当前位置: 仪器信息网 > 行业主题 > >

化学发光测氮仪

仪器信息网化学发光测氮仪专题为您提供2024年最新化学发光测氮仪价格报价、厂家品牌的相关信息, 包括化学发光测氮仪参数、型号等,不管是国产,还是进口品牌的化学发光测氮仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化学发光测氮仪相关的耗材配件、试剂标物,还有化学发光测氮仪相关的最新资讯、资料,以及化学发光测氮仪相关的解决方案。

化学发光测氮仪相关的论坛

  • 【求助】关于化学发光成像分析 vs 化学发光检测仪

    刚学习化学发光,请专家指点化学发光检测仪采用液相(态)检测方法比化学发光固相(态)检测(成像系统)灵敏多少个数量级? 3~5个?对于化学发光检测,是不是PMT单光子检测做的工作,化学发光成像系统一定不可以做? 例如?

  • 化学发光定氮仪原理

    化学发光定氮仪采用化学发光检测原理,待测样品(或标样)被引入到高温裂解炉后,在1050 ℃左右的高温下,样品被完全气化并发生氧化裂解,其中的氮化物定量地转化为一氧化氮(NO)。样品气经过膜式干燥器脱去其中的水份。亚稳态的一氧化氮在反应室内与来自臭氧发生器的O3气体发生反应,转化为激发态的NO2*。当激发态的NO2*跃迁到基态时发射出光子,光信号由光电倍增管按特定波长检测接收。再经微电流放大器放大、计算机数据处理,即可转换为与光强度成正比的电信号。在一定的条件下,反应中的化学发光强度与一氧化氮的生成量成正比,而一氧化氮的量又与样品中的总氮含量成正比,故可以通过测定化学发光的强度来测定样品中的总氮含量

  • 化学发光仪

    本人研一新生,想做化学发光,但组内没有化学发光仪,有一台荧光分光光度计,不清楚如何使用荧光分光光度计来测化学发光强度!也可以测流动化学发光么?希望懂的老师,师兄师姐可以帮忙一下,或留下联系方式,十分希望有人指点!

  • 化学发光应用2

    3. 化学化光在生物领域的应用 化学发光在生物学领域也有着很多应用,主要简介如下: 3.1 Fe 2 + 离子催化的化学发光自由基启动的脂质过氧化 (L PO) 是一个链式反应过程。 在链式反应过程中, Fe 2 + 离子起着启动和催化的作用。 反应过程中产生脂自由基 (R - ) 、烷氧自由基 (RO - ) 、共轭二烯和脂过氧化自由基 (ROO - ) 等中间产物。 ROO - 自反应会产生激发的烷氧自由基 (RO 3 ) 和单线态氧 (O 2 ) ,其回到基态时产生发光。 另外,两个 O 2 分子相互作用也可产生发光。 因此,把 Fe 2 + 盐加入含有脂肪的系统中,如细胞膜、线粒体、微粒体、血浆、组织匀浆、尿液等,可产生化学发光。 化学发光的动力学曲线,可分为快速闪光期、潜伏期、缓慢发光期和稳定发光期。有报告提出,快速闪光期的发光强度与样品中过氧化氢含量有关,潜伏期的长短与样品中抗氧化剂含量有关,而缓慢发光期和稳定发光期的发光强度则反映了系统的过氧化水平,即系统产生活性氧的能力。 3.2 血浆和血清的化学发光 许多实验研究对加入 Fe 2 + 盐的不同疾病患者血浆和血清的化学发光进行的测量表明,与正常健康人相比,腹腔器官局部缺血、肢端闭合性局部缺血、血氧含量下降以及出血、手术性休克病人血浆和血清的发光强度降低。 与此相反,风湿性关节炎、阑尾炎、胆囊炎、胰腺炎等炎性疾病患者血浆和血清的发光强度升高。 降低和升高的幅度与疾病的严重程度有关。 有研究提出,利用此方法有可能对非典型的心肌梗塞和腹腔器官炎性疾病做出区别诊断。 3.3 血浆脂蛋白的化学发光 有研究提出,以分离的血浆脂蛋白悬液作为系统模型可以研究不同物质对系统过氧化的调节机制。在分离的血浆脂蛋白悬液中加入胆固醇,温育一定时间后在加入 Fe 2 + 盐,测量化学发光,发现胆固醇能使系统的发光强度降低。分析认为,这可能是由于类固醇的存在抑制了系统的过氧化。对实验性胆固醇过多血症家兔和动脉粥样硬化早期病人进行的测量发现,载脂蛋白 APO – B 。在 Fe 2 + 存在条件下的发光强度出现了增长。同样的现象在肝硬化和慢性肝炎患者身上也被发现。 3.4 尿液的化学发光 利用尿液的化学发光可以研究肾脏功能的变化。将 Fe 2 + 盐加入尿液中,测量其化学发光,发现肾功能不足者尿液的发光强度降低。与正常健康人相比,阑尾炎患者尿液的发光强度则有不同程度的提高。利用这一方法可以评估肾脏的排泄及收缩功能。 3.5 物质抗氧化活性的测定 利用发光测量技术可以评价某些生物组织和体液的抗氧化活性。以某一稳定的发光系统为模型,如脂肪体、线粒体、卵黄脂蛋白等,将待测的抗氧化物质加入该系统,然后加入 Fe 2 + 盐,测量其化学发光。 根据系统化学发光被抑制的程度可以评价物质的抗氧化活性。 利用这一方法进行的研究证明,不同疾病患者血浆和血清的抗氧化活性是不同的。 3.6 H 2 O 2 激发的化学发光 3.6.1 血浆和血清的化学发光 在血浆和血清中加入 H 2 O 2 溶液后能激发化学发光。有报告提出,发光强度与血浆中血红素的水平呈线性相关,相关系数为 + 0. 71 。在上述发光系统中,加入过氧化氢酶或松香油后,发光被抑制,加入叠氮化钠 (NaN 3 ) 后,发光几乎完全消失。 H 2 O 2 激发的血浆和血清的化学发光,其启动因素很可能是血红素过氧化物酶催化 H 2 O 2 分解引起的。血红素过氧化物对 H 2 O 2 的分解是以 H 2 O 2 氧化其底物为前提的。在这一反应过程中导致自由基及其中间产物生成,并与机体分子相互作用,产生 O2 等活性物质,产生发光。 NaN 3 和松香油是 O2 的抑制剂,所以在上述发光系统中加入松香油的 NaN 3 后,发光被抑制。血液中血红素过氧化物酶等以自由基方式分解 H 2 O 2 ,而过氧化氢酸则以非自由基方式分解 H 2 O 2 ,生物体内这两类反应体系协同作用,能很好的清除细胞内的 H 2 O 2 。病理条件下,这一反应体系的平衡被破坏, H 2 O 2 激发的化学发光强度将发生相应改变。因此,根据血浆和血清化学发光的变化,有可能对某些疾病进行区别诊断。 3.6.2 红细胞的化学发光 1981 年 Cepгиеко 等人在分离出的红细胞悬液中加入 H 2 O 2 溶液,对其化学发光进行测量。 发现,随着红细胞的老化和溶解,系统发光强度呈增长趋势。随后对实验性动脉粥样硬化家兔红细胞化学发光进行的测量发现,与正常对照组相比,发光强度出现了降低。这可能是由于细胞膜中胆固纯含量过高造成的。对恶性肿瘤患者的调查也发现发光强度的改变。红细胞的衰老与脂质过氧化有关。 H 2 O 2 能引发膜脂过氧化, H 2 O 2 和脂质过氧化产物都能引起血红蛋白释放 Fe 2 + , Fe 2 + 是诱发一系列自由基反应、起动脂质过氧化的催化剂。自由基的产生不仅促进了红细胞的衰老和溶解,而且引发的脂质过氧化还可以导致膜脂组分和结构的改变,直接影响红细胞的生理功能。

