当前位置: 仪器信息网 > 行业主题 > >

紫外谱仪

仪器信息网紫外谱仪专题为您提供2024年最新紫外谱仪价格报价、厂家品牌的相关信息, 包括紫外谱仪参数、型号等,不管是国产,还是进口品牌的紫外谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外谱仪相关的耗材配件、试剂标物,还有紫外谱仪相关的最新资讯、资料,以及紫外谱仪相关的解决方案。

紫外谱仪相关的资讯

  • 2030年全球在线紫外-可见光谱市场预计达18.8亿美元,在线测量推动紫外市场发展
    据国外研究报告显示 2021年全球在线紫外-可见光谱市场规模为10.5亿美元,预计2022年至2030年的复合年增长率(CAGR)为6.50%,2022年市场规模预计达11.4亿美元,2030年预计将达18.8亿美元。在线光谱仪的应用不断扩大,相关技术不断进步,再加上政府和监管机构的积极参与,都是推动行业增长的一些主要因素。例如,多年度国家控制计划(MNKP)和国家监测计划(BÜP)等预计将推动在线紫外-可见光谱方法的使用。紫外-可见光谱的应用非常广泛,其中包括分析各种重要的疫苗,例如狂犬病和流感。该技术在COVID-19疫苗的研究中也具有显著优势。紫外-可见分光光度法在COVID-19研究中提供了准确、简单和快速的成分表征,如添加剂、防腐剂、蛋白质和核酸(即DNA/RNA)等。在线紫外-可见光谱技术还可以影响上游和下游过程的结果时间,包括质量控制。例如,梅特勒-托利多紫外-可见卓越分光光度计UV5Bio和UV5Nano是获得可靠和准确定量的重要工具,可成为疫苗研究在开发和合成期间的有效工具。此外,它们还可以为上游工艺、下游工艺和质量控制提供纯度检查。比如化妆品、食品和饮料行业的全球公司对制造商提出了更高的标准。随着产品质量检测要求的增加,与专家合作以确保产品的开发符合最终用户的期望非常重要。例如,2020年3月,岛津公司在UV-i Selection品牌下推出了六种新的紫外可见光分光光度计型号,这些系统便于在更广泛的领域使用,包括制药、化工和学术界,它们提供各种样品的自动分析、用户友好型操作性和附加功能以满足广泛客户需求。在离线测量中,过程监测被认为是一个耗时的步骤。此外,一次只能做一次测量,而且采样点之间的颜色质量仍然未知。在线测量有效地解决了这些挑战,因为它能在出现任何颜色变化时立即进行干预,并实时提供结果,从而推动了这个市场。在线采样是符合FDA标准的过程分析技术的首选。紫外可见光毫秒级的快速整合时间提供了快速的结果和高灵敏度。实时监测和快速的结果使得改变和识别参数变得很容易,从而减少了测试结果和重要质量参数的重复时间。在应用方面,2021年,色彩测量业务占总收入的比例最高,超过33.00%。该业务预计将以最快的增长率进一步扩大,在整个预测期内保持领先地位。这可归因于其在涂料、制药和食品行业等各个领域的应用不断扩大,再加上运营商为引入在线颜色测量解决方案而不断增加的投资。颜色测量是一种被广泛接受的方法,用于评估生产过程中颜色值的质量。在线颜色测量的出现解决了使用离线测量方法评估产品质量时出现的与时间相关的挑战,从而促进了行业增长。例如,X-Rite GmbH生产ERX56,这是一种用于颜色在线测量的非接触式分光光度计。同样,由Kemtrak制造的DCP007是一种工业光纤光度计,用于在线、实时测量过程样品的颜色浓度,该仪器配备高性能、长寿命LED和工业级光纤,可提供高精度的噪声和无漂移测量。在线彩色UV-Vis传感器还用于监测发酵过程中红酒颜色的变化。在用户方面,据估计,在预测年内,油漆和涂料行业的复合年增长率最快,超过8.65%。油漆和涂料行业对在线紫外-可见光谱的广泛采用是推动该领域增长的主要因素。在线紫外分光光度计技术可以让油漆和涂料行业用户每10秒或更短时间直接在过程中连续测量制造物质,无需采样延迟,也无需中断生产线,这反过来提高了制造过程的生产率,同时降低了成本。此外,在预测期内,化学工业部门也有望以显著的复合年增长率增长。在化学工业中,湿化学过程的在线监测包括监测碱性和酸性制绒、漂洗、亲水化、氢氟酸、硝酸、氟硅酸、硫酸、碱度、酸度和过氧化氢。在区域市场方面,北美在2021年主导了全球行业,占总收入的35.60%以上,份额最大。预计该地区将在整个预测期内继续主导全球行业。这可以归因于提供在线紫外-可见光谱设备的主要公司在该地区的强大影响力、仪器技术的进步,以及涉及这些设备广泛使用的食品分析需求的增加。此外,美国国家标准与技术研究所的存在向最终用户提供了关于光谱学的详细要求,这鼓励了北美市场的发展。另一方面,预计亚太地区在预测年内的增长率最快。中国和印度等亚洲国家快速发展的绘画和制药行业预计将推动该区域市场的产品消费。此外,人们对食品安全和环境污染的担忧日益加剧,跨多个行业的研发活动不断增加,以及主要公司逐步进入亚太地区,预计将在未来几年推动该地区的增长。在全球,在线紫外-可见光谱市场运营的一些知名公司包括:Agilent Technologies, Inc.、Shimadzu Corp.、Thermo Fisher Scientific Inc.、X-Rite、ColVisTec AG Inc.、Hunter Associates Laboratory, Inc.、Applied Analytics, Inc.、AMETEK, Inc.、Guided Wave, Inc.、Kemtrak AB、Endress+Hauser Management AG、Color Consult、Equitech Int'l Corp.、Uniqsis Ltd、Advanced Vision Technology Ltd. 等。
  • 紫外临边成像光谱仪:探测大气层的“天眼”
    紫外临边成像光谱仪的“环形天眼”紫外临边成像光谱仪的“前向天眼”  人眼看到的大气是透明的,我们看不到大气的变化,更看不到有多少有害气体如妖魔鬼怪般潜伏在大气层中伺机而动。  天宫二号有一对“天眼”,不仅能看到人眼所能看到的可见光,更将视野扩展到人眼所不能及的紫外光。在“天眼”的注视下,大气中的一切都无所遁形。  “臭氧层在地球上空形成一把保护伞,它将太阳光中99%的紫外线直接过滤掉,有效避免地球生物被紫外线伤害,但也正是这层臭氧阻碍了紫外仪器在地面上对臭氧层以上的大气层进行探测,因此我们需要在地球上边安置洞悉大气的‘天眼’——紫外临边成像光谱仪,在太空对地球大气进行‘层析’式探测研究。”紫外临边成像光谱仪主任设计师、中科院长春光机所研究员王淑荣向《中国科学报》记者介绍说。  王淑荣说,通过“天眼”,我们可以看到整个大气层的密度、臭氧、气溶胶、有害气体等的垂直分布及其变化,同时还能监测中层大气的状态与扰动,我们可以了解太阳活动、大气与地球天气及气候的关系,同时还能观测全球环境变化,这一切对于科学和人类生活都非常重要。  天宫二号上的“天眼”有两个,一个叫“前向”,一个叫“环形”,同时对地球大气层进行天底和临边探测。  王淑荣打了个比方:假如将大气层比作一处美景,天底观测便如在它头顶盘旋的小鸟,能看到的是轮廓和总量,而临边观测则相当于仪器与地球边缘大气并肩而立,可以细致欣赏品味它的层次美。  “前向天眼”具备紫外-可见-近红外大气临边成像光谱探测功能,可以对地球临边大气进行切片式探测,反应大气痕量气体的垂直分布信息,并可以获得很高的垂直分辨率。“环形天眼”具备同时对天底大气和临边大气多方位探测的功能,通过反演计算可以获取大气痕量气体多方位的时空分布,进而为大气环境监测和大气科学研究等提供服务。  当前国际上已有的紫外临边探测仪器大多是单个方向(前向),个别有前向和侧向。然而这些探测的明显局限是只能得到一个很窄径迹上的数据,相邻轨道之间有巨大空隙,全球覆盖的时空代表性差,不能获得较密的时空覆盖,不能揭示中小尺度变动特征。就如管中窥豹,可见一斑而难知整体。  天宫二号紫外临边成像光谱仪将“前向”和“环形”组合探测,实现了垂直对地的天底探测和对地球切线方向的临边多方位探测组合及反演比对,实现了对地球大气的多方位、高光谱、多时空分辨率观测,达到比一般临边探测更高水平的层析反演,在国际上是首创。  “该项技术验证及科学实验为下一步空间大气临边成像光谱探测的业务化运行奠定了基础,将在大气痕量气体监测、天气预报、空间天气和物理等领域具有广泛的应用。”王淑荣说。
  • 海洋光学紫外高灵敏度响应光谱仪的应用
    海洋光学推出的紫外高灵敏度响应光谱仪MAYA2000 Pro(175-1100nm),采用滨松背照式面阵CCD探测器,极大地增强了紫外-可见光谱谱段的光谱响应,信噪比得到极大提高,适合于低检测限及高动态范围的弱光测量应用,紫外最远波长检测限可达155nm. 特点:1. 背照式2048像元面阵CCD,量子效率可达80%2. 紫外高灵敏度响应,无需紫外增强镀膜3. 低噪声、高信噪比、高动态范围4. 积分时间最短6ms5. USB2.0及RS232接口通信 Fig1.Maya2000 Pro Fig2. 探测器光谱响应 应用案例:工业用乙醇勾兑在线监测可行性分析采用MAYA2000PRO测量酒精及其勾兑水溶液,测量发现乙醇在紫外217nm左右出现吸收峰,与乙醇浓度成比例,而水在970nm处出现吸收峰,与水浓度成比例,如图3所示;采用海洋光学近红外光谱仪NIRQuest所测的近红外吸收图谱如图4所示。 Fig3. 乙醇、纯水及其水溶液光谱吸收图谱(紫外可见) Fig4. 乙醇、纯水及其水溶液光谱吸收图谱(近红外) 通过实验简单配比及数据拟合发现,在两波长处217nm及970nm乙醇吸光度与其浓度均呈现出良好的线性相关性,R Square线性可达0.987,标准偏差0.04(含实验配比偏差),结果如图5所示:Fig5. 217nm及970nm数据回归拟合 关于海洋光学:总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团(www.halma.cn)。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。如果需要更多的信息请联系:海洋光学亚洲分公司中国上海长宁区古北路 666 弄嘉麒大厦 601邮编:200336电话:(86) 21 6295 6600传真:(86) 21 6295 6708电子邮箱: Distributorsupportasia@oceanoptics.com网址: www.oceanopticschina.cn
  • 紫外可见光谱仪在吸光度测量中的应用 | 鉴知技术
