外差分(UV-DOAS)技术直接检测氮氧化物(NOx),而不需要采用复杂且昂贵的NOX转换器。依托NDIR核心技术积累,发力温室气体监测市场正当时    “2020年习近平总书记在联合国发展大会上代表中国提出了2030碳达峰、2060碳中和的宣言,也为环保行业的发展树立了新目标”,熊友辉博士向记者介绍,在碳中和产业中的温室气体在线监测领域,四方光电具有较好的技术和产业基础,目前在碳中和监测控制领域具有较多应用场景。四方光电在碳中和领域最典型的应用就是对多种温室气体的总量(温室气体成分分析仪器+气体流量)计量。  在二氧化碳(CO₂)的气体检测方面,四方光电有两种不同用途的CO2传感器:一种是四方光电采用NDIR热电堆红外技术开发的民用/车载用的扩散式CO2传感器,一种是四方光电全资子公司-湖北锐意自控采用微流红外、双光束红外(热电堆或者热释电)等技术开发的高端CO2传感器。前者主要用于绿色建筑和智能座舱中的暖通空调(HVAC)控制,确保在舒适安全条件下的节能减排,通过智能化降低建筑和车辆的碳足迹 后者主要用于工业、农业过程中CO2排放总量的高精度测量,用于碳排放的核查和交易。后者的精度要求显著高于前者,价格比前者也高两个数量级。  当然,碳中和领域对气体的监测不仅仅是CO2气体浓度,而是多种温室气体的总量(成分+流量)计量。京都议定书中规定控制的6种温室气体,除二氧化碳(CO₂)之外,还有甲烷(CH₄)、氧化亚氮(N₂O)、氢氟碳化合物(HFCs)、全氟碳化合物(PFCs)、六氟化硫(SF6)。四方光电全资子公司湖北锐意自控的微流红外、双光束红外、TDLAS等气体传感器技术可以应用在对工业污染源的上述多种温室气体排放浓度的监测 同时公司具备的超声波、差压等原理的气体流量传感器可以用于温室气体流速和体积的监测。公司以工业用气体传感器技术平台、分析仪器及工信部沼气工程物联网专项为基础,为大中型沼气工程、生物质燃气工程、煤层气瓦斯气综合利用工程等诸多领域提供了包括测量CH4和CO₂等气体质和量的计量装置,这些装置是开展清洁发展机制(CDM)碳交易的基础数据。随着碳减排逐渐成为一些国家的自愿行为,以及碳核查基于的MRV(可测量、可报告、可检验)原则,对温室气体排放总量在线监测系统的需求将呈现增长趋势。  我国已经安装了大量的CEMS系统用于环保监测, 主要是对二氧化硫(SO2)、一氧化氮(NO)、粉尘颗粒物(PM)的监测。碳中和政策出来后,需要增加CO2、CO等“碳”的测量指标,由于CO含量较低,因此微流红外传感器成为测量CO2+CO参数的最佳选择。同时用于碳交易还需要更加准确的烟气流量传感器配合,目前大量的CEMS系统采用皮托管差压原理测量流速并测算流量,由于是“点式”测量,准确度与气体分析仪器的精度相差巨大,因此有必要开发新型的高精度烟气流量传感器,例如超声波、红外相关法、静电法等原理的新型烟气流量计。协同气体传感器技术平台,新产品层出不穷    熊友辉博士表示,碳中和关系到产业链的方方面面,从原材料和能源的开采到产品进入市场,每一个环节都需要控制碳排放,这也让气体环境监测仪器有了广阔的市场。比如,烟气分析仪是大气环境监测系统的重要组成部分,但烟气成分较为复杂,主要成分有二氧化硫(SO2)、氮氧化物(NOx)、一氧化碳(CO)、二氧化碳(CO2)、氧气(O2)等,随着排放标准越来越低,对烟气分析仪的性能要求也越来越高。这次四方光电全新推出的烟气分析仪Gasboard-3000UV,集公司多种核心气体传感技术于一体:基于UV-DOAS紫外差分吸收光谱气体分析技术测量二氧化硫(SO2)、氮氧化物(NOX),微流NDIR技术测量一氧化碳(CO)、甲烷(CH4),双光束红外NDIR测量二氧化碳(CO2)等。结合公司超声波气体流量测量十余年的技术积累,公司正在积极开发超声波烟气流量计,因此可以一站式满足国内碳排放的监测要求。  