  • MPI-E型电致化学发光检测仪

    技术参数 1.MPI-E型电致化学发光检测仪—多功能化学发光检测仪: * 测量动态范围:大于5个数量级 * 测量精度优于0.05% 2.MPI-A/B型多功能化学发光检测器: * 波长范围:300—650nm * 灵敏度:SP1000A/Lm 3.MPI-E型电致化学发光检测仪—电化学分析仪: * 电位范围:-10V—10V * 电流范围:±250 mA * 参比电极输入阻抗:10E12Ω * 灵敏度:1x10E-12—0.1A 共16个量程 * 输入偏置电流:50pA * 电位增量:1mV * 扫描速率:0.0001—200V/S * 测试方法:循环伏安法(CV),线性扫描伏安法(LSV),计时电流法(CA)计时电量法(CC),控制电位电解库伦法(BE),开路电压—时间曲线(OCPT) 技术文章 此仪器没有任何技术文章 主要特点 应用领域: * 药物、氨基酸、多肽、蛋白质及核酸检测分析 * 蛋白质与药物、核酸相互作用研究。 仪器介绍 电化学发光检测是近几年发展迅速的一种新型检测方法,它将电化学分析与化学发光检测相结合,可用于临床检验分析及医药、病毒、免疫等科学试验。 MPI-E型电致化学发光检测仪系结合电化学分析与化学发光检测于一体的多测试界面、多分析参数、多控制部件系统集成仪器。它可同时对被测样品实现电致化学发光实时检测,并同步显示化学发光信号、电化学分析信号并对其进行详细分析。

  • 【转帖】化学发光的一些基础知识

    [size=2][font=新宋体]化学发光反应所以能用于分析测定,是因为化学发光强度(ICL)与化学反应速度(dc/dt)相关联,而一切影响反应速度的因素都可以作为建立测定方法的依据。化学发光反应一般可表示为:A+B → C*, C* → C+hv化学发光的反应既包括一个发光过程也包括了一个化学发光反应的过程,因此该发光反应的化学发光强度取决于化学反应的速率dc/dt和反应的化学发光量子效率( ΦCL ) ICL= ΦCLdc/dt.b6u4X!d(P5@-_式中ΦCL可表示为:ΦCL=ΦrΦf;Φr:生成激发态产物的量子产率,也就是每一个参加反应的分子产生的激发态; Φf :激发态产物分子的发光量子产率,也就是每一个激发态产生的光子数,对于一定的化学发光反应, 为一定值。由于化学发光测定易受化学反应条件,如pH值、离子强度、溶液组成、温度等的影响,影响反应速率或任意一个量子效率的因素都会改变发光强度。因此,在一定的化学反应条件下,通过测定化学发光强度就可以测定反应体系中某种物质的浓度。化学发光分析测定的物质对象可分为三类:第一类物质是化学发光反应中的的反应物;第二类物质是化学发光反应中的催化剂,增敏剂或抑制剂 第三类是偶合反应中反应物,催化剂,增敏剂等。这里所说的偶合反应其实就相当于前面提到的间接化学发光反应,它将一个化学发光反应与另一个或一系列反应进行偶合,只要这一个或一系列反应中的任何一种反应物或产物或催化剂(包括酶)能参与化学发光反应,就可以根据所产生的化学发光信号强度获得该反应中某一组分的量。通过标记方式利用这三类物质还可以来测定人们感兴区的其他物质。进一步扩大了化学发光分析的应用范围化学发光分析最初是以分立式进样化学发光仪作为研究手段,由于化学发光现象一般比较短暂且随时间变化较大,使用间歇式手工操作是较难取得良好的重现性,因此人们将流动注射技术引入到化学发光分析中。流动注射技术是hansen于1975年建立的,把一定体积的试样注入到流动试剂(载流)中,可以保证混合过程与反应时间的高度重现性,特别是在非平衡状态下高效率的完成试样的在线处理与测定。在化学发光分析中,化学反应器可以正面放置在接近光检测器的部位,因此检测器的仪接受较大分量的发射光子,从而提高了灵敏度,其灵敏度可达10-21mol,甚至可检测至单分子水平。化学发光分析的检测线并不受仪器的检测极限的限制,多数是受试剂的杂质污染以及由于浓度极低而带来的其他一些问题的限制。另外,由于化学激发作用具有电子激发态的均一性特点,通常其现行范围所展示的浓度区间较宽,可高达3~6个数量级。对于化学发光分析来说,由于激发能来源于化学反应,无须专门的激发光源以及相应的单色器和聚焦透镜等,所以仪器设备简单、廉价、易微型化。分析化学,论由于化学发光现象一般比较短暂,因此化学发光分析所要求的时间也较短,但其最大的缺点是选择性差。因为化学发光分析的测定大多是在相同条件下,沿用同一个化学发光反应进行的,因而选择性较差。如典型的鲁米诺-过氧化氢化学发光体系,就能被10多种无机离子和30多种有机物催化或者增敏,且均在pH8~11的碱性条件下完成。近年来,化学发光检测与色谱以及毛细管电泳等分离技术的联用,在很大程度上解决了化学发光分析选择性差的问题,扩大了化学发光分析的应用范围。为了提高化学发光分析法的选择性,将高灵敏度的化学发光检测技术与高效能、高分辨力的高效液相色谱或毛细管电泳以适当的方式相结合,集合2种技术的优势,为人们展示了一个分离效能高、检测先低、分析速度快的方法。%I/_8e*液相色谱化学发光检测仪主要包括分离柱、泵系统、混合器和化学发光检测器。柱后的反应和化学发光检测是这一联用方法成功的关键。需要注意的是,化学发光的最佳条件往往并不是分离的最佳条件,比如色谱分离金属离子对常用酸性的流动相,而金属离子与鲁米诺的化学发光反应多在pH10时才有最强的发光强度,因此实际分析中要综合考虑各个方面的因素,选择合适的条件,使其既有利于分离又能保证灵敏、稳定的检测。|分析化学|化学分析|仪器分析|分析测试|色 发光在生物学领域也有着很多应用,主要简介如下:1 血浆和血清的化学发光 亚铁离子催化的化学发光自由基启动的脂质过氧化 (L PO) 是一个链式反应过程。反应过程中产生脂自由基 (R - ) 、烷氧自由基 (RO - ) 、共轭二烯和脂过氧化自由基 (ROO - ) 等中间产物。 ROO - 自反应会产生激发的烷氧自由基 (RO 3 ) 和单线态氧 (O 2 ) ,其回到基态时产生发光。因此,把 Fe 2 + 盐加入含有脂肪的系统中,如细胞膜、线粒体、微粒体、血浆、组织匀浆、尿液等,可产生化学发光。许多实验研究对加入 Fe 2 + 盐的不同疾病患者血浆和血清的化学发光进行的测量表明,与正常健康人相比,腹腔器官局部缺血、肢端闭合性局部缺血、血氧含量下降以及出血、手术性休克病人血浆和血清的发光强度降低。 与此相反,风湿性关节炎、阑尾炎、胆囊炎、胰腺炎等炎性疾病患者血浆和血清的发光强度升高。 降低和升高的幅度与疾病的严重程度有关。 可以看出,利用此方法有可能对非典型的心肌梗塞和腹腔器官炎性疾病做出区别诊断。 2血浆脂蛋白的化学发光 有研究提出,以分离的血浆脂蛋白悬液作为系统模型可以研究不同物质对系统过氧化的调节机制。在分离的血浆脂蛋白悬液中加入胆固醇,温育一定时间后在加入 Fe 2 + 盐,测量化学发光,发现胆固醇能使系统的发光强度降低。分析认为,这可能是由于类固醇的存在抑制了系统的过氧化。对实验性胆固醇过多血症家兔和动脉粥样硬化早期病人进行的测量发现,载脂蛋白 APO – B 。在 Fe 2 + 存在条件下的发光强度出现了增长。同样的现象在肝硬化和慢性肝炎患者身上也被发现。 3尿液的化学发光 利用尿液的化学发光可以研究肾脏功能的变化。将 Fe 2 + 盐加入尿液中,测量其化学发光,发现肾功能不足者尿液的发光强度降低。与正常健康人相比,阑尾炎患者尿液的发光强度则有不同程度的提高。利用这一方法可以评估肾脏的排泄及收缩功能。 4物质抗氧化活性的测定 利用发光测量技术可以评价某些生物组织和体液的抗氧化活性。以某一稳定的发光系统为模型,如脂肪体、线粒体、卵黄脂蛋白等,将待测的抗氧化物质加入该系统,然后加入 Fe 2 + 盐,测量其化学发光。 根据系统化学发光被抑制的程度可以评价物质的抗氧化活性。 利用这一方法进行的研究证明,不同疾病患者血浆和血清的抗氧化活性是不同的。 [/font][/size]化学发光研究的热点方向直接化学发光反应是当前化学发光分析研究的一个重要方向,人们通常通过大量试验筛选氧化反应及反应介质来证明某种有机药物、农药是否具有化学发光特性。以化学发光试剂标记核酸,运用化学发光分析进行核酸分子杂交分析是化学发光分析的前沿,其发展将为基因工程、基因诊断和治疗提供有效的检测手段。分析通常进行化学发光分析都是在现有化学发光试剂的基础上开展研究,而新型化学发光试剂的开发性研究较少,此领域还有研究空间。金属配合物,特别是钌等过渡金属配合物在化学发光分析中的作用正逐渐受到人们的重视。比如钌(Ⅱ)-联吡啶常用作电致化学发光试剂

