当前位置: 仪器信息网 > 行业主题 > >

红外人体传感器

仪器信息网红外人体传感器专题为您提供2024年最新红外人体传感器价格报价、厂家品牌的相关信息, 包括红外人体传感器参数、型号等,不管是国产,还是进口品牌的红外人体传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外人体传感器相关的耗材配件、试剂标物,还有红外人体传感器相关的最新资讯、资料,以及红外人体传感器相关的解决方案。

红外人体传感器相关的论坛

  • 浅谈人体接近传感器的实际应用原理及选型原则

    浅谈人体接近传感器的实际应用原理及选型原则

    人体接近传感器作为防御手段已逐步被人们认识和应用。例如人体接传感器在银行取款机触发监控录像、航空、航天技术,保险柜以及工业生产中都有广泛的应用。在日常生活中,如宾馆、饭店、车库的自动门,自动热风机上都有应用。在安全防盗方面,如资料 档案、财会、金融、博物馆、金库等重地,通常都装有由各种接近开关组成的防盗装置。在测量技术中,如长度,位置的测量 在控制技术中,如位移、速度、加速度的测量和控制,也都使用着大量的接近开关。为了更好地贯彻GB/T10488-1997人体接近传感器的国家标准顺利实施,使更多的人了解人体接近传感器的原理和应用,工釆网小编来具体说说接近式传感器的具体工作原理。[b]什么是人体接近传感器?[/b]人体接近传感器又称无触点接近传感器,是理想的电子开关量传感器。当金属检测体接近传感器的感应区域,开关就能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频率、使用寿命、安装调整的方便性和对恶劣环境的适用能力,是一般机械式行程开关所不能相比的。由于接近传感器具有使用寿命长、工作可靠、重复定位精度高、无机械磨损、无火花、无噪音、抗振能力强等特点。因此它广泛地应用于机床、冶金、化工、轻纺和印刷等行业。在自动控制系统中可作为限位、计数、定位控制和自动保护环节。[b]人体接近传感器的工作原理是什么?[/b]① 人体接近传感器里有个高频率发送机,会使线圈发出高频磁场。② 被测对象接近高频磁场会使检测对象表面产生涡电流,而涡电流又会引发方向相反的磁场。③ 发送机受到涡电流引起的发磁场影响抵消而停止震动。④ 通过震动的有无使控制输出ON/OFF。 [b]接近传感器的选型和检测[/b]对于不同的材质的检测体和不同的检测距离,应选用不同类型的接近传感器,以使其在系统中具有高的性能价格比,为此在选型中应遵循以下原则:1、当检测体为金属材料时,应选用高频振荡型接近传感器,该类型接近传感器对铁镍、A3钢类检测体检测最灵敏。对铝、黄铜和不锈钢类检测体,其检测灵敏度就低。2、当检测体为非金属材料时,如;木材、纸张、塑料、玻璃和水等,应选用电容型接近传感器。3、金属体和非金属要进行远距离检测和控制时,应选用光电型接近传感器或超声波型接近传感器。目前,接近传感器在航空航天、工业生产、交通运输、消费电子等各行各业的领域中都有广泛的应用, 下面工釆网介绍两款种典型的接近式传感器,以便能为你更好的了解接近传感器的应用。MaxBotix [b]超声波人体检测传感器[/b] - MB1004[img=,205,175]http://ng1.17img.cn/bbsfiles/images/2018/01/201801101726_9586_3345088_3.jpg!w205x175.jpg[/img]LV-ProxSonar-EZ高性能接近传感器专为行人和对象检测而设计,且在同一环境 中允许多个传感器同时运行。供电2.5V~5.5V,LV-ProxSonar-EZ以其极小的 外形条件提供特定距离对象的接近检测。此外LV-ProxSonar-EZ 允许用户将多个传感器集成到单个系统中,并且很少或几乎不会受到其他超声波传感器经 常发生的相互干扰影响。LV-ProxSonar-EZ的主要特性是具备易于使用的逻辑(高/低)输出、RS232格式串 行输出。*工厂标定和测试为传感器基本标准。所以超声波人体检测传感器MB1004被广泛应用于接近区域探测、行人检测 ,展台/信息亭、机器人自动导航、自主导航、多传感器阵列等领域MaxBotix [b]高性能超声波接近传感器 -[/b] MB1444[img=,197,172]http://ng1.17img.cn/bbsfiles/images/2018/01/201801101727_7876_3345088_3.png!w197x172.jpg[/img]高性能超声波接近传感器 - MB1444中的USB微型接头与当前大部分智能手机接口匹配而且USB接口,便于安装且与电脑相连,一旦接通或上电,即获悉周围环境。接近探测范围可从1mm至设置触发距离工作频率为45KHz;探测距离为6英寸至125英寸,工作模式为自由模式运行,此外该传感器可以进行零距离对象探测。对于被检测物体可持续测量和输出接近信息并且持续可变增益用于控制和旁瓣抑制。经筛选的距离输出允许测距和多传感器操作简单的True/False输出和可选范围输出,约2.5秒的对象距离采集时间,约1.5秒的对象距离恢复时间。在受保护的室内环境、安全和HIPPA符合性应用、中自动锁电脑助手、传感器格网、信息亭和货摊、自动演示&广告、安全系统、接近区域探测、机器人测距传感器、人检测、自动导航、多传感器矩阵等多个领域中都有被应用。