在室外空气品质监测领域,记者看到四方光电也在持续发挥技术优势,推陈出新。问及此次室外扬尘监测传感器展区产品时,熊友辉博士向记者介绍了产品开发的初衷以及创新应用对产业链的推动作用:我国室外扬尘网格化监测经历了早期的β射线吸收法到采用民用净化器大量应用的激光粉尘传感器的过程。在使用过程中发现,民用的激光粉尘传感器不仅不能满足-30~70℃室外环境温度的全天候使用要求,同时还必须面对监测场所,特别是建设工地经常喷洒降霾的水雾影响,或者下雨潮湿的气候环境等。这种环境下,水雾经常被判断为严重雾霾造成爆表。民用激光传感器由于激光功率小,采样流量小,PM10分辨率很低,无法提供准确的PM10, 通常采用根据PM2.5的数字进行比例计算,造成PM10监测数据失真。在这种背景下,四方光电通过采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样装置、高湿度环境的水雾去除装置等,研制出了扬尘传感器PM3006系列产品,低成本地实现了对室外扬尘粉尘与β射线吸收法达到0.9相关系数的高精度测量。凭借长期的技术积淀、良好的产品性能,目前四方光电室外扬尘监测传感器PM3006系列已取得多项发明专利及实用新型专利。在国内市场,多款搭载PM3006系列的扬尘监测类产品,获得了计量器具型式批准证书(CPA) 在海外市场,同样也取得了当地权威机构的测试认证。在韩国多款搭载PM3006的户外监测类产品,获得了韩国环境部授权的三大认证机构(KTR/ KECO/ KCL)的最高等级1级认证。目前,产品已经销往全国并出口到海外多个国家和地区,被国内外知名企业认可。  最后,四方光电熊友辉博士告诉记者,四方光电也将不忘初心,依托在气体传感器及分析仪器方面的技术积累,开发出更多的优质产品 也将持续关注行业发展趋势,发挥自身技术优势,为早日实现“碳达峰”和“碳中和”目标贡献力量。  关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台,拥有100余项国内外专利,产品广泛应用于空气品质、环境监测、工业过程、安全监测、健康医疗、智慧计量等领域。  四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。  四方光电作为中国气体传感器的龙头企业,凭借长期的技术沉淀、严格的质量体系及国际化视野,已经成为诸多世界500强及国内外细分领域头部企业的配套供应商。目前公司产品已经出口至八十多个国家和地区,正在朝着传感器领域的国际品牌迈进。
  • 通用生物传感器实现一“芯”多用,可同时检测8个数量级浓度差异的生物粒子
    研究人员开发了新的信号处理技术,与光流体生物传感器芯片一起使用,以检测浓度变化8个数量级的纳米珠混合物。图片来源:霍尔格施密特/加州大学圣克鲁斯分校美国加州大学圣克鲁斯分校团队在用于检测或分析物质的芯片传感设备方面取得重大进展,为研制高灵敏度的便携式集成光流体传感设备奠定了基础。这些设备即使涉及浓度变化很大且完全不同类型的生物粒子时,仍然可同时进行多类型的医学测试。该研究成果发表在最新一期《光学》杂志上。研究人员将新的信号处理技术应用于基于光流体芯片的生物传感器,能对8个数量级浓度的纳米珠混合物进行无缝荧光检测,将传感器可工作浓度范围扩大了1万倍以上。团队表示,新设备足够灵敏,不但可检测单个生物分子,还能在非常宽的浓度范围内工作,以同时测量和区分多种粒子类型。这一多类型分析测试平台,原理基于光流体芯片,通过用激光束照射粒子,然后用光敏探测器测量粒子的响应来检测粒子。还使得该平台具有执行各种类型分析所需的灵敏度,可检测包括核酸、蛋白质、病毒、细菌和癌症生物标志物等粒子。在这项新工作中,研究人员还开发了一种信号处理方法,得以同时检测高浓度和低浓度的粒子。他们结合不同的信号调制频率:高频激光调制以区分低浓度的单个粒子,低频激光调制以在高浓度下同时检测来自许多粒子的大信号。团队还应用到最近开发的一种极速算法,以实时识别和高精度区分。这种信号分析方法,本质是用不同浓度和各种荧光颜色的纳米珠溶液泵送光流体的生物传感器芯片。目前,其能正确识别浓度差异在混合物中超过1万倍的纳米珠。未来,其将用于分析来自人工神经元细胞组织类器官的分子产物,为人们带来神经源性疾病和儿科癌症等领域的新见解。