    1.吸光度测量原理当入射光频率与物质分子的震动频率一致,或者入射光引起物质分子电子能级跃迁,都会产生光学吸收现象。溶液的浓度越高,穿过溶液的分子也会相应地被吸收越多。当一定强度的光线通过物体的时候,被吸收部分越少,透过部分越多反之也然。1852年比耳确定了吸光度与液浓度及液层厚度之间的关系,建立了光吸收的基本定律,称为朗伯-比耳定律。朗伯比尔定律是吸光度测量的基本定律,是描述物质对某一波长光吸收的强弱与吸收物质的浓度及其液层厚度间的关系。当一束平行单色光通过液层厚度为b、吸光物质的浓度为c的单一均匀的,非散射的有色溶液时,溶液的吸光度与溶液浓度和液层厚度成正比。A=kcb=lg(I0/I)A: 为吸光度k:为摩尔吸收系数(常用单位 L/(mol*mm))c:为浓度(常用单位 mol/L)b:为光程(常用单位 mm)I0:入射光强度I:透射光强度图1 吸光度原理图2.应用系统介绍(1)发光源:能够输出稳定功率以及且连续光谱的辐射源,紫外波段实验室常使用脉冲氙灯或氘灯,可见波段实验室常使用卤钨灯。(2)样品池:用于放置待检测样品,常用直接盛放样品的器件为石英比色皿,厚度一般为10mm,适用于紫外到可见光波段范围。(3)检测设备:又称分光光度计,将光学分光器件和能实现光电转化的探测器集成。本此测量应用使用的系鉴知技术的SR50C光纤光谱仪,光谱仪内置脉冲氙灯同步触发功能,除了可搭配如下图一样的比色皿样品固定架进行测试,同时也可根据实际需求搭配侵入式光纤探头或流通池进行取样。 (4)显示器:连接光谱仪和笔记本电脑,显示测量过程中的数据,本此测量应用使用的系鉴知技术自主研发的上位机软件。图2 脉冲氙灯吸光度检测系统图3.实验示例鉴知技术拥有自主研发的整套光谱吸光度测量系统和相关的配件,本次实验采用KNO3溶液,光谱仪采用北京鉴知技术有限公司的微型光纤光谱仪SR50C,在室温环境下进行测试,实验结果如下表所示:光谱仪型号:SR50C(200-400 nm)波长范围nm分辨率 nm可根据客户需要定制:波长范围,分辨力大小,光谱仪尺寸大小200-4000.5比色皿光程KNO3 浓度mg/L220nm 吸光度275nm 吸光度相关系数R210mm0.20.0432780.0446110.99780.30.0672250.0658580.40.0873060.087540.50.1150570.1081420.80.1664770.1617651.00.2072560.20099表1 KNO3溶液在220nm,275nm处的吸光度根据表中数据,绘制硝酸钾溶液吸光度随浓度变化的线性关系曲线,如下图所示。图3 KNO3溶液浓度与吸光度线性关系结论:由图得知硝酸钾溶液的吸光度与其浓度具有较大的线性相关关系,线性拟合系数R2=0.9978,标准曲线的方程式是:A = 0.1985.74C + 0.0048可根据拟合的标准曲线,将未知浓度样品的吸光度代入标准曲线的方程式中,得出未知样品的浓度。因此,鉴知紫外可见光谱仪能够在吸光度测量中有较好的测量结果满足客户的需求。4.SR50C光纤光谱仪优势体积小,重量轻,分辨率高;灵敏度高,适用于微量元素分析;测量准确性和一致性高;价格优惠。5.典型行业应用参考行业或典型应用光源光谱仪附件高校或实验室代替分光光度计氘卤组合SR50C,SR75C, ST90S10mm 紫外石英比色皿样品池抗紫外光纤在线水质仪器分析脉冲氙灯/氘卤组合SR50C,SR75C10mm 紫外石英比色皿样品池抗紫外光纤衰减器烟气在线仪器分析脉冲氙灯ST90S光纤、气室超微量分光光度计脉冲氙灯SR50C,SR75C,ST90S-便携式多参数水质分析仪脉冲氙灯SR50C,SR75C-北京鉴知技术有限公司,简称“鉴知技术”, 是一家以光谱检测技术为核心的专业公司,产品已广泛应用于缉私缉毒、液体安检、食品安全、药品检测等诸多领域,公司致力于为客户提供更先进的产品和更快捷的物质识别方案。
  • 紫外光谱技术与科学应用研讨会召开
    1月15日,由中国科学院南京天文光学技术研究所主办的紫外光谱技术与科学应用研讨会召开。30余位专家学者参加了此次研讨会。研讨会旨在促进相关领域的应用与研究交流,探讨紫外光谱设备在天文、大气等科学领域的发展趋势和应用融合,推动紫外光谱技术的发展与创新。南京天光所、中国科学院长春光学精密机械与物理研究所、南京天仪公司、中国科学院国家天文台、中国科学院云南天文台、南京理工大学、长春理工大学、中国科学院大气物理研究所研究人员分别作了题为“暗弱目标紫外光谱仪”“高精度刻划光栅研制”“南京天仪光电仪器产业化进展”“LAMOST 望远镜介绍”“瞬变源的紫外辐射”“干涉测量技术及应用”“光学多光谱多轴一致性测试”“基于风云卫星的气溶胶和地表太阳辐射反演研究”的报告。与会人员就紫外光谱技术与科学应用的最新研究进展、应用案例和前沿问题进行探讨,展望了紫外光谱技术的未来发展方向和在元素起源、瞬变源研究、行星探测、气溶胶反演、环境监测等方面的应用前景。
  • 选择紫外或紫外可见传感器时需要了解的 5 个问题
    分光光度法可适用于在线仪器,是监控水和污水处理设备的重要方法。分光光度法是一种测定分子对光的吸光度的方法,此方法在在线传感器上的应用已越来越准确和可靠。WTW IQ SensorNet系列紫外(UV) 和紫外可见(UV Vis)传感器具有适用于特定污水处理应用的内置出厂校准,不仅提高准确性,还可减少校准的频次。内置UltraCleanTM超声波清洗,减少校准频次的同时完全去除更换损耗品的必要(如试剂或刮刷),最大限度减轻了维护工作。本系列传感器甚至还支持通过单个传感器测量多个不同参数,如硝酸盐、亚硝酸盐、总悬浮物 (TSS)、紫外线透射率(UVT-254)、化学需氧量(COD)、生化需氧量(BOD)、总有机碳量 (TOC)和其他碳参数。 本系列传感器是水和污水处理设备的一项重要投资,为操作人员提供极大便利。但是如何选择合适的传感器?为确保选择最符合应用的传感器,来看一下选择紫外可见传感器时需要考虑的5个问题。紫外和紫外可见传感器的优势1、无需试剂,即可在线进行硝酸盐、亚硝酸盐、COD、BOD、TOC、UVT-254、NOx和TSS测量2、单个传感器最多可测量并显示五个参数3、UltraClean™ 超声波清洁技术可防止结垢,维护较为简单4、持久耐用的材质:钛和PEEK(聚醚醚酮)即使在最恶劣的条件下仍可保持稳定5、紫外和紫外可见传感器每次测量可扫描256个波长,从而实现更好的准确度和浊度补偿6、工厂已针对过程中的位置进行了校准(进水、二级处理、出水)7、用户可自行校准,从而在应用情况不理想时提高准确度参数硝酸盐:来自硝化过程中NH4转化的人类排泄物的生物污染物。亚硝酸盐:来自人类排泄物的生物污染物,是硝化过程中NH4和NO3的中间型。生化需氧量:微生物在分解流水中的有机废物时消耗的氧气量。被看做是对存在的有机物的量化,并且排放量受到国家污染排放消除系统(NPDES)的排放限制。总有机碳:样品中有机结合的碳量。被认为是对存在的有机物的量化和水质指标。与BOD或COD相比,该测试通常是表示有机物的一种更方便直接的方式。紫外线透射率:在254mm 波长处透射的紫外线百分比。该参数用于指示水中的有机物含量,通常与BOD、COD和TOC相关。该测量值通常用于在消毒过程中自动控制紫外线剂量。总悬浮物固体:水样中被过滤器捕集的悬浮颗粒的净重。该参数通常用作水质的指标,并用于定量分析活性污泥系统(混合液悬浮物,MLSS)中存在的微生物。需要测量什么及测量原因选择紫外或紫外可见传感器时,需要搞清楚的首要问题是测量什么及原因。需要测量什么参数?应用场景是什么?如何使用传感器?取决于应用场景,通过单个传感器监控多个参数可能更为有益。以下是紫外可见传感器在污水处理中最常见的一些应用。 氮硝酸盐氮和亚硝酸盐氮是生物脱氮除磷(BNR)应用中常见的测量参数。硝酸盐在工艺优化中扮演着多种角色,如确保高效地完成硝化、监控硝酸盐去除、控制脱氧区的碳投加量以及确保出水中的氮含量达到排放标准。亚硝酸盐的使用情况较少,因为它是硝化工艺的中间阶段。如果污水处理设备出现亚硝酸盐积累问题或使用快捷反硝化工艺,监控亚硝酸盐将会很有用处。碳碳参数在污水处理中同样具有广泛应用。COD、BOD和TOC是量化样品内碳含量的常见测量参数,其中BOD和TOC专属于有机碳。例如,通常会测量二级处理中的COD来监控有机物负荷。在二级处理中,COD可指示一级或二级处理的效率,或量化需要碳源(反硝化和除磷)的生物处理工艺中的有机碳含量。此外,监控污水处理厂收集系统或进水设施中的COD有助于确定重度负荷来源或提供预警探测。长期以来,这些碳参数的测定都需要昂贵或耗时的实验室程序,因此难以实际使用。如今,借助在线紫外可见传感器,我们便可以利用这些参数实现原本难以实现的工艺控制和预警检测。紫外和紫外可见传感器具有广泛的应用,在某些情况下,通过单个传感器获得多个参数将对操作人员有所助益。例如,TSS是曝气池的常见测量参数,指示微生物浓度(MLSS –混合液悬浮物)。利用包括 TSS与COD组合的传感器,操作人员即可获得用于监控食料与微生物比(F/M 比)的必要信息。使用单个传感器监控多个参数可从单个传感器获得更多有用数据,从而带来附加值。选择紫外可见传感器时,确保查看各传感器的可测参数列表(表1)。单波长传感器和光谱传感器有什么不同?一些制造商仅生产单波长传感器,而其他像WTW一样的制造商除单波长传感器外还生产光谱传感器,后者可提供更多参数和更高的准确性。前面我们一直在谈论光谱传感器,在光谱传感器中,每次测量时都将扫描256个波长的紫外光和可见光以获得所需参数的浓度。此类传感器通过测量每种波长处的吸光率来生成“光谱足迹”。然后,根据传感器中编制的算法将每个“光谱足迹”计算为以 mg/L 为单位的浓度(Smith, 2019)。相比于单波长传感器,光谱测量的精度和准确度更高,因为物质分子会吸收一段波长范围内的光,而并非仅吸收单个波长。附加波长具有许多优势,包括为每个参数提供更多吸收数据、使用一系列波长进行浊度修正,甚至有助于检测不同形式的有机分子。紫外可见光谱传感器扫描的256个波长跨越紫外和可见光范围,从200至720nm(图1)。紫外光谱传感器扫描的256个波长范围为200-390nm。在这个波长范围内,紫外传感器将能够同时测定并区分硝酸盐和亚硝酸盐。硝酸盐和亚硝酸盐通常吸收短波长紫外光(250nm),有机分子的吸收峰主要出现在250-350nm的紫外波长范围内。380 - 720nm范围内的光吸收来自每次测量时都会测量和进行修正的浊度 (Smith, 2019)。不过,我们仍然有两种使用对单个波长的吸收率来确定特定参数浓度的单波长传感器。UVT-254传感器(或 SAC-254)测量 254nm 波长处的透光率或吸光度(%)。254nm的紫外光能够被有机分子吸收,因此该传感器对测定饮用水和污水内的有机物浓度趋势非常有用。使用 UVT-254传感器,可以输出经过准确校准的COD、BOD和TOC相关值,还会再测一个波长 (550nm) 用于浊度修正。NOx传感器使用单个波长测量硝酸盐(NO3-N)和亚硝酸盐 (NO2-N) 的总和,这足以满足一些生物脱氮除磷应用中的氮监控需求。尽管单波长传感器可以提供有用的数据和趋势,但与光谱传感器相比,其准确度和可重复性不佳。使用单波长进行测量和浊度修正时,此类传感器可能无法检测到某些形式的有机分子,无法区分硝酸盐和亚硝酸盐,也无法准确补偿浊度。单波长和光谱传感器各有优势,所以哪种更适合您的应用呢?使用单波长传感器能够以适中的价格获得有机物或氮氧化物的趋势数据,并且甚至有些应用专门需要用到单波长传感器,例如紫外线消毒需要UVT-254。然而,光谱传感器已针对特定应用(进水、二级处理、出水)进行校准,并且由于此类传感器扫描256个波长,从而准确性、可靠性都比单波长传感器更高,浊度修正也更准确。测量光程是什么?为什么很重要?测量光程是指光源和探测器之间的距离,在分光光度法测量中非常重要。测量光程(又称狭缝宽度)是根据比尔-朗伯定律计算光吸收率时的一个计算因子,并且受样品水浊度的影响极大。因此,紫外可见传感器通常具有固定的测量光程,并针对特定应用提供不同的狭缝。IQ SensorNet紫外可见传感器有2种测量光程可供选择:1mm和5mm(图 2)。