  • 化学发光仪使用问题

    我们是用磁微粒化学发光法做体外诊断试剂的,现在碰到一个很大问题是:用同样试剂在同一台化学发光仪上测同样的样本,上午测的发光值和下午测的发光值偏差20%-30%,甚至前一个小时和后一个小时测的发光值偏差都在10%以上,仪器用的仁迈生物的化学发光仪,型号ACL2800,用的是滨松的PMT,查了相关资料,说PMT受到温度,湿度的影响,我们把温度和湿度控制稳定,发光值上下午偏差依然较大,请问这大概是什么原因导致的?如果是试剂原因,第二天同时段测的发光值又差10%以内,这个还可以接受,麻烦老师帮忙分析一下原因?感谢??

  • 化学发光仪使用问题

    我们是用磁微粒化学发光法做体外诊断试剂的,现在碰到一个很大问题是:用同样试剂在同一台化学发光仪上测同样的样本,上午测的发光值和下午测的发光值偏差20%-30%,甚至前一个小时和后一个小时测的发光值偏差都在10%以上,仪器用的仁迈生物的化学发光仪,型号ACL2800,用的是滨松的PMT,查了相关资料,说PMT受到温度,湿度的影响,我们把温度和湿度控制稳定,发光值上下午偏差依然较大,请问这大概是什么原因导致的?如果是试剂原因,第二天同时段测的发光值又差10%以内,这个还可以接受,麻烦老师帮忙分析一下原因?感谢??

  • 特殊的化学发光现象之三:纳米化学发光和电致化学发光

    如前所述,对于化学发光的研究一般仅局限于分子和离子水平以及简单的分子聚集体如胶束和微乳液等。纳米材料作为一种微尺度的物质构成单元,其特殊的Kubo 效应、小尺寸效应、表面效应及量子隧道效应使其呈现许多奇异的物理、化学性质。近年来,有关纳米材料参与的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应体系受到了越来越广泛的关注。对于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光反应,张兴荣课题组从2002 年开始利用纳米材料优良的催化性能发展了一系列基于纳米材料的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光传感器,主要用于易挥发性有机物的测定。例如,乙醇和丙酮蒸气在7 种金属氧化物纳米材料的催化氧化作用下具有化学发光现象,其中纳米TiO2 催化作用下的化学发光信号最强,其可能的发光中间体被认为是氧化生成的激发态乙醛分子,并具有很高的选择性。其它易挥发的有机物如丁酮和乙醛也能够在纳米材料的催化氧化作用下产生[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光。而挥发性氯代有机物在纳米TiO2 的作用下转化为Cl2;生成的Cl2 被富集在填充纳米TiO2 的管中,可以用柱后化学发光法检测。Bard 等于2002 年在Science 上发表第一篇有关纳米粒子的液相电致化学发光的报道以来,纳米粒子参与的液相电致化学发光和化学发光行为也已经引起了人们的关注。Bard 等报道半导体纳米粒子如Si,CdS,CdSe,CdSe/ZnSe,Ge 以及CdTe 等都可以产生电致化学发光。Poznyak 等报道了半导体CdSe/CdS 纳米粒子与H2O2 反应可以产生液相化学发光,其中CdSe/CdS半导体纳米粒子被鉴定为发光体。Corrales 等人报道了纳米TiO2 型着色剂,其化学发光特性可用于聚合物热稳定性的表征。在半导体纳米粒子参与的化学发光或电致化学发光反应中,半导体纳米粒子的表面缺陷以及量子尺寸效应是产生化学发光的基础。总之,纳米材料作为一种新型化学发光响应单元对于提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义

  • 化学发光联用技术-流动注射化学发光

    FIA-CL检测系统 流动注射分析是Ruzicka和Hansen于1975年首先提出的一种创新技术,这种新技术的发展摆脱了溶液化学分析平衡理论的束缚,可在物理和化学不平衡状态下进行测定。它适应性广泛,分析效率高,试样和试剂消耗量少,检测精密度高,设备简单。该技术发展非常迅速,已被广泛应用于很多分析领域。流动注射分析技术能使样品和试剂以高度重现的方式混合,从混合到检测的时间间隔可以严格控制。同时,由于计算机控制和大规模集成电路的出现,FIA可以实现自动化分析。而一般的化学发光是快速反应,在溶液混合的瞬间就产生发光信号,并且在几秒内发光强度达到峰值。要达到精度较好的测量结果,就必须严格保持测量过程中的物理性质和化学性质能很好地重现。在这方面,流动注射为化学发光分析提供了一个很好的手段。在流动过程中,所有的试验参数如试剂体积、保留时间、温度、试剂的混合时间和方式等都能严格控制并重复操作。因此,这种方法克服了化学发光分析法重现性差、操作费时、不便于实现自动化等缺点。流动注射和化学发光分析的结合,使之成为一种快速、有效的痕量分析技术,被广泛应用于水质检测、土壤样品分析、农业和环境监测、科研与教学、发酵过程监测、药物研究、禁药检测、血液分析、食品和饮料、分光光度分析、火焰光度分析、质谱分析、原子光谱分析、荧光分析、生物化学分析等等。 流动注射化学发光系统一般包括两个部分。一部分是流动体系部分,它控制发光试剂的流速及其混合方式;另外一部分是化学发光检测部分,它将检测到的发光反应发出的光转变成电信号,并由记录仪记录下其发光响应值。常见的流动注射化学发光检测器的装置示意图如图1-1a所示: 图1-1 FIA-CL 联用装置示意图Fig. 1-1 Schematic diagram of FIA-CL detectionP:蠕动泵;V:进样阀;C:流动池;D:检测器;R:记录仪; W:废液 一般优化的流路有三通路、四通路和多通路等形式,各发光试剂以某一恒定流速经蠕动泵驱动,通过进样阀将待测组分与发光试剂混合, 在流动池里面发生化学发光反应, 流通池亦即反应池内的光信号由光电倍增管转换并放大,最后由记录仪记录。由于该检测法不需要光源,消除了光源不稳定的杂散光的干扰, 另外直接检测发光强度,因此灵敏度很高。流动池中的反应可以是不完全反应,只要其中的试剂分散和反应程度可以高度重现就符合试验要求。试样和试剂的分散是所有FIA方法的核心问题,通常用分散系数D来描述试样的分散状态。D定义为:决定分析读数的流体微元组分在扩散过程发生前(C0)与发生后(Cmax)的浓度比值,即D=C0/Cmax 。FIA体系中的分散过程是许多不同因素 (包括流速、管道长度、管径、试样体积与检测方式等)的复杂函数。主要影响有:①试样的进样体积越大,D越小;②反应器管长度越大,D越大;③管路集合形状越复杂,试样在其中流动方向改变越多,D越大;如:直管反应器的D最小,盘管与编织管反应器的D较大。④流速对D的影响与反应器的管径大小有关,关系较复杂。在此装置中,流动池的设计是个关键。由于直管反应器的分散系数较小,试剂分散度不够,所得的发光强度值较弱。因此,在实际中,一般采用如图1-1b所示的盘管式反应器。一般来说,反应器的体积应尽可能大,其发光截面尽可能大,且同光电倍增管尽可能靠近。根据实际分析情况,还可以将萃取渗析、交换柱及填充柱引入FIA系统,使FIA-CL应用更加广泛。

  • 化学发光仪使用问题

    我们是用磁微粒化学发光法做体外诊断试剂的,现在碰到一个很大问题是:用同样试剂在同一台化学发光仪上测同样的样本,上午测的发光值和下午测的发光值偏差20%-30%,甚至前一个小时和后一个小时测的发光值偏差都在10%以上,仪器用的仁迈生物的化学发光仪,型号ACL2800,用的是滨松的PMT,查了相关资料,说PMT受到温度,湿度的影响,我们把温度和湿度控制稳定,发光值上下午偏差依然较大,请问这大概是什么原因导致的?如果是试剂原因,第二天同时段测的发光值又差10%以内,这个还可以接受,麻烦老师帮忙分析一下原因?感谢??