  • 关注内资厂商进军传感器事件
    我国企业在传感器高端领域(如红外传感器、速度传感器、加速传感器、GIS传感器等)已经突破了技术门槛,伴随消费电子和物联网行业的高速发展,有望迎来高成长。国内相关公司包括汉威电子、华工科技、苏州固锝、歌尔声学等。   汉威电子从事气体传感器研究生产已有二十年的历史,是国内从事气体传感器研究、生产的最早厂家。公司拥有从气体传感器-气体检测仪器仪表-气体检测控制系统的完整产业链,拥有年产65万套气体检测仪器仪表和280万支气体传感器的生产能力,而且产业链各环节已经形成了良性循环,为公司建立行业领先地位提供根本保证。2012年公司在传感器、智能仪器仪表、监控系统三大产业领域已完成及正在开发的新产品及产品升级改进共计30余项,包括由工信部批复的国家电子信息产业发展基金项目&ldquo 基于双光路气体探测技术的煤矿安全监控系统&rdquo 和国家物联网发展专项&ldquo 微型智能半导体气体传感器&rdquo ,以及由国家发改委批复的国家物联网技术研发及产业化专项&ldquo 电化学式气体探测智能终端关键技术研发及产业化项目&rdquo 。高性能热释电红外探测器、用于疾病诊断的电化学气体传感器、激光原理燃气检漏设备、激光原理工业气体检测仪、湿度传感器在2012年下半年分别投产。   华工科技是华中地区批由高校产业重组上市的高科技公司。子公司新高理自1988年始即专业从事PTC、NTC系列热敏电阻的设计、生产、安装和服务,建有教育部敏感陶瓷工程研究中心等科研机构,具有年产1亿只热敏电阻的生产能力,是目前国内的热敏电阻专业生产厂家。产品高精密温度传感器可应用于家电、厨房设备、汽车、军工及中低温干燥箱、恒温箱等场合的温度测量与控制。2012年公司提高了NTC传感器的耐候性,实现PTC传感器批量销售,积极推进汽车电子领域应用,通过东风汽车(3.04,-0.03,-0.98%)等客户审核。未来公司拟拓展办公自动化及通讯设备元器件领域,实现NRC、GRC项目批量销售。此信息由和呈小编摘录,和呈产品有培养箱系列:、霉菌培养箱、生化培养箱、恒温培养箱、细菌培养箱、低温培养箱、培养箱、隔水式恒温培养箱、电热恒温培养箱
  • 世界最小超声波传感器问世
    英国研究人员16日说,他们制造出了世界上最小的超声波传感器。它是如此微小,以至于可以在一根头发丝上排成队列。这一成果可广泛用于探索细胞内部等微观环境。  英国诺丁汉大学当天发布公报说,该校应用光学研究小组制造出了这种微型超声波传感器。它比现有的超声波传感器要小许多,500个这种传感器排在一起才会达到一根头发丝的宽度。它同时具有超声波特性和光学特性,在感知到超声波时会微微变形,这种变形可以被照射它们的激光所探测到,从而获得超声波的信息 反过来,如果对它发出一个激光脉冲,它也可以受激向外发出超声波,探测目标对象。  研究人员马特克拉克说,纳米技术的兴起带来了对微型超声波探测器的需求,他们开发的新设备将超声波探测技术推广到了纳米尺度上。目前人们比较熟悉的超声波应用是医疗检查,这种新型设备就可以用来对一个细胞的内部进行超声波检查,提供过去难以获得的生理信息。  此外,这种超声波传感器的分辨率也很高,它所用的声波频率超出了可见光的频率,因此在理论上它可以获得比最好的光学显微镜还要清晰的图像。
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制