当前位置: 仪器信息网 > 行业主题 > >

细胞分析

仪器信息网细胞分析专题为您提供2024年最新细胞分析价格报价、厂家品牌的相关信息, 包括细胞分析参数、型号等,不管是国产,还是进口品牌的细胞分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞分析相关的耗材配件、试剂标物,还有细胞分析相关的最新资讯、资料,以及细胞分析相关的解决方案。

细胞分析相关的资讯

  • 镁伽CCEasy全自动高通量细胞计数分析仪,为细胞分析保驾护航
    01 两种通量选择CCEasy全自动高通量细胞计数分析仪镁伽CCEasy全自动高通量细胞计数分析仪,以高通量细胞分析技术为核心,兼容台盼蓝、荧光(AO/PI)两种染色方式,能自动化完成细胞计数、活率检测及生长情况分析,实现高效率、高质量、标准化的活细胞在线检测。机型提供24位转盘和96孔板两种选择,支持进行自动化整合,充分满足多领域的细胞分析实验需求。全自动24通量细胞计数分析仪全自动96通量细胞计数分析仪 滑动查看更多 CCEasy的软件系统通过高精度视觉检测系统结合智能主动学习Al算法,能在短时间内对多细胞样本进行高精度识别和计算,为细胞分析和质量控制提供更加可靠的自动化解决方案!02 全流程自动化无需人工介入,让细胞计数分析更智能标准高效全程标准化检测,无需人工介入,兼容24位转盘或96孔板不间断连续测样;无需设置细胞参数,即可准确识别细胞状态和数量。快速灵敏解放双手,预置试剂包,无需人工混合染料与样品;检测耗时短,1min内即可完成单个样品的制备及检测。智能管理多级用户、多级权限管理,支持电子签名、电子记录存档,符合FDA21 Part11要求。降本增效内置可长期持续使用的检测池,无需一次性细胞计数板,帮助客户节省耗材成本。 细胞计数分析仪运行流程 03 数据验证符合GMP规范,细胞质量控制更可靠标准颗粒梯度测试结果通过CCEasy细胞计数分析仪测试多种稀释倍数下标准颗粒的数量,测试数据呈现良好线性趋势,R2高达0.998,表明CCEasy细胞计数仪具有良好的准确性和一致性。以下分别为镁伽CCEasy24通道细胞计数仪测试数据和96通道细胞计数仪测试数据。多细胞样本直径测定通过CCEasy细胞计数仪对多细胞样本的直径进行测试,结果显示,通过24通道和96通道的细胞计数仪测量细胞直径,两台设备测量结果偏差非常小,具有良好的重复性。
  • Life Tech Tali 成像型多色细胞分析仪 快速细胞分析新技术
    Tali&trade 成像型多色细胞分析仪 快速细胞分析新技术 Tali&trade 成像型多色细胞分析仪能让你随时,简便快速的检测GFP和RFP表达,判断细胞存活率和细胞凋亡。抢先体验 Tali&trade 成像型多色细胞分析仪立即注册,您将最先收到 Tali&trade 成像型多色细胞分析仪的最新资料。 通知我最新产品信息
  • GE推出新型高内涵细胞成像分析系统助力干细胞研究与应用
    20世纪60年代,自骨髓移植成功治疗造血系统疾病以来,人们对干细胞治疗的研究产生了极大的兴趣。干细胞是具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞。在一定条件下,它可以分化成多种功能细胞或组织器官。干细胞治疗是把健康的干细胞移植到病人体内,以达到修复病变细胞或重建功能正常的细胞和组织的目的。 在刚刚结束的&ldquo 2011细胞治疗技术研讨会&rdquo 上, GE医疗的全球研发总监Dr. Stephen Minger做了题为《Therapeutic and Research Potential of Human Stem Cells》的演讲,分享了他对人类干细胞研究与临床应用潜力的看法。 Dr. Stephen Minger 演讲现场 干细胞疗法就像给机体注入新的活力,相比于常规方法,具有很多突出优势。目前很多细胞退行性疾病的发病机理幵不明确,如心脑血管疾病、糖尿病、肝硬化、肢体缺血性疾病等,由于干细胞具有"修复再生"的生物学特性,干细胞治疗有可能成为此类疾病的终结者。无论是自体干细胞移植还是异体干细胞移植,由于所采用的干细胞免疫原性非常低,几乎不引起排异反应,因此,干细胞治疗高效安全、无毒副作用,同时,干细胞治疗可以很好的与基因治疗相结合,还是基因治疗的良好载体。成体干细胞取自成人自体或胎盘和脐带血,因此来源十分广泛,不用担心治病"原材料"短缺的问题。 干细胞技术是当今生命科学的聚焦点,被誉为二十一世纪生物和医学技术领域可能取得革命性突破的项目,有望启动具有划时代影响的一场"医学革命",将会为社会带来巨大的社会效益。 干细胞研究和临床应用需要严格的监测细胞的属性,以确定该细胞是否保留其多能性,处于分化阶段,这对于确认干细胞性质非常重要。此外,也需要有适当的分析方法用于测试和优化干细胞的培养和分化条件。这些方法通常包括使用流式细胞仪分析生物标志物的表达,以及用RT - PCR迚行基因表达的研究。然而当前,高内涵分析技术较上述技术体现了更多的研究优势,帮助研究者更好地定量研究干细胞的多能性与分化作用,实现科研与临床的转化。 通用电气医疗集团(GE Healthcare)推出了IN Cell系列最新一代高端产品IN Cell Analyzer 6000 激光共聚焦高内涵细胞成像分析系统,它将高质量激光光源和高内涵细胞成像分析相结合的系统,使高速度和高质量细胞图像获取和分析达到统一,为客户提供了快速而精准的细胞技术分析平台。它可以满足要求更高的高内涵分析和筛选。拥有专利技术的光学系统采用了全新的设计理念:IN Cell Analyzer 6000的共聚焦光阑是可变的,类似于眼球虹膜控制瞳孔的大小;感光成像采用了新一代科研级sCMOS技术。针对不同要求和难度的实验,IN Cell Anaylzer 6000提供成像速度和图像质量最优组合。 与此同时,GE还推出了以金属卤素为荧光光源的IN Cell Analyzer 2000全自动荧光显微镜型细胞高内涵成像分析系统。该系统非常灵活,使用广泛,可以为您实现一些以前无法完成的实验设想。可实现从显微观察到自动化筛选,以及细胞器、细胞、组织和整个生物体的成像。IN Cell Analyzer 2000有着硬件和软件的独特组合,能够非常快速地获取图像,是筛选的理想选择。该仪器是利用六西格玛原理来设计的,结构坚固,能确保它在多用户环境中高通量应用的可靠性。
  • 库尔特 细胞研究不可或缺的细胞体积分析
    生物、药物等许多的研究均需要通过观察细胞体积的变化或细胞数目增减的来判断和评估实验的效果。由于细胞所处环境的改变可促使其自身体积做出相应的变化,以便适应改变后的环境大致新的平衡。由于并不能清晰地知道该种细胞体积变化规律,因此必须检测其体积或细胞数目随条件、时间的变化。  细胞的发育与细胞分裂周期级数递增均需要连续不断的细胞增殖。  在培养液中正在增殖的细胞在其分裂前其体积将增大至原体积的两倍。然而对细胞发育与分裂的速度作如何调整才能保证细胞体积的不变并不明确。因此,测量细胞的体积的变化对了解与控制细胞的发育和周期非常重要。  细胞的死亡  细胞的增殖与细胞的死亡之间需要一个精细的平衡以保持足够的细胞数量。该种平衡容许细胞作最佳的状态调节以适应各样机能变化的需求。细胞死亡有两种清晰的机制,坏死与凋亡。坏死是一个病理生理的机制,包括细胞膨胀以及细胞膜破裂而释出内容物。凋亡则是一个程序式死亡的机制。凋亡的特征之一就是细胞收缩。细胞有缺陷的凋亡与过度凋亡,两者同样会导致严重疾病。  渗透压的补偿  任何种类的细胞都有可能因处于不利环境而死亡。细胞犹如多孔的网筛极易因渗入已溶解于周围环境的化学物而使渗透压受影响。细胞内外环境中该些溶解物颗粒数目的不平衡,将会导致水份透进细胞而使其体积涨大,或者是水份从细胞渗出使其体积收缩。  当细胞或微生物遭遇环境的变化,它们都会尝试通过自身调节来适应新的环境。  细胞平均体积(MCV)的变化  当细胞或微生物遭受环境变化时,它们将通过自身调整以图适应新的环境。一些例子中细胞需要改变自身体积以便达到适合的目标。  由贝克曼库尔特公司出品的Multisizer 3 库尔特细胞特性分析仪是目前最权威的细胞体积、细胞计数的分析仪器,应用文献多不胜数。无可逾越的领先技术更使Multisizer 3 成为分辨率最高的仪器。国外的用户统计表明,Multisizer 3 已成为细胞实验室必备的研究工具。  自华莱士• 库尔特先生发明 库尔特原理 以来,该原理已广泛应用于材料、生物、医学、制药等众多的领域。目前生物领域的细胞计数标准就是库尔特原理。美国材料实验协会ASTM将库尔特原理定为生物细胞计数的标准(ASTM-F2194)。国际血液学标准化委员会亦指定库尔特原理为计算红细胞与白细胞的标准实验室方法 (Clin. lab. Haemat. 1988. 10, 203-212.)。  作为库尔特原理及技术应用的鼻祖,美国贝克曼库尔特公司始终保持着技术领先的优势。† 库尔特计数仪(Coulter Counter)无论在研究还是在质量控制的应用均具有深远的影响力。在权威的研究机构及其发表的学术文献当中,库尔特计数仪均担当着不可或缺的角色。  多年来贝克曼库尔特公司在市场上推出了一系列的库尔特计数仪(Coulter Counter),如:ZM、TA II、Multisizer II等系列型号,为科研与产品控制的实验室颗粒/细胞的检测提供最可靠的分析手段。Multisizer 3 型库尔特颗粒/细胞计数及粒度分析仪为当今所有计数仪、粒度分析仪当中分辨率最高的仪器。  库尔特原理(Coulter Principle)  又称为电感应区技术。  悬浮于弱电解液中的细胞被抽吸而经过一个小孔,因产生外加电压而形成“感应区”。细胞经过小孔时,细胞的体积替代了电解液的相应体积。因相应体积的电解液被替代,小孔感应区产生电压脉冲而导致电阻的改变。脉冲的强度与细胞的体积成比例的关系 。  Multisizer 3 先进的DPP 数码脉冲处理器,使测量过程中的数以百万计的脉冲信号无须经压缩而保存。数据因无损失而能实现再分析功能。DPP的功能使得Multisizer 3 能够实时监测样品在分析过程中的原始变化。  DPP同样可用于检测细胞体积的改变。在许多的生化过程中细胞体积是一个重要的参考因素。如细胞发育、细胞周期、细胞死亡、渗透压的补偿、致病机理和吞噬作用等。Multisizer 3 可以观测细胞粒径与体积从几秒到几小时内的变化。  DPP技术在低温生物学中的应用  这是在冷冻过程中受渗透压影响的细胞,其平均体积(MCV)的分布曲线和20秒内连续的脉冲峰值平均值的变化。  择任意的脉冲群可以将一个粒度分布“分割”成多重的分布。因此,可获得在分析全程中的某一时段的粒度分布。如图示,可获得细胞的平均直径随时间的变化。  使用Beckman Coulter 的Multisizer™ 3 库尔特体积粒度分析仪将能方便而精确地测量细胞平均体积(MCV)的各种变化。
  • 单细胞基因测序市场分析
    p  span style="color: rgb(0, 112, 192) "什么叫做单细胞基因测序(Single-Cell Sequencing)?/span/pp  一句话说,就是单个细胞水平上对基因组进行测序。2013年,自然杂志把年度技术授予了单细胞a title="" href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "基因测序/span/a(Single Cell Sequencing),认为该技术将改变a title="" href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-3-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "生物界和医学界/span/a的许多领域。/pp  span style="color: rgb(0, 112, 192) "我们为什么要进行单细胞基因测序?/span/pp  传统的测序方法,无论是基因芯片或者二代基因测序技术(Next Generation Sequencing,NGS)都需要从超过10万个细胞中提取一大堆(bulk)DNA或者RNA,而提供的信息是一大堆细胞的平均值。但是传统的方法,对于理解人体细胞的多样性有着明显的局限性。/pp  在人体的每一个组织中,比如说,肾脏组织,拥有着大量不同的细胞类型,每一种细胞类型有着独特的起源和功能。每一个细胞的谱系和发展的状态又决定了每个细胞如何和周围的细胞和环境如何反应,把基因测序应用到单个细胞层面,对于我们理解细胞的起源,功能,变异等有着至关重要的作用。/pp  关于二代基因测序已经详细在我们的前期两篇深度报告中进行了介绍,在本篇报告中,我们将详细解读单细胞基因测序,以及该技术对癌症,辅助生殖以及免疫学等领域带来的新的突破。/pp  strong一、单细胞基因测序行业:刚启程,面临引爆点/strong/pp  BCC Research的一项分析报告指出,2014年全球单细胞分析(Single-cell Analysis)的市场达5.4亿美金,预测将从2015年的6.3亿美金增长到2020年的16亿美金,复合增长率达21%。根据GENReports的报告,关于单细胞分析的文章发表在过去的几年也有着爆发性的增长。/pp style="text-align: center "  图2:单细胞分析的文章发表数量/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/006c9fd7-a2cd-46b2-a028-18b51b5ea3cd.jpg"//pp style="text-align: center "  资料来源:GEN,民生证券研究院/pp  其中,传统的单细胞基因组学主要是由基因芯片和PCR主导的,随着二代基因测序的成本以超摩尔定律下降,目前单细胞基因组学逐渐由二代基因测序技术接棒。/pp  和qPCR在90年代的发展一样,目前所有的刺激因素(高度的科研兴趣,生物医药巨头公司的关注等)正在解锁这个市场,单细胞基因测序行业正面临引爆点。/pp strong 二、单细胞基因测序的基本流程:单细胞分离--基因组扩增--测序和分析/strong/pp  单细胞测序,简单地说,主要经过如下的步骤:单细胞的分离--DNA/RNA的提取和扩增(全基因组扩增和全转录组扩增)---测序以及后续的分析和应用。/pp style="text-align: center "  图3:单细胞测序的步骤/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/782ee757-3c06-4a1b-9103-4c7336ac2929.jpg"//pp style="text-align: center "  资料来源:Recent advances and current issues in single-cell/pp style="text-align: center "sequencing of tumors,民生证券研究院/pp  2.1 单细胞的捕捉和分离/pp  单细胞测序的第一步是单细胞的分离和提取,目前的方法主要有如下几种方法:流式细胞术,激光捕获显微切割技术以及微流控技术。/pp style="text-align: center "  图4:单细胞分离的三种方式:流式细胞术,激光捕获显微切割以及微流控技术/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/ea66e087-c9b2-4930-a4d3-50025543fe8b.jpg"//pp style="text-align: center "  资料来源:Technologies for Single-Cell Isolation,民生证券研究院/pp  1)流式细胞术 (Flow Cytometry)/pp  是指通过对于悬浮于流体中的细胞或者其他颗粒进行定量分析和分选的技术。在各种流式细胞仪中,大家主要讨论的是荧光活化细胞分类计FACS(Fluorescence Activated Cell Sorting)系统分离单细胞。定量原理:待测细胞经特异性荧光染料染色后,加入样品管中,经过测量区,由染色后的细胞在激光照射下的荧光产生的电信号来进行定量分析 分选原理:通过流束形成含有细胞的带电液滴来实现的。/pp  2)激光捕获显微切割技术Laser Capture Microdissection(LCM)/pp  LCM技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。其基本原理是通过一低能红外激光脉冲激活热塑模-乙烯乙酸乙烯酯(EVA)膜,在直视下选择性地将目标细胞或组织碎片粘到该膜上。/pp  3)微流控技术(Microfluidics)/pp  微流控技术是一种用于精确控制微量液体的技术。