1mm狭缝用于监控未经处理的污水和二级处理,因为这些应用通常浊度较高。5mm狭缝用于监控处理后的出水、低浊度污水,有时还可用于监控一些地表水或饮用水应用。取决于应用类型,其他制造商可能还会提供10-50mm的测量光程。选择YSI紫外可见传感器时,注意701型号传感器为 1mm测量光程(适用于未经处理的污水或活性污泥),705型号传感器为5mm 测量光程(适用于低浊度的处理后出水)。如何安装紫外可见传感器?紫外可见传感器一般比其他在线传感器更大、更沉,因此在确定安装选项时应特别考虑。与所有在线传感器相同,应基于安全性和可达性来选择安装位置和方式。要确保可以轻松接触到传感器,以便偶尔进行维护,因此有足够的操作空间非常重要。传感器的安装位置应符合要求的扶手和过道安全标准。同样,紫外可见传感器的安装也应易于使用,并使传感器易于操作。最后一点,由于传感器可能比较沉,安装的稳固性也非常重要,必须能够承受相应重量,尤其是对于存在堵塞问题的污水设备。紫外可见传感器在污水中最常见的安装方式为浸入式安装。浸入式安装通过将传感器直接浸入集水池或水流中,直接测量过程用水。WTW紫外可见传感器提供两种沉浸式安装选项:刚性安装或摆动/链条安装。刚性安装包括将紫外可见传感器固定至一个金属杆上,然后将金属杆安装至护栏或墙壁上。当需要较稳固的解决方案,如水比较湍急或水中有堵塞时,这种安装类型是最佳选择。对于一般的沉浸式安装应用,摆动和链条安装更具优势。使用这种安装,传感器将更容易操作,因为传感器悬挂在链条末端,通过链条便可轻松地在集水池中进行升降。摆动臂将传感器伸出集水池外面,但是也可容易接近,只需将传感器摆动至靠近护栏的位置就能够拆下传感器进行维护。 对于像处理后的污水出水、污水回用或饮用水等清水应用,流通池可能是最佳选择。在这些应用中,由于缺乏合适的位置或因NSF要求,不能使用沉浸式安装。使用流通池时,紫外可见传感器将采用壁挂式安装,流通池会形成一个腔体让水流经光学窗口。水流持续运送至传感器进行测量,然后排出。无论将WTW紫外可见传感器用于清水还是污水应用,选择最适合的安装选项都非常重要,这样既能够确保传感器正常运行,还可将维修工作量保持在最低限度。 如何维护?尽管紫外可见传感器的维护要求不高,且不需要试剂,但仍然需要偶尔进行保养以优化运行。相比于其他在线传感器,WTW紫外可见传感器具有所需维护工作量最少的巨大优势。本系列传感器具有内置的独特自动超声波清洗系统UltraCleanTM技术。该系统不仅有助于保持测试窗口长久清洁,而且整个系统都置于传感器内部,所以没有需要更换的密封件或挂刷。保持紫外可见传感器清洁对传感器性能至关重要。因此,紫外可见传感器通常带有自动清洁系统,这可有效降低传感器总的维护时间。WTW提供两种类型的自动清洁系统:一种是所有传感器中都已内置的UltraClean;另一种是空气清洁系统。UltraClean超声波清洁系统轻微振动传感器的光学窗口,清除堆积的固体。这种技术已被证明在具有较多固体的污水应用中非常成功,WTW的ViSolid(TSS)和VisoTurb(浊度)传感器中同样也应用了此技术。WTW紫外可见传感器的另一个自动清洁选项是空气清洁系统。该系统使用空气压缩机定期向光学窗口上喷放压缩空气,清除任何可能干扰测量的固体。WTW空气清洁系统直接与传感器相连,并且可以通过控制器进行编程控制,根据所需时间间隔进行清洁。两种自动清洁系统都能使传感器在废水应用中保持数周的准确读数。自动清洁系统非常有助于减少整体维护时间,但是为了达到最佳性能,仍然需要偶尔进行手动清洁。每两周从测量环境中取出紫外可见传感器进行一次手动清洁,可大大减少潜在的测量问题。手动清洁非常简捷,整个过程只需1分钟,包括用清水冲洗测量狭缝、使用清洗液清洗、用软布擦亮镜片然后彻底冲洗干净。此外,还应保持日常维护以确保传感器清洁。维护的另一方面是校准和验证。WTW紫外可见传感器使用实验室参照样品进行校准,用于调整传感器的原始信号与实验室浓度值相关联的斜率。如前文所述,光谱传感器已针对特定应用进行出厂校准,但也可以自行校准,使传感器的测量适应过程用水。单波长传感器也可对主要参数进行校准,但相关值(BOD、TSS、TOC 等)必须根据实验室测量值进行准确校准。应根据需要进行校准,例如当传感器首次安装、移动到新位置或传感器对参考样品的测量不准确时。WTW紫外可见传感器具有双通道测量系统,其中一个相同的参比通道用于监控并校正光源灯或探测器的老化,防止任何潜在校准漂移。这样可免去常规校准的麻烦,但是仍建议使用实验室参考样品对传感器测量值进行常规验证,以确保传感器的准确性。
  • 齐飞教授:真空紫外光电离质谱与应用
    中国科学技术大学国家同步辐射实验室齐飞教授 同步辐射真空紫外光电离是一种“软电离”技术,光电离质谱技术在研究固相生物分子、药物分子光解离机理等方面非常有效。真空紫外光电离质谱整个过程无需任何基质 (matrix free)、电离过程中无碎片离子生成 (fragment free),且无需样品前处理。因此该该项技术既具有普适性又具有选择性。另外齐飞教授主要介绍了该技术燃烧化学、等离子体化学、分析化学等领域的应用情况。  中国科学技术大学国家同步辐射实验室齐飞教授与美国、德国的科学家合作,首次观察到系列碳氢化合物氧化过程的重要中间体-烯醇,这一研究成果以Science Express形式发表在5月12日出版的国际知名学术刊物Science《科学》杂志上。
  • 方兴未艾的光谱“处女地”:现代军用紫外探测技术
    紫外是指在电磁频谱中10~400nm波长范围的一段,其波长在电磁频谱中位于可见光谱紫光区的外侧,是在1802年由德国物理学家里特发现。由于只有波长大于200nm的紫外辐射才能在空气中传播,所以通常讨论的紫外辐射效应及其应用均在200~400nm范围内(大气层中的“紫外窗口”)。  军用紫外探测技术是利用近地大气中的“日盲区”(波长小于300nm的紫外辐射由于同温层臭氧吸收,基本上达不到地球近地表面,造成太阳光中的紫外辐射在近地表面形成盲区)和大气层中的“紫外窗口”来实现的。  图1 紫外是波长比可见光短,但比X射线长的电磁辐射,波长范围在10纳米至400纳米,能量从3电子伏特至124电子伏特之间。它的名称是因为在光谱中电磁波频率比肉眼可见的紫色还要高而得名,又俗称紫外光。  早在20世纪60年代,美国空军就开始了利用紫外波段探测洲际导弹发射的研究工作(导弹发动机的尾焰会产生紫外光子)。理论上,只要能够对导弹发动机的羽烟紫外辐射进行精确测量,就能够有效发现是否有导弹发射。但是,由于科研人员发现难于确定这些紫外辐射信号强度是否强于自然辐射,再加上紫外辐射特有的“非热态”,导致无法建立相关的信号模型和算法理论,紫外探测难以付诸实施,研究工作只能转向易于建立信号模型的发动机羽烟红外特征探测。  一直到20世纪80年代,在美国的“导弹防御计划”下,研究人员再次考虑利用紫外辐射来探测导弹发射的可行性。也是在这一时段,相关的基础研究也取得了进展,特别是利用地球观测卫星获取了自然背景辐射的精确数据,高灵敏度的紫外阴极、电荷耦合器件(CCD)和高增益微通道板的研究也获得了突破,这使得军用紫外探测技术成为了可能。  因此,进入20世纪90年代之后,军用紫外探测技术进入实质性研究和应用开发阶段,被誉为21世纪最具影响力的军用技术之一的紫外告警技术异军突起,并且已经逐步成为一种标准配置而越来越多的出现在各类高价值武器平台(也包括部分大型民用客机)上。  目前,军用紫外探测技术主要在战术导弹告警、天基紫外预警和紫外超高谱侦察等几个方面展开:战术导弹告警,航空兵在空中格斗、低空突防、近距支援、对地攻击和起飞着陆等阶段,很容易受到红外制导空空导弹和便携式防空导弹的攻击,由于缺乏有效的红外制导导弹逼近告警,75%的战损都是因为飞行员在没有发觉处于导弹威胁之中而被击落的。  作为对抗红外制导导弹中最为关键的导弹逼近告警(MAWS)就需要能够在大范围空域内能够连续地快速告警,并且虚警率极低。而紫外探测技术就能胜任这样的应用,通过被动接收导弹发动机工作时产生的紫外辐射,就可以对导弹的发射或者逼近进行实时告警以及精确定向,及时提醒飞行员采取机动规避和对抗措施。此外,由于紫外告警设备结构简单、不需要制冷、不需要扫描、重量轻、体积小和勤务性能好,所以现在不但可以装在各种战斗机、攻击机、武装直升机和大型民航客机上,地面部队的主战坦克和步兵战车也都开始配备。  图2 20世纪80年代,在美国的“导弹防御计划”下,研究人员再次考虑利用紫外辐射来探测导弹发射的可行性。  天基紫外预警,弹道导弹对国家安全的威胁是严重的,因此需要对其采取积极的防御手段,特别是对其进行有效的早期预警。天基紫外预警就是利用搭载在地球同步轨道预警卫星上的紫外探测系统,在弹道导弹的助推段就及时发现导弹发动机羽烟的紫外辐射,对敌方来袭弹道导弹进行可靠的早期预警和跟踪。美国的导弹防御研究人员也表示,相比传统的天基红外探测,星载紫外探测器不需要制冷、体积也更小、耗电量低、成本更低,更适合在条件受限的太空环境下应用。  紫外超广谱侦察,是一种基于方位和光谱的三维信息探测技术,可在紫外波段内以高光谱分辨率(小于10nm)对目标进行监视探测,获取目标的细微特征,获得常规侦察手段难以得到的目标信息,是现代光电侦察技术经历了单波长、多波段之后的一个新飞跃。  目前,美国陆军研究实验室基于声光可调谐滤波器设计的AOTF超光谱成像侦察仪已经可以覆盖了紫外波段,并且在反伪装侦察、生物战剂告警(生物战剂的主要生物色基—芳香烃氨基酸能够强烈吸收紫外辐射,产生很明显的荧光谱)等方面展示出了巨大优势。
  • 基于177.3nm激光的真空紫外光调制反射光谱仪
    CPB仪器与测量栏目最新发文:基于177.3nm激光的真空紫外光调制反射光谱仪,此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。光调制反射光谱是通过斩波器周期性地改变泵浦光源对样品的照射来测量半导体材料反射率相对变化的一种光谱分析技术。由于所测差分反射率作为能量的函数在材料电子能带结构的联合态密度奇点附近表现出明显的特征,光调制反射光谱已成为研究具有显著电子能带结构的半导体、金属、半金属及其微纳结构和异质结等材料联合态密度临界点的重要实验技术之一。光调制反射光谱中所使用的泵浦激光的光子能量一般要高于被研究材料的带隙,随着第三代宽禁带与超宽禁带半导体材料相关研究和应用的不断深入,需要更高能量的紫外激光作为光调制反射光谱的泵浦光源。目前国际上已报道的光调制反射光谱系统中,配备的泵浦光最大光子能量约5 eV,尚未到达真空紫外波段。因此,迫切需要发展新一代配备高光子能量和高光通量的泵浦光源的光调制反射光谱仪,使其具备探测超宽带隙材料的带隙和一般材料的超高能量临界点的能力。中科院理化所研制的深紫外固态激光源使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家,已成功与多种尖端科研设备相结合并取得重要成果。此文详细介绍了由中科院半导体所谭平恒研究员课题组利用该深紫外固态激光源搭建的国际上首台真空紫外光调制反射光谱仪(图1)的系统设计和构造,将光谱仪器技术、真空技术、低温技术与中科院理化所研制的177.3 nm深紫外激光源相结合,同时采用双单色仪扫描技术和双调制探测技术,有效避免了光调制反射光谱采集中的荧光信号的干扰,提高了采集灵敏度。该系统将光调制反射技术的能量探测范围从常规的近红外至可见光波段扩展至深紫外波段,光谱分辨率优于0.06 nm,控温范围8 K~300 K,真空度低至10-6 hPa, 光调制反射信号强度可达10-4。通过对典型半导体材料GaAs和GaN在近红外波段至深紫外波段的光调制反射信号的测量对其探测能力进行了性能验证(图2)。此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。该系统基于中科院半导体所承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制(二期)”子项目“深紫外激光调制反射光谱仪”,目前已经初步应用于多种半导体材料在深紫外能量范围内的能带结构和物性研究,并入选《中国科学院自主研制科学仪器》产品名录,将有望在推动超宽禁带半导体材料的电子能带结构研究、优化超宽禁带光电子器件的性能方面发挥重要作用。图1. 深紫外激光调制反射光谱仪图2. 177.3 nm(7.0 eV)激光泵浦下的GaAs在1.2 eV至6 eV内的双调制反射光谱及对应能级跃迁