  • 【原创】化学发光及生物发光的原理及其应用

    化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ) ,第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物 鲁米诺的衍生物主要有异鲁米诺、 4— 氨基已基 —N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。 在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。 2 .光泽精 光泽精以硝酸盐的形式存在,在碱性介质中,过氧化氢将其氧化成四元环过氧化物中间体,而后裂解生成激发态的吡啶酮而发光。利用光泽精与还原剂作用,可用于测定临床医学上一些重要的还原性物质,如抗坏血酸、肌酸酐、谷胱甘肽、葡萄糖醛酸、乳糖、葡萄糖。 3 .洛粉碱 洛粉是文献上记载最早的化学发光试剂,但却迟迟未得到应用,直到 1979 年 Marino 等人将它应用于 Co 的测定后才得到重视。此试剂已被用于多种元素的分析测定。 4 .过氧化草酸酯类 草酸盐类化学发光反应大都生成过氧草酰 (Peroxalate) 中间体,因此这类反应亦称过氧草酰类化学发光反应。过氧草酸盐类化学发光分析应用的推广还有赖于新的荧光衍生试剂的开发。 5 . 吖啶酯类 McCap r 等合成了一系列吖啶酯类化合物,对该类试剂的化学发光机理研究表明,发光效率与试剂中的可解离酸性基团的 pKa 有密切关系, pKa 一般应小于 11 。吖啶酯类化合物是一类很有前途的非放射性核酸探针标记物,用作 DNA 的发光探针,发光量子产率高,稳定性好,标记物对杂交反应的动力学和杂交体的稳定性无影响,可以直接在碱性介质中进行化学发光反应。 以上五种化学发光剂化学发光量子产率高,水溶液稳定,能被多种氧化剂直接氧化而发光,也可被众多的金属高于催化发光反应而发光,许多无机、有机和生化组分也能增强或抑制其发光,因此应用十分广泛。目前报道的有邻菲咯啉,碱基水杨酸、罗明丹 —B 、没食子酸、香豆素、皮素,茜素紫、苏木色精,培花青,三苯甲烷类染料,丙酮、乙醇、羟胺等。这些试剂商品化程度高,价廉,使用方便,但化学发光量子产率较低,因此,研究增敏试剂来提高它们的化学发光量子产率是非常关键的。

  • 【转帖】化学发光浅谈(二)

    [font=新宋体][size=2]化学发光反应所以能用于分析测定,是因为化学发光强度(ICL)与化学反应速度(dc/dt)相关联,而一切影响反应速度的因素都可以作为建立测定方法的依据。 化学发光反应一般可表示为:A+B → C*, C* → C+hv 化学发光的反应既包括一个发光过程也包括了一个化学发光反应的过程,因此该发光反应的化学发光强度取决于化学反应的速率dc/dt和反应的化学发光量子效率( ΦCL ) ICL= ΦCLdc/dt.b6u4X!d(P5@-_ 式中ΦCL可表示为:ΦCL=ΦrΦf; Φr:生成激发态产物的量子产率,也就是每一个参加反应的分子产生的激发态; Φf :激发态产物分子的发光量子产率,也就是每一个激发态产生的光子数,对于一定的化学发光反应, 为一定值。 由于化学发光测定易受化学反应条件,如pH值、离子强度、溶液组成、温度等的影响,影响反应速率或任意一个量子效率的因素都会改变发光强度。因此,在一定的化学反应条件下,通过测定化学发光强度就可以测定反应体系中某种物质的浓度。 化学发光分析测定的物质对象可分为三类:第一类物质是化学发光反应中的的反应物;第二类物质是化学发光反应中的催化剂,增敏剂或抑制剂 第三类是偶合反应中反应物,催化剂,增敏剂等。这里所说的偶合反应其实就相当于前面提到的间接化学发光反应,它将一个化学发光反应与另一个或一系列反应进行偶合,只要这一个或一系列反应中的任何一种反应物或产物或催化剂(包括酶)能参与化学发光反应,就可以根据所产生的化学发光信号强度获得该反应中某一组分的量。通过标记方式利用这三类物质还可以来测定人们感兴区的其他物质。进一步扩大了化学发光分析的应用范围 化学发光分析最初是以分立式进样化学发光仪作为研究手段,由于化学发光现象一般比较短暂且随时间变化较大,使用间歇式手工操作是较难取得良好的重现性,因此人们将流动注射技术引入到化学发光分析中。流动注射技术是hansen于1975年建立的,把一定体积的试样注入到流动试剂(载流)中,可以保证混合过程与反应时间的高度重现性,特别是在非平衡状态下高效率的完成试样的在线处理与测定。 在化学发光分析中,化学反应器可以正面放置在接近光检测器的部位,因此检测器的仪接受较大分量的发射光子,从而提高了灵敏度,其灵敏度可达10-21mol,甚至可检测至单分子水平。化学发光分析的检测线并不受仪器的检测极限的限制,多数是受试剂的杂质污染以及由于浓度极低而带来的其他一些问题的限制。另外,由于化学激发作用具有电子激发态的均一性特点,通常其现行范围所展示的浓度区间较宽,可高达3~6个数量级。 对于化学发光分析来说,由于激发能来源于化学反应,无须专门的激发光源以及相应的单色器和聚焦透镜等,所以仪器设备简单、廉价、易微型化。分析化学,论由于化学发光现象一般比较短暂,因此化学发光分析所要求的时间也较短,但其最大的缺点是选择性差。因为化学发光分析的测定大多是在相同条件下,沿用同一个化学发光反应进行的,因而选择性较差。如典型的鲁米诺-过氧化氢化学发光体系,就能被10多种无机离子和30多种有机物催化或者增敏,且均在pH8~11的碱性条件下完成。近年来,化学发光检测与色谱以及毛细管电泳等分离技术的联用,在很大程度上解决了化学发光分析选择性差的问题,扩大了化学发光分析的应用范围。 为了提高化学发光分析法的选择性,将高灵敏度的化学发光检测技术与高效能、高分辨力的高效液相色谱或毛细管电泳以适当的方式相结合,集合2种技术的优势,为人们展示了一个分离效能高、检测先低、分析速度快的方法。%I/_8e* 液相色谱化学发光检测仪主要包括分离柱、泵系统、混合器和化学发光检测器。柱后的反应和化学发光检测是这一联用方法成功的关键。需要注意的是,化学发光的最佳条件往往并不是分离的最佳条件,比如色谱分离金属离子对常用酸性的流动相,而金属离子与鲁米诺的化学发光反应多在pH10时才有最强的发光强度,因此实际分析中要综合考虑各个方面的因素,选择合适的条件,使其既有利于分离又能保证灵敏、稳定的检测。|分析化学|化学分析|仪器分析|分析测试|色 发光在生物学领域也有着很多应用,主要简介如下: 1 血浆和血清的化学发光 亚铁离子催化的化学发光自由基启动的脂质过氧化 (L PO) 是一个链式反应过程。反应过程中产生脂自由基 (R - ) 、烷氧自由基 (RO - ) 、共轭二烯和脂过氧化自由基 (ROO - ) 等中间产物。 ROO - 自反应会产生激发的烷氧自由基 (RO 3 ) 和单线态氧 (O 2 ) ,其回到基态时产生发光。因此,把 Fe 2 + 盐加入含有脂肪的系统中,如细胞膜、线粒体、微粒体、血浆、组织匀浆、尿液等,可产生化学发光。许多实验研究对加入 Fe 2 + 盐的不同疾病患者血浆和血清的化学发光进行的测量表明,与正常健康人相比,腹腔器官局部缺血、肢端闭合性局部缺血、血氧含量下降以及出血、手术性休克病人血浆和血清的发光强度降低。 与此相反,风湿性关节炎、阑尾炎、胆囊炎、胰腺炎等炎性疾病患者血浆和血清的发光强度升高。 降低和升高的幅度与疾病的严重程度有关。 可以看出,利用此方法有可能对非典型的心肌梗塞和腹腔器官炎性疾病做出区别诊断。 2血浆脂蛋白的化学发光 有研究提出,以分离的血浆脂蛋白悬液作为系统模型可以研究不同物质对系统过氧化的调节机制。在分离的血浆脂蛋白悬液中加入胆固醇,温育一定时间后在加入 Fe 2 + 盐,测量化学发光,发现胆固醇能使系统的发光强度降低。分析认为,这可能是由于类固醇的存在抑制了系统的过氧化。对实验性胆固醇过多血症家兔和动脉粥样硬化早期病人进行的测量发现,载脂蛋白 APO – B 。在 Fe 2 + 存在条件下的发光强度出现了增长。同样的现象在肝硬化和慢性肝炎患者身上也被发现。 3尿液的化学发光 利用尿液的化学发光可以研究肾脏功能的变化。将 Fe 2 + 盐加入尿液中,测量其化学发光,发现肾功能不足者尿液的发光强度降低。与正常健康人相比,阑尾炎患者尿液的发光强度则有不同程度的提高。利用这一方法可以评估肾脏的排泄及收缩功能。 4物质抗氧化活性的测定 利用发光测量技术可以评价某些生物组织和体液的抗氧化活性。以某一稳定的发光系统为模型,如脂肪体、线粒体、卵黄脂蛋白等,将待测的抗氧化物质加入该系统,然后加入 Fe 2 + 盐,测量其化学发光。 根据系统化学发光被抑制的程度可以评价物质的抗氧化活性。 利用这一方法进行的研究证明,不同疾病患者血浆和血清的抗氧化活性是不同的。 化学发光研究的热点方向 直接化学发光反应是当前化学发光分析研究的一个重要方向,人们通常通过大量试验筛选氧化反应及反应介质来证明某种有机药物、农药是否具有化学发光特性。 以化学发光试剂标记核酸,运用化学发光分析进行核酸分子杂交分析是化学发光分析的前沿,其发展将为基因工程、基因诊断和治疗提供有效的检测手段。分析通常进行化学发光分析都是在现有化学发光试剂的基础上开展研究,而新型化学发光试剂的开发性研究较少,此领域还有研究空间。 金属配合物,特别是钌等过渡金属配合物在化学发光分析中的作用正逐渐受到人们的重视。比如钌(Ⅱ)-联吡啶常用作电致化学发光试剂[/size][/font]