微流控芯片是实施该技术的平台,通常通过细微的管道对液体实施操控,微流控对液体的操控尺度, 刚好适合于单细胞样品的处理操作。/pp  2.2 全基因组扩增 (Whole Genome Amplification. WGA)/ 全转录组扩增 (Whole Transcriptome Amplification,WTA):单细胞测序的难点/pp  2.2.1 主要的三种全基因组扩增技术,各有优势/pp  由于在单细胞中的DNA和RNA的数量非常小(几个pg),用传统的测序仪无法检测,所以科学家们必须首先对这些分子进行扩增,同时尽量的减少错误。目前的全基因组扩增技术主要有三种:简并寡核苷酸引物PCR扩增(DOP-PCR),多重置换扩增(MDA) 和基于多次退火和成环的扩增循环(MALBAC)。/pp  1)基于PCR技术的全基因组扩增技术,例如DOP-PCR(简并寡核苷酸引物PCR扩增)/pp  DOP-PCR是一种部分随机引物法, 其引物构成为3& #8242 -ATGTGG-NNNNNN-CCGACTCGAG-5& #8242 ;主要 利用3& #8242 端ATGTGG这6个在人体中分布频率极高的碱基作为引导, 以6个碱基的随机序列来决定特异的扩增起始位点,从而达到扩增整个基因组的目的。/pp  2)多重置换扩增(MDA)/pp  MDA是一种等温的链置换扩增反应, 其使用随机的6碱基引物在多位点和模板链结合, 接着利用 phi29DNA 聚合酶很强的模板结合和置换能力实现对全基因组的扩增。/pp style="text-align: center "  图5:DOP-PCR和MDA全基因组扩增技术简介/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/d9b0aef0-e3b1-4c63-8313-c20796064bb3.jpg"//pp style="text-align: center "  资料来源:Single-cell genome sequencing: current state/pp style="text-align: center "of the science,民生证券研究院/pp  3)MALBAC(Multiple annealing and looping-based amplification cycles)基于多次退火和成环的扩增循环/pp  通过采用特殊引物,使得扩增子的结尾互补而成环,从而达到近乎线性的扩增,该技术是哈佛大学谢晓亮教授团队发明的。/pp style="text-align: center "  图6:MALBAC全基因组扩增的示意图/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/83e2f828-d990-4b9c-afd6-bd692fc52888.jpg"//pp style="text-align: center "  资料来源:Single-cell sequencing by Doug Brutlag,民生证券研究院/pp  表1:三种类型的全基因组扩增方式比较/pp style="text-align: center "img width="600" height="302" title="QQ截图20160302115018.jpg" style="width: 600px height: 302px " src="http://img1.17img.cn/17img/images/201603/noimg/297e4e6e-a134-4101-a297-456cd703c3af.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "  资料来源:Single-Cell Sequencing Technologies: Current and Future,/pp style="text-align: center "民生证券研究院/pp  Navin 在研究报告中指出(来源:Cancer genomics: one cell at a time),对于检测CNV(Copy Number Variation)的时候,DOP-PCR以及MALBAC较有优势,另一方面, MDA方法一般用来检测点突变。Gawad et al., (2015)更是指出,三种全基因组扩增技术并没有明显的胜者,具体方法的使用取决于研究的目的。/pp  2.2.2 全转录组扩增/pp  一个哺乳动物的单细胞大约含有10pg的RNA,其中mRNA大约在0.1-0.5pg,并不能满足目前测序平台的要求,所以需要进行全转录组扩增技术。/pp  单细胞中提取的RNA首先经过逆转录出cDNA,然后对逆转录生成的cDNA进行扩增。目前主要的转录组扩增技术主要包括如下几种:传统的PCR,改进的PCR,T7-in vitro 体外转录组扩增以及Phi29聚合酶扩增。/pp  三. 单细胞测序的主要应用:癌症,辅助生殖以及免疫学领域/pp  当单细胞被分离,细胞内的DNA/RNA被提取和扩增后,二代基因测序(Next Generation Sequencing)可以用来进行后续的测序。当把基因测序应用于单个细胞层面,在下游应用领域有着先天独到的优势。/pp  3.1单细胞基因测序技术有助研究癌症起因和治疗/pp  首先谈一下癌症的异质性:中晚期的肿瘤或由一系列的肿瘤克隆组成,每一种克隆有着独立的变异,形态和药物反应。对于肿瘤克隆精准的诊断非常重要,因为一个占据原发性肿瘤5.1%的亚克隆种群在复发的时候可能成为主要的致病因素。/pp style="text-align: center "  图7:肿瘤的异质性/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/88b49609-3a47-4577-ad2a-7e9b36b6a4dc.jpg"//pp style="text-align: center "  资料来源:Illumina,民生证券研究院/pp  实体瘤由一系列不同的细胞组成,包括癌症纤维细胞,内皮细胞,淋巴细胞,巨噬细胞等。同时,实体瘤由多个肿瘤克隆亚种群构成,使得临床样本的分析更加复杂。当多个肿瘤克隆同时存在时,标准方法检测的要么是平均信号要么是主要的克隆群体(并不一定是最致病的)的信号。/pp  而同时,肿瘤的异质性和癌症产生抗药性以及转移密切相关,所以,单细胞测序开始用来检测肿瘤内基因异质性,对于癌症起因以及后续治疗的研究非常关键和重要。/pp  例如,Navin et al.(2011), 利用单细胞基因测序的方法(流式细胞术提取细胞-全基因组扩增-NGS),在某个乳腺癌肿瘤组织中检测了100个乳腺癌细胞的CNVs,覆盖度大约6%,发现了三种完全不一样的克隆亚种群。/pp  除了肿瘤细胞,单细胞基因测序同样可以应用于循环肿瘤细胞(Circulating tumor cells)和外周血播散肿瘤细胞DTC(disseminated tumor cells),该部分内容将在后续的研究报告中深入讨论。/pp  3.2 单细胞基因测序助力辅助生殖/pp  PGS(Pre-implantation Genetic Screening)是胚胎注入前遗传学筛查,主要是通过检测胚胎的23对染色体结构、数目,来分析胚胎是否有遗传物质异常 PGD(Pre-implantation Genetic Diagnosis),主要用于检测胚胎是否携带遗传缺陷的基因,关于PGS/PGD的介绍,请参考我们之前的行业深度《基因+大数据的颠覆:从癌症基因测序到辅助生殖》。/pp  PGD过程中,目前主要有三种方式获得活检材料:1)卵子的第一极体和第二极体 2)培养至第3天胚胎卵裂期的卵裂球细胞(一般取1-2个细胞) 3)培养第5天左右的囊胚细胞。/pp  例如,牛津大学的Dr.Dagan Wells团队,通过对囊胚细胞进行单细胞基因测序,选择健康的胚胎植入。另外,谢晓亮教授团队通过对女方卵细胞极体细胞进行测序,结合胚胎选择,选择正常的胚胎移植。/pp style="text-align: center "  图8:卵母细胞减数分裂产生极体的过程/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/a1c2724b-0f2c-4b27-9eca-d304dccd613c.jpg"//pp style="text-align: center "  资料来源:Genome Analyses of Single Human Oocytes,民生证券研究院/pp style="text-align: center "  (注:其中PB1和PB2是第一极体和第二极体)/pp  3.3 单细胞基因测序打开免疫报多样性研究之门/pp  用单细胞基因测序分析免疫细胞的原因是现存的多样的病原体导致了免疫细胞的高度异质性,传统的检测方法,取样来自一大堆细胞,低估了单个免疫细胞的多样性,所以我们需要更加精确检测单个免疫细胞的遗传物质,从而理解机体复杂的免疫机制。正如开篇提到的Juno收购的单细胞基因测序公司AbVitro致力于T细胞和B细胞的基因测序。/pp  图9展示了对单个T细胞受体基因测序(TCR Sequencing)的流程。TCR & #945 和& #946 mRNA经过逆转录,扩增,重叠延伸,目的基因被选择性地进行PCR扩增以及后续的分析。/pp style="text-align: center "  图9:TCR Sequencing过程/pp style="text-align: center "img title="8.png" src="http://img1.17img.cn/17img/images/201603/noimg/04e7c357-80bd-4709-89dc-92ee07a28fa9.jpg"//pp style="text-align: center "  资料来源:Pairing of T-cell receptor chains via emulsion PCR,/pp style="text-align: center "Illumina,民生证券研究院/pp  四. 单细胞基因测序未来的发展之路/pp  在目前来看,单细胞基因测序还处在非常初级的阶段,也面临很多技术的挑战,包括:如何高效的分离细胞,全基因组无偏差的扩增,以及下游的数据分析等。但各大生物医药巨头都已经目光锁定了这个方向,除了今年初Juno收购AbVitro(单个T细胞和B细胞进行基因测序),去年八月BD公司收购了单细胞测序公司Cellular Research。Illumina也通过和Clontech合作,推出了单细胞RNA测序服务。/pp  我们认为,未来的基因测序一定朝着更精准,更微观的方向前进,如今,单细胞测序正面临着一场革命,在单个细胞层面让我们在前所未有的水平理解基因组学,表观基因组学和转录组学的多样性。/pp  背景案例:/pp  2016年1月,肿瘤免疫疗法的领头羊公司Juno宣布以1.25亿美金的股票和现金收购波士顿的一家单细胞测序公司:AbVitro Inc.。 AbVitro公司的技术起源于哈佛大学George Church的实验室,AbVitro的技术包括对单个T细胞和B细胞进行基因测序,帮助科学家们理解T细胞受体(T cell receptor & #945 和& #946 链的基因的复杂性。/pp  图:Juno收购AbVitro之后的布局/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201603/noimg/6ef1eca1-dc46-4600-9c6d-d95f77a85f9e.jpg"//p
  • 2015技术展望之细胞分析
    作为现代生物学实验室的&ldquo 基石&ldquo 技术,细胞培养方法和试剂的改变,可能比其他领域发生的更为缓慢。但是这并不意味着来年在细胞培养和分析领域不会发生什么惊人的进展。为了找出这些可能发生的进展,BioTechniques的编辑对来年的细胞培养和分析进行了大胆的预测。  1. 细胞的3D生物打印。把它看作是下一个十年的细胞培养。长久以来,我们一直在讨论,在各种惰性材料制成的3D支架上种植和培育细胞。我们已经了解如何改变支架的物理性能,以使不同的细胞过程(例如干细胞的分化)成为可能,以及如何将生长因子和其他生物大分子放置到支架中,以与细胞相互作用。所有这一切,都是利用传统移液器将细胞滴入这些支架中。但是,在细胞培养世界中,随着细胞的3D生物打印在世界范围内的更为普遍,我们可能会突破这一技术限制。事实上,澳大利亚墨尔本St. Vincent医院的研究人员正在致力于生物打印干细胞,最终为神经系统疾病的研究生成人脑组织。3D打印机的特异性与它们对生物学样本的适应性相结合,让我们在2015年有良好的时机,不仅能看到打印的脑组织,而且还能生物打印其他组织和细胞排列。  2. 最后了解你的细胞?我们继续把它作为每年的一个预测问题。人们越来越了解生物学中的可重复性问题,已经导致人们强烈抗议用定义明确、经过验证的试剂开展的精确描述的实验。然而,问题仍在于,使用的是未经验证的细胞系。来年我们能够看到这方面发生重大变化吗?也许在提供资金之前,资助机构将需要细胞系的认证数据?也许用于认证的资金将被补充到研究资金里面?或者也许该出现一种用于好用细胞系认证的单一数据库和程序。  3. &ldquo 太空细胞&rdquo 。现在我们来做出2015年最深远的预测:更多检测有限重力对细胞的影响,将对真实感3D细胞培养和再生医学应用,提供一种更好的路径。让我解释一下。随着航天任务的增多,以前在太空检测细胞的工作已经有经验了,在接下来的几个月,太空细胞培养将变得越来越普遍。在2014年,英国杜伦大学的Stefan Przyborski,将细胞送到国际空间站,以检测3D细胞培养,并研究微重力对细胞的生理学影响。Przyborski一直热切地参与3D细胞培养方法的发展,他开发了一种支架,可使一种比传统2D平板更加现实的培养环境成为可能。但事实证明,在微重力环境下,细胞更容易聚集在一起,一些学者甚至认为,这样的环境可能对于推动再生医学工作而言是完美的。因此,在来年,商业太空旅行可能会大大增加,细胞太空培养方面的见解,可能为再生医学进步做了更好的准备,我们认为,2015年可以看到新的空间细胞生物学研究。
  • 单细胞电学特性流式分析方法及分析仪器研究取得进展
    近日,中国科学院微电子研究所健康电子中心研究员黄成军、副研究员赵阳团队,在单细胞电学特性流式分析方法及高通量实时分析仪器研究方面取得重要进展。 单细胞电学特性生物传感与分析技术为单细胞生物物理学研究提供了新维度。该技术已被证明在全血分析、肿瘤细胞分型和免疫细胞状态评估方面具有重要的应用潜力。然而,现有的电学检测方法难以实现高通量实时性分析,限制了需要大量系统实验的单细胞电学特性研究的开展。 面该团队提出了快速并行物理拟合求解器,仅需0.62 毫秒即可在线求解出单个细胞膜比电容和细胞质电导率。与传统求解器相比,在不损失准确度的前提下,速度提升了27000倍,且不需要任何数据预采集和预训练过程,进一步实现了基于物理模型信息的实时阻抗流式细胞分析仪(piRT-IFC)(图1)。该技术可在50分钟内实时表征高达100902个单细胞,具有高稳定性、高通量、实时化和全流程自动化等特点。作为示范应用,该团队对药物处理后HL-60中性粒细胞脱粒现象这一典型的快速变化的生物过程进行实时表征分析。与普遍采用的神经网络辅助加速方法对比研究表明,piRT-IFC具有速度快、准确度高和泛化能力强的优势,具备广泛的应用潜力。 相关研究成果以piRT-IFC: Physics-informed real-time impedance flow cytometry for the characterization of cellular intrinsic electrical properties为题,发表在《微系统与纳米工程》(Microsystem and Nanoengineering)上。该研究由微电子所和计算技术研究所合作完成。近年来,该课题组面对单细胞物理特性检测存在敏感机理不明和技术实现困难等关键技术瓶颈,开创性提出了基于微流控技术的“交叉压缩通道”敏感新原理和单细胞电学模型,建立了基于微流控芯片的单细胞电学特性高通量定量检测方法,检测参数包括细胞膜比电容和胞浆电导率,通量比膜片钳等常规方法高10000倍,并进一步研发出实时高通量单细胞电学特性流式分析仪(图2)。仪器入选中国科学院自主研制科学仪器名录,与首都医科大学宣武医院、首都医科大学附属北京胸科医院、计算所等单位合作,成功用于脑卒中动物模型、癌症病人样本、药物模型等领域的多种细胞的分析,为肿瘤/脑卒中等精准诊断、药物筛选等提供了有力工具,并发现了新型标志物,验证了相关药物候选分子的作用、获得授权专利。研究工作得到科学技术部、国家自然科学基金委员会、北京市、中国科学院的支持。阻抗流式细胞分析仪(piRT-IFC)原理样机、核心微流控芯片、设备交互界面、典型结果和自动化实时数据处理流程 图2. 基于微流控芯片技术的单细胞电学特性活体单细胞分析仪(左)及核心微流控芯片(右)