  • ​紫外可见光谱法研究光伏电池
    近些年来,寻找环境问题解决方案日益成为全球亟待解决的主要难题。鉴于化石燃料资源正在迅速耗竭及其对环境造成严重破坏,发展替代性能源产品已经成为当务之急。太阳是清洁能源的一个丰富来源,可通过光伏系统,将太阳光转化为直流电能从而为我们所用。近年来各国都在积极推动可再生能源应用,因此,光伏产业发展十分迅速。今年是“十四五”开局之年,在国家政策的支持下,在“碳达峰”、“碳中和”的目标要求下,光伏行业将迎来更大的发展。光伏转换技术的发展和进步需要在化学、电子、机械和光学等方面对整个过程的各个阶段进行表征,大量的研究工作仍然在进行中。紫外/可见/近红外光谱仪在光学性质研究中有着重要的应用。配有150mm积分球的LAMBDA 1050+紫外/可见/近红外分光光度计使用LAMBDA 1050+紫外/可见/近红外分光光度和150mm积分球,可以测量样品在200~2500nm范围内的透过率、反射率和吸光度。积分球的内表面使用Spectralon高分子材料制成,其反射率接近100%。150mm积分球的窗口面积占内反射表面比值小于2.5%。窗口面积比例越低,测量结果的精密度越高。60mm积分球的窗口面积比大约为7%。透射率和反射率积分球测量:透射模式(上)和反射模式(下)积分球内部的检测器(可见光区域使用光电倍增管,近红外光区域使用PbS检测器)被Spectralon材料制成的挡板所保护,避免直接反射光线进入检测器,从而保证测试结果的准确度。在进行反射率测量时,可以打开镜面反射侧翼,将镜面反射光线排除,从而只测量漫反射光线。在进行透射率测量时,将正对入射光束的窗口上的标准盖板取走,可以排除直接透射光线,从而只测量漫透射光线。吸光度中心样品架附件;使用积分球测量吸收光谱使用中心样品架,将待测样品放置在积分球的中心位置,可以直接测量样品的吸光度。光伏电池的测量光伏电池是将光能转换为电能的半导体器件,第一阶段是吸收有效光谱范围内的光线。为了增加光电转换效率,需要对硅片表面进行处理,以增加光伏电池的吸光度。测量光伏电池的反射率、透过率和吸光度,可以评价其处理方式的效果。未处理的硅晶片、经过织构化处理的硅晶片、覆盖了抗反涂层的硅晶片以及光伏电池成品处理前和处理后硅晶片的透过率(左)和反射率(右)硅片的吸光度可通过如下公式获得:%吸光度=100%-%反射率-%透过率可见,经过处理的硅片吸光度更高,从而光能利用率更高。光伏电池的有效反射率是包含了AM1.5太阳辐射光谱权重的积分反射率,可以表示为:其中R(λ)是测量得到的百分比反射率,Sλ是太阳辐射光谱(以光子流表示)。有效反射率可以在光伏电池生产过程的任意环节进行测量,所得数值可以用于不同样品的相互比较。光伏电池对不同角度光线的透射率和反射率非常重要,后续文章会介绍相应分析方法,敬请期待。更多详情,请扫描二维码下载完整应用报告。
  • 紫外拉曼光谱:破解催化剂技术瓶颈
    新材料作为高新技术的基础和先导,应用范围非常广泛,是21世纪最重要和最具有发展潜力的领域。而新材料的研制与催化剂的使用是分不开的。大连化物所凝聚科学技术研究团队十几年的智慧和心血,研究的催化材料紫外拉曼光谱技术,破解了催化材料的若干关键技术难题,为突破国家建设急需、引领未来发展的关键材料和技术提供了重要技术支持。该成果也因此获得了2011年度国家自然科学二等奖。  催化材料紫外拉曼光谱技术研究的带头人李灿院士告诉记者,作为化学反应中不可替代的催化剂,贵金属在诸多领域发挥着重要的作用。但是稀缺资源的价格都很昂贵,这无疑是横亘在催化剂制造的一道难题。而紫外拉曼光谱技术正是破解这一难题的金钥匙。紫外拉曼光谱是一种无损伤、高灵敏度的测量技术,在物理、化学、生物学、矿物学、材料学、考古学和工业产品质量控制等领域中有着广泛的应用,是研究分子结构和组态、物质成分鉴定、结构分析的有力工具。  紫外拉曼光谱技术破解了世界催化材料发展瓶颈,解决了催化材料关键科学难题,实现了四大突破。一是利用紫外共振拉曼光谱技术解决了一系列重要分子筛材料中有关骨架金属活性中心的结构鉴定难题。建立了微孔和介孔分子筛骨架过渡金属杂原子活性中心鉴定的表征新方法,不仅可以大幅节约贵金属用量,而且单原子相对均一的催化环境有望实现化学反应的高选择性,减少副产物的出现,从而实现真正的绿色催化。  二是紫外拉曼光谱研究了金属氧化物催化材料表面物相结构问题,发现金属氧化物的表面与体相常常具有不同相结构,物相形成过程中表面和体相的相变表现不同步。在太阳能光催化材料研究中,发现表面物相结构和光催化活性有直接关联,提出了“表面异相结和异质结增强光催化活性”的概念。  三是发展了水热催化材料合成中的原位紫外拉曼光谱技术,观察到分子筛合成初期的分子碎片以及模板剂与分子碎片的相互作用形成的微孔结构,提出了分子筛初期形成的重要中间体决定最终分子筛结构的机理。他们的研究发展了表征催化材料的新方法,发现了催化材料合成的重要转化过程和活性中心中间物种,提出了催化材料合成的机理。  四是获得了具有与均相不对称催化相媲美的多相手性催化剂。该催化剂是一大类化合物——手性化合物的一种,而手性药物则是手性化合物中非常重要的一个分支。手性药物是指具有左旋或右旋对映体化学结构的单一对映体化合物,包括光学纯药品、光学纯农业化学品及其他光学纯产品与中间体。利用“手性”技术,人们可以有效地将药物中不起作用或有毒副作用的成分剔除,生产出具有单一定向结构的纯手性药物,从而让药物成分更纯,在治疗疾病时疗效更快、疗程更短。手性药物的研究目前已成为国际新药研究的新方向之一。在国际制药界,手性技术已被广泛应用到消化系统疾病、心血管疾病、癌症等领域新药研发中。  李灿院士告诉记者,1998年他们成功研制出我国第一台具有自主知识产权的紫外拉曼光谱仪,解决了国际拉曼光谱领域长期存在的荧光干扰问题,在国际上最早将其应用于催化及材料科学的研究。到2004年研究组研制成功紫外—可见全波段共振拉曼光谱议,使我国在拉曼光谱的催化表征研究走在世界前面。2008年,研究组与卓立汉光仪器公司合作,开始将紫外拉曼光谱仪产业化。2010年完成国家重大装备研制项目“深紫外拉曼光谱仪的研制”,获得世界上第一张激发波长低至177纳米的深紫外拉曼光谱。  李灿院士骄傲地告诉记者,在过去的10年间,紫外拉曼光谱已经在化学、物理和生命科学等诸多领域显示出巨大的优越性,成为一项重要的分子光谱技术。我国紫外拉曼光谱研究在国际上的领先地位,极大地促进了中国在这个领域的国际合作研究,大化所与国内外十余个研究机构实现技术合作。今后,紫外拉曼光谱仪技术在多家研究机构的推广应用,一定会有力推动我国新能源、节能环保、电动汽车、新材料等七大战略性新兴产业健康快速发展,一定会让更多的新材料、精细化工产业受益。
  • 西安光机所球基中紫外光谱仪顺利完成全部探测实验任务
    2022年9月28日凌晨两点,由中国科学院空天技术研究院自主研制的临近空间科学实验平台在我国青海省柴旦地区“鸿鹄专项“外场实验基地顺利放飞。由西安光机所空间科学微光探测技术实验室研发的科学载荷——中紫外光谱成像仪(MUV Spectral Imager,简称MUVSI)搭载此平台顺利升空,这也是MUV投入使用后的最后一次探测实验任务。MUVSI连续工作约12小时,系统工况稳定,获得了我国青海柴旦地区上空约30km高度大气紫外辐射背景的数据,当日傍晚顺利回收。MUVSI是西安光机所紫外光学技术团队第一次针对临近空间气球平台开发的光学仪器。为适应临近空间长周期工作和大动态范围目标探测的需求,研发团队先后突破了紫外宽谱段成像光学、高杂光抑制比光机结构设计、高灵敏低噪声紫外敏感ICCD器件等多项核心技术,保障了MUVSI探测谱宽达到210nm,光谱分辨率优于2nm,动态范围10000:1等综合性能指标。MUVSI在确保光学性能和力学性能的前提下,大胆采用紫外凹面变线距光栅替代传统光谱仪中的准直色散成像模组,将光学元件总数降低至2片,极大地减少光学表面带来的光能损失,同时降低了装调难度,为载荷提前半年交付提供了重要支持。MUVSI还首次尝试了高压电子学在临近空间特殊气压环境下的绝缘密封防护技术,通过反复工艺摸索和地面低气压模拟放电实验,形成了一套有效的高压(≥6000V)电子学防护方法,解决了高压电子学长期以来在低气压环境(70-5Hpa)可靠性低、故障率高的难题。另外,MUVSI还通过装载团队自研的太阳敏感器和自动增益控制算法,实现了在无遥测信号时的载荷智能参数调整,进一步保障了高质量数据的获取。增强型探测器模组2022年度放飞期间部分大气背景数据MUVSI自2019年完成正样研制,共计参加鸿鹄专项青海外场放飞实验四次,获得了近百小时有效数据,为该领域科学研究提供了宝贵的直接观测数据,也是西安光机所紫外光学技术在工程应用的一次重要尝试。该载荷技术有望在球基大气紫外辐射特性遥感、近场尾焰特性分析等重要领域得到应用。
  • 7千米级深海探测紫外激光拉曼光谱仪海试成功
    p style="text-align: center "img width="400" height="280" title="2017451677514.jpg" style="width: 400px height: 280px " src="http://img1.17img.cn/17img/images/201704/noimg/c4d597a3-d490-43d8-bed3-a6cf5ae64ce4.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "7000米级深海紫外拉曼光谱仪/pp  近日,中科院大连化物所李灿院士、范峰滔研究员、黄保坤高工等参与研发的7千米级深海原位探测紫外激光拉曼光谱仪在马里亚纳海沟成功通过7000米海试验证。该光谱仪是国际上首次进行深海探测的紫外激光拉曼光谱仪,也创造了拉曼光谱仪最高深海探测记录(7449米)。该仪器的成功研发将提升我国在深海矿藏、能源资源(天然气水合物)、碳循环与气候变化以及深海生物信息方面的探测能力。/pp  中国科学院深渊科考队赴马里亚纳海沟海域执行中科院战略性B类先导专项“海斗深渊前沿科技问题研究与攻关”和国家重点研发计划“深海关键技术与装备”重点专项等科技任务,使用原位实验号、万泉号、天涯号深渊着陆器对我国自主研发的一系列深海装备进行了成功的试验和实际应用,其中包括该光谱仪的成功应用。/pp  此次进行深海探测的紫外激光拉曼光谱仪,是国内外工作水深最大的拉曼光谱装置,同时也是国内外首次采用紫外激光作为激发光谱的深海原位拉曼光谱仪。仪器的研发基于李灿团队在紫外拉曼光谱仪多年的研发经验和学术积累(国家自然科学二等奖,2011,国家技术发明二等奖,1997),进一步提高了探测的灵敏度,特别是解决了常规拉曼光谱易受海洋微生物以及有机质荧光干扰的缺点。另外,在深海条件下,光谱仪面临高压(约700个大气压)和着陆冲击等极端条件,这对光谱仪的性能提出了苛刻的要求。该研究团队通过科学设计,反复验证,采用折叠反射镜、光纤软连接以及同轴反射镜等一系列技术,成功研发满足深海极端条件应用的紫外拉曼光谱仪器。/pp  该项目是中科院战略性B类先导专项“海斗深渊前沿科技问题研究与攻关”的课题项目,由我所牵头并与三亚深海所合作承担,我所主要负责光谱仪器研发,深海所主要负责仪器的深海应用研究。两所通力合作,取得了技术突破,为今后的科技合作探索了一条新路,充分体现出我院在深海科技领域中独特的集团优势。/pp /pp /p