  • 光电传感器与红外传感器:工作原理和应用领域的比较

    光电传感器与红外传感器:工作原理和应用领域的比较

    [font=宋体][color=#1E1F24]传感器在各种技术和应用中都发挥着关键作用,其中光电传感器和红外传感器以其独特的运作原理被广泛应用。尽管它们都涉及光信号的转化,但光电传感器和红外传感器在工作原理和应用领域上存在明显的区别。[/color][/font][font=宋体][color=#1E1F24]光电传感器主要基于光电效应,即光照射在某些物质上时,物质的电子吸收光子的能量而发生相应的电效应现象。这种效应被用来将光信号转化为电信号,进而进行识别、检测或控制。根据光电效应现象的不同,光电传感器可以分为外光电效应、内光电效应及光生伏特效应三类。这种传感器在许多领域都有广泛应用,如工厂自动化、机器人技术、医疗诊断等。[/color][/font][align=center][img=光电液位传感器,600,324]https://ng1.17img.cn/bbsfiles/images/2023/10/202310231657105279_6094_4008598_3.jpg!w600x324.jpg[/img][/align][font=宋体][color=#1E1F24]相对而言,红外传感器则利用红外线的特性进行检测。红外线具有穿过某些物质的能力,例如人体和大多数非金属材料,因此红外传感器可以用于检测这些物质的存在或表面温度。由于红外线可以穿过一些可见光不能穿过的物质,因此红外传感器在某些情况下可以提供更准确的检测结果。红外传感器通常具有较高的灵敏度和响应速度,因此适用于快速、高精度的检测。例如,它们常被用于无接触温度测量、气体成分分析和无损探伤等领域。[/color][/font][font=宋体][color=#1E1F24]总结来说,[url=https://www.eptsz.com]光电传感器[/url]和红外传感器的主要区别在于它们的工作原理和应用领域。光电传感器主要基于光电效应,适用于各种需要光信号转化的应用;而红外传感器则利用红外线的特性进行检测,主要用于温度测量、气体分析等领域。无论是哪种类型的传感器,它们都在现代科技和工程中发挥着不可或缺的作用。[/color][/font][font='Segoe UI',sans-serif][color=#1E1F24] [/color][/font]