  • 会议通知|细胞生物学前沿技术交流会(流式细胞分析分选技术专场)
    细胞生物学前沿技术交流会(流式细胞分析分选技术专场)通 知近年来,生命科学前沿深入研究和公共健康领域应用的迫切需求都对相关仪器技术、实验方法的迭代更新起到了极大的推动作用,尤其是交叉学科不断融合,促进了包括流式细胞分析分选技术在内的细胞生物学研究手段的快速发展,全光谱流式、质谱流式、成像流式、纳米流式、拉曼流式等创新技术层出不穷,流式细胞技术在生命科学基础研究、医学临床诊断等领域的发展和应用场景越来越广泛,运用方案越来越深入。兹定于2023年4月13-14日在上海召开“细胞生物学前沿技术交流会(流式细胞分析分选技术专场)”。本次会议由中国科学院上海生命科学大型仪器区域中心主办,中国科学院分子细胞科学卓越创新中心公共技术中心承办,旨在邀请流式前沿领域的技术专家向与会人员详细介绍各类技术的原理、技术特点及应用场景,拓展科研人员在技术方向上的认知,促进这些前沿技术为更多从事科研、研发及检测人员所灵活、高效、高质运用。现将有关事宜通知如下:一、会议时间与地点会议时间:2023年4月13-14日会议地点:上海市徐汇区岳阳路320号新生化大楼312报告厅二、会议内容会议将围绕多种类型、不同技术路线的分选技术(成像型光谱流式细胞分选、空气激发型光谱流式细胞分选、拉曼细胞分选)和分析技术(质谱流式细胞分析、在体流式细胞分析、成像型流式细胞分析、微流控单细胞分析、纳米流式分析)等前沿流式相关技术的技术特点及运用场景展开介绍与讨论交流。为支持国产仪器自主创新,会议还将优先推介国产流式细胞分析分选设备。三、会议日程2023年4月13日时 间内 容报告人主持人09:00-09:05区域中心领导致欢迎辞09:05-09:20相关主管部门领导致辞09:20-09:50高通量流式拉曼细胞分选仪及应用马 波中科院青岛生物能源与过程所研究员张文娟09:50-10:20拉曼分选技术前沿——细胞表型探索新工具李 备中科院长春光机所研究员10:20-10:35茶歇10:35-11:05循环细胞的活体无创光学动态监测魏勋斌北京大学教授张文娟11:05-11:35“图鉴不同,像由心选”BD高速图像光谱流式分选技术钱 璟碧迪医疗器械(上海)有限公司高级产品应用经理11:35-13:30午餐,自由讨论与交流13:30-14:00全光谱流式原理与分选技术的应用冯定龙Cytek华东区高级技术经理边 玮14:00-15:30谱康光谱流式细胞仪技术及应用杨 凡谱康医学应用技术支持15:30-15:45茶歇15:45-16:15空气激发型光谱分选技术用于高活性细胞分选及单细胞分选应用李 凌赛默飞世尔科技(中国)有限公司高级技术应用经理边 玮16:15-16:45全光谱流式前沿技术和应用曾令武索尼生命科学高级市场经理16:45-18:00自由讨论与交流2023年4月14日时 间内 容报告人主持人09:30-10:00纳米尺度生物颗粒的精准表征利器 — 纳米流式检测技术颜晓梅厦门大学特聘教授边 玮10:00-10:30新一代单细胞靶向蛋白质组学平台——Starion星瀚流式质谱系统刘浥坤上海宸安生物科技有限公司高级应用科学家 10:30-10:45茶歇10:45-11:15基于流式光片的斑马鱼高通量三维成像技术研究李 辉中科院苏州医工所研究员边 玮11:15-11:45“功能为王”-单细胞功能高通量深度表征平台开启单细胞多组学研究新篇章朱 凯PhenomeX资深应用科学家 11:45-13:30午餐,自由讨论与交流13:30-14:00新概念柔性流式细胞分选技术及其应用张 萍德国美天旎全国科研应用经理俞珺璟14:00-14:30Namocell 微流控单细胞分选技术的原理和应用陈科立Namocell经理14:30-15:00成像增强型流式细胞分析结合AI图像技术用于细胞表型和形态研究应用李 凌赛默飞世尔科技(中国)有限公司高级技术应用经理15:00-17:00自由讨论与交流四、报名方式本次会议免注册费用。请参会人员扫描下方二维码填写会议回执,并于2023年4月11日中午12点前提交反馈,以便会务组安排相关事宜。五、会议联系方式姜颖文:15721565165,jiangyingwen@sibcb.ac.cn何 钧:13611699686,jun.he@sibcb.ac.cn中国科学院上海生命科学大型仪器区域中心中国科学院分子细胞科学卓越创新中心公共技术中心2023年4月6日
  • Cytek 发布全新台式高维细胞分选仪,助力超高分辨单细胞分析
    仪器信息网讯 6月7日,Cytek Biosciences宣布推出全新的台式高维细胞分选仪- Cytek Aurora CS。全新台式流式细胞分选仪发布,实现超高分辨细胞分析Cytek Aurora CS流式细胞分选系统据了解,该流式细胞分选仪采用Cytek独特的全光谱分析技术(Full Spectrum Profiling, FSP™ ),Aurora CS可在单细胞水平提供超高分辨率的数据结果,帮助科学家和研究人员将复杂实验简单化,轻松解决最具挑战性的细胞分析,如高自发荧光的细胞分析、或关键生物标志物表达水平低的细胞分析等。使用Aurora CS,研究人员可以从微孔板或试管中轻松分选活细胞或其他颗粒,用于下游分析实验,如单细胞RNA测序、蛋白质组学和细胞生物学研究等。Cytek于2017年首次推出了其旗舰级产品-Aurora流式细胞分析系统,Aurora系统利用突破性的Cytek FSP™ 技术,采集来自多个激光器激发的荧光素全光谱信号,轻松分辩单细胞上的多种荧光标记,显著提高了高参数细胞分析的灵敏度,极好的解决了流式检测受技术局限的问题。Aurora CS基于同样的FSP™ 技术,保持了与Aurora一致的优秀特性和强大功能。独特的光学设计和解析方法能让使用者体会到更高的灵活性, 不仅可广泛选择大量新的荧光染料,且无需为每个应用重新设置仪器。先进的光学系统和低噪音电子系统,带来超强灵敏度和卓越分辨率的细胞分析体验,包括分析那些高自发荧光或关键生物标志物表达水平低的细胞。Cytek Aurora分析系统和Aurora CS分选系统,利用Cytek独有的FSP™ 技术,可以检测标记在每个细胞上的多种荧光探针的全光谱信号,在单管样本中,即可完成高度复杂方案(40色方案)的分析和分选,使科学家们能够更深入更完整的了解生物系统。结合FSP™ 技术和高端分选特性,Aurora CS为研究人员提供了一个可应用于多种生物学场景和分选条件的解决方案。搭配SpectroFlo CS软件,在更短的设置时间下,即可轻松实现6路分选、自定义分选、自动液滴延迟和分选液流监控等操作,满足各种科学研究与应用的需求。网络会议预告 点击报名参会
  • 新品发布|国产无标记高内涵细胞成像,开启全新细胞分析模式
    6月6日,深圳市倍捷锐生物医学科技有限公司(以下简称:倍捷锐)在厦门成功举办 “光学无标记高内涵定量相位成像产品发布会”, 正式发布两款基于自主研发的定量相位成像技术的生物成像产品系列:Basic系列与Pro系列。Basic 系列(来源:倍捷锐)Basic系列产品可实现高速、动态的活细胞分析,支持微流控分析、AI细胞识别等功能,可用于活细胞的高通量筛选等应用,同时兼容荧光成像系统。Pro系列(来源:倍捷锐)Pro系列产品具备更高精度与更强功能定制能力,可实现细胞精细结构的定量分析、活性与产量分析、细菌种类分析等,支持深度定制及荧光成像功能,服务于科研及合成生物等方向。无标记高内涵成像成像对比(来源:倍捷锐)倍捷锐致力于开创新性先进光学成像技术,并以无标记高内涵显微术-定量相位成像技术(QPI)作为核心,拓展其在生物医学的产业方向的应用。QPI技术能够定量表示细胞产生的形貌和动态变化,无需标记染色,只需通过测量被测微观物体透射光(或反射光)的相位延迟,即可生成反映物体形态学和动力学的图片。因此,QPI技术能够实现对细胞无损、长时间成像分析,降低对荧光等耗材的依赖。倍捷锐科技有限公司成立于2018年,坐落在香港科学园内。创始人来自麻省理工学院、香港中文大学、波士顿大学等高校。公司致力于开发国产创新先进光学成像产品,并以定量相位成像技术作为核心,拓展其在生物医学、微纳加工、材料等产业方向的应用。团队历经三年多时间,借助香港中文大学的科研实力,构建了完善的产学研转化模式,实现了细胞特性、血液分析多维度的检测技术积累。目前,倍捷锐团队拥有包括美国地区在内多项自主核心知识产权,完成3代原型机开发,与斯坦福、清华大学、浙江大学等国内外多所高校合作,原型产品已进入科研、工业领域实际应用。
  • 细胞分析技术,破译生命密码的金钥匙
    安捷伦首届细胞分析创新峰会圆满落幕,尽情展现细胞分析技术的尖端应用 序曲 奇妙的细胞地球上第一个有生命的细胞诞生距今已有三十八亿年[1],然而直到三百五十多年前[2],科学家通过特殊的显像工具方才一睹它的真容。有赖于不断革新演进的细胞分析技术,如今,研究人员能够深度解析细胞结构、代谢、微环境以及细胞生命周期活动中的动态变化,为以细胞模型为基础的多学科应用及产学研转化提供强力的技术支撑。在全球领先的细胞分析技术阵营,安捷伦已成为极具影响力的企业。五月下旬,安捷伦在沪隆重举办了首届细胞分析创新峰会,并为享誉全球科研学术界的安捷伦 BioTek Cytation 产品家族面世十周年举办了庆典。与会嘉宾与安捷伦高层共同见证安捷伦 BioTek Cytation 产品家族面世十周年(左起:安捷伦细胞分析事业部大中华区总经理罗绍光,安捷伦大中华区行业拓展与应用创新团队经理安蓉,安捷伦副总裁兼大中华区业务总经理杨挺,安捷伦大中华区高级市场总监郑欣,安捷伦大中华区销售拓展团队总经理朱颖新)300 多位来自多领域的专家、学者及科研人员到会,与安捷伦高层以及技术工程师共同探讨了先进的细胞成像与分析技术在多学科中的深度应用。峰会聚集并展现细胞分析与研究领域前沿的理论与发现,各种思维与智慧的碰撞与交织,合奏出一曲细胞礼赞的乐章。第一章 问世十年,Cytation 助力生命科学研究持续开拓胞罗万像,聚力新生。安捷伦首届细胞分析创新峰会以此为主题,直观反映出细胞分析应用的丰富多样,也体现出细胞分析研究的目标——解读生命,改善生命。多位学界专家汇聚于此次峰会,期待深入交流安捷伦细胞分析技术在不同科研领域展现出的能力和价值,为各自今后的科研工作提供参考借鉴。问世至今正好十年,安捷伦BioTek Cytation毫无疑问成为本届峰会的主角。十年前,安捷伦BioTek推出了BioTek Cytation 3细胞成像微孔板检测系统,以及增强显微镜的概念,由此创造出一款自动化解决方案,帮助研究人员完成从图像采集到获取可发表数据的全过程。Cytation 3借助其丰富的功能与极具竞争力的价格,推动了自动化成像的广泛应用。为中小型实验室开启了自动化成像的大门。安捷伦副总裁兼大中华区业务总经理杨挺致开幕词安捷伦副总裁兼大中华区业务总经理杨挺在致辞中表示,十年来,Cytation 已经进驻全国近1000家实验室,让用户在自己的实验室全面掌控活细胞分析流程的应用,助力他们在细胞与生命研究领域里持续开拓。尤其是过去三年,人类与病毒和疾病抗争的这段经历,促进了生命科学领域新型研究工具的开发和利用。在这一特殊时期,以安捷伦Cytation 为代表的,基于活细胞、多参数、实时、高通量的多功能细胞成像与检测技术,为身处一线的科学工作者提供了有力的技术支撑。 第二章 细胞科研的夜空,群星闪耀安捷伦邀请了不同学科、以及跨学科的杰出代表,通过学术报告分享并探讨了他们的科研进展。在峰会上分享学术报告的专家(上排左起:郑明彬教授,刘嘉莉副教授,罗克博士 下排左起:印彤研究员,江宽副研究员,刘回民副教授)深圳市第三人民医院郑明彬教授分享了“微纳仿生药物可视化诊疗“进展。他使用 Cytation 在 3D 细胞球进行微纳仿生药物的靶向富集验证,并就微纳技术在疾病精确诊断和精准治疗方向提出了前瞻性见解。 中国药科大学刘嘉莉副教授介绍了“基于类器官的靶组织药动-药效时空异质性研究”及其拓展应用。她使用安捷伦 Lionheart 自动细胞成像仪进行 3D 细胞瘤球培养与检测,并基于 3D 细胞模型建立了空间异质性单细胞 PK/PD 评价新方法,希望通过外源性的药物代谢动力学和内源性的代谢进行cross talk去找到相关的内源性代谢的靶标和干预的策略。 伯桢生物(bioGenous)CTO 罗克博士(Dr. Emmanuel Enoch K. Dzakah)做了题为“Bioimaging in Organoid Technology: Application and Perspectives”的专题报告。类器官是近十年来干细胞研究最令人振奋的进展之一,伯桢生物在类器官技术开发与医药研发应用领域进行了非常深入的探索。罗克博士特别提到,类器官模型的高通量成像采集和分析对于类器官形态特征评价、药物高通量筛选和药效评估至关重要。此外,Cytation可以用于记录和分析类器官和其他细胞如免疫细胞的相互作用过程,因此在肿瘤免疫调节类抗体药物、免疫细胞疗法的药效评估上展现出巨大潜力。 上海交通大学医学院附属瑞金医院研究员印彤博士介绍了“国家转化医学中心(上海)质谱平台助力精准医学研究”进展。基于安捷伦Seahorse的细胞能量代谢分析是质谱平台新开展的业务,Cytation 作为细胞能量分析系统的联用设备,可以轻松实现活细胞能量代谢数据归一化,获得更准确的有生物学意义的细胞能量代谢数据。复旦大学附属眼耳鼻喉科医院江宽副研究员介绍了“流式细胞仪助力脂质纳米药物体内过程研究”进展,借助基于流式细胞术的机体细胞分离与鉴定技术,阐明脂质纳米药物体内与细胞互作及细胞间转运过程,进而明晰机体对脂质纳米药物调控机制,将极大助力脂质纳米药物的临床转化。吉林农业大学刘回民副教授安捷伦BioTek 自动化成像产品不仅被细胞分析、基础医学、药物开发等领域的研究人员广泛使用,而且也在农业研究、植物发育和食品科学中也有诸多应用。刘回民副教授介绍了Cytation 5 细胞成像多功能微孔板检测仪以及Seahorse细胞能量代谢分析系统如何帮助他实现“玉米黄素促进白色脂肪细胞棕色化的分子机制研究”。研究了植物来源的天然化合物在代谢性疾病(肥胖,糖尿病,非酒精性肝炎)中的作用机制。在这些现场学术报告以外,安捷伦细胞分析的应用专家团队也着力向各方嘉宾介绍了Cytation多功能细胞成像与分析技术、流式细胞术、RTCA 非标记细胞分析以及Seahorse 细胞能量代谢分析技术的前沿应用进展,并陪同现场的参会嘉宾一起参观了演示仪器,解答用户关心的实验和使用问题。 第三章 聆听客户需求,优化产品功能报告嘉宾在峰会期间也对 Cytation 和其他细胞分析技术给予肯定的评价,以及激动人心的期待。深圳市第三人民医院郑明彬教授讲到,Cytation在他的实验室里利用率非常高,并且他对其软件功能十分赞赏。郑教授的科研课题需要使用Cytation进行纳米机器人相关的监测,观察病毒是怎么被吞噬和吐出,因此要求设备具有极高的镜头捕捉效率。郑教授期待未来的Cytation着力打造出更先进、更专业的硬件,能够不仅用于细胞科研,而且能够拓展到合成生物学和细菌、甚至更小的物质研究领域。中国药科大学刘嘉莉副教授的实验室需要研究样本的时空表达差异,因此需要对不同样本的空间整体进行成像。实验室正在使用Lionheart成像产品以及Synergy H1酶标仪。她期待能够实现通过不同的license安装在不同电脑上,实现一台电脑成像,另一台电脑分析结果,以此节省时间提升实验效率。她也了解到最新的Cytation C10内嵌了共聚焦的功能,十分期待能够尝试使用。伯桢生物(bioGenous)CTO 罗克博士十分喜欢他正在使用的Cytation C10,因为它既可以实现共聚焦成像,又可以承担酶标仪的工作,并且还能检测活细胞成像。这样的设计能够帮他在同一时间完成多个实验项目,比如可以一边培养细胞,一边进行检测,这项功能对于细胞治疗这类大部分需要实时拍摄的课题非常适用。他十分期待Cytation C10能够和AI结合,自动帮助研究人员承担部分研究任务。上海交通大学医学院附属瑞金医院的研究员印彤博士认为,除了细胞活力和增殖等基础检测功能非常完备外,Cytation在代谢组学功能研究,即活细胞能量代谢中也可大显身手。此外,在更加前沿的空间代谢组研究中,从Cytation获得的样本图像可与质谱数据整合,获得空间代谢组信息,非常有利于将研究推向深入。印彤博士期待Cytation在帮助研究者应对课题挑战的同时,也能够为中国生命科学的发展带来更多助力。复旦大学附属眼耳鼻喉科医院江宽副研究员使用安捷伦流式细胞仪来检测药物对细胞的影响、细胞如何代谢这些药物,以及两者之间的相互作用。他对安捷伦流式细胞仪的模块化功能和整体应用的简约性十分认可。吉林农业大学刘回民副教授对Cytation系列软件的易用性、尤其对Cytation C10的成像能力十分赞赏。他认为,在传统观念里,涉及食品与农业的应用方向对细胞研究技术没有很高的需求,但是他的研究课题——食源性的天然化合物/功能活性物质,已经开始涉及医学类的需求。他期待Cytation C10不断改进成像功能,能够提供视野更大、分辨率更高的图像。 尾声 细胞分析未来可期,安捷伦推出强力技术组合安捷伦大中华区细胞分析事业部总经理罗绍光介绍部门发展历程和业务战略安捷伦大中华区细胞分析事业部总经理罗绍光在峰会上历数安捷伦细胞分析部门发展历程。自2015年收购 Seahorse Bioscience 公司,将活细胞代谢分析纳入公司重点发力的生命科学技术开始,安捷伦正式踏入了细胞分析领域。此后,安捷伦又于2018年与2019年接连并购了艾森生物(ACEA)和微孔板检测领导企业 BioTek ,正式成立细胞分析部门。借助这些举措,安捷伦开始在生命科学、癌症研究、生物制药、免疫与细胞治疗等前沿科技领域,借助多方位细胞分析技术,为用户提供更有深度、更加完善的解决方案。如今,安捷伦细胞分析事业部拥有极具优势的技术组合:流式细胞分析、微孔板检测、自动化成像以及细胞代谢分析,致力于在生命科学与临床研究以及生物医药产品的开发、生产和质控整个生命周期中,为用户提供简单、精准、可靠的检测方案。通过活细胞动态和表型的实时测量,帮助研究人员充满信心地探索细胞奥秘,揭示独特的细胞生物学机理,发现创新药物靶点,推进临床前毒理学研究,并引领新一代免疫疗法开发。细胞潜力,始于分析。安捷伦首届细胞分析高峰论坛在前沿思维的激荡中告一段落,也为安捷伦细胞分析技术和团队吹响继续前行的号角。在细胞科研的夜空,安捷伦期待能够衬托出更多星星的闪耀光芒。参考文献[1] It appears that life first emerged at least 3.8 billion years ago, approximately 750 million years after Earth was formed. https://www.ncbi.nlm.nih.gov/books/NBK9841/[2] 人类第一次发现细胞是在哪一年 https://zhidao.baidu.com/question/501601301800761404.html