  • 2025年全球紫外/可见光谱市场将达12亿美元 增长点看这里
    p style="text-align: justify "  国外某机构的研究报告显示, 2020年全球紫外/可见光谱市场为10亿美元,预计2025年该市场将达12亿美元,预测期间的复合年增长率为4.7%。紫外/可见光谱技术在环境监测、医药和生物技术行业的应用,以及紫外/可见光谱技术的进步和食品分析需求等的增加等是推动该市场增长的主要因素。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 274px " src="https://img1.17img.cn/17img/images/202012/uepic/4d8f677a-0ea0-4beb-941a-ed7f89e292fa.jpg" title="1.jpg" alt="1.jpg" width="600" height="274" border="0" vspace="0"//pp style="text-align: justify "  特别需要指出的是,新冠肺炎疫情的影响很大程度上提升了市场对精确诊断和治疗设备的需求。由于新冠肺炎疫情的爆发,各种类型的医疗中心都面临巨大压力,全球各地的医疗机构每天都有大量患者前来就诊,不堪重负。同时,生物制药科学家和工程师们正夜以继日地工作,开发能够满足未来流行病和疫情爆发需求的先进生物仪器。这也导致政府和私人机构进行大规模投资,建立更多具有先进技术的相关机构。/pp style="text-align: justify "  根据仪器类型的不同,紫外/可见光谱系统分为双光束系统、单光束系统、阵列系统和手持系统。2019年,双光束系统在紫外/可见光谱系统市场中占据最大份额。预测期间,这部分也将呈现最高的复合年增长率。由于双波束系统在数据收集方面实现了高水平的自动化,这些优势支持了其在紫外/可见光谱市场上越来越多的应用。/pp style="text-align: justify "  作为制药和生物技术研发中应用的一种分析技术,因为光谱系统技术的进步,使得紫外/可见光谱系统的高通量筛选、微体积取样和与仪器的软件集成成为可能,这些技术的进步确保了大量的数据可以通过这些系统收集、记录和共享,这对研发非常有利,也是推动紫外/可见光谱市场增长的主要因素。/pp style="text-align: justify "  不过,由于使用寿命和低耗材需求的原因,也在一定程度上抑制了紫外/可见光谱市场的增长。据悉,紫外/可见光谱系统的使用寿命为3到5年,一旦购买了仪器,就不会定期更换或升级,这在学术界表现的特别明显。仪器的长寿命限制了终端用户的购买,这一瓶颈在对价格敏感的亚太地区和世界其他地区 (与北美和欧洲相比)非常明显。另外,与其他分析技术(如高效液相色谱)相比,紫外/可见光谱技术所需的试剂和消耗品也较少。/pp style="text-align: justify "  在应用方面,紫外/可见光谱的市场分为学术应用和工业应用。2019年,工业应用领域占据最大的市场份额,这主要是由于紫外/可见光谱仪的易用性、灵活性和可扩展性,以及价格方面的可负担性等。作为紫外/可见光谱市场最大的终端用户,制药和生物技术公司没有受到新冠疫情的影响,但学术和研究机构的增长因实施的封锁受到了一定程度的阻碍。/pp style="text-align: justify "  2019年,北美将占据全球紫外/可见光谱学市场的最大份额,而亚太地区将在预测期内呈现最高的复合年增长率,主要归因于环境、食品分析需求的增加,以及对先进产品需求的提升等。/pp style="text-align: justify "  与美国和欧洲等成熟市场相比,中国和印度等新兴市场预计将提供巨大的增长机会。许多主要的仪器供应企业正在通过建立新工厂、研发中心和创新中心来加强他们在世界各地的存在。例如,在2019年,安捷伦在欧洲建立了分子光谱研发中心;岛津在日本Keihanna科学城的技术研究实验室建立了一个新的研究基地。此外,在2017年,岛津在其亚洲子公司(Shimadzu Asia Pacific Pte. Ltd.)建立了一个创新中心,该中心使岛津科学家与亚洲和大洋洲的大学研究人员能够进行先进的研发活动。/ppbr//p
  • 重金属快检新法:紫外可见光谱+比色检测
    近年来,作为百姓赖以生存的&ldquo 菜篮子&rdquo 、&ldquo 米袋子&rdquo 的耕地土壤和水源正在承受越来越多的重金属污染,以致于&ldquo 镉大米&rdquo 、&ldquo 毒海鲜&rdquo 、&ldquo 毒蔬菜&rdquo 事件屡见不鲜。如何避免这些被重金属超标的产品流入餐桌?重金属离子检测成了餐桌安全的&ldquo 最后防线&rdquo 。吴爱国研究员  在中科院宁波材料技术与工程研究所的实验室中,吴爱国研究员和他的团队,正在对一项全新的重金属离子快速检测技术开展研发。如果一切进展顺利,这项技术将大大改变目前重金属离子的检测手段,对于构筑餐桌安全&ldquo 最后防线&rdquo 将起到重要作用。  吴爱国团队正在努力的新技术,被称为&ldquo 纳米贵金属比色法&rdquo 。一次偶然的机会,吴爱国团队发现一些含纳米颗粒的溶液遇到重金属离子后会呈现不同颜色。基于这个发现,吴爱国在省自然科学基金杰出青年项目支持下开展了深入研究。纳米贵金属比色法和便携式紫外光谱仪  经过4年多的不懈努力,他们终于找到了系统性快速便捷检测重金属的方法,并采用了&ldquo 紫外可见光谱+比色检测&rdquo 的组合手段,原理上已经实现了对重金属溶液的快速、便携式的现场检测。  &ldquo 用眼睛定性、用紫外可见光谱定量&rdquo 是新方法的特色。吴爱国团队利用经过修饰后的贵金属纳米粒子遇到重金属离子后会出现颜色变化的特性,将不同的重金属离子试剂制作成类似于pH试纸样式的溶液,使用者可以通过对特定溶液颜色深浅对比知道重金属污染离子的种类,进而通过便携式紫外可见光谱仪,则可以知道污染的严重程度。  相比于传统的检测手段,&ldquo 纳米贵金属比色法&rdquo 费用低廉、便于携带、易于现场操作等优点,使得快速、实时的现场检测成为可能,可极大提高检测效率。  据吴爱国介绍,传统重金属离子检测技术主要依托于大型的检测设备且需要在标准的检测实验室中进行,因此整个过程往往需要1天时间。检测试剂遇不同重金属离子呈现颜色各异  而他们团队正在研发的检测方法,将来百姓只要在家里根据说明书进行操作就可做测试:几瓶含有不同试剂的溶液以及不到A4纸大小的紫外光谱仪,短短几个小时内便可知道买回来的蔬菜、瓜果等是否被重金属离子污染。  在节省了大量时间的同时,新的检测方法更涉及常见的重金属离子的种类。据了解,通常人们所谓的重金属离子污染,主要是指铜、汞、铅、铬(VI)、锰、钴、镍、镉等造成的污染,这些金属离子中任何一种超标都能引起人的头痛、头晕、失眠或精神错乱等症状,甚至诱发癌症。而新研发的方法,对于上述几种重金属离子都能做出反映。  据了解,在浙江省自然科学基金杰出青年项目的资助下,吴爱国团队的研究已经进入到对实际样品的研究测试阶段。吴爱国表示希望这项新技术在各方面的共同努力下,尽快能够跨过基础研究到技术实用化的鸿沟,以便构筑起餐桌安全的&ldquo 最后防线&rdquo ,真正地将&ldquo 毒大米&rdquo 、&ldquo 毒蔬菜&rdquo 等污染食品拒之于&ldquo 桌&rdquo 外。
  • 赛默飞紫外/红外光谱仪代理商招募活动火热进行中!
    导读作为科学服务领域的世界领导者,赛默飞从未停止过合作共赢的脚步。公司一直致力于开发渠道销售,增强代理商实力,尊重和依靠广大合作伙伴。为了更好地满足如今日益增长的市场需求,赛默飞紫外可见分光光度计&傅里叶红外光谱仪现面向全国范围内诚邀代理商加入我们合作伙伴行列。我们采用灵活多变的渠道合作模式,欢迎广大朋友前来咨询,携手并进,共创共赢!产品介绍紫外篇作为全球知名的仪器制造商,赛默飞旗下拥有众多脍炙人口的仪器品牌。其中UV-vis生产历史可追溯到20世纪40年代的Unicam公司。从1940年推出世界上第一台商用紫外可见分光光度计Unicam SP500开始,已有长达70多年的发展历程。在此期间赛默飞分光光度计产品和配套服务一直致力于加速客户在研究领域的进程、解决客户在分析过程中遇到的各种复杂问题与挑战,我们的产品也随之经历了无数次的优化和革新,生产出一代又一代享誉世界的产品,服务于众多的实验室,并配备专业的服务团队,解决客户的后顾之忧。如今赛默飞的分光光度计可为客户提供从液体到固体、从手动到自动、从离线到在线、从基础到研发等多种情况的解决方案。使用场地也覆盖了实验室,移动车辆及户外。并继续走在优化创新的路上。目前我们在售的紫外主要分为:Genesys、Evolution两大系列。 红外篇赛默飞傅里叶红外光谱仪(FT-IR)前身为美国尼高力(Nicolet)仪器公司,世界上最大的傅立叶红外光谱仪和拉曼光谱仪专业生产厂家。美国《分析消费者》杂志评选 10 种分析仪器最佳供应商,其中 FT-IR 最佳供应商是 Nicolet。世界著名咨询公司 SDI 撰写的关于化学分析仪器“市场分析与前景报告”,其中列出了 FT-IR 光谱仪世界前五名生产厂家,Nicolet 名列第一。美国《分析仪器制造商水准研究报告》,美国《光谱学》等杂志均将 Nicolet 评为 FT-IR 市场领导者和购买首选厂家。Nicolet 在中国开展业务已有 30 年历史,设有健全的销售咨询和技术支持机构,广泛应用于诸如制药、化工、化妆品、珠宝等众多行业和领域。凭借优异的产品性能和表现,Nicolet傅里叶红外已在中国获得了众多行业和领域客户的信赖和认可,很多世界知名的高校,科研院所,大型企业和政府单位都是我们的客户和忠实粉丝。目前我们诚招代理的型号包括:iS5和Summit系列产品。 以上两类产品,采用渠道销售的模式,由赛默飞授权符合资质的代理商进行指定区域/行业销售业务,每年签发一次正式授权书。赛默飞的合作伙伴必须资质完善、诚实守信、共同遵守业务合作规则。我们也会提供丰富的产品培训、应用支持和技术服务。报名方式欢迎在展台留言或致电我们,我们将会第一时间与您取得联系!