  • 化学发光的应用

    第三部分 化学发光的应用• 无机化合物化学发光分析 1.1 金属离子分析 痕量金属离子对化学发光反应具有很好的催化作用,因而化学发光测定金属离子得到广泛的应用 ( 见表 1) 。但是,由于不同金属离子催化氧化发光试剂时,发光光谱相同,致使金属离子催化化学发光反应的选择性较差。为提高分析的选择性,可采用以下方法 : (1) 利用待测金属离子与干扰离子配合物稳定性不同进行选择性分析,如加入掩蔽剂 EDTA 或水杨酸掩蔽干扰离子 (2) 优化实验条件以减少其它离子的干扰 (3) 稀释样品溶液 (4) 加入敏化剂。但是,当样品中待测物相对于干扰物浓度很小时,上述方法也无济于事,只得进行前处理,常用的分离方法有色谱、溶剂萃取等。 色谱分离的高选择性与化学发光检测的高灵敏度相结合,是一种很有前途的联用技术。关键是流动相的选择,流动相选择得好,不仅可以提高选择性,还可以进行多个离子的同时测定。如用离子交换分离法同时测定 Cr (à ) 和 Cr (? ) 。溶剂萃取也是提高化学发光测定金属离子选择性的一个有效方法。这种方法的主要问题是费时,因为进行化学发光检测前必须将无机物从有机溶剂中反萃取出来,或是将有机溶剂蒸发除去。较好的方法是自动在线溶剂萃取选择性检测待测物。 1.2 其它无机化合物的分析  化学发光反应中,过氧化氢是最常用的一种氧化剂,因此有关 H 2 O 2 化学发光分析的报道较多 ( 见表 2) ,涉及到鲁米诺、过氧草酸酯及光泽精等化学发光反应。根据鲁米诺化学发光反应制成的 H2O 2 光纤传感器与流动注射法联用,可检测 10nmo l / L ~ 1 mmo / L 的 H 2 O 2 ,用模拟酶代替辣根过氧化物酶催化鲁米诺发光,检测限可达 5 . 5×10 - 9 mo l / L 。根据 ClO - 对鲁米诺的氧化作用,可用于测定 ClO - ,其它物质如 Cl 2 的干扰,可用流动注射法消除。利用停流技术测定水中 ClO - 不必进行前处理。含氮的无机化合物如 NH3 / NH +4 ,可将其衍生后用 TCPO 化学发光法检测,线性范围为 2 。 9ug / L ~ 6 m g / L 。 CN - 能抑制鲁米诺 H 2 O 2 - Cu (II ) 的化学发光,据此可分析测定 CN — 。在低温条件下化学发光分析测定 CN - ,当进样量为 100uL 时,线性范围为 10 - 9 - 10 -7 g / mL ,当进样量 20 uL 时,线性范围为 10 - 8 ~ 5×10 -7 g / mL 。 • 有机化合物的化学发光分析 2.1 有机酸 有机化合物的同系物结构和性质相似,使单一组分的测定遇到困难,因此有机化合物同系物的分析常与 HPLC 相结合。有机酸的化学发光分析 ( 见表 3) ,一般是先将其衍生成荧光物质经色谱分离后进行化学发光检测。但衍生法有如下的缺点 : (1) 衍生反应不完全 (2) 衍生物稳定性差,要求及时检测 (3) 限制了分离方法和条件的选择。由于衍生产物的性质与待测物不同,导致分离效率和分辨率下降,同时增加分析的时间和劳动强度。在临床医学上,草酸是一个重要的检测项目,可以直接用氧化化学发光反应测定尿液和草酸二乙酯中的草酸盐及游离的草酸。另外还可以测定苯酮尿症病人的尿液的苯丙酮酸的含量,方法是先在碱性条件下将苯丙酮酸氧化成 1 , 22 二氧杂环丁烷类化合物,然后裂解产生化学发光。另外可以将 Fe ( III )草酸配合物光解得到 Fe (II ) ,催化鲁米诺-过氧化氢化学发光反应,此法线性范围为 0 . 1 ~ 100uM 。此外酶联偶合反应也可以用于某些有机酸的化学发光分析。 2.2 有机碱  胺类化合物第一离子化电势呈如下规律 : 伯胺 仲胺 叔胺,并随碳链增长,离子化电势逐渐下降,因此叔胺化合物的检测限较低,达 0 . 28 pM 。胺类化合物的分析 ( 见表 4) ,较多的是经柱前衍生生成荧光衍生物,分离后用过氧草酸盐化学发光体系检测,也可将其生成希夫碱或其它产物氧化而发光。有些碱如肾上腺素等可直接氧化而发光。通常有一个经验规则,假如一物质具有荧光或其反应产物有荧光,该物质一般可发生化学发光反应,但也有例外。嘌呤碱是核酸的基础物质,因此对嘌呤碱的分析测定将推动 DNA 分析方法的发展。在酸性醇液中腺嘌呤与苯甲醛反应,然后用过氧化氢氧化反应产生化学发光,此法具有很好的选择性,线性范围为 1 . 5×10 - 7 ~ 5 . 0×10 - 7 M ,用此法测定鸟嘌呤灵敏度比荧光法高 20 倍。 2.3  氨基酸  氨基酸分析方法的改进有利于推动生物技术、基因工程、 DNA 重组和基因克隆等的发展。由于绝大多数氨基酸没有内源荧光特性,因此用过氧草酸盐体系测定氨基酸需将其衍生成荧光物质,但此法避免不了衍生法所固有的缺点。此外亦可通过测定氨基酸与氨基酸氧化酶反应产生的过氧化氢来测定氨基酸的含量,如 L 2 氨基酸经反相色谱柱分离后流经 L 2 氨基酸氧化酶反应器产生过氧化氢,然后用过氧草酸盐体系检测。氨基酸与 Ru (b ipy) 3+3 反应,用流动注射化学发光法检测,相对于脯氨酸和天冬酰胺检测限可分别达到 20 pmo l 和 50 pmo l 。一般来说,仲胺反应产生的的发光强度比伯胺大。对氨基酸上取代基性质研究表明,给电子基有利于增强化学发光强度。 2.4 糖类  光泽精体系可用于测定一些还原性物质,如乳糖、葡萄糖,用于抗坏血酸和脱氢抗坏血酸的分析测定有很高的灵敏度。但此法用于复杂样品分析却因干扰多而受到限制。用草酰胺化学发光照相法测定了葡萄糖。在微量滴定板上将草酰胺发光剂、荧光增感剂及 50 uL 试样混合,于 5 m in 内用照相荧光剂测定液斑的发光强度,可检出 100 pmo l 的萄萄糖。 糖类物质测定的另一个重要方法是测定酶反应产生的 H 2 O 2 ,由此对酶底物 —— 葡萄糖、乳糖等进行测定。而酶的固定化技术为此法的发展注入了新的活力。采用物理包埋法将葡萄糖氧化酶固定在聚丙烯酰胺凝胶中并制成酶柱,再将酶柱接入流动注射系统中,用流动注射化学发光法测定由酶促反应产生的 H 2 O 2 ,从而测定人体血液中的葡萄糖,检出限可达 0.1 m g / L 。 2.5 类固醇与类酯  一些特异性酶如类固醇脱氢酶和其它荧光素酶与合适底物反应产生 H 2 O 2 ,通过测定 H 2 O 2 达到分析测定底物的目的。 2.6 药物  根据药物的不同类型选择不同的化学发光分析方法。目前较常用的方法是直接氧化化学发光。在碱性溶液中用 N -溴代丁二酰亚铵氧化含有酰胺基的药物产生化学发光,如利福霉素等检测限在 1 . 23 m g / L ~ 0 . 5 g / L 之间。氧化四环素类药物检出限在 0 . 02 - 0 . 04 m g / L 之间。