  • 超越流式细胞术?珀金埃尔默推出全新图像式细胞分析仪,加速简化细胞和基因治疗发制造流程
    加速简化细胞和基因治疗的研发及制造流程Cellaca® PLX图像式细胞分析仪带来工作流程的革新,一站式满足多个关键质量属性的分析致力于以创新技术打造更健康世界的技术型企业--珀金埃尔默日前推出Cellaca® PLX图像式细胞分析系统,这是业界第一款能让研究人员在单个自动化工作流中实现对细胞样本多个关键质量属性(CQA)进行分析和评估的台式平台,包括对细胞性质、质量和数量的分析评估。拥有尖端技术的Cellaca PLX系统由珀金埃尔默旗下的Nexcelom公司设计,它整合了一流的图像式细胞分析仪的硬件、软件、经验证的耗材和可跟踪的数据报告功能于一体,无需复杂的校准程序或严格的培训要求,即可操作。为了进一步提升客户体验,这一专利解决方案中还使用了来自珀金埃尔默旗下BioLegend公司经验证的抗体试剂盒对试剂方案进行优化。这一新产品可为研究人员提供超越流式细胞术和染色方法的扩展细胞样本CQA分析选项,而这些分析选项历来都需要采用各种不同的仪器和分析方法进行分析。通过这些功能的整合,Cellaca PLX系统能够让研究人员在一台仪器中同时检测多个标记物(多路技术),并通过简单易用的现代化用户界面在短短数秒内即可执行免疫表型分析和细胞活性测定。Cellaca(R) PLX Image Cytometer图像式细胞分析仪珀金埃尔默生命科学事业部高级副总裁Alan Fletcher表示,"制药公司在细胞和基因治疗领域大举投入,然而他们面临的一项重大挑战是如何对复杂的细胞样本进行评估,以满足其研究和制造过程中巨大的科研需求和严苛的法规要求。目前我们仍在对Cellaca PLX Image Cytometer图像式细胞分析平台在治疗领域的应用加以开发,我们预计它对于从事CAR-T细胞治疗研究,简化免疫细胞表型分析的下游流程而言,将具有重大意义。"珀金埃尔默旗下Nexcelom公司是细胞分析领域自动化细胞计数技术和图像式细胞仪产品的领先供应商,其产品包括现有的应用广泛的Cellaca® MX高通量自动化细胞计数仪。有关新平台Cellaca PLX及其它图像式细胞分析仪和试剂的更多资讯,可在11月5日至10日在第五届中国国际进口博览会上了解,珀金埃尔默将在国家会展中心(上海)8.1号馆B4-03展示其生命科学及细胞和基因治疗产品组合的最新创新。
  • 单细胞分析技术研究呈“井喷”式增长
    学理工的人大概都有这样的感觉,很多规律和现象都可以用理论、公式或算法来描述及推导。只要知道了所有的条件,便能预测结果。反过来,也可以通过现象反推关键的成因。久而久之,我们也习惯并爱上了这样逻辑清晰、条理分明的世界。以至于我们时常因为意外的结果徒然而叹,也为寻找到那孜孜以求的&ldquo 理&rdquo 而欢欣鼓舞。抛开现实里的林林总总,理工男女的生活可以很简单&mdash &mdash 以&ldquo 理&rdquo 立身,有&ldquo 理&rdquo 走遍天下,无&ldquo 理&rdquo 无地容身。这样的准则对某些人来说甚至可以上升到人生哲学的高度&mdash &mdash 直到他们遇上了生物学。  相比数理化,生命科学相当&ldquo 后进&rdquo 。在数理化已经发展到有相当完整的理论体系的今天,生物学,尤其是分子生物学可谓是才刚刚起步。&ldquo 不幸的&rdquo 生物工作者还处于认知的原始积累阶段。我们研究的几乎每一个对象,每一种方法,大概还没有可以宣称已经研究透彻的例子&mdash &mdash 即使对象是简单如病毒这样连生命都算不上的活性大分子。实验不能重复,现象无法解释这样的事在生物实验室里是家常便饭。许多人都遇到过PCR扩增失败,或电泳多出一条带这样的事。多数选择再做一次看看,而不是寻根究底。因为整个系统太复杂、变量太多太多了。     系统的复杂程度太高是一方面,另外一个原因是研究手段的局限(当然还有更多客观原因,非本文主旨所以省略)。微观世界的研究手段的升级依赖于其他科学门类的进步,对手段的依赖必然导致方法论的单调。在分子和细胞生物学领域,许多人习惯用宏观思维去理解微观世界,比如重视群体现象而忽视个体差异,用一群相关的细胞代替一个系统。而对一个复杂的系统用笼统的手段进行研究,得出的结论自然是粗浅的。  虽然没人做过统计,但据估计至少95%以上的现代生物学研究成果是建立在对细胞群体的研究基础上。忽略细胞异质性(Cellular Heterogeneity)的方法固然降低了系统的复杂度,简化了流程。其带来的生物信息不可逆的丢失也是显而易见的。这种平均化的方法必然导致信息的稀释或丢失,在某些情况下甚至会让人得出矛盾的结论。另外,该方法让发现并分离细胞群体中的&ldquo 异类&rdquo 的尝试变得难上加难。如此,只有强信号才有可能被检测到。而这不仅让以往科学家们的努力有了不过是摘取了低处枝条上果实的意味,也让部分成果的准确性打上了问号。  单细胞分析技术正是解决上述问题的方法,其中最引人注目的是单细胞测序技术(Single-Cell Sequencing)。然而,细胞异质的不确定性导致需要同时分析很多单细胞以消除小量样品可能带来的偏差,而这直接和实验可行性挂钩。幸运的是,由于技术的进步和费用的降低,单细胞测序技术近年来已得到迅速推广。通过对单个细胞的逐个测序,信息的精度、深度,以及信息量可获得几何级数的增长,随之带来的是我们对具体对象更加翔实和准确的了解。而且,通过数学方法,高度相关的细胞可以被整合起来当作亚群体处理以部分消除单个细胞的随机异质性,或者按相关性重排以构建全新的不依赖于传统时间轴的图谱。这些新手段已经给我们带来了一些前所未有的认知。那些前沿科学家们所取得的成就,同时也刺激着更多的人加入他们的行列,形成了正反馈。  近年来,单细胞测序逐渐大众化,相关的论文发表数量在2010年后呈指数增长之势,在高品质期刊上发表的单细胞研究成果屡见不鲜。其产生的影响深远,以致Nature Methods将单细胞测序选为2013年度重大技术,并在2014年首刊专述。在后面的文章中我将会挑选几篇有代表性的文章谈谈它们的意义。有意思的是,二代测序技术已经在2007年当选Nature的年度重大技术。单细胞研究的流行无疑让它的使用拓展到了更广阔的领域。  单细胞研究不仅在DNA和RNA测序方面取得了极大的进展,单细胞质谱分析(Mass Cytometry)也正在逐渐得到更多的关注。该技术用带有重金属原子标记的单克隆抗体对细胞表面和细胞内的关键蛋白进行标记,然后依次等离子化细胞,通过质谱分离重金属原子并分析其丰度来获取相应蛋白在各细胞内的表达情况。该技术也叫质谱流式细胞技术,相比荧光流式细胞技术,其主要特点是背景低、通道互扰小,所以可以同时分析更多的蛋白质。如今可用的重金属标记已达35种,这是基于荧光的检测手段无法企及的(最新的荧光流式技术可一次检测16-18种蛋白)。该技术可以一次分析百万量级的单细胞,而且没有理论上限,超出单细胞测序几个数量级。因此可以用来构建非常详细的细胞关联图,尤其适合分析高复杂度的系统,比如血液中的细胞。另一方面,单细胞质谱无法像测序那样对全基因组进行分析,但是由于它是直接对细胞的功能的执行者&mdash &mdash 蛋白质进行解析,跳过了对细胞内各种基因表达调控机制的考量,其意义是非常明显的。  此外,单细胞测序技术让微流控芯片技术(Microfluidics)得到了发展。除了在制备单细胞测序文库方面具有优势以外,该技术在其他领域内的应用也得到了拓展,如在微流控环境中进行细胞培养。该方法可将少数细胞分离到纳升级(nL)的独立单元中分别培养并进行定向引导,然后可以立即利用微流控系统制备测序文库。在干细胞研究以及生物制药领域,该技术应该有着广阔的应用前景。  在单个细胞层面的研究近年来经历了井喷式的增长。然而,其应用主要体现在基础研究中。目前临床上唯一被使用的单细胞检测法是胚胎植入前遗传学诊断(PGD, Preimplantation Genetic Diagnosis)。循环肿瘤细胞(CTCs, Circulating Tumor Cells)虽然在定义上是存在于循环系统中的极少量单个细胞,临床上仍然是先富集然后进行整体分析。对单个CTC进行分析的必要性已有探讨,但开发出相应的技术并在临床上被接受还有一段路要走。
  • 开启细胞研究全新洞察!2023细胞分析技术前沿应用论坛成功举办
    仪器信息网讯 2023年11月15日,由仪器信息网和赛多利斯联合举办的2023细胞分析技术前沿应用论坛在京成功召开,并在仪器信息网全程同步线上直播。现场座无虚席,线上、线下总计近5000位观众出席本次论坛。会议现场 大会致辞 赵鑫 北京信立方科技发展股份有限公司副总经理、仪器信息网CEO北京信立方科技发展股份有限公司副总经理、仪器信息网CEO赵鑫为活动致辞。他对各与会专家、企业家及各位线上线下的与会来宾表达了由衷的感谢!他强调生命科学是仪器信息网重点拓展的战略领域,也会时刻保持对前沿技术开发、成果转化、产业协同创新等的高度关注,也希望有更多的机会与科研界、产业界的同仁们一同探讨技术进展,推动行业快速发展。最后,他预祝本次会议圆满成功。高野 赛多利斯实验室产品与服务中国区市场运营负责人赛多利斯实验室产品与服务中国区市场运营负责人高野向现场嘉宾介绍了迄今已有150余年历史的赛多利斯在生命科学和制药行业的使命和愿景,以及赛多利斯自1995年进入中国市场后的发展里程碑。作为企业的战略重点,赛多利斯为生命科学和生物制药行业提供先进技术及解决方案的同时,助力降低研究开发过程中的成本、帮助科学家快速发现科研问题答案,提高产出,加快进程。 主题圆桌:类器官发展与挑战 除了分享前沿技术与应用成果,探讨未来发展趋势外,本次论坛也紧抓热点,特别设置了主题为“类器官创新研究与挑战”的圆桌论坛,探讨如何通过类器官,为临床治疗,新药筛选,转化医学等领域提供新的解决方案。论坛特别邀请到在类器官领域深耕多年的中国医学科学院北京协和医院冷泠教授、北京大学杨根教授、艾名医学首席运营官周轶博士三位行业专家,圆桌共话类器官领域的最新热点和面临的挑战,圆桌论坛主持由赛多利斯生命科学中国区技术经理张甲先生担任。近年来,类器官正迅速崭露头角,成为基础研究和药物发现的有力工具,在生物医学领域有着广泛的应用,包括肿瘤学、再生医学、疾病建模及药物筛选等。冷泠 北京协和医院教授冷泠教授团队主要围绕利用iPSC分化体系,创建了一种具有表皮、真皮和皮下组织完整细胞极性的皮肤类器官,并富含毛囊和皮脂腺等附属器及不同神经细胞类型的神经系统类器官。因其拥有近似自然组织器官的关键结构和功能特征,能够生长并模拟组织发育和损伤修复等过程,在研究组织再生机制、疾病模型和药物筛选等方面展现了强大的应用价值。她表示,迄今为止,应用皮肤类器官来研究或解析临床疾病的研究仍然很少。目前类器官的成熟度远远不够,有待进一步的发展。值得期待的是,基于类器官的药物筛选模型可以实现模拟人体微环境,为新药开发提供评价验证数据。体外高通量药物筛选,尤其靶向药物精准用药,也可以为基础研究药物筛选提供了思路和方法。杨根 北京大学教授杨根教授主要专注于以肿瘤类器官为代表的类器官培养、肿瘤类器官药筛在临床个性化医疗中的应用研究。他从临床和新药开发两个维度分享了类器官的应用情况。他表示,肿瘤类器官目前最大的问题就是临床可及性不高、成本高甚至存在国外耗材垄断的情况。此外,肿瘤类器官耗材的批间次稳定性不高,无法实现标准化,这也是类器官行业面临的亟需解决的问题。从临床患者角度看,类器官处于非常早期的发展阶段。周轶 艾名医学首席运营官艾名医学首席运营官周轶博士表示,站在用户角度而言类器官主要解决两个问题:第一帮助药企做更有效率的药物研发。传统的从动物到人的临床药物开发效率较低、成本高,而类器官可以实现高通量筛选,极大提高了新药开发的效率。第二在临床用药阶段帮助患者解决精准治疗。对于临床肿瘤患者的治疗一般要根据专家指南和医生经验来用药,而我们希望通过类器官给到医生精确数据报告,从而进行精准药物的指导,进一步提高三四线城市医院的诊疗水平。此外,类器官也为体外试药提供了思路。主持人:张甲 赛多利斯生命科学中国区技术经理此外,四位嘉宾就类器官发展过程的技术瓶颈、技术难题与挑战以及未来类器官人才培养的方向进行了交流与讨论。 学术报告环节学术报告环节,来自科研界、医疗界、产业界的十余位专家大咖、企业家们就细胞分析技术在各自领域的前沿应用进行了精彩的报告分享。《小分子化合物单克隆抗体精准创制技术》王战辉 中国农业大学 研究员/博导免疫快速检测是保障动物源食品安全的重要手段,但目前快速检测技术产品应用问题突出,尤其检测稳定性差、通量不高、灵敏度不高等因素导致目前快检效率低。鉴于此,王战辉研究员利用小分子化合物单克隆抗体精准创制技术在免疫快检领域进行了研究,利用高稳定性抗体+高稳定性探针+高稳定性交联指导免疫反应体系的稳健性提升,从而进一步改进免疫快速检测性能。此外,课题组进一步发力于自动化、智能化、高通量快速检测技术及产品开发。具体而言,基于微流控、微阵列的小型检测装置,对于提高自动化、智能化和数字化程度成效显著。《创新全自动无损细胞分离技术赋能细胞研究》程庆灵 赛多利斯 生物分析产品应用科学家细胞分离技术在细胞研究如细胞异质性研究、疾病研究、药物发现、个体化医疗以及发育生物学等领域中发挥重要作用。程庆灵介绍,随着科研需求的日益更新迭代,传统的细胞分离技术存在步骤繁琐效率低、挑取成功率低、细胞易失活、使用成本高等弊端凸显且亟待解决。基于此,报告指出细胞分离技术的趋势主要包含高通量、高精度和高活率三个特点。同时报告中对于满足上述特点的赛多利斯CellCelector Flex的功能特色以及应用案例进行了详细介绍。《多样化细胞分析平台赋能新药研发》王玉辉 康龙化成(北京)生物技术有限公司 体外生物学部门转化医学负责人报告主要围绕多样化细胞检测平台与类器官检测平台对于新药研发的赋能分享。他指出在药物研发中,传统肿瘤2D细胞和肿瘤3D细胞球对于药物响应相对一致,而类器官对于药物响应在某种程度上更能代表个体差异具有重要的意义,主要因为其更加接近于人体真实状态。因此,基于类器官的肿瘤模型或者疾病模型在预测药物在临床中反映出的问题,辅以对药物开发下游机制的分析,为进一步精准联合用药提供思路。《基于靶点的小分子药物的发现及药理机制研究》刘扬 北京大学第三医院 副研究员刘扬研究员研究聚焦于中药化学生物学,特别是天然药物抗肿瘤活性成分的靶标及分子机制。他建立基于互作和天然抗肿瘤成分的高通量筛选体系,发现并研究了天然抗肿瘤活性分子葫芦素B (CuB)在抗肿瘤药物高通量筛选中的应用,该研究成果入选了2022年中医药十大进展成果之一。而后基于14-3-3ζ蛋白靶点的发现,详细介绍了其在治疗阿尔兹海默症中的应用成果与进展。《基于生物层干涉技术的垂钓新方法新体系开发》王静 北京大学药学院天然药物及仿生药物国家重点实验室 副主任技师王静老师首先对所在实验室仪器平台进行了介绍,北京大学药学院天然药物及仿生药物国家重点实验室是药学领域的第一个国家重点实验室,主要围绕新药研究技术平台,包含生物分子相互作用平台、生物影像平台、流式细胞平台、质谱多组学平台、AI药物设计平台等10个重要平台支撑北大药学学科的建设。而后,她对于生物层干涉技术的检测原理、功能优势以及生物层干涉垂钓技术在医学和药学研究领域的应用进行了阐述,尤其该技术在中药活性成分的发现和确认、体现了重要功能。《Incucyte®长时程活细胞工作站在中医药研究中的应用》王铁山 北京中医药大学北京中医药研究院 细胞分子生物学平台负责人报告首先介绍了北京中医药研究优势特色体系:基于单细胞测序和Himap验证转录组学研究平台、基于Xenium空间原位多组学技术、基于虚拟筛选和实际筛选的验证靶点-药物筛选体系。而后他从显微成像技术的发展简史、Incucyte®长时程活细胞工作站在中医药研究中的应用详细介绍。《实时活细胞成像助力高通量活细胞功能表征》孙晓伟 赛多利斯 生物分析产品应用科学家据介绍,赛多利斯首次提出在培养箱内自动成像检测概念后,不断推出迭代更新的实时活细胞监测仪器设备。孙晓伟主要围绕实时活细胞成像设备Incucyte®在细胞活性检测、细胞形态检测与定量、细胞运动检测、微生物感染、生物药如免疫细胞治疗产品、抗体、mRNA疫苗等方面的应用。报告提到,目前Incucyte®在全球已有4000多个用户,发表1万三千多篇文献,160多篇CNC主刊文献。且对于工业客户今年新增加了21 CFR part软件模块,可以满足审计追踪要求。此次论坛的成功举办,为细胞分析技术的前沿应用提供了一个交流和学习的平台,对推动相关领域的发展起到了积极的推动作用。会场掠影