  • 2021全球紫外/可见光谱市场将达11.632亿美元 亚太增长最快
    2016年,全球紫外/可见光谱市场9.442亿美元,预计2021年该市场将达11.632亿美元,复合年增长率为4.3%。多年来,紫外/可见光谱在环境监测中的应用 越来越多系统和配件应用在制药和生物技术行业 仪器技术的进步 以及食品分析的不断增长的需求等多种因素预计将推动全球市场的发展。此外,微体积样品仪器的发展,新兴国家机会的增长, 分子诊断领域投资的增加,生物库的出现等都提供了市场增长机会。然而,技术熟练的专业人员和长寿命仪器的缺乏也阻碍了市场的增长。  2016年,单光束系统预计将占紫外/可见光谱市场最大的份额,北美占最大的份额,其次是欧洲、亚太和世界其它地区。  在未来几年,预计亚太地区的紫外/可见光谱将呈现最高的增长率。这些地区的高速增长有多方面的原因,比如关键厂商的进入,越来越多的食品安全和环境污染问题,以及这一地区生命科学研发的发展等。
  • 新品发布|红相科技TD120紫外成像仪:紫外增强 精准定位
    近日,红相科技发布一款新品——TD120紫外成像仪。TD120是一款具备紫外双视场光学变焦的升级型紫外成像仪,具备小巧便携、操作简单、抗干扰能力强等特点。该产品采用红相专利全日盲技术,配备500米激光测距和环境传感器,可做到完全不受日光影响,满足全天候、全视域的检测需求。其特有的紫外增强模式,更能精准定位电晕、电弧等微小放电,辅以专业的分析和报告软件,为变电站和高压输、配电线路预防性检测提供有效帮助。产品特性紫外双视场 支持2倍光学变焦11.2°×8.4°/5.6°成4.2°双视场,兼顾看远察近。更高灵敏度紫外灵敏度达到2.0×10-18watt/cm2,干扰度小的场所可开启特有的紫外增强模式,算法优化、精度提高,更精准检测微小放电。增强环境传感器,500米激光测距精准测距有效减少测量误差,环境参数补偿,更有助放电强度分析和历史对比分析。人体工学设计,小巧便捷可旋转手柄,可调节目镜,支持单手操作和三脚架固定操作,便于现场检测。加大5.5寸液晶显示屏智能菜单,自定义功能键1920×1080高像素产品参数紫外光光学特性最小紫外光灵敏度2.0×10-18watt/cm2最小放电灵敏度1.0pC@15m波长范围240-280nm视场角11.2°×8.4°/5.6°成4.2°双视场光子计数支持放大倍数2×/4×/8×成像功能液晶显示屏5.5°AMOLED液晶屏紫外增强模式支持接口视频输出HDMI激光测距500米,可同步近距离传感器可自动息屏温湿度传感器自动同步Type-C数据传输蓝牙/WIFI/GPS有4G支持扩展三脚架接口1/4“-20电源系统外接电源DC:9V-12V电池类型锂电池电池工作时间4h连续(常温)环境参数工作温度-20℃~+55℃存储温度-30℃~+60℃湿度90%(无凝结)防护等级IP54物理特性尺寸305mm×169mm×160mm重量2.5KG配置标准配置紫外热像仪,电池,充电器,SD卡,SD卡读卡器,视频线,USB线,适配器,U盘,安全箱,耳机说明书,保修卡,合格证可选配置三脚架关于红相科技浙江红相科技股份有限公司创立于2005年10月,是一家专注红外、紫外、气体成像技术创新和产业化的高新技术企业、国家重点软件企业。十多年来,为全球100多个国家提供了数十万套红外热像仪、紫外成像仪、气体成像仪,产品专业应用于电力、国防、环保、疫情防控等领域,为社会和人类安全保驾护航。2020年初新冠疫情突然爆发,公司生产的人体测温红外热像仪为疫情防控做出重要贡献,工信部将其列为疫情防控物资重点保障企业,受到各级政府书面嘉奖。秉持“为客户创造价值、为奋斗者提供平台、为社会进步贡献力量”核心价值观,以“使世界更安全”为愿景,矢志成为一家受人尊敬的、全球卓著的专业公司和红外、紫外、气体成像技术的领跑者。
  • 如何利用QUV紫外老化加速试验机对彩色涂层板进行紫外老化试验?
    要利用QUV紫外老化加速试验机对彩色涂层板进行紫外老化试验,可以按照以下步骤进行:1.准备样品:将彩色涂层板切割成适当的尺寸,确保其适应QUV试验机的样品架。同时,应注意保护样品表面以免划伤或损坏。设置试验条件:根据所需的试验条件,根据试验机的指引或使用手册,设置合适的光照强度、温度和湿度参数。这些参数应该基于所模拟的实际使用环境。2.安装样品:将切割好的彩色涂层板样品固定到试验机的样品架上,确保样品表面与试验机光源之间的距离是均匀且适当的。3.运行试验:启动试验机,根据设定的试验条件,让样品暴露在QUV试验机的紫外光源下。试验的时间可能根据需求而有所不同,可以根据具体情况进行设置。4.监测和评估:定期监测样品的变化,包括颜色变化、表面质量、表面结构、光泽度和物理性能等。这可以通过视觉观察、光谱测量和物理性能测试等方法进行。5.结果分析:根据试验数据和观察结果,评估彩色涂层板的紫外老化性能。比较试验后的样品与未经紫外老化的对照样品的差异,并分析可能的原因。通过QUV紫外老化试验,可以帮助评估彩色涂层板在长期暴露于紫外环境下的耐候性能和色彩稳定性,以指导产品改进和选用合适的材料或材料配方。在进行试验前,最好理解QUV试验机的使用方法和样品的实际使用条件,以确保试验结果的准确性和可靠性。QUV紫外老化加速试验机QUV紫外老化加速试验机是简单、可靠、易用的紫外老化试验机。世界各地使用的QUV紫外加速老化试验机数以万计,它是世界上使用广泛的紫外老化试验机。QUV紫外老化加速试验机使用特殊的荧光紫外灯管模拟阳光的照射,用冷凝湿度和水喷雾的方法模拟露水和雨水,真实地再现由阳光造成的材料损伤。损伤类型包括褪色、光泽消失、粉化、龟裂、开裂、模糊、起泡、脆化、强度减小和氧化。QUV可方便地容纳多达48个样品(75mm x 150mm),完全符合国际、国家和行业规范,确保了测试程序的可靠性和可重复性。
  • MS标记LC紫外色谱图,药物杂质一目了然
    岛津的工程师在新发布的模块化单四极杆液质上开了一种新型数据处理算法“Mass-it”,可生成MS标记的紫外色谱图,以方便使用单四极杆LC-MS进行药物杂质分析。 在制药CMC中,化学家通常使用LC和或LC-MS来鉴定和定量合成产品中的组分,其中许多组分仅使用LC的紫外检测器进行分析。LC-MS的优点包括灵敏度高和定性能力好。然而,数据分析的复杂性,低耐用性以及电离方法对目标化合物的限制阻碍了LC-MS的引入。 岛津开发的新型质谱,从三个方面提升质谱仪器的性能:1)“Mass-it”新型解卷积算法辅助对MS数据进行解析,2)更好的耐用性,以及3)应用范围更广的离子源。 本次研究的对象是阿托伐他汀、普萘洛尔、西草净、五氯硝基苯,使用岛津Nexera LC-40 XR液相色谱系统进行分析,该系统配置SPD-M40二极管阵列检测器和LCMS-2050模块化质谱仪(图1),该质谱仪与液相色谱仪的自动进样器模块大小相当。 图1 岛津LCMS-2050集成到HPLC/UHPLC中 实验使用ESI / APCI双离子源(DUIS),扫描质量范围(m/z 100-1000)并以正负离子同时扫描模式进行分析。Mass-it处理TIC色谱图峰并生成检测到的质量信号列表,其保留时间通过提取的离子色谱图确定。XIC保留时间使算法能够区分多个共洗脱成分信号和来自单个成分的一组相关离子信号。 图2 阿托伐他汀的紫外色谱图 按Mass-it列出的组分的m / z被标记在UV 色谱图上。图2所示的示例是高纯度阿托伐他汀样品的代表性数据,显示为单一组分。对于实际样品,算法会在检测到多个杂质组分时对其进行标记,图3展示了Mass-it在阿托伐他汀杂质检测中的应用(图3)。 图3 用Mass-it标记的阿托伐他汀多个杂质 那么该系统的耐用性究竟如何呢?工程师做了系统性实验,10000次连续进样中引入30mg化合物来测试(一次注入1μL的3种药物的混合物,每种药物的浓度为1000 ng/μL)。在MS扫描模式下的进行实验,每隔一段时间检查LC-MS的性能,图4数据显示普萘洛尔的峰面积重复性为8.5%RSD。结果表明,即使重复分析高浓度样品,也可以获得稳定的结果。 图4 LCMS-2050的长期稳定性研究显示了对高浓度样品的耐用性 LCMS-2050配备了DUIS离子源, 可通过ESI和APCI组合方式生成离子,扩大了可离子化的化合物的范围。图5展示了使用由ESI和APCI特征电离的化合物评估DUIS离子源的电离能力。DUIS(+)对西草净(Simetryn)的离子化效率与单独使用ESI(+)相当,表明APCI功能的添加仅略微影响了DUIS配置中的ESI功能。而五氯硝基苯(Quintozene)的ESI(-)离子化效果不佳,但在使用DUIS(-)离子化时,灵敏度显著得到提升(10倍)。因此,DUIS是一种多功能且通用的离子源,可以在单次分析中兼顾ESI和APCI离子化方式。 图5 西草净(上)和五氯硝基苯(下)的ESI和DUIS离子化效率对比 LCMS-2050非常坚固耐用,并配备了强大的软件功能,即使对于首次使用MS的用户,LC-MS数据也更易于理解。这些功能有望增加更多的LC-MS用于药物杂质分析。 本文内容非商业广告,仅供专业人士参考。
  • 二极管阵列紫外可见光谱全球市场超5000万美元
    光电二极管阵列(PDA)紫外可见分光光度计可以替代常规的扫描型紫外可见分光光度计,为某些特定用户带来潜在的、巨大的益处。尽管它不是一个高速增长的市场,但是未来几年内它仍将是一个相当大的市场。  使用PDA探测器的紫外可见分光光度计能够同时进行190-1100nm范围内的全谱分析。而常规扫描紫外可见分光光度计扫描一个特定样品的整个光谱或感兴趣的光谱时,分析的是单个波长。PDA紫外可见分光光度计的这个特性使得其分析速度远远快于扫描仪器,同时PDA紫外可见分光光度计的机械机构简单,因而更可靠。探测器的二极管个数限制了PDA紫外可见分光光度计的性能,PDA探测器通常由1024个二极管组成。2012年PDA紫外可见分光光度计市场份额  目前,安捷伦占有PDA紫外可见分光光度计市场的最大份额。与其他主要紫外可见分光光度计供应商相比,安捷伦最大的关注点在PDA紫外可见分光光度计。赛默飞是未来最大的竞争对手,并且它的Evolution系列是市场的最新的型号。尽管需求没有像预计的那样快速增长,但是PDA紫外可见分光光度计的全球市场超过5000万美元,由于能够满足特定终端用户的需求,PDA紫外可见分光光度计的市场将保持稳固增长。编译:刘丰秋
  • 紫外可见分光光度计最佳吸光度范围和光谱带宽选择方法的研究
    李昌厚(中国科学院上海营养与健康研究所 上海 200233)李菁菁(上海中医药大学公共健康学院 上海 201203)摘要:本文根据仪器学理论[3]并结合作者的实践,对紫外可见分光光度计的最佳吸光度范围(或最佳浓度范围)和最佳光谱带宽的选择方法进行了研究,并对有关问题进行了讨论。本文可供从事紫外可见分光光度计研发、制造、使用和维修的科技工作者参考。0、前言紫外可见分光光度计是目前国际上使用最多的常规分析仪器之一,但如何选择紫外可见分光光度计的最佳吸光度范围(最佳浓度范围)和光谱带宽,很多从事分析工作的科技工作者没有引起重视。对使用者来说,选择紫外可见分光光度计的最佳吸光度范围(或最佳浓度范围)和最佳光谱带宽,是用好紫外可见分光光度计最关键的问题之一,也是一门很深的学问。作者根据仪器学理论和自己的长期实践,对如何选择最佳吸光度范围(或最佳浓度范围)和选择最佳光谱带宽及有关问题进行了研究,提出了选择的方法,并对有关问题进行了讨论。1、吸光度范围(或试样浓度范围)的选择1.1、认真选择最佳吸光度(Absorbance-Abs)范围的重要性[1] 、[2]根据比耳定律[3],吸光度(Abs)与试样的浓度(C)成正比。所以,不同的浓度范围内测量(即不同的吸光度范围内测量),会引起不同的误差。这一点,所有使用紫外可见分光光度计的分析工作者,都必须高度重视。有时,很多科技工作者,在工作中往往忽视这个问题,例如:作者曾看到有一位分析人员,用一台光度噪声为0.005Abs的紫外可见分光光度计分析小于吸光度为0.005Abs的样品。她的工作做了很长时间,一是测试结果不稳定,二是结果比标准值小很多,总是得不到可靠的结果。于是,她开始怀疑所用的紫外可见分光光度计仪器有问题,后来,请制造厂的工程师来维修仪器,维修工程师一到现场,稍加检查,就立即指出仪器没有问题。但这位使用者仍坚持仪器有问题,制造厂的工程师经过反复检查,断定仪器肯定没有问题,并指出是样品太稀。后来,对样品稍加浓缩,很快就得到了令人满意的测试结果,所测得的数据,与标准值完全一致。还有一位科研工作者,他使用一台中档偏下的紫外可见分光光度计分析食品中的添加剂,他发现所测得的样品含量总是偏低。后来,也怀疑仪器有问题。结果,经维修工程师检修,认为仪器没有问题。最后,发现被分析的样品浓度太高,被测量样品的吸光度值达到2.5Abs。