  • 【原创】电化学发光检测

    电化学发光(ECL)是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射现象。电化学发光与普通化学发光相同之处是二者的发光均由进行能量电子转移反应的组分所产生,而不同之处是电化学发光由电极上施加的电压所引发和控制,普通化学发光是由试剂的混合所引发和控制的。电化学发光与毛细管电泳结合,涉及ECL试剂的加入方式,电泳高压电场的隔离以及ECL的发光效率问题。因为是在电极上发生电化学反应的,所以电泳高压电场会对电化学检测产生较大影响,高压电场不隔离的话容易损坏电化学分析仪。另外,检测部分设计上是毛细管出口必须对准电极表面。电化学发光检测基本包括两大部分。电化学部分和化学发光采集部分。电化学部分一般采用电化学分析仪(国内用上海辰华的较多),化学发光采集大多用中科院生物物理所的BPCL超微弱化学发光分析仪。几年前,国内中科院长春应化所和西安瑞迈仪器公司就已共同研制出了商品化的CE-ECL分析仪。先写这么多吧,开始实验了,另外一个问题:怎么今天不能插入图片?

  • 化学发光及生物发光的原理及其应用

    化学发光及生物发光的原理及其应用

    第一部分 概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: [img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608291133_24995_1636364_3.jpg[/img]依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为: [img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608291133_24996_1636364_3.jpg[/img]在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。

  • 化学发光基本常识普及系列之化学发光现象及化学发光法

    化学发光现象是一种常见的自然现象,利用化学发光测定化学发光反应反应物、催化剂、增敏剂、抑制剂,偶合反应中的反应物、催化剂、增敏剂的方法叫做化学发光法。   化学发光是物质在化学反应过程中,其物质分子吸收化学能产生光的辐射现象。

  • 化学发光(chemiluminescence)

    由于吸收化学能,使分子产生电子激发而发光的现象。化学反应放出的热量(即化学能)可转化为反应产物分子的电子激发能,当这种产物分子产生辐射跃迁或将能量转移给其他会发光的分子使该分子再发生辐射跃迁时,便产生发光现象。但是多数的反应所发出的光则是很微弱的,而且多在红外线范围,不容易被观测。 化学发光条件 产生化学发光的反应通常应满足以下条件:必须是放热反应,所放出的化学能足够使反应产物分子变成激发态分子;具备使化学能转变为电子激发能的合适化学机制,这是化学发光最关键的一步;处于电子激发态的产物分子本身会发光或者将能量传递给其他会发光的分子。 化学发光类型 化学发光反应主要有以下3种类型: ①氧化反应。例如,鲁米诺的氧化反应: ②电子转移反应。例如,蒽自由基阴离子和芳香胺阳离子的反应: ③过氧化物碎裂反应: 化学发光分析 利用化学发光进行化学分析的方法。 化学发光分析所用仪器为化学发光光度计。这种仪器不需要光源和单色仪,仅由反应池、检测器和读数装置3部分组成。待测物和试剂在反应池中发生的化学发光照射到检测器上,经光电转换后将信号传送到读数装置。 化学发光分析的灵敏度高,在环境监测、临床分析、生物化学等领域里,例如污染物测定、酶分析、免疫分析法和痕量金属分析等方面得到广泛的应用。

  • 【原创】化学发光定氮仪系列之原理

    仪器采用化学发光检测原理,待测样品(或标样)被引入到高温裂解炉后,在1050℃左右的高温下,样品被完全气化并发生氧化裂解,其中的氮化物定量地转化为一氧化氮(NO)。反应气由载气携带,经过干燥器高氯酸镁脱去其中的水份,进入反应室。亚稳态的一氧化氮在反应室内与来自臭氧发生器的O3气体发生反应,转化为激发态的NO2*。当激发态的NO2*跃迁到基态时发射出光子,光信号由光电倍增管按特定波长检测接收。再经微电流放大器放大、计算机数据处理,即可转换为与光强度成正比的电信号。在一定的条件下, 反应中的化学发光强度与一氧化氮的生成量成正比,而一氧化氮的量又与样品中的总氮含量成正比,故可以通过测定化学发光的强度来测定样品中的总氮含量。

  • 化学发光免疫分析

    化学发光免疫分析放射免疫分析法有很高的灵敏度,但存在着放射性防护和同位素污染等问题。近年来,许多非放射性同位素标记的免疫分析方法相继出现。其中,在化学发光反应及抗原-抗体特异性识别基础上建立起来的一种新的非放射免疫分析技术--化学发光免疫分析法,由于这种方法具有灵敏度高,特异性强,精密度好,线性范围宽,仪器设备简单,试剂价格低廉,方法稳定、快速等优点,已成为一种重要的非同位素标记免疫分析方法,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测。  化学发光免疫分析包括三大类型:即标记化学发光物质的化学发光免疫分析;标记荧光物质的荧光化学发光免疫分析和标记酶的化学发光酶联免疫分析。下面以偶合放大化学发光酶联免疫分析法检测人血清中乙型肝炎表面抗原(HBsAg)为例。  (一) 原理  尽管辣根过氧化物酶(HRP)可以催化Luminol-H2O2反应体系产生化学发光,但由于该体系的检测灵敏度不够高,不能满足酶联免疫测定的要求。因此,为了提高体系的检测灵敏度,可将HRP催化H2O2氧化曙红(Eosin)的反应与该反应产物增强HRP催化luminol-H2O2的化学发光反应相偶合,建立偶合放大化学发光酶联免疫分析法。这里,酶的活性是基于下列发光反应进行检测的:  HRP         luminol+H2O2───→产物+hν                 产 物                  ↑       Eosin+H2O2 ──────┘               HRP 二) 操作步骤  1. 包被抗体 在每个小试管中加入聚苯乙烯珠各一枚,再加入300μl用0.05M,PH9.6 碳酸盐缓冲液稀释的抗HBsAg抗体,同时设空白对照,置4℃过夜。  2. 洗涤 用抽滤针头吸干管内液体,加入Tris-HCl-Tween20洗涤3次,每次加2ml,放置3~5min,用抽滤针头吸干管内液体。  3. 加待检血清和阳性标准品 用PBS-Tween20缓冲液不同倍数稀释HBsAg阳性标准品或待检血清,每管加入300μl。同时设阴性对照;空白对照管只加抗体稀释液。置37℃孵育2h。  4. 洗涤 同2。  5. 加酶标抗体  用含小牛血清的PBS-Tween20缓冲液稀释HRP标记的抗HBsAg抗体,每管加入300μl,空白对照管只加用于稀释酶标抗体的稀释液。置37℃孵育2h。  6. 洗涤 同2。  7. 化学发光测定 给每管加入300μl底物溶液,置37℃保温20min。犎;后将小试放入LKB-1250 lumimeter中,并置于测量位置,加入300μl 5.0×10-4M luminol。记录仪记录化学发光强度。  8. 同时用ELISA方法进行对照,结果测量采用DG3022型酶联免疫检测仪。  结果判定(1) 定性 按下列公式判别阴、阳性:          L样品-L空白     ┌≥2.1 为阳性   S/N = ──────── = 商│       L阴性对照-L空白    └<2.1 为阴性   (2) 定量 以不同稀释度的HBsAg阳性标准品的化学发光强度为纵坐标,不同稀释倍数为横坐标,作出剂量反应曲线(标准曲线),犜r待测样品中HBsAg的含量就可由测量的化学发光强度换算得到。