  • Muse智能触控细胞分析仪新品问世
    默克密理博秉承一贯的创新理念,突破流式研发的思维定式,带来了革命性创新一代Muse&trade 智能触控细胞分析仪。内置Pad版触屏式电脑,结合全面的预置细胞分析常规实验方案,为您开创前所未有的流式操作新体验。您只需动动手指,即可实现包括:细胞计数,细胞活性,细胞周期,细胞凋亡等在内的细胞分析常规实验。分分钟让您体验悦动指尖的细胞分析艺术。 除此之外,默克密理博还将为Muse&trade 平台不断开发更多细胞分析的预置实验方案,近期8个预置实验方案即将推出:涉及Caspase 凋亡通路、线粒体损伤、免疫分型、淋巴细胞活力分析、细胞信号通路、DNA损伤等多个研究应用领域。用户将全部免费获得预置实验方案的软件升级。请欣赏Muse 智能触控细胞分析仪介绍视频申请试用 | 索取MUSE资料 | 询价 更多详情,请点击此处 默克密理博:新流式,新思维 &mdash &mdash 全新的流式平台,全新的学术思维
  • ADAM细胞活力分析与计数仪技术答疑
    1. ADAM能否用于细胞增殖实验分析? 答:ADAM细胞活力分析与计数仪的专长在于能够进行精确的细胞计数和活力分析。对于在24孔板中进行的实验,如果计数的次数不是太多,就可以考虑使用ADAM来做;而对于那些需要用96孔板来做通量分析的实验,因为每孔细胞的数量太小,细胞计数法已不再适用,因此,还是建议使用酶标仪来做。 如,2012发表的一篇文章《Ethanol extract of Gleditsia sinensis thorn suppresses angiogenesis in vitro and in vivo》使用ADAM做了皂角刺的乙醇提取物对人脐静脉内皮细胞的增殖影响分析。 再如,2012发表的另一篇文章《Metronomic Ceramide Analogs Inhibit Angiogenesis in Pancreatic Cancer through Up-regulation of Caveolin-1 and Thrombospondin-1 and Down regulation of Cyclin D1》则使用ADAM做了四种不同类型的神经酰胺类似物抗肿瘤药物分别对两个人内皮细胞系和两个胰腺癌细胞系细胞的增殖影响分析。2.ADAM能否用于其它非哺乳类细胞的计数? 答:ADAM细胞活力分析与计数仪通常用于哺乳类动物细胞的计数,当然您也可以尝试用在其它非哺乳类细胞上面。 如,2012年发表的一篇文章《Osteoblast and osteoclast behavior in zebrafish cultured scales》则首次报道了使用ADAM计数斑马鱼鱼鳞细胞,为ADAM的应用范围作出了积极的拓展。(斑马鱼鱼鳞细胞的制备:取成年斑马鱼(6月龄)的体侧鱼鳞,用胶原酶消化后,收集鱼鳞细胞。)更多产品信息请浏览:http://www.biomart.cn/infosupply/10050648.htm
  • 新芯片实验室技术让单细胞基因分析更高效
    据美国物理学家组织网近日报道,最近,加拿大英属哥伦比亚大学与英属哥伦比亚癌症研究所、转化与应用基因组学中心合作,开发出一种硅酮材料的芯片实验室技术,能让每个细胞像弹球机里的球一样各就各位,然后进行基因检测。这种“单细胞基因分析”技术使基因检测更加灵敏迅速,有助于肿瘤分析和临床疾病的诊断。本周出版的《美国国家科学院院刊》对该芯片实验室进行了详细介绍。  这种芯片实验室大小跟一个9伏电池相当,能同时分析300个细胞。研究人员设计了一种路线,用液体载运细胞通过显微管道和一个个小阀门,当细胞挨个进入各自的小空位时,它们的RNA就会被提取出来,经过复制用于进一步分析。  标准基因检测要求使用大量细胞,才能得出由上千万不同细胞平均化以后的“综合图像”,这会掩盖细胞的真实属性和它们之间的相互作用。“这就好比用混合水果慕丝来研究草莓和树莓为什么不一样。”领导该研究的高通量生物中心副教授卡尔汉森介绍说,而单细胞分析正在成为基因研究中的黄金手段,因为即使是从同一肿瘤组织中采集的样本,也包含了正常细胞和多种癌细胞类型,而单细胞分析显出极微小的差异。  此外,这种芯片实验室几乎将所有细胞分析过程整合在了一起,不仅能分离细胞,还能用化学试剂将细胞混合起来,通过检测反应过程中的荧光发射获得它们的基因编码。所有这些都能在芯片上完成,不仅操作简单,而且成本效益高。
  • 空间代谢组学:单细胞空间代谢流分析新方法
    空间代谢组学:单细胞空间代谢流分析新方法原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘甜生物体内的代谢物和脂质不仅是细胞的关键组成模块,它们在信号传导、表观基因组调控、免疫、炎症和癌症发展中同样具有重要作用和意义。代谢组学分析是我们了解、评估生物体、器官和细胞状态的重要方式。而单细胞技术通过展示组织内部甚至单克隆细胞之间的细胞异质性,将生物学研究推进至新维度。质谱成像(MSI)技术可以从样品中创建特定化合物的图像,这些图像是由样品表面获得的数千个质谱生成的。每个记录的质谱都会为图像贡献一个像素,而每个质谱中的峰都可以生成一个图像。与其他成像方法相比,MSI无需化合物标记,可实现非靶向分析。本次与大家分享的是一篇最新发表于bioRxiv上的有关单细胞空间代谢流分析方法的文章[1]。研究人员基于AP-SMALDI Orbitrap平台开发了一种命名为“13C-SpaceM”的新方法,通过13C标记的葡萄糖示踪葡萄糖依赖性脂肪酸从头合成途径(glucose-dependent de novo lipogenesis)。本方法应用超高分辨率的基质辅助激光解吸/电离实现了单细胞质谱成像,并通过全离子碎裂模式(AIF)模拟了脂肪酸分析前处理过程中的皂化反应,对包括甘油磷脂在内的主要脂质中的脂肪酸部分实现了共同分析。超高灵敏度、高分辨质谱检测器为单细胞内脂肪酸同位素检测提供了准确的定性、定量结果。研究人员通过鼠肝癌细胞的常氧-低氧模型,对检测方法进行了验证,确认方法的有效性。之后应用本方法分别检测了ATP柠檬酸裂解酶基因敲降(ACLY knockdown)鼠肝癌细胞以及携带异柠檬酸脱氢酶(IDH)突变的小鼠胶质瘤脑组织切片,通过比较脂肪酸的同位素丰度变化评估脂肪酸从头合成比例以及外源性脂肪酸摄取的变化。分析结果揭示了在脂肪酸从头合成过程中,乙酰辅酶A池(Acetyl-CoA pool)中存在大量的空间异质性,这表明在微环境适应过程中发生了代谢重编程。01研究背景脂质在生物体生命过程中承担着多种重要作用,多数脂质是由脂肪酸合成而来。成年哺乳动物体内的细胞通常由血液中摄取脂肪酸,而脂肪、肝脏以及癌细胞还可以Acetyl-CoA为底物,从头合成脂肪酸[2]。Acetyl-CoA经过一系列代谢反应,可以生成含有16个碳的饱和脂肪酸棕榈酸(16:0),之后棕榈酸发生碳链延长或去饱和反应生成不同的饱和、不饱和脂肪酸,从而影响脂质组成。而Acetyl-CoA同样有多种来源,除了葡萄糖经由TCA循环生成的柠檬酸在ACLY作用下生成Acetyl-CoA以外,在缺氧环境下,葡萄糖后续代谢产物丙酮酸会转化为乳酸,从而无法合成Acetyl-CoA、进入脂肪酸合成途径。在此情况下,谷氨酰胺可通过还原羧化反应生成柠檬酸,进而合成Acetyl-CoA [3,4] 。另有文献报道,缺氧环境下的癌细胞还可以将乙酸作为脂肪酸合成的前体 [5,6] 。而Acetyl-CoA除了作为脂肪酸合成底物以外,对于蛋白翻译后修饰、基因表达等均有重要作用。通过监控脂肪酸合成和Acetyl-CoA代谢间的互动可以帮助我们深入理解癌细胞的生存状态。02分析方法大气压MALDI成像分析是通过AP-SMALDI5离子源配合Q Exactive plus高分辨质谱仪实现的。激光像素设置为 10×10 µ m,激光衰减器角度设置为33°。质谱在负离子模式下采用一级全扫描和全离子碎裂(AIF)扫描模式。AIF模式的隔离范围为 m/z 600-1000,扫描范围为m/z 100-400,分辨率 140k,最大注入时间500 ms,碰撞能量NC 25%。(图1)图1. 单细胞代谢流质谱成像分析流程(点击查看大图)MALDI分析前后,分别应用显微镜检测,确定细胞影像位置及MALDI消融标记位置。通过检测MALDI的消融标记,将其与细胞影像叠加,并通过应用数学公式进行解卷积,从而整合显微镜图像和MALDI图像。实现了应用MALDI成像质谱检测到的单细胞分子轮廓。(图2)图2. 整合显微镜和MALDI-MS分析结果实现单细胞质谱成像(点击查看大图)03鼠肝癌细胞常氧-低氧模型单细胞成像分析鼠肝癌细胞在添加25 mM的12C-葡萄糖或U-13C-葡萄糖后,用含1mM醋酸、2 mM谷氨酰胺和10%透析胎牛血清的无葡萄糖DMEM细胞培养基培养,在37°C、5% CO2的培养箱中在常氧(20% O2)或低氧(0.5% O2)条件下培养72小时。选择72小时的时间点是为了确保棕榈酸的同位素标记已经达到稳态。(图3)在低氧条件下培养的细胞被表达绿色荧光蛋白(GFP)标记。在共培养实验中,常氧和低氧细胞使用胰酶分离,每种条件下混合10000个细胞,在同一张玻璃片上进行培养,并在固定之前允许其附着3小时。图3. 由稳定同位素标记的13C6-葡萄糖生成细胞质Acetyl-CoA以及后续的脂肪酸和脂质合成途径(点击查看大图)通过质谱一级全扫描分析,质谱成像共检测到64种脂质,包括磷脂酸(PA)、磷脂酰肌醇(PI)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)等。具体脂质鉴定结果经过了常规LCMS脂质分析确认。在AIF模式下,检测到了11种含量最高的脂肪酸,相应检测结果同样与常规LCMS分析结果相符。为了验证本方法,研究人员检测了常氧-低氧培养的鼠肝癌细胞混合样本。通过对氨基酸同位素峰的定量分析,发现13C标记的棕榈酸(M0)主要在正常细胞中检出,而缺氧细胞中的棕榈酸以未标记状态(M+0)为主。通过GFP标记结果的对照,证明了本方法可以通过同位素峰分布有效识别不同培养状态的细胞。图4. 在常氧(GFP阴性)和低氧(GFP阳性)条件下的原代鼠肝癌细胞共培养模型的显微镜和质谱成像结果(点击查看大图)图5. 通过GFP标记验证识别不同培养模式细胞的准确性(点击查看大图)04单细胞Acetyl-CoA池标记水平分析研究人员使用了两种表达不重叠的shRNA序列(ACLYkd oligo1和ACLYkd oligo 2)细胞系以及一个对照组细胞系。通过使用1 μg/mL的四环素处理细胞72小时实现了ACLY沉默。质谱成像数据是以10 μm的像素大小获得的,每个细胞的平均面积为550μm2,平均每个细胞有12个像素。通过应用二项式模型计算每个细胞的acetyl-CoA池标记程度p值,从而量化细胞质中acetyl-CoA池中从葡萄糖衍生的同位素标记acetyl-CoA的比例。测试结果与预期相符,ACLYkd细胞中的acetyl-CoA池标记水平低于对照组。值得注意的是,两种ACLYkd细胞之间的差异非常明显。ACLYkd oligo1的结果呈双峰分布,p值的差异明显较大,表明该细胞系存在两个亚群体。其中一个模式显示的p值与对照组相近,说明存在一个“沉默失败”的细胞亚群。ACLYkd oligo1第二个模式具有的p值明显则低于ACLYkd oligo 2,表明ACLYkd oligo 1中还存在一个“强沉默”的亚群,在这些细胞中,沉默效率非常高,导致acetyl-CoA同位素标记比例大幅降低。在ACLYkd oligo 2中,acetyl-CoA池的标记程度以及GFP报告基因强度显示出更均一的分布。M+2峰是最能表现出ACLYkd oligo1细胞中“强沉默”群体的低acetyl-CoA标记表型的质谱峰。M+8峰则为对照组细胞的特征标记峰。M+2和M+8之间的差异可以作为显示异质性的指标,用于展示葡萄糖对细胞质中acetyl-CoA的相对贡献。因此,13C-SpaceM能够检测ACLY敲降细胞中的异质性,并识别不同的亚群体。这种单细胞和空间异质性无法通过整体分析揭示,显示了13C-SpaceM方法的独特优势。图6. 细胞ACLY敲降后acetyl-CoA的同位素标记程度分析(点击查看大图)05肿瘤组学中氨基酸合成异质性的空间组学分析研究人员分析了从横向植入表达突变型异柠檬酸脱氢酶(IDH)和红色荧光蛋白(RFP)的GL261胶质瘤细胞的小鼠大脑组织切片。在采集组织前的48小时,小鼠被喂食未标记的或含有U-13C葡萄糖的液体饮食。首先,研究人员分析了12C-葡萄糖饮食的肿瘤携带小鼠大脑切片中的酯化脂肪酸组成。通过比较质谱TIC与显微镜明场和荧光成像,发现整个大脑(包括肿瘤区域)的质谱离子响应很高(图7a)。测试过程中,肿瘤区域与组织切片的其余部分分别采用10μm和50μm激光分辨率进行分析。对不同脂肪酸的空间分析揭示了在非肿瘤携带的脑半球组织中,脂肪酸丰度存在高度的异质性,我们可以仅根据它们的脂肪酸组成来识别的某些结构,如胼胝体和前连合部,这两个区域都富含油酸(18:1)且棕榈酸(16:0)、硬脂酸(18:0)和花生四烯酸(20:4)的含量低。有趣的是,尽管棕榈酸、油酸、硬脂酸和花生四烯酸在肿瘤和周围的大脑组织中的含量相似,肉豆蔻酸(14:0)和棕榈酸(16:1)在肿瘤组织中则明显增加。与大脑其它部分相比,肿瘤中必需脂肪酸亚麻油酸(18:2)和α/γ亚麻酸(18:3)也明显增高。之后,研究人员分析了喂食含有U-13C葡萄糖饮食的小鼠肿瘤组织,从肿瘤组织中选择性分离出的5种主要从头合成的脂肪酸的同位素分布(图7c)。三种饱和脂肪酸肉豆蔻酸(14:0)、棕榈酸(16:0)和硬脂酸(18:0)的13C摄入丰度较高,同位素分布最大分别可至M+10,M+12和M+14。其中,肉豆蔻酸M+0的强度极低,几乎完全源自脂肪酸从头合成。由于肉豆蔻酸对一些重要信号蛋白的翻译后修饰很重要,这一发现表明胶质瘤可能选择性地上调肉豆蔻酸的合成以促进自身生长。相比之下,两种单不饱和脂肪酸,棕榈酸(16:1)和油酸(18:1)的M+0同位素的相对丰度较高。硬脂酸和油酸的M+2同位素丰度明显增加,表明它们是由未标记的前体(即棕榈酸和棕榈酸)延长形成的。研究人员进一步利用棕榈酸的同位素分布计算acetyl-CoA池中源自葡萄糖的比例,发现肿瘤组织内的该比例同样具有显著的空间异质性(图7d)。图7. 小鼠脑胶质瘤组织内部脂肪酸代谢空间异质性分析(点击查看大图)总结本文作者开发了一种全新的单细胞代谢流成像检测方法,将超高激光分辨率的大气压MALDI与高分辨率、高灵敏度的质谱检测器相结合,对细胞和肿瘤组织内的葡萄糖依赖性脂肪酸从头合成途径实现单细胞层面的空间分析。不仅为单细胞水平空间探测代谢活动提供了新的方法,还为正常和癌症组织中的脂肪酸摄取、合成和修饰分析提供了前所未有的视角。参考文献:1. Buglakova E, Ekelö f M, Schwaiger-Haber M, et al. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Preprint. bioRxiv. 2024 2023.08.18.553810. Published 2024 Feb 28. doi:10.1101/2023.08.18.5538102. Rö hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016 16(11):732-749. doi:10.1038/nrc.2016.893. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011 481(7381):380-384. Published 2011 Nov 20. doi:10.1038/nature106024. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011 108(49):19611-19616. doi:10.1073/pnas.11177731085. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 2:23. Published 2014 Dec 11. doi:10.1186/2049-3002-2-236. Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015 27(1):57-71. doi:10.1016/j.ccell.2014.12.002如需合作转载本文,请文末留言。