在把样品稀释到0.8Abs后,再反复多次测量,结果非常准确,与文献值完全一致。这两个例子,充分说明在使用紫外可见分光光度计时,对被分析样品的吸光度范围的选择非常重要。1、2、最佳吸光度范围(或最佳试样浓度)选择的原则1.2、1 吸光度范围不能太小(或试样浓度范围不能太稀)为什么吸光度范围不能太小?因为噪声是主要分析误差的来源之一[2] 、[3] ,它限制被分析试样吸光度值的下限。吸光度太小(或试样太稀)时,有用的信号会被仪器的噪声淹没;当光度噪声大到一定程度或样品吸光度小到一定程度时,吸光度就根本不与样品的浓度成正比。甚至会产生试样浓度变稀时,吸光度值反而增大(噪声所致)的现象,以致无法得到稳定的测量数据,产生很大的分析误差。例如:作者曾用某紫外可见分光光度计测试黄曲霉素,因为仪器的噪声太大,测试数据从0.4Abs就开始超过1%的相对误差。作者的实践表明,一般常规分析时,对大多数试样浓度取10µg/ml~100µg/ml(相当0.3~0,7Abs)左右为最佳。1.2.2、最佳吸光度值范围(或最佳试样浓度范围)不能太大为什么吸光度不能太大?因为杂散光是分析误差的主要来源之一[2]、[3],它限制被分析试样吸光度值的上限,如果试样的吸光度太大,因为杂散光的原因,可能会使分析误差增大。因为杂散光会使分析测试结果严重偏离比耳定律(分析测试结果的数据可能偏小,也可能偏大;若杂散光被试样吸收则测量数据偏小,若杂散光不被试样吸收则测量数据偏大)。如果仪器的杂散光很大、被分析的试样吸光度值太大,吸光度就根本不与试样的浓度成正比,甚至会产生试样浓度增大时,吸光度值反而减小等反常现象。1.3、 试样浓度的选择原则1.3.1、试样不能太稀(理由如1.2、1所述)1.3.2、试样不能太浓(理由如1.2、2所述)1.3.3、在试样量允许时,试样的浓度应选择靠近最佳吸光度值(0.434Abs)。因为,从理论上讲,比耳定律在吸光度值为最佳值0.434Abs时,分析误差最小 。所以,如果被测试样太浓时,应向靠近0.434Ab的方向稀释。假设被测试试样太浓,达到2Abs左右,这时,应稀释到1Abs以下,但要注意不能太稀。在不同的吸光度上测试,相对误差和绝对误差都不同;作者研究的结果如下:(设仪器给出的△T=0.3%T;目前,国际上的高档紫外可见分光光度计一般都给出△T=0.3%T)。2、最佳光谱带宽的选择[4]、[5]、 [6]2.1、认真选择光谱带宽(Spectrum Band width)的重要性光谱带宽是紫外可见分光光度计主要分析误差的来源。我国广大的分析测试工作者,对紫外可见分光光度计光谱带宽的重要性并没有引起重视。甚至,有的分析工作者,根本就没有认识到光谱带宽会影响分析误差,这是影响我国紫外可见分光光度计仪器和应用水平提高的重要原因之一。作者在长期的实践中深深体会到,光谱带宽是非常重要的技术指标,并对它进行了认真研究[2]、[4]。作者为了研究光谱带宽对分析误差的影响,曾对青霉素钠、青霉素钾进行过测试研究。我国药典规定对青霉素钠、青霉素钾的分析测试用1nm光谱带宽,但作者对同一种浓度的青霉素钠测试用2nm光谱带宽测试时,吸光度值为0.805Abs;用1nm光谱带宽测试时,吸光度值为0.825Abs;用0.3nm光谱带宽测试时, 吸光度值为0.865Abs;用0.2nm光谱带宽测试时,吸光度值为0.823Abs。实践证明,0.3nm光谱带宽测试时吸光度值最大,2nm光谱带宽测试的结果比0.3nm光谱带宽测试时吸光度值小0.060 Abs,1nm光谱带宽测试时,吸光度值比0.3nm光谱带宽测试时吸光度值小0.04Abs,说明0.3nm光谱带宽是最佳光谱带宽。2nm光谱带宽测试时的吸光度值和0.3nm光谱带宽测试时的吸光度值绝对误差△A为0.06Abs,相对误差为△A/A=0.06/0.865=0.69(6.9%);1nm光谱带宽测试时的吸光度值和0.3nm光谱带宽测试时的吸光度值绝对误差△A为0.040Abs,相对误差为△A/A=0.046(4.6%)。由此可见,光谱带宽的重要性是不言而喻的。但是,在实际工作中,有许多科技工作者很不重视光谱带宽问题。例如:我国某地的某某制药厂,采用国外某公司的紫外可见分光光度计作为质检仪器,该仪器的光谱带宽为5nm,根本不符合我国和世界各国药典规定用于药品检验的紫外可见分光光度计,其光谱带宽应为2nm的要求。作者从理论上计算,5nm光谱带宽的紫外可见分光光度计,若要用于药品检验,其测试误差为3%,而很多药品检验时,药典规定要求其分析误差在1%以内。所以,使用者一定要高度重视紫外可见分光光度计的光谱带宽的选择。2.2、光谱带宽选择的原则[2]2.2.1、根据分析工作的误差要求选择光谱带宽因为不同的光谱带宽对同一种药品进行分析测试有不同的误差,所以,不同行业应对光谱带宽有不同的要求。使用者应根据分析工作的误差要求来选取不同的光谱带宽。特别是制药行业、科研工作或要求较高的使用者,更应如此。2.2.2、光谱带宽不能过大或过小的原因我们应根据被分析样品对误差的要求,选用不同的光谱带宽来进行分析测试。一般来讲,不同的试样要求用不同的光谱带宽来分析,并且,我们应该选择最佳光谱带宽或选择靠近最佳光谱带宽的光谱带宽来分析,才能得到最佳分析结果。有些科研工作者以为光谱带宽越小越好(分辨率高),也有科研工作者以为光谱带宽越大越好(能量大,灵敏度高)。其实不然,如前所述,作者对同一浓度的青霉素钠、青霉素钾的测试就很好的说明了问题。2.3、光谱带宽与分析误差的关系在理想状态下[7]、 [8],光谱带宽与分析误差的关系如表2:表2 在理想条件下,A obs与SBW在吸收极大时的关系[4]RBWA obs/ARBWA obs/ARBWA obs/A0.01000.99950.06000.99830.20000.98190.02000.99950.07000.99770.30000.96040.03000.99950.08000.99700.40000.93210.04000.0.99920.09000.99620.50000.89870.05000.99880.10000.9954表2中:RBW 为相对带宽;RBW=SBW/NBW;NBW为被测样品的吸收带半宽度,指样品的吸收值达到最高峰值之半的两点间的波长间隔;A obs为吸光度实际测量值;A为吸光度理论值。表2 可供分析工作者用来修正实验值,但只适用于吸光度实际测量值小于1.0时的情况。因为一般的常规分析中,被测样品的实际测量吸光度值基本上都小于1.0,所以,表2具有实际参考价值。有学者对光谱带宽与分析测试误差的关系进行过研究,如Owen[5] 研究后指出:当仪器的光谱带宽(SBW)与被测样品的自然带宽(NBW,即吸收带半宽度,一般为20nm)之比小于或等于1时(即SBW/NBW≦0.1时),该光谱仪器可满足99%的样品的分析测试工作,且分析测试的准确度在99.5%以上。这也是我国和世界各国药典规定用于药检的紫外可见分光光度计的光谱带宽要求≦2nm的原因。曾有文献[6] 报道过光谱带宽对分析测试误差的影响,此不赘述。作者研究过光谱带宽对青霉素钠、青霉素钾定量分析的影响,发现青霉素钠定量分析的最佳光谱带宽与药典规定不一致(药典规定:取本品加水制成1ml含1.80mg的溶液,… … ,用1nm光谱带宽、在264nm处测试,吸光度应为0.80-0.88)。笔者在药典规定的条件下,将光谱带宽从1nm开始减小,一直减到0.3nm,其峰高一直在增高!但低于0.3nm时,峰高就开始下降。这说明青霉素钠的最佳光谱带宽是0.3nm,而不是1nm。为此,作者向当时国家药典委员会的专家张淑良先生(上海药检所)反映,他们接收了此意见。所以,今天的药典委员会已经去掉了每一种药品,一定要采用多大的光谱带宽检测了。笔者根据表2计算:当SBW为2nm以下时,由于SBW引起的分析测试的相对误差小于0.5%;但是,当SBW为5nm时,分析测试的相对误差将达到2.7%。可惜,我国有很多分析工作者不注重这个问题,有些药厂用SBW为5nm的UVS来作质量控制,其仪器本身的误差就远远超过我国药典规定的1%的要求,这必须要引起我国广大药检工作者重视。3、讨论3.1目前,国内外很多科技工作者经常将光谱带宽和狭缝宽度混为一谈,很多仪器制造商经常在自己的说明书中说:“狭缝宽度为XXXnm”,这是不对的。因为在光谱仪器中,狭缝宽度以mm计,而光谱带宽以nm计,二者相差一百万倍(106)。所以只能说“光谱带宽为XXXnm”,而不能说“狭缝宽度为XXXnm”。同时还必须注意,光谱仪器的狭缝宽度制造商一般是不会告诉使用者的,因为它涉及到仪器设计时所选用的准直镜焦距、光栅和物镜的焦距等指标。所以,我们对仪器的技术指标描述应该注意科学性、国际接轨和规范性。3.2 有许多紫外可见分光光度计使用者,很不注重对吸光度范围的选择,他们不了解不同浓度(或吸光度)分析时,有不同的分析误差。因此,往往在样品前处理上有时比较马虎,。他们此外,也不大注意或不懂得将样品稀释到最佳浓度范围,这是很多使用紫外可见分光光度计的分析工作者应该特别引起重视的问题。3.3目前,国外有些紫外可见分光光度计制造商,在自己的说明书中写某某最高级的紫外可见分光光度计,仪器的最大光谱带宽为8nm(特别是在招标时,作为仪器的“特点”提出),这完全在误导使用者。因为,从文献[2]可以非常简单计算出,光谱带宽为8nm时,分析测试结果的相对误差达到了6.79%。而紫外吸收光谱分析是一种精密分析,有些样品(如药品)分析时,要求相对误差小于1%。例如:世界上许多国家的药典规定,用于药品检验的紫外仪器,要求的光谱带宽为2nm,此时的相对误差只有0.5%。所以,在高档(或最高级)的紫外可见光分光光度计中,写出光谱带宽为8nm是不合适的。4、主要参考文献[1]陈国珍主编,紫外可见光分光光度法,原子能出版社(北京),1983.[2]李昌厚著,紫外可见分光光度计,北京:化学工业出版社,2005[3]李昌厚著,仪器学理论与实践,北京:科学出版社,2008[4]李昌厚,光谱带宽对分析误差影响的研究,分析测试技术与仪器,,10(2),65~67,2004[5]T. Owen, Fundamentals of UV-Visible Spectroscopy,© Copyright Hewlett-Packard Company, Printed in Germany 09/96,Hewlett-Packard publication number 12-5965-5123E[6]E.disbury, J. R. Practical Hints on Absorption Spectrometry,UV/Visible,NewYork, Plenum Press,1967作者简介李昌厚,中国科学院上海营养与健康研究所研究员、教授、博士生导师、国务院政府津贴终身享受者;原仪器分析室主任、生命科学仪器及其应用研究室主任;曾任华东理工大学等兼职教授、上海化工研究院院士专家工作站专家委员会成员、中国仪器仪表学会理事、中国仪器仪表学会分析仪器分会第五届和第六届副理事长、全国光谱仪器专业委员会副主任、全国高速分析专业委员会副主任、原国家认监委实验室计量认证/审查认可国家级常任评审员、《生命科学仪器》副主编、《光谱仪器与分析》副主编、国家科技部多项重大仪器及其应用专项的专家组组长等职。主要从事各类光谱和色谱仪器及其应用研究;在仪器学理论、分析仪器性能指标的测试方法、光电技术等方面有精深研究;以第一完成者身份,完成了15项科研成果,其中5项获得省部级以上科技奖励(含国家发明奖1项);发表论文280篇(退休后97篇)、出版了:仪器学理论与实践、光谱仪器及其应用、色谱仪器及其应用等的专著5本。曾先后任北京普析、美国ISCO等国内外十多家高科技公司的专家组、顾问组组长、《仪器信息网》、等多个高科技学术团体的技术专家顾问或专家委员会成员等学术团体的领导职务。
  • 国内首次将在线紫外光谱法COD测定仪应用于便携式测量
    农村生活污水COD监测,由于点多面广,传统消解方法时间长,效率低,费用高,一直成为各基层环境监测站的难点.而紫外光谱法COD 测定仪一般都用于在线测量,上海泽铭公司和客户反复测试,在技术上完成了与传统方法的比测,在便携功能应用上作了很多改良和配套。 终于在2011年5月份&ldquo 桐庐县环境保护局便携式光谱水质分析仪采购项目&rdquo 项目中中标,是国内首次将该类仪器应用在便携领域,专门测定农村生活污水。
  • 风云三号F星发射成功 将开启紫外高光谱探测新篇章