  • 【分享】电化学发光免疫检测原理动态展示

    电化学发光免疫测定(Electrochemiluminescence immunoassay,ECLI)是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,是电化学发光(ECL)和免疫测定相结合的产物。 它的标记物的发光原理与一般的化学发光(CL)不同,是一种在电极表面由电化学引发的特异性化学发光反应,实际上包括了电化学和化学发光二个过程。ECL与CL的差异在于ECL是电启动发光反应,而CL是通过化合物混合启动发光反应。ECL 不仅可以应用于所有的免疫测定,而且还可用于DNA/RNA探针检测。[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608290841_24973_1636364_3.gif[/img]

  • 化学发光的原理

    化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。 间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。 一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。   化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。 化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪器。辉光型样品的测量可以使用通用型仪器,也可以配有全自动化仪器。本产品针对辉光型化学发光反应进行检测。

  • 重发化学发光与生物发光(转载)

    化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。 一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。 化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。 化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪器。辉光型样品的测量可以使用通用型仪器,也可以配有全自动化仪器。本产品针对辉光型化学发光反应进行检测。 生物发光(Bioluminescence)是化学发光中的一类,特指在生物体内通过化学反应产生的发光现象,主要由酶来催化产生的。如萤火虫产生的。现在我们实验中经常用到的荧光素酶报告基因系统,这些皆为生物发光。 生物发光和化学发光是自然界中一种普遍现象。至今人们已知能发光的生物,种类繁多,从低等的细菌到高等的发光鱼类,从植物幼苗、植物枝叶到人体表面经络穴位、脑、肝、血清等,其发光的主要物质几乎都是由莹光素酶、莹光素及其辅助回子所组成。随着对生物发光机制的深入研究,一些生物体的发光体系已经初步搞清并用这些体系去分析生物体和化学中的一写微量物质。生物发光分析法渐渐地被引入医学领域,诸如通过莹火虫莹光素酶发光体系测量细菌中的AT已用以确定尿路感染中的细菌数,以发光细菌的发光强度为指标去定量抗菌素的效价,标定环境的污染状况等。因此,对这一领域的研究有着重大的经济和社会效益。 工业方面:发酵工业中测量主物量,控制发酵条件;油脂、食品工业中测量油脂、食品的氧化变质程度;橡胶、塑料工业,测量产品的老化程度,检测掺入抗氧化原料的效果,医药工业,检测抗菌的效价。 农业方面:根据植物幼苗的发光强度,判断植物的抗寒性、抗热性。抗盐性及农作物营养发育生长状况等,为农业育种和栽培技术提供依据。 药学方面:测量吞噬细胞的吞噬作用相伴随的化学发光强度和使用发光免疫分析法,检查肌体的免疫功能,了解体内微量激素、微量元素、维生素及药物的含量。测量体液中的AT已判断肌体的能量代谢状况,尿路感染的程度,测量血清(血浆)的化学发光强度。间接地判断疾病的发生、发展和程度,鉴别诊断某些病思。测量自由基的反应,为抗衰老、抗肿瘤、抗辐射筛选有效的自由基药物。 环保方面:用细菌、动物、植物及化学发光体系的发光指标监测环境污染。由于发光测量具有灵敏度高、特异性强、稳定性好,反应速度快、使用方便等优点。发光分析技术的研究和应用必将在免疫学、微生物学、生物化学、临床检验、毒理学及医学、农业、工业。环保科学等领域得到广泛应用,为了促进发光分析技术的发展,我厂为社会提供高灵敏、高稳定度、线性范围宽、应用面广、有计算机控制及自动作图、自动数据处理、自动打印结果的8HO一C型全自动生物化学发光测量仪。为生物、化学发光及超微弱发光的检测提供了有效的手段,对发光分析技术的研究和应用,将作出一定的贡献。

  • 化学发光免疫测定

    化学发光免疫测定

    化学发光反应参与的免疫测定分为二种类型。第一种是以发光剂作为酶免疫测定的底物,通过发光反应增强测定的敏感性;第二种是以发光剂作为抗体或抗原的标记物,直接通过发光反应检测标本中抗原或抗体的含量。  一、化学发光酶免疫测定  从标记免疫测定来看,化学发光酶免疫测定(chemiluminescentenzymeimmunoasssay,CLEIA)应属酶免疫测定。测定中2次抗原抗体反应步骤均与酶免疫测定相同,仅最后一步酶反应所用底物为发光剂,通过化学发光反应发出的光在特定的仪器上进行测定。两种常用的标记酶,辣根过氧化物酶(HRP)和碱性磷酸酶(AP)均有其发光底物,由此建立的CLEIA均在临床检验中应用。  (一)HRP标记的CLEIA  常用的底物为鲁米诺或其衍生物。鲁米诺的氧化反应在碱性缓冲液中进行,通常以0.1mol/LpH8.6Tris缓冲液作底物液,鲁米诺和H2O2在无HRP催化时也能缓慢自发发光,而在最后光强度测定中造成空白干扰,因而宜分别配制成2瓶试剂溶液,只在用前即刻混合。  HRP催化鲁米诺氧化的反应可被某些酚试剂(如邻-碘酚)或萤火虫荧光素酶等加强。加强剂的作用是增强发光和延长发光时间,由此可提高敏感度。  (二)AP标记的CLEIA  在以AP为标记酶的CLEIA中,应用的底物为adamantyldioxetasephosphate,有不少衍生物的商品试剂如PPD可供应用。发光反应的反应式如下:[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608290913_24989_1636364_3.jpg[/img]二、化学发光标记免疫测定  化学发光标记免疫测定亦称化学发光免疫测定(chemiluminescentimmunoassay,CLIA),是用化学发光剂直接标记抗原或抗体的一类免疫测定方法。用作标记的化学发光剂应符合以下几个条件:①能参与化学发光反应;②与抗原或抗体偶联后能形成稳定的结合物试剂;③偶联后仍保留高的量子效应和反应动力;④应不改变或极少改变被标记物的理化特性,特别是免疫活性。鲁米诺类和吖啶酯类发光剂等均是常用的标记发光剂。  鲁米诺类的发光反应须有催化剂(例如过氧化物酶)催化,且与蛋白质或肽结合后其发光作用减弱,因此鲁米诺类在CLEIA中是很好的底物,但已较少用于CLIA的标记。吖啶酯类对CLIA更为适用,其显著的优点是:①氧化反应不需催化剂,只要碱性环境中就可以进行。反应物在加入H2O2后再加氢化钠溶液,发光反应迅速,本底低。②在氧化反应过程中,结合物被分解,因此游离的吖啶酯的发光不受抑制。试剂稳定性好。  三、电化学发光免疫测定  在电化学发光免疫测定(electrochemluminescenceimmunoassay,ECLI)中应用的标记物为电化学发光反应的底物三联吡啶钌,其衍生物N-羟基琥珀酰胺(NHS)酯可通过化学反应与抗体或不同化学结构的抗原分子结合,制成标记的抗体或抗原。ECLI的测定模式与ELISA相似,分二个步骤进行。以双抗体夹心法测定抗原为例,第一步在试管中进行,反应物为Ru(bpy)32+标记的抗体、吸附在磁性微球上的固相抗体以及受检的标本,反应式如图[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608290914_24990_1636364_3.jpg[/img]反应后除由标记抗体、固相抗体与标本中的抗原形成的夹心复合物外,尚有多余的标记抗体和固相抗体。第二步是将反应液输入特殊的检测仪器的反应室中(图18-3),随即用含三丙胺(TPA)的缓冲液冲洗。反应室电极下有磁铁。含磁性微球的夹心复合物及游离的固相抗体被吸附在电极表面,游离的标记抗体随冲洗液流出。此时在反应室中即发生如图18-1的电化学发光反应。发出的光由光电倍增管转为信号,通过电信号的测定反映标本中抗原的含量。[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608290915_24991_1636364_3.jpg[/img]ECLI具有以下优点:①标记物在再循环利用,使发光时间更长、强度更高、易于测定;②敏感度高,可达pg/ml或pmol水平;③线性范围宽,>104;④反应时间短,20min以内可完成测定;⑤试剂稳定性好,2~5℃可保持一年以上。  四、在医学检验中的应用  放射免疫分析因标记物的放射性在应用中存在不少问题。为替代这一广被采用的测定方法,近年来创立了多种新的标记免疫技术。化学发光免疫测定具有明显的优越性:①敏感度高,甚至超过RIA;②精密度和准确性均可与RIA相比;③试剂稳定,无毒害;④测定耗时短;⑤测定项目多;⑥已发展成自动化测定系统。因此化学发光免疫测定在医学检验中不仅能取代RIA,而且可得到更为广泛的应用。