  • BD推出全新细胞分析仪简化研究流程
    圣何塞市,加利福尼亚州(2011年5月20日)---美国BD公司(Becton,Dickinson and Company)全球三大业务部之一的生物科学事业部于今日正式推出了BD FACSVerseTM流式细胞仪---一款灵活、可靠并具有可升级性的流式细胞分析系统,该系统最高可分析多达10个参数并支持广泛的研究应用。  BD FACSVerseTM 流式细胞仪以及BD FACSuiteTM软件提供高达10参数分析的升级路径  “基于三大核心理念,我们将诸多创新的尖端科技融入到了BD FACSVerseTM系统中,赋予了它彻底的创新性。”BD生物科学事业部细胞分析业务总裁James Glasscock说。“首先,我们想要为研究者打造一款既能满足常规分析实验需要,同时又能兼顾复杂的多激光多色实验在结果精确性和重复性方面严苛要求的单一平台。其次,BD希望简化流式实验的操作流程,以内在的智能化特质赋予系统杰出的易用性。最后,BD希望提供给用户从6参数到10参数的灵活升级方案以最大限度的保护用户的每一分投入,同时配备多种选配模块以满足用户在未来不断提高的研究需求。”  BD FACSVerseTM流式细胞仪配备了全新的BD FACSuiteTM操作软件,现在用户可以自动化实现一些常规操作,例如:以最少的点击次数完成仪器的启动、设置、获取样本、数据分析的全过程。软件包的模块化架构使用户可以同时执行多项任务,并且在获取样本的同时也可同步进行数据分析。据Glasscock介绍,BD FACSuiteTM软件还引入了一项全新的操作范例:以前流式用户不得不每天不厌其烦的进行荧光补偿值的修正,特别是对多色分析实验而言荧光补偿值的修正是必须的,然而时至今日BD FACSuiteTM软件的推出彻底的改写了历史,从此流式用户再也无需每天对荧光补偿值进行反复的校正。BD FACSuiteTM软件使得assays和experiments的设置可以被直接输出并共享到全球任何一台其他的BD FACSVerseTM系统上面使用,最大程度地降低了不同仪器间及用户间的实验差异。  BD FACSVerseTM 流式细胞仪内在的智能性同时还减少了操作误差,提高了实验效率,并将实验流程自动化,最大程度的降低了人为干预的比例。典型特征如下:  基于真空负压的液流系统给予了上样过程最大的灵活性   全新的设置和质控范例概念消除了对标准荧光染料的日常补偿需要   仪器内部各个组件的智能创新特质将仪器操作大大简化并防止人为操作误差的发生   为了全面支持广泛的应用,BD FACSVerseTM系统还提供可选择的BD预置实验,这些实验涵盖了细胞凋亡,细胞周期,细胞增值以及细胞因子检测等诸多重要的研究应用,配合BD专业流式试剂和试剂盒可以获得高重复性的实验结果。该系统还同时支持客户自定义实验设置。研究者可以将他们的实验转换成可重复使用的实验模板,包含相关设置、样本获取和分析工作表以及圈门设置等。不仅如此,用户还可以通过建立报告参数来降低不同用户及实验室间同一应用的数据差异化。  BD FACSVerseTM流式细胞仪提供4色、6色及8色分析三种不同配置,配合前向角散射光和侧向角散射光最高可支持10参数分析。同时考虑到用户的未来升级可能,4色及6色分析配置还可以实现灵活的现场升级。同时BD FACSVerseTM小巧的紧凑的机身设计还非常适合标准实验台的放置要求。
  • 多组分时空分析:走进单细胞的“社会”
    p style="text-indent: 2em "1952年,美国细胞生物学家威尔逊曾提出,“一切生命的关键问题都要到细胞中去寻找答案。”纵观近50年来荣获诺贝尔奖生理学或医学奖和化学奖的重大突破,70多个都与细胞生物学密切相关。/pp style="text-align: center text-indent: 2em "img title="20197282317511500.jpg" style="max-height: 100% max-width: 100% " alt="20197282317511500.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/8e8f4b00-dde2-40b2-8c13-4213c687f8ec.jpg"//pp style="text-align: center text-indent: 0em "span id="_baidu_bookmark_start_182" style="line-height: 0px display: none "?/span研究团队进行相关实验/pp style="text-align: center text-indent: 0em "图片来源于网络/pp style="text-indent: 2em "作为研究细胞生命活动规律的科学,细胞生物学在科学家的显微镜下经历了近180年的历史,但细胞对人类来说依然是“黑箱”一般的存在。如今,研究人员正在尽力通过对单个细胞进行研究来阐明细胞的“天性”。/pp style="text-indent: 2em "自2014年起,在国家自然科学基金重大项目“单细胞多组分时空分析”支持下,中国科学家在有关单细胞生物学的重大科学问题上取得了一系列进展。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong没有两个细胞是完全相同的/strong/span/pp style="text-indent: 2em "如果把细胞环境比作一个社会,每个细胞就是一个独立的人。/pp style="text-indent: 2em "在对人类社会的研究中,不仅个体的特征和行为值得关注,研究所处环境中个体之间相互协调或对抗作用等关系以及群体所产生的集体行为,也相当重要。细胞研究亦是如此。/pp style="text-indent: 2em "多年来,通过对细胞的研究,科学家已经对生命体的生长发育、遗传变异、认知与行为、进化与适应性等若干生命科学问题有了较为清晰的认识。不过,在清华大学副教授陆跃翔看来,这些还远远不够。/pp style="text-indent: 2em "“在之前的研究中,科学家探索出细胞新陈代谢、生命运动过程中的各种表征方法,如蛋白表达分析、基因转录检测(反转录PCR)等,这些方法更多的是在大样本的细胞中进行观察与测量后,得到一个平均结果。”陆跃翔解释到。/pp style="text-indent: 2em "然而,没有两个细胞是完全相同的。这些平均结果掩盖了细胞之间微小的差异,这些差异可能在某些关键生命过程如细胞分化、肿瘤的发展过程中起着决定性作用。/pp style="text-indent: 2em "为了获取细胞生理状态和过程中更准确、更全面的信息,科研人员将目光瞄准单个细胞。/pp style="text-indent: 2em "“单细胞内部的生命活动,可以被认为是生物活性分子之间复杂的化学反应的结果,正是这些分子的时空分布、结构、功能及其相互作用方式,决定了细胞增殖、分化、凋亡以及重大疾病发生、发展、迁移等过程。”陆跃翔分析道。/pp style="text-indent: 2em "但是想要研究这些生物活性分子形成的精密复杂的相互作用和调控网络并非易事。它不仅要求科学家了解其化学成分,更要理解它们之间相互作用的复杂过程,以及在细胞内部细胞器中特定位置的作用区域和时空变化。/pp style="text-indent: 2em "strong2014年,国家自然科学基金委员会发布重大项目“单细胞多组分时空分析”申请指南,/strong清华大学化学系教授张新荣组织的研究团队的申请获批。他们凝练出strong荧光探针制备与合成、新型时空分辨成像方法以及在细胞内生物分子相互作用/strong研究等关键科学问题。/pp style="text-indent: 2em "“我们希望发展建立适于单细胞中多种生物活性分子时空分辨的荧光分析新方法,驱动生命科学和基础与临床医学研究进步。”谈及科学目标,张新荣如是说。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong新技术带你深入了解“社会”/strong/span/pp style="text-indent: 2em "如何实现这一目标?在张新荣看来,这需要从单细胞中多组分分子的时空信息获取方法出发。为此,项目组将其分为“荧光探针制备与合成”“新型时空分辨成像方法”以及“细胞内生物分子相互作用”三大方向进行攻关。/pp style="text-indent: 2em "strong要了解细胞这个独特的“社会”,首先需要的是一台可以钻进细胞内部获取关键分子信息的“放大镜”。因此,荧光探针制备与合成至关重要。/strong/pp style="text-indent: 2em "针对单细胞中极低含量分子检测问题,山东师范大学教授唐波课题组综合运用共轭聚合物信号放大、无光源激发、光谱红移、核酸杂交链式放大等技术,构建了若干超灵敏的分子与纳米荧光探针,实现了细胞及活体中某些活性分子浓度皮摩尔水平的原位、动态检测。/pp style="text-indent: 2em "同时,细胞中生理过程的发生和发展往往不是一类分子的孤立事件,涉及到多种分子的参与。因此课题组还开发了一系列的两组分、三组分和四组分同时检测的荧光探针,并设计了多模态探针来获取更丰富的成像信息。/pp style="text-indent: 2em "“本项目的一个重要特色工作是时任中国科学院上海应用物理研究所研究员樊春海课题组基于框架核酸构建的多组分分析探针和成像方法。”张新荣介绍,框架核酸是一类人工设计的结构核酸,具有尺寸精确、结构精确、修饰精确的特点,通过精确的化学修饰,可以将多种小分子及大分子探针负载到框架核酸上,实现多组分探针的可控构建。/pp style="text-indent: 2em "不过,实现探针在亚细胞区域内对胞内生物活性分子的精确定位和实时检测可并不那么容易。/pp style="text-indent: 2em "“细胞核内分子密度大且背景荧光特别高,导致人们对单分子的观察非常困难。传统光学显微成像分辨率,不足以解析染色体DNA的构造。”陆跃翔告诉记者,尤其在超高空间分辨率的前提下,要实现持续的动态观察,对荧光探针和成像方法都提出了更大的挑战。/pp style="text-indent: 2em "在活细胞超分辨成像方面,北京大学生物动态光学成像中心研究员孙育杰课题组研发了高性能探针Gmars-Q,使其在光照时进入暗态,从而延长成像时长,比已有最好探针的活细胞超分辨成像时间长一个数量级,这种超高分辨成像技术实现了纳米尺度的活细胞核内动态观测。/pp style="text-indent: 2em "“Gmars-Q的独特机制打开了基于蛋白结构和动力学优化荧光蛋白的设计策略。”德国卡尔斯鲁厄理工学院教授Gerd Ulrich Nienhaus曾对此给予高度评价。/pp style="text-indent: 2em "strong在现代分析化学的发展中,大科学装置的应用也越来越受到科学家的重视。/strong/pp style="text-indent: 2em "依托中国科学院高能物理研究所和中国科学院上海应用物理研究所的两台strong同步辐射光源,/strong樊春海课题组和中国科学院高能物理研究所研究员高学云课题组开展了strong同步辐射X射线细胞成像方法/strong的研究。/pp style="text-indent: 2em "实验团队通过搭建X射线全场三维成像平台,合成了一系列X射线成像探针,发展了细胞成像算法,实现了单细胞的X射线三维成像。为了应对单一技术无法在高分辨率下同时实现细胞的结构与功能定位的挑战,课题组又发展了X射线与超分辨荧光联用技术,实现了在纳米分辨下的细胞结构与功能融合成像的突破。/pp style="text-indent: 2em "已有研究发现DNA不仅有序列信息,还有三维结构信息。基于此,北京大学教授、中国科学院外籍院士谢晓亮课题组通过对sgRNA改造,开发了一种全新的活细胞染色质DNA的多色、稳定标记系统,实现对活细胞内基因位点的长时间连续观察追踪。/pp style="text-indent: 2em "2018年,该重大项目迎来一项重磅突破。谢晓亮课题组在《科学》上发表文章,介绍他们在单细胞水平研究双倍体哺乳动物细胞的基因组结构研究方面取得的成果。利用新发展的Dip-C技术,项目组构建了人源双倍体细胞的具有高空间分辨率的单细胞基因组三维结构。/pp style="text-indent: 2em "“这种结构分型对研究细胞功能有着至关重要的作用,也为唐氏综合症等染色体非整倍体疾病提供了研究和干预手段。”谢晓亮说。/pp style="text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "让基础研究走出实验室/span/strong/pp style="text-indent: 2em "对于细胞“社会”的深层解析,不仅为了阐明各种生命现象与本质,科学家更是希望据此对这些现象和规律加以控制和利用,以达到造福人类的目的。在该重大项目支持下,诸多研究展现出了良好的社会应用前景。/pp style="text-indent: 2em "“许多疾病的研究和治疗最终都必须回归细胞水平。”在张新荣看来,一系列单细胞多组分时空分析技术能够有效加深人们对生命现象的本质理解,也有助于了解疾病机理,进而促进生物医药科学和相关产业的发展。/pp style="text-indent: 2em "strong“项目研发的诊疗一体化功能纳米探针,为相关重大疾病成因、诊断提供表征手段和依据,对疾病的早期预警以及提高疾病治愈率有着重要意义。/strong”张新荣讲道,部分创制的探针已经进行了市场转化,基于探针建立的荧光成像技术也成为国家重大新药创制课题中药效评价的关键技术之一。/pp style="text-indent: 2em "例如,唐波课题组研究的“超高灵敏度—可逆探针”能够在活体水平上示踪炎症发生发展过程中超氧阴离子的浓度水平及动态变化过程,缩短了药物临床试验周期,提高了药物筛选效能。为即将进入临床Ⅱ、Ⅲ期的鼻敏胶囊、咳敏胶囊、结肠炎栓3个中药新品种的作用靶点、药效评价研究提供了技术支撑。/pp style="text-indent: 2em "而基于同步辐射装置的X射线细胞显微成像技术,分辨率很容易达到数十纳米,可以在大视场下实现完整细胞的纳米分辨无损成像,与荧光显微装置相比具有巨大优势,在细胞显微成像方面也展现出了巨大的应用前景。/pp style="text-indent: 2em "然而,对于人类来说,走进细胞“社会”是一个任重而道远的过程。还有无数未知的奥秘等着科学家去探索。/pp style="text-indent: 2em "张新荣表示,该重大项目成果为下一步融合多种分析方法、发展全器官跨尺度高灵敏三维成像提供了基础。/pp style="text-indent: 2em "“通过研发同步辐射X射线相衬—电镜融合成像,有可能在全脑三维微米精度地图引导下选取局部特征区域进行纳米精度的结构解析,大幅降低高精度神经网络解析的盲目性。在特定位点,也可利用荧光分子成像和质谱分子解析,进一步作功能研究。”项目组成员表示,在有关“社会”的探索与发现之旅上,中国科学家一直砥砺前行。/p
  • 快讯:伯乐收购单细胞分析公司Celsee