    8月3日11时47分,长征四号丙运载火箭在酒泉卫星发射中心成功发射,顺利将风云三号F星(又称:风云三号06星)送入预定轨道,发射任务取得圆满成功。风云三号F星由中国航天科技集团八院抓总研制。记者从八院了解到,作为上午轨道卫星风云三号C星的接替星,风云三号F星上搭载了10台功能强大、性能先进的遥感仪器,观测能力得到显著提升,尤其是新研的2台紫外高光谱探测仪,将开启我国风云卫星紫外高光谱探测新篇章。王淇俊 摄台风暴雨捕捉更精准近年来,极端气象灾害给全球带来巨大的生命财产损失。台风暴雨区域的大气温湿度分布可以描绘台风暴雨位置及强度等信息,台风暴雨区域大气温湿度分层越精细,台风暴雨信息刻画越精准。卫星高频次、高精度获取大气温湿度廓线信息,不仅对数值天气预报精度的提高和气候变化预测与评估具有重要的意义,还对区域和中小尺度天气、短临天气,特别是台风、暴雨等重大灾害性天气预报精度的提高具有重要贡献。风云三号F星搭载了先进的微波温度计、微波湿度计、红外高光谱大气探测仪三台仪器探测大气温湿度廓线。相比风云三号C星,F星的大气垂直探测通道数量提升近47倍,微波温度计大气探测通道17个,微波湿度计大气探测通道15个,红外高光谱大气探测仪探测通道达3000多个。通道越多,大气垂直分层探测越精细,也就意味着这台大气温湿度“CT机”垂直分层能力显著提升,对大气温湿度分层认知更精准。同时,微波和光学大气探测仪器深度联合,将充分发挥微波通道不受天气影响及高光谱探测通道更精细的优势,可探测人眼难以捉摸的大气温湿度廓线信息,为大气做更精准的“三维扫描”,可提示未来几小时哪些区域将会发生强对流等极端天气,更加精准地捕捉台风、暴雨等大气温湿度分层信息,全面提升我国在全球数值预报、防灾减灾等方面的综合能力。风云三号F星在轨效果图(中国航天科技集团八院供图)“俯瞰、侧视”双管齐下痕量气体是大气中浓度低于十万分之一的粒子,主要有臭氧、一氧化碳、二氧化碳、二氧化硫等,对全球大气环境及气候变化起着潜移默化的作用。卫星对全球大气痕量气体时空分布特征和变化趋势进行动态监测,能对全球大气环境治理和应对全球气候变化起到重要作用。风云三号F星装载了2台新研制的紫外高光谱遥感设备。其中,紫外高光谱臭氧天底探测仪用于紫外可见光波段探测。仪器正面“俯视”地球大气,犹如一台“超广角CT机”,可以实现每天一幅全球大气微量成分探测图像,能为气候变化研究和环境监测提供重要数据支撑。该仪器探测通道数量近千个,幅宽达2900公里,空间分辨率优于7公里,相比国内外同类型紫外探测仪器,其在光谱分辨率和空间分辨率均有大幅度提升,达到国际同类载荷先进水平。紫外高光谱臭氧临边探测仪则是通过对大气侧面扫描,获取大气垂直廓线信息。这是我国首台利用临边观测模式进行紫外可见波段高光谱大气探测的业务载荷,主要用于气候变化、大气化学以及大气环境研究。该仪器探测通道数量达2000余个,垂直分辨率优于3公里,性能指标达到国际同类载荷先进水平,填补了我国风云卫星紫外高光谱临边大气探测的空白。
  • 合肥工业大学研发新型深紫外光电探测器 光谱选择性优异
    目前,我国深紫外光电探测技术由于受传统器件结构等限制,仍存在易受环境影响、光电性能较差、器件响应速度和信号利用率难以兼顾等问题。  近日,合肥工业大学电子科学与应用物理学院科研团队,成功研发出新型深紫外光电探测器,开创性地将透光性好、电子迁移率高且电阻率低的电子材料石墨烯和高质量β -氧化镓单晶片引入深紫外光电探测器中,并提出一种全新的器件MSM结构,实现了对半导体与金属电极接触性能的大幅提升。器件光谱响应分析结果表明,该器件具有优异的光谱选择性,在深紫外光区域响应非常明显。器件性能分析结果则显示,该器件能够在深紫外光区域的光电转化效率及探测率大幅度提升。该深紫外光电探测技术将在刑侦检测、电网安全监测、森林火灾告警等领域应用前景广阔。
  • 技术交流会预告——HORIBA Scientific真空紫外光学光谱技术
    如今,真空紫外光学光谱技术正被应用于紫外光致发光、透射/反射/吸收、激光高次谐波、可调谐单色光源等方面。自从HORIBA Scientific进入真空紫外系统设备制造领域,就与全球各地的同步辐射中心进行合作,积累了许多宝贵的经验。 HORIBA Scientific将于2013年5月21日举办相关技术交流会,届时,我们将邀请法国资深专家为大家介绍真空紫外、可见近红外光谱测量的新技术进展、产品和应用。主讲人:Jean-luc DOMANCHIN简介:在HORIBA Scientific(Jobin Yvon光谱技术)工作25年以上,现担任真空紫外光学光谱系统资深经理,具备丰富的光学光谱研究及应用经验。时间:2013年5月21日 下午14:00-17:30地点: &bull 主会场:堀场(中国)贸易有限公司 北京办公室 &bull 分会场:堀场(中国)贸易有限公司 上海、广州办公室 (注:上海、广州分会场将启用视频会议室为您讲解)主办:&bull 堀场 (中国) 贸易有限公司 &bull 法国HORIBA Jobin Yvon S.A.S.协办: &bull 上海格奥光电技术有限公司 &bull 科瑞利通科技开发有限公司 &bull 广州贝拓仪器设备有限公司 &bull 脉动科技有限公司会议安排时间内容14:00-15:40真空紫外、可见近红外光谱测量新技术进展及应用16:00-17:30光学光谱应用交流 有意者可以通过以下方式进行报名。为了帮助我们更好地安排和组织会议,请您于5月19日前报名。报名方式联系人:俞小姐邮 箱:nasi.yu@horiba.com电 话:010-85679966-212地 址:北京市朝阳区建国门外大街甲6号SK大厦1801室
  • 中国深紫外技术独步世界 制成8台前沿仪器装备
    工欲善其事,必先利其器。中国科学家利用独创、独有的深紫外技术和深紫外激光非线性光学晶体,已成功研制出深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,均为当今世界所独有的科研利器,居深紫外领域国际领先地位。  10月27日,中国科学院院士、中科院深紫外固态激光源前沿装备研制项目首席科学家陈创天(左)与实验室科研人员,向媒体展示研制成功的一种光学晶体。中新社发 孙自法 摄  10月27日,中国科学院院士、中科院深紫外固态激光源前沿装备研制项目首席科学家陈创天,展示经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,以及发明的棱镜耦合技术。中新社发 孙自法 摄  10月27日,中国工程院院士、中科院深紫外固态激光源前沿装备研制项目首席科学家许祖彦(右),在其领衔研发成功国际首创深紫外全固态激光源的实验室与青年科研人员交流。中新社发 孙自法 摄  记者10月27日从中国科学院获悉,总投资1.8亿元人民币的深紫外固态激光源前沿装备研制项目,2008年启动实施以来进展顺利,现已研制成功的8台前沿装备还包括深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等国际领先水平的仪器设备,另外1台光子能量可调深紫外激光光电子能谱仪研制工作也已基本完成,正在调试之中。目前,多台仪器设备已初步用于前沿科学研究,并表现出优异的性能。  中科院整合麾下理化技术研究所、物理研究所、大连化学物理研究所、半导体研究所科研资源,在财政部专项资金支持下,设立深紫外固态激光源前沿装备研制项目,设计出从“材料-器件-装备-科学研究”完整研发体系。在成功研制8台重大仪器设备的同时,还搭建有深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台和深紫外应用仪器开发平台,核心器件深紫外晶体及器件已实现小批量生产,为仪器设备后续发展尤其是产业化工作奠定了基础。  深紫外固态激光技术突破是中国新型科学仪器研发的难得机遇。中科院在前期工作基础上,正组织专家进一步调研,一方面,将研制成功的8台仪器设备中技术成熟、具有市场潜力的发展为商品化仪器设备,推动中国高端科学仪器产业化 另一方面,进一步整合人才、技术力量,继续研发新型深紫外科学仪器和设备。  据介绍,深紫外全固态激光源指输出波长在200纳米以下的固体激光器,与同步辐射和气体放电光源等现有光源相比具有高的光子流通量/密度、好的方向性和相干性。中科院自上世纪90年代初开始研究深紫外非线性光学晶体和激光技术,经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,并发明棱镜耦合技术,率先发展出实用化的深紫外固态激光源,使中国成为当今世界上唯一掌握深紫外全固态激光技术的国家。
  • ​ 王方军、田瑞军等用高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,中科院大连化学物理研究所研究员王方军团队与南方科技大学教授田瑞军、副教授李鹏飞等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。相关研究成果发表在Cell Chemical Biology上。与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。团队通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位和蛋白质组学规模化序列鉴定。相关论文信息:https://doi.org/10.1016/j.chembiol.2022.01.005
  • 王方军:高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,大连化物所生物分子结构表征新方法研究组(1822组)王方军研究员团队与南方科技大学田瑞军教授、李鹏飞副教授等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。 与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。  免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。  大连化物所王方军和肖春雷研究员通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位(Chin. Chem. Lett.,2018)和蛋白质组学规模化序列鉴定(Anal. Chim. Acta.,2021)。  相关研究结果以“Motif-dependent Immune Co-receptor Interactome Profiling by Photoaffinity Chemical Proteomics”为题,于近日发表于Cell Chemical Biology上。
  • 我国投资1.8亿深紫外固态激光项目世界领先
    深紫外全固态激光源指输出波长在200纳米以下的固体激光器,与同步辐射和气体放电光源等现有光源相比具有高的光子流通量/密度、好的方向性和相干性。  中科院自上世纪90年代初开始研究深紫外非线性光学晶体和激光技术,经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,并发明棱镜耦合技术,率先发展出实用化的深紫外固态激光源,使中国成为当今世界上唯一掌握深紫外全固态激光技术的国家。  中国科学家利用独创、独有的深紫外技术和深紫外激光非线性光学晶体,已成功研制出深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,均为当今世界所独有的科研利器,居深紫外领域国际领先地位。  总投资1.8亿元人民币的深紫外固态激光源前沿装备研制项目,2008年启动实施以来进展顺利,现已研制成功的8台前沿装备还包括深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等国际领先水平的仪器设备,另外1台光子能量可调深紫外激光光电子能谱仪研制工作也已基本完成,正在调试之中,多台仪器设备已初步用于前沿科学研究,并表现出优异的性能。  中科院整合麾下理化技术研究所、物理研究所、大连化学物理研究所、半导体研究所科研资源,在财政部专项资金支持下,设立深紫外固态激光源前沿装备研制项目,设计出从“材料-器件-装备-科学研究”完整研发体系。在成功研制8台重大仪器设备的同时,还搭建有深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台和深紫外应用仪器开发平台,核心器件深紫外晶体及器件已实现小批量生产,为仪器设备后续发展尤其是产业化工作奠定了基础。  深紫外固态激光技术突破是中国新型科学仪器研发的难得机遇。中科院在前期工作基础上,正组织专家进一步调研,一方面,将研制成功的8台仪器设备中技术成熟、具有市场潜力的发展为商品化仪器设备,推动中国高端科学仪器产业化 另一方面,进一步整合人才、技术力量,继续研发新型深紫外科学仪器和设备。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制