  • 电致化学发光

    电致化学发光(Electrochemi-lumiescence, or Electrogenerated Chemilumine- scence, 缩写为ECL)是一种利用电化学手段产生的化学发光。通常在电极表面由电解生成阴阳自由基离子,这两种离子迅速发生湮灭反应生成激发态而发光, 这种体系结合了电化学和光化学分析的特点,作为一种高灵敏度和高选择性的检测方法得到人们广泛关注。近年来,已有大量的相关综述文献出现 [79-85]。ECL分析在分析化学中的应用日益广泛,其中联吡啶钌电致化学发光研究有很多报道。1990年Uchikura等利用联吡啶钌与草酸的ECL反应,使用Sep-Pak C18分离柱测定了人尿中草酸的含量,方法的检测限为0.3 pmol。同年Danielson等 报道了Ru(bpy) 32+与21种氨基酸的ECL, 检测限从脯氨酸的20 pmol到天冬胺酰的50 nmol,并利用C18分离柱测定了合成骨胶原中的脯氨酸和羟基脯氨酸。1992年Brune等人利用预电解方法将Ru(bpy) 32+氧化为Ru(bpy) 33+, 成功地测定了脯氨酸等15种常见氨基酸, 并用Whatman Particil10 SCX分离柱分离测定了短杆菌肽D水解产物中的甘氨酸、丙氨酸、白氨酸、色氨酸和缬氨酸。Sato等人利用二丁烯砜与一级氨基酸的衍生反应,将一级氨基酸转变为三级,从而提高了方法的灵敏度, 并利用C18分离柱分离9种衍生后的产物。Nieman等利用丹磺酰氯的衍生反应使一级氨基酸的测定灵敏度提高了10倍,二级氨基酸的灵敏度提高了20倍。随着电位控制技术和薄层电解池的开发和完善,ECL的应用研究将会得到更进一步发展。

  • 【分享】电致化学发光

    电致化学发光作为一种分析技术,不仅可用于化学分析,而且正在被越来越多地用于生物检测和传感技术中。电致化学发光生物分析是最近发展起来的一种新型的分析方法,是化学发光、电化学、生物分析、微电子技术以及传感技术相结合的最新产物,主要用于临床、农业、环境监测等领域。电致化学发光(ECL) 是某些具有电致化学发光活性的物质处在一定的电位时,与溶液中氧化还原物质作用生成的不稳定激发态迁移回基态时所导致的化学发光。ECL 生物传感器技术主要应用在免疫标记技术、生物化学固定化技术与微细加工技术等方面。  电化学发光免疫 免疫分析研究的物质基础是抗体和抗原,对抗原和抗体进行特殊标记是免疫技术的关键。 电致化学发光免疫分析技术( ECL IA) 是利用化学发光剂作为标记物标记抗体或抗原而形成稳定的复合物。当这种复合物与被检测物中对应的抗原或抗体结合后,在加电电极的作用下激发出特异的光,根据发光的强度可检测出被测物的浓度等参数值。ECL 免疫分析可分为直接法、双夹心法和竞争法等3 种方法,其中直接法主要用于检测抗体,双夹心法主要用于测定大分子抗原,竞争法主要用于测定小分子抗原。电致化学发光技术正被越来越多地应用在生物分析领域中,用于蛋白质、激素、肿瘤、病毒、毒物等成分析检测,服务于临床、卫生、食品、环保和军事等领域。 电化学发光与生物化学固定化技术 在20 世纪90 年代中期, 有研究者将磁珠 应用到电致化学发光免疫检测中,其原理是使用物理吸附、包埋和共价结合等生化固定方法通过聚合物将抗体(抗原) 固定在纳米级的磁珠上,注射到装有电极的反应池中,电磁场将磁珠吸附在反应池的底部 然后将待测物质溶液注射到反应池中,待测物质溶液中的目标抗原(抗体) 与固定在磁珠表面的抗体(抗原) 结合,其它的非目标物质则被从反应池中冲洗掉 再将发光剂标记的抗体(抗原) 注射到反应池中,最终形成偶联磁珠抗体(抗原)2待测目标抗原(抗体)-发光剂标记的抗体(抗原) 夹心复合体。形成的复合体在加电电极的作用下会产生特异性发光,通过检测发光强度,可测出待测目标物质的含量。磁珠固定方法有效解决了免疫检测过程中非特异物质有效分离的问题,大大提高了检测灵敏度,在免疫检测中得到越来越广泛地使用。磁珠ECL 技术不仅可用于免疫检测中,还可用于酶及底物、DNA 等对象的分析和检测。  电化学发光与微细加工技术 由于生物芯片特别是基因芯片技术的发展,越来越多的人看到了ECL 技术应用到生物芯片上的诱人前景。ECL 反应池、电极被制作得越来越小,分析所需的样品量也随之越来越少,而检测精度却越来越高。半导体光刻技术、厚膜薄膜技术、丝网印刷技术等应用于其它高科技领域的技术被引用到制作电致化学发光分析系统中,为该系统拓展了一个全新的发展空间,使系统的集成度和微型化等性能得到大幅度的提高。 Fiaccabrino等设计了磁珠流动注射式ECL 检测装置,在5 mm ×6 mm 的硅基片上制作了微型的ECL 探针,包括电极、反应池和电传感器。电极为金或铂金的插指电极,用光刻的方法刻蚀在硅基片上,1 mm 长即包含125 对电极,每个电极宽3. 2μm ,电极间距0. 8μm 反应池用覆盖在硅片上环氧树脂刻蚀而成,光电二极管紧贴反应池,接收ECL 反应产生的光,以检测被测物质的含量,反应池可容纳的溶液量为2. 25μL 。该装置被用于检测可待因,线性范围为0. 1~2 mmol/ L 用于检测葡萄糖,其线性范围为50~500 mol/ L 。 随着毛细管电泳(CE) 芯片技术的发展,ECL 与CE 芯片的联合应用的报道越来越多。电致化学发光检测技术应用到生物检测和分析中,为生物检测提供了一种全新的手段。由于这种方法具有精度高、应用范围广和易于集成等优点,使它将成为生物技术领域的一种主要检测方式。

  • 化学发光检测原理概述(转贴)

    化学发光检测原理概述化学发光作为一种分析工具的吸引之处就在于检测的简单性。化学发光的实质是自身发光,这意味着化学发光的分析测试仪器只需要提供一种可以检测光信号和纪录结果的方法就可以了。自发光检测仪需要一个闭光的样品室和光检测器。最简单的便是相片纸或x-光片,甚至视觉检测器都可以。化学发光检测方法的简单性使得它的应用很简单并且完全可以自动化。但是它的灵敏度又是怎么样的呢?化学发光有如下两个内在的优势:1.绝大多数的样品没有“背景”信号,如它们自身不发光。2.化学发光的检测不是一个比例测试,这是与荧光和吸收或比色测试不同的。在荧光测试中,具有小的Stokes Shift的荧光基团非常难检测。荧光很难从激发波长中分辨出来。另外一个问题是,特别在样品是浑浊的情况下有一部分杂光会进入到检测器。在吸收光测试上,其灵敏度受到限制的根本因素是需要在两个相对较强的信号之间去区分一个较小的差别。需要注意的是检测器对光谱的敏感性近可能接近化学发光的光谱,以得到最大化的灵敏度。一般在自发光仪中的光电倍增管对蓝光有最佳的反应,对红光的末端光谱不太敏感。固态检测器对红光有较好的反应。X-光片广泛用于记录在尼龙膜、纤维素膜或PVDF膜上的化学发光印迹分析。但是我们需要牢记在心的是x-光片仅能够用于检测紫外到蓝光光谱范围内的光信号,虽然有一些特殊的光片对增强的绿光有敏感性。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制