    p  strong仪器信息网讯/strong Bio-Rad(伯乐)周四表示,已经收购了位于密歇根州安娜堡的Celsee,一家提供用于分离、检测和分析单细胞仪器与消耗品的供应商。/pp  收购的财务条款没有披露。/pp  Celsee公司的Genesis系统为科学家提供了一种强大、灵活且可扩展的方式,让他们能够分析和解释细胞行为,并收集以往无法检测的细胞关键信息。此系统可应用在蛋白质组学、免疫监测(替代流式细胞仪)以及新一代测序文库制备。/pp  Genesis系统采用的是一种专利技术。利用重力和Celsingle™ 微量分析玻片,它能够温和地捕获和分离单细胞,同时保持细胞活力和结构完整性,而不用担心微流体或分液装置引起的细胞应激。据介绍,Genesis流程可达到 70%的捕获效率,且灵敏度高于其他的单细胞分析技术,玻片可容纳多达100万个细胞分离微孔。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/5e15c56c-a675-4a0a-8ba6-aac1a4fd4028.jpg" title="微信图片_20200410005113_副本.jpg" alt="微信图片_20200410005113_副本.jpg"//pp  Celsee公司目前正卷入10x Genomics的专利诉讼中,后者在美国特拉华州地方法院对Celsee提出专利侵权、不正当竞争、虚假广告及相关索赔。 3月下旬,Celsee提出了答复,并对10x Genomics的第二次修订投诉提出反诉。/pp  同时,总部位于加利福尼亚州赫拉克勒斯的伯乐也参与涉及10x Genomics的多项专利诉讼。/p
  • 安捷伦参与研究分析诱导成体细胞为胚胎干细胞的机制
    免疫共沉淀芯片和基因表达谱芯片 用于研究Yamanaka因子如何启动细胞多能干性2009年3月9日,中国上海&mdash 安捷伦科技有限公司(NYSE: A)近日宣布与中科院上海生命科学研究院和同济大学的研究团队合作发现诱导成熟细胞成为具备&ldquo 多能干性&rdquo 的胚胎干样细胞过程中的新机制。 作为文章的合著人之一,安捷伦公司的李坚表示:&ldquo 有关胚胎干细胞生物学特性的新发现无疑是非常有价值的。有关诱导成体细胞为胚胎干样细胞的研究是2006年重大科学发现。我们的研究对这个诱导过程有了一些新的理解。&rdquo 该项研究结果发表在《细胞研究》(Cell Research),标题为《小鼠胚胎干细胞发育信号通路网络中Yamanaka因子的重要调控作用》。 研究人员发现了发育调控网络中的16个信号传导通路,其中的9个通路以往从未被报道参与维持或诱导细胞的多能干性。 该项研究使用了安捷伦公司的免疫共沉淀芯片技术(ChIP-on-chip)结合基因表达芯片数据研究了已知的Yamanaka因子在诱导小鼠细胞多能干性中的作用。 安捷伦通过2008年科研基金项目资助了基因芯片用于该项研究。基因芯片是指在玻璃基片上布放大量DNA探针用于研究基因组的技术。免疫共沉淀芯片技术专门用于研究基因组中&ldquo 启动子区域&rdquo 的特性,该区域控制着各种基因的活性从而决定了细胞的功能。 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问: http://agilent.instrument.com.cn/
  • 复旦大学186.67万元采购流式细胞仪,单细胞分析仪
    详细信息 复旦大学流式细胞分选仪国际公开重新招标公告 上海市-杨浦区 状态:公告 更新时间: 2022-11-12 复旦大学流式细胞分选仪国际公开重新招标公告 2022年11月12日 13:16 公告信息: 采购项目名称 复旦大学流式细胞分选仪 品目 货物/通用设备/仪器仪表/分析仪器/其他分析仪器 采购单位 复旦大学 行政区域 上海市 公告时间 2022年11月12日 13:16 获取招标文件时间 2022年11月12日至2022年11月18日每日上午:9:00 至 11:30 下午:13:30 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 上海市长寿路285号恒达大厦16楼 开标时间 2022年12月06日 09:00 开标地点 上海市长寿路285号恒达广场10楼开标室 预算金额 ¥186.670000万元(人民币) 联系人及联系方式: 项目联系人 许老师 项目联系电话 86-21-65641327 采购单位 复旦大学 采购单位地址 上海市杨浦区邯郸路220号 采购单位联系方式 许老师 86-21-65641327 代理机构名称 上海市机械设备成套(集团)有限公司 代理机构地址 上海市长寿路285号16楼 代理机构联系方式 张洁玮、沈飏 021-32557719;021-32557775 项目概况 复旦大学流式细胞分选仪 招标项目的潜在投标人应在上海市长寿路285号恒达大厦16楼获取招标文件,并于2022年12月06日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:1639-224122240333/02 项目名称:复旦大学流式细胞分选仪 预算金额:186.6700000 万元(人民币) 最高限价(如有):182.9300000 万元(人民币) 采购需求: 序号/ No. 货物名称/ Name of the goods 数量/Quantity 简要技术规格 /Main Technical Data * 交货期 / Delivery schedule 1 流式细胞分选仪 预算金额:人民币186.67万元 最高限价:人民币182.93万元 1套 最大液滴振荡频率:不低于52kHz; 合同签订后3个月货到复旦大学。(空运)/ DPU Fudan University within three months after signing the contact . 合同履行期限:合同签订后3个月货到复旦大学。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 按商务部的《机电产品国际招标投标实施办法(试行)》等相关规定 3.本项目的特定资格要求:1)来自中华人民共和国或是与中华人民共和国有正常贸易往来的国家或地区(以下简称“合格来源国/地区”)的法人或其他组织 1) The legal persons or other organizations ivited from within the People’s Republic of China (hereinafter abb. as “PRC”) and all countries/areas which have regular trade relations with PRC (hereinafter called “the eligible source countries/areas”)2)投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的正式授权 2)The bidder shall be the manufacturer of the bidding products ,the agent tender must provide the cast product exclusive authorization letter issued by the producer for the project subject to tender 3) 投标人提供的投标机型应是原产地的全新产品;3) Provide bidders bidding models should be the origin of new products 三、获取招标文件 时间:2022年11月12日 至 2022年11月18日,每天上午9:00至11:30,下午13:30至16:00。(北京时间,法定节假日除外) 地点:上海市长寿路285号恒达大厦16楼 方式:有兴趣的潜在投标人写明申请项目的名称,提供报名单位名称、具体项目联系人的联系方式(姓名、手机、地址及邮箱)发送至邮箱13795281643@163.com,收到邮件回复后,请完整填写《购标书登记表》 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月06日 09点00分(北京时间) 开标时间:2022年12月06日 09点00分(北京时间) 地点:上海市长寿路285号恒达广场10楼开标室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 项目编号:HW2022101907 本项目第一次公告因报名的供应商不足三家,现进行第二次采购 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:复旦大学 地址:上海市杨浦区邯郸路220号 联系方式:许老师 86-21-65641327 2.采购代理机构信息 名 称:上海市机械设备成套(集团)有限公司 地 址:上海市长寿路285号16楼 联系方式:张洁玮、沈飏 021-32557719;021-32557775 3.项目联系方式 项目联系人:许老师 电 话: 86-21-65641327 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:流式细胞仪,单细胞分析仪 开标时间:2022-12-06 09:00 预算金额:186.67万元 采购单位:复旦大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海市机械设备成套(集团)有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 复旦大学流式细胞分选仪国际公开重新招标公告 上海市-杨浦区 状态:公告 更新时间: 2022-11-12 复旦大学流式细胞分选仪国际公开重新招标公告 2022年11月12日 13:16 公告信息: 采购项目名称 复旦大学流式细胞分选仪 品目 货物/通用设备/仪器仪表/分析仪器/其他分析仪器 采购单位 复旦大学 行政区域 上海市 公告时间 2022年11月12日 13:16 获取招标文件时间 2022年11月12日至2022年11月18日每日上午:9:00 至 11:30 下午:13:30 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 上海市长寿路285号恒达大厦16楼 开标时间 2022年12月06日 09:00 开标地点 上海市长寿路285号恒达广场10楼开标室 预算金额 ¥186.670000万元(人民币) 联系人及联系方式: 项目联系人 许老师 项目联系电话 86-21-65641327 采购单位 复旦大学 采购单位地址 上海市杨浦区邯郸路220号 采购单位联系方式 许老师 86-21-65641327 代理机构名称 上海市机械设备成套(集团)有限公司 代理机构地址 上海市长寿路285号16楼 代理机构联系方式 张洁玮、沈飏 021-32557719;021-32557775 项目概况 复旦大学流式细胞分选仪 招标项目的潜在投标人应在上海市长寿路285号恒达大厦16楼获取招标文件,并于2022年12月06日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:1639-224122240333/02 项目名称:复旦大学流式细胞分选仪 预算金额:186.6700000 万元(人民币) 最高限价(如有):182.9300000 万元(人民币) 采购需求: 序号/ No. 货物名称/ Name of the goods 数量/Quantity 简要技术规格 /Main Technical Data * 交货期 / Delivery schedule 1 流式细胞分选仪 预算金额:人民币186.67万元 最高限价:人民币182.93万元 1套 最大液滴振荡频率:不低于52kHz; 合同签订后3个月货到复旦大学。(空运)/ DPU Fudan University within three months after signing the contact . 合同履行期限:合同签订后3个月货到复旦大学。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 按商务部的《机电产品国际招标投标实施办法(试行)》等相关规定 3.本项目的特定资格要求:1)来自中华人民共和国或是与中华人民共和国有正常贸易往来的国家或地区(以下简称“合格来源国/地区”)的法人或其他组织 1) The legal persons or other organizations ivited from within the People’s Republic of China (hereinafter abb. as “PRC”) and all countries/areas which have regular trade relations with PRC (hereinafter called “the eligible source countries/areas”)2)投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的正式授权 2)The bidder shall be the manufacturer of the bidding products ,the agent tender must provide the cast product exclusive authorization letter issued by the producer for the project subject to tender 3) 投标人提供的投标机型应是原产地的全新产品;3) Provide bidders bidding models should be the origin of new products 三、获取招标文件 时间:2022年11月12日 至 2022年11月18日,每天上午9:00至11:30,下午13:30至16:00。(北京时间,法定节假日除外) 地点:上海市长寿路285号恒达大厦16楼 方式:有兴趣的潜在投标人写明申请项目的名称,提供报名单位名称、具体项目联系人的联系方式(姓名、手机、地址及邮箱)发送至邮箱13795281643@163.com,收到邮件回复后,请完整填写《购标书登记表》 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月06日 09点00分(北京时间) 开标时间:2022年12月06日 09点00分(北京时间) 地点:上海市长寿路285号恒达广场10楼开标室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 项目编号:HW2022101907 本项目第一次公告因报名的供应商不足三家,现进行第二次采购 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:复旦大学 地址:上海市杨浦区邯郸路220号 联系方式:许老师 86-21-65641327 2.采购代理机构信息 名 称:上海市机械设备成套(集团)有限公司 地 址:上海市长寿路285号16楼 联系方式:张洁玮、沈飏 021-32557719;021-32557775 3.项目联系方式 项目联系人:许老师 电 话: 86-21-65641327
  • 实时细胞分析:为中药检测提供量化依据
    近日,生物检测领域的新前沿技术——XCELLigence高峰论坛透露,作为生物检测技术领域的一项创新有望给中药检测提供可量化依据。  据了解,罗氏应用科学部最新的这一实时细胞分析系统为药物研发、毒理学、肿瘤学、医学微生物和病毒学研究分析应用,提供了一个无需标记、同时又可对细胞进行实时监测的新型细胞分析平台。尤其在现代中药的开发和药理机制分析的应用上,这一突破性的技术给中草药的发展带来了里程碑式的意义。  在高峰论坛上,浙江大学医学部柯越海教授还介绍说,中国传统医药与西方现代科学有了一个共通的、可量化的检验途径,也为传统天然药材的药效检测提供了新的依据。艾森生物科学公司总裁徐晓博士指出:“XCELLigence新技术使得研究者对癌症的了解更透彻,有利于最优化的药物研发,使癌症得到更好的治疗。”罗氏诊断应用科学部及分子诊断部总监郭伟立先生表示:“罗氏希望通过XCELLigence系统平台的不断完善,对无标记的动态细胞检测技术的发展起到更好的推动作用,从而为生物检测领域做出贡献。”
  • 分子诊断与细胞分析市场热度持续攀升
    20世纪80年代初,曾经有人预言:“21世纪将是生物学的世纪”。这一预言如今已经成为现实,美国《科学》周刊评选的2014年全世界十大科技突破中,一半的成果都来自生命科学领域。  国内生物产业近年成为政策与资金关注的焦点,也给生命科学仪器带来巨大的市场机会。2014年,全球生命科学仪器市场销售额超过400亿美元,并以6%的速度增长。本文就生命科学领域中热度持续攀升的分子诊断和细胞分析的部分仪器市场做一小结,并结合仪器信息网相关仪器专场数据进行分析。  分子诊断—基因测序和PCR  分子诊断是生命科学领域的热点之一,有关机构预测,2019年该市场规模将达723亿元,年均复合增长率高达18.7%,其中分子诊断细分市场年均增速超过20%,而且未来还将维持一段长时间的高速成长周期。同时,相应热点领域发展带动了基因测序仪、PCR仪等分子生物学仪器的采购需求。  (1)基因测序—二胎政策下前景非常广阔  2015年10月29日中共五中全会公报允许普遍二胎,随着二胎政策的全面放开以及我国局部省份将基因检测纳入医保报销并相继发布执行通知,要实现二胎优生,最大的利好当属于基因检测领域。  我国基因测序市场中,产前基因检测市场巨大。截止今年10月底,全国109家医疗机构取得了国家卫计委核准的高通量基因测序产前筛查与诊断临床试点资质,到目前检测人数已经突破5万人次。如以国家规定的3500 元/次的费用计算,按照我国每年2000万左右的新生儿计算,产前基因检测市场能达到700亿元人民币。11月14日,央视《财经周刊》栏目也报道了无创产检基因检测的相关调查结果,预计未来市场规模可破千亿。  根据Markets&Markets的研究报告显示,去年二代基因测序的全球市场规模为25亿美元,预计2020年将达到87亿美元,复合增长率将达23%。对于如此快速的发展市场需求,最近两年不少厂商(特别是国产厂商)相继推出了新的产品,比如华大基因的BGISEQ-500、中科紫鑫的BIGIS、深圳华因康的HYK-PSTAR-IIA、赛默飞的Ion TorrentTM Ion S5TM NGS系统等。  目前,我国CFDA医疗器械注册认证的基因测序仪共有6款,分别是华大基因的BGISEQ-100和BGISEQ-1000、达安基因的DA8600、华因康的HYK-PSTAR-IIA、博奥生物的BioelectronSeq4000和贝瑞和康的NextSeq CN500。  2015年1-10月期间,仪器信息网基因测序仪专场访问量相比2014年同期增长50%,留言量增长近200%,由此可以印证该市场的热度。  (2)PCR仪—2015年全球新品不断  2月,上海研域仪器设备有限公司梯度PCR仪上线。  5月,香港力康HealForce推出集团首款梯度智能PCR仪。  8月份,加州大学教授Luke Lee 博士和他的团队研发出一种超速光电PCR技术——能显著加快PCR反应中DNA变性、退火的速度。  8月,国内“多点取样-实时荧光定量PCR技术”技术得到认可,该技术对于食品的日常监管及企业的在线质量控制有着良好的应用前景与推广价值,产品将尽快推向市场。  10月份,德国耶拿Biometra TAdvanced 96 SG 基因扩增仪新品发布。  有调查显示PCR市场全球有8%的增长趋势,其中,qPCR占有总PCR市场的64%。最新数据显示,全球数字PCR和qPCR市场预计到2019年将达到39.7亿,2014至2019年均复合增长率为7.8%。  目前qPCR仪在国内临床应用方面,国产仪器和进口仪器差距已经越来越小,未来这一市场国产化、自动化将是大趋势,试剂盒厂家为了更加适应二三线医疗市场的需求,也会向这些方面不断调整。  2015年1-10月期间,仪器信息网基因扩增仪专场访问量相比2014年同期增长200%,受关注度大增。  细胞分析—流式细胞仪和荧光显微镜  据了解,干细胞治疗政策的放开、干细胞技术的突破,将对细胞生物学科研进程起到推动作用,同时也将使其研究工具——即细胞生物学仪器市场高速增长。鉴于此,流式细胞仪、显微镜成像等设备未来几年的市场规模和技术进展值得期待。  (1)流式细胞仪—2022年市场将达70亿美元  目前,全球范围内已经有超过100家公司以流式细胞仪或其相关耗材试剂为主营业务,每年的销售额达到30亿美元,仅仅试剂开辟的市场份额就达到了10亿美元/年。预计2020年市场规模将达到65亿美元,2012到2020年间复合年增长率为30.9%,2022年市场将达70亿美元。  随着国家对医疗器械行业政策扶持的加强,未来流式细胞仪市场发展空间巨大 加之,国内流式细胞仪企业技术的提升,原材料成本的下降,预计2016年我国流式细胞仪发展规模将达到7.1亿元,我国流式细胞仪行业前景可期。  2015年1-10月期间,仪器信息网流式细胞仪专场访问量相比2014年同期增长1.2倍,关注度稳步增长。  (2)荧光显微镜—超分辨有新突破  2014年,国内光学显微镜总进口额突破3亿美元,生物领域应用的光学显微镜进口额就超过1亿美元。其中,国内激光共聚焦显微镜市场需求已超过1亿元人民币。相较于全球23亿美元的光学显微镜市场,中国市场还有非常大的上升空间,预计国内光学显微镜市场还将以每年超过30%的增长率扩大规模。同时,从仪器信息网今年10月底之前的荧光显微镜专场留言量同比增长4倍这一现象可以略见该市场的火热程度。  得益于2014年诺贝尔化学奖的结果,中国相关领域的研究人员已开始把目光投向了更加先进的超高分辨率光学显微镜。据了解,中国的一些科研单位,比如浙江大学、中科院苏州医工所等,正在进行超分辨率光学成像技术的研究工作。  可喜的是,今年2月份,我国超分辨率荧光显微镜研制取得新突破,华中科技大学武汉光电国家实验室朱明强教授课题组研发了一种超级荧光分子开关,同时,制作出具有超级光敏感和应用潜力的全光晶体管,这对我国研制新型超分辨率荧光显微镜意义重大。(编辑:史秀明)  (注:本文所引数据来自互联网,仅供读者参考。)
  • 575万!中山大学附属第八医院(深圳福田)生物实验室(细胞房)流式细胞仪(分选型)、流式细胞仪(分析型)采购项目
    项目编号:FTDL2022000114项目名称:中山大学附属第八医院(深圳福田)生物实验室(细胞房)流式细胞仪(分选型)、流式细胞仪(分析型)采购项目预算金额:575.0000000 万元(人民币)最高限价(如有):575.0000000 万元(人民币)采购需求:详见招标文件合同履行期限:详见招标文件本项目( 不接受 )联合体投标。
  • 安捷伦推出用于低丰度免疫细胞代谢分析的高灵敏度XF分析解决方案
    2021年2月17日,北京——安捷伦科技公司 (纽约证交所:A)推出安捷伦 Seahorse XF HS 迷你板,可用于提高免疫细胞代谢分析。免疫学和疾病研究人员越来越多地使用稀有的体外基因工程细胞来建立更好的疾病模型。然而,此类细胞的生产数量有限,限制了研究人员可进行的细胞分析类型。XF HS Mini是安捷伦Seahorse XF平台系列的最新成员,可实时分析活细胞中的线粒体呼吸、糖酵解和ATP生成。这些代谢测量使研究人员能更充分地了解细胞的健康状况、功能和信号转导。高度灵敏的XF HS Mini分析仪可提高性能和精度、减少每孔所需细胞数量、改善悬浮细胞工作流程一致性,并简化分析。这些改进使研究人员能从免疫细胞等数量有限或呼吸速率低的细胞类型中可靠地生成XF数据,进行以往无法完成的测量。斯坦福大学干细胞移植与再生医学系儿科学副教授Katja Weinacht医学博士说道:“我们使用的是经过高度操纵的免疫细胞,其生命周期较短,生成成本较高且耗时费力。以更少的细胞数量获得更高的灵敏度是成败的关键,因此我们在疾病模型中使用安捷伦Seahorse XF技术。”安捷伦细胞分析事业部高级总监David Ferrick博士表示:“随着我们的客户努力在更复杂、更特殊的体内环境中进行生物学探究,对稀有细胞群的研究需求已愈发明确。XF HS Mini更高的灵敏度和精度将为客户开辟代谢分析的新领域。”关于安捷伦科技安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,致力于提供敏锐洞察与创新,帮助提高生活质量。我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2020 财年,安捷伦的营业收入为 53.4 亿美元,全球员工数为 16400 人。
  • Life Tech Attune声波聚焦细胞分析更快更准确地检测稀有细胞
    Trouble viewing this email? Read it online. Learn more about the Attune Acoustic Focusing Cytometer. 更快更准确地检测稀有细胞-只有Attune 声波聚焦细胞分析仪能够做到尊敬的客户, 在您样品中检测稀有细胞群,提升稀有细胞的检测下限,更加快速地得到实验结果,而且在您的实验台上就能进行流式细胞分析, Attune声波聚焦细胞分析仪可以做到. Attune声波聚焦细胞分析仪每次进样可以分析检测2千万个细胞, 流速可以调整,范围可从 25 µ L/min到1,000 µ L/min。获得详细产品资料及报名参加演示培训班 下表比较了传统液体聚焦型流式细胞仪和Attune声波聚焦细胞分析仪的细胞分析采集速度, 样品为再生障碍性贫血病人的血液样品,各实验均在采集到1百万个粒细胞后停止收集数据。 仪器/样品分析速度采集1百万个粒细胞所需时间相对速度比高流速下常规液体聚焦流式细胞分析仪63 min 33 sec1x声波聚焦细胞分析仪200 µ L/min13 min 20 sec快4.8倍声波聚焦细胞分析仪500 µ L/min5 min 47 sec快11.0倍声波聚焦细胞分析仪1000 µ L/min3 min 13 sec快19.7倍
  • 生物药仍是医疗领域“蓝海”,细胞分析技术助力抗体药特异性功能分析
    近年来,抗体药物的接连上市和重磅销售引发国内外抗体类生物治疗药物的研发热潮。抗体药物已经成为治疗肿瘤的明星产品。抗体类生物治疗药物的活性测定在质量控制中至关重要。活性测定是对药物的有效成分和含量以及药物效价的测定,是确保抗体类药物有效性的重要质控指标。相关的生物技术在药物研发质控中的应用对新型抗体药物的发展带来一系列突破。为帮助从事相关研究的用户梳理生物制药质量控制研究技术及方法,仪器信息网特别策划了“抗体药研发的生物活性鉴定及功能分析”相关专题(点击查看)并邀请赛默飞蛋白和细胞分析技术应用高级经理冯彦斌先生分享对于抗体药的看法。他在文中主要分析了国内抗体药物的市场潜力、研发进展以及抗体药研发相关生物活性鉴定和功能分析的先进技术。赛默飞蛋白和细胞分析技术应用高级经理 冯彦斌仪器信息网:您如何看待近年来的抗体药市场发展变化与前景? 冯彦斌:众所周知,近年来中国抗体药物市场规模增长异常迅猛,尽管目前中国总的抗体药物上市批准数量低于欧美,但增速方面已经接近欧美市场的两倍,蕴藏着巨大的潜力和空间。据统计,2018年我国抗体药物产业总体市场规模约183亿美元,预计2020-2025年平均年增长率为~15%,到2025年,我国抗体药的市场规模将超508亿美元。其主要的驱动因素有:1)肿瘤的发病和死亡率上升; 2)我国创新药优化的审评审批流程;3) 带量采购等政策驱动创新需求; 4)抗体药物逐渐被纳入医保目录。自2020年以来,国家药品监督管理局(NMPA)累计受理了超过200款国产抗体新药的临床试验申请。目前抗体药物研究最热门的靶点包括PD-1/PD-L1、TNF-α、VEGF、HER-2、CD20、EGFR 等。抗体药物最重要的应用领域为自身免疫类疾病和癌症(约65%的市场占比)。随着疾病机制的深入研究,抗体药物在哮喘、抗感染、血液病和心血管病领域的药物不断增加,并迅速拓展到其它相关领域。作为未来生物药的主力军,抗体药物创新研发则显得尤为重要。随着单抗生物类似药进入收获期,双特异性抗体、抗体偶联药物(ADC)、纳米抗体等药物市场也异军突起。创新型抗体加快了开发步伐,多种类型的抗体药物有望得到广泛的临床应用。从抗体创新药品种数量和国内产品临床申报数量上看,排名靠前的为恒瑞医药、复星医药、海正药业,而信达生物和康宁杰瑞产品数量超过了10个。创新类抗体药物基于其高特异性、低毒性、低转化周期等特征,将被更广泛地应用于各类疾病的治疗。未来几年,生物药仍是医疗领域的蓝海,也是人类健康的福音,未来发展前景良好。仪器信息网:近年来抗体制药的发展迅速,对于创新研发技术有何促进? 冯彦斌:越来越多的研究表明,抗体药物由于靶向性强、特异性高和毒副作用低等特点,近年来已成为生物药行业中发展最快的分支。截至今日,美国FDA陆续批准了多个个治疗性抗体药物,其中传统单克隆抗体和人源化单抗已成主流,双特异性抗体开始初具规模。但在抗体功能优化、新抗体研发,特别是抗体规模化生产,以及抗体药物如何创新等问题仍是我们面临的巨大挑战。随着分子生物学、结构生物学、生物信息学等技术的发展,人们对抗体结构中各功能区的认识进一步加深,现在已经能够通过修改各功能区的序列、结构来赋予抗体新的特性和功能,这是抗体药物创新的基础。近年来抗体偶联药物(ADC)的发展主要依赖于以下研究领域的进展:①靶抗原及其特异性抗体的临床有效性及安全性得到验证,如靶向Her2 抗原的Herceptin 等;②高效的细胞毒性药物,如:美登素(maytansinoid,DM)、单甲基奥利他汀E(auristatin,MMAE)等;③新的连接臂和交联方法的发展,连接臂是决定抗体偶联药物ADC 药物活性的主要因素之一,它们应该在血液循环中相对稳定,到达靶细胞时通过内化进入细胞内,在溶酶体的低pH 条件下或蛋白酶作用下释放小分子药物。交联方法也从利用赖氨酸的随机连接向利用半胱氨酸的定点交联发展。新型药物拓宽了药物的治疗窗,因此备受关注,成为当前抗体药物发展的热点。持续上升的关注热点和研发投入的加大,使得创新技术也不断涌现。双特异性抗体药物由于其更好的特异性和低毒性,也越来越多地被投入研发管线;新靶点的筛选也一直是抗体药发现的努力方向,但其有效性和安全性需要获得更多的临床数据来验证,同时也有学者提出反向筛选靶向抗原的策略,以期通过反向药理学发现更多的候选靶分子。随着研究的持续深入,更多企业也加强了抗体工程下游技术的优化与整合。如在优化细胞培养条件、改造细胞系、抗体药物的质量控制、细胞培养工艺流程的改进等方面进行了诸多改良和优化。另外,未来基因工程抗体的发展方向将主要集中在通过合理改造抗体序列结构来提高基因工程抗体的药学特性,例如增加抗体药物的稳定性和均一性;通过双特异、多特异抗体以及抗体偶联物技术,赋予基因工程抗体药物新的药效功能;通过Fc 片段改造和糖基化改造,调节原有的效应功能和生物分布特性;通过创造新形式的抗体样分子骨架来发展具有更适宜的生物分布与代谢特性、抗原结合特性、药动学特性的新的“抗体”药物。 仪器信息网:请谈一下相应生物活性鉴定和功能分析的重要性和重要环节是什么?又发挥着怎样的作用?冯彦斌:随着生物制药领域的一大热点,治疗性抗体在治疗肿瘤、自身免疫性疾病、炎症、感染性疾病及其他疾病中取得了重大进展,作为抗体药研发的重点和难点,除了抗体的获取即表达和纯化之外,建立高效、稳定、可信的抗体质量控制分析方法,以及其标准化和先进性是衡量抗体药物相关企业研发能力的重要标准之一。特别是目前研究较为热门的肿瘤特异性抗体功能分析,之前也有提及双特异性抗体甚至多特异性抗体,其最突出的优势就是靶向性强、特异性高和毒副作用低等,所以在其特异性功能分析方向我们也提供足以应对的核心武器。因此,需要关注治疗性抗体的功能研究,通过对特异性抗原结合、抗体介导的细胞毒性作用(ADCC)、补体介导的细胞毒性作用(CDC)、抗体介导的细胞吞噬作用(ADCP)等实验方法进行分析。如在杂交瘤体系构建过程中对于杂交瘤细胞培养、融合、筛选,就可以使用我们的EVOS智能活细胞成像系统对其进行包括增殖及细胞状态的长期成像监测。EVOS M7000 3D数字共聚焦活细胞成像分析系统(点击查看详细参数)对于药理药效、药代及药物安全性评价方面,高内涵筛选分析平台和Varioskan LUX多功能酶标仪,凭借其高效的全自动高通量多靶标筛选功能,以及其后续通过强大多参数数据分析软件多抗体药功能验证进行多维度评价和分析。CellInsight CX7 LZR 激光共聚焦高内涵筛选分析系统(点击查看详细参数)Varioskan LUX多功能酶标仪(点击查看详细参数)Attune NxT流式细胞仪则发挥着更为广泛的作用,通过结合特异性流式抗体对不同种类和亚群的免疫细胞进行鉴定和分析,从而评估机体的免疫功能状态;也可以对细胞的状态和功能进行监测,以实时评估细胞的功能状态和对肿瘤细胞的杀伤作用。Attune NxT流式细胞仪(点击查看详细参数)
  • 293万!BD中标单细胞荧光分析系统
    一、项目编号:2022-JL13(03)-W10004(招标文件编号:2022-JL13(03)-W10004)二、项目名称:单细胞荧光分析系统招标公告2022-JL13(03)-W10004三、中标(成交)信息供应商名称:重庆九州合康医疗器械有限公司供应商地址:重庆中标(成交)金额:293.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 重庆九州合康医疗器械有限公司 单细胞荧光分析系统 BD BD FACSAria Fusion 1 2930000
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制