  • 红外温度传感器工作原理选型应用

    红外温度传感器工作原理选型应用

    [b]红外温度传感器简介[/b]红外温度传感器[color=#333333],在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。[/color][color=#333333]温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。[/color][color=#333333][img=,236,195]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_01_3332482_3.jpg!w236x195.jpg[/img][/color][color=#333333][b]红外温度传感器工作原理[/b][color=#333333]红外线[/color][color=#333333]红外线是一种人眼看不见的光线,但事实上它和其它任何光线一样,也是一种客观存在的物质。任何物体只要它的温度高于热力学零度,就会有红外线向周围辐射。红外线是位于可见光中红色光以外的光线,故称红外线。它的波长范围大致在0.75~100μm的频谱范围之内。[/color][color=#333333]红外辐射[/color][color=#333333]红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱的各种单色光的热效应从紫色光到红色光是逐渐增大的,而且最大的热效应出现在红外辐射的频率范围之内,因此人们又将红外辐射称为热辐射或者热射线。[/color][color=#333333]传感原理[/color][color=#333333]热传感器是利用辐射热效应,使探测器件接收辐射能后引起温度升高,进而使传感器中一栏与温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过赛贝克效应来探测辐射的,当器件接收辐射后,引起一非电量的物理变化,也可通过适当变化变为电量后进行测量。[/color][/color][color=#333333][color=#333333][img=,511,294]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_02_3332482_3.jpg!w511x294.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器选型要点[/b]主要从性能指标和环境和工作条件两方面来加以考虑。性能指标:首先就是量程也就是测温范围,选择红外温度传感器时一定要注意到它的量程,只有选择了适合的量程才能更好的测量。用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。其次是要注意传感器的尺寸,不能选择过大也不能太小,必须选择适合自己的尺寸才能更好的方便测量,量程和尺寸是选择传感器都要注意的,但是选择红外温度传感器还要确定光学分辨率、确定波长范围、确定响应时间、信号处理功能等。工作条件:红外温度传感器所处的环境条件对测量结果有很大影响,应加以考虑、并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。[/color][/color][color=#333333][color=#333333][img=,536,285]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_01_3332482_3.jpg!w536x285.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器应用[/b]非接触式温度测量红外辐射探测移动物体温度测量连续温度控制热预警系统气温控制医疗器械长距离测量[b]红外温度传感器在智能空调上的应用[/b]舒适的生活环境是我们大家共同追求的,随着电子技术的发展,科技已经改变了我们周围的生活,科技化智能化的家居生活将成为可能。空调作为重要的家电产品,其创新发展技术也在不断进步,新型的智能空调运用多种传感器技术以及新型科技技术,实现了空调健康舒适、节能环保的智能化目标。[b]红外温度传感器在智能空调上的应用[/b]传统的空调出风量和出风的位置是固定不变的,人们在房间的时候,空调的出风大小是不会改变的,这样只能固定的出风,不仅满足不了人们的需求,而且浪费电量,新型的智能传感器安装了利用红外传感器设计的动感仪,红外温度传感器感应人体活动量,按需分配风量,让不同的人各有舒适,空调上的动感仪可以对室内空间进行5区域的划分,并实时监控5个区域,并在140度的大范围实时监测和敏锐感知人体活动量并进行分区差异化按需送风,以此适应不同家庭成员的个性化使用需求,进而提高空调房间的整体舒适性。[/color][/color][color=#333333][color=#333333][img=,549,249]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_02_3332482_3.jpg!w549x249.jpg[/img][/color][/color][color=#333333][color=#333333][color=#333333]智能空调的动感仪由三组不同角度的红外温度感应器构成,每组动感仪有2个感应头,共有6个感应头对出风口进行智能调节风量及风向,自动识别人体位置和活动量,不断更新采集数据,智能分析数据,根据不同的人体活动量进行差异化送风,让不同活动量的人都感觉舒适,并且减少了达到人感所需温度的时间。[/color][/color][/color][color=#333333][color=#333333][color=#333333][img=,388,316]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_03_3332482_3.jpg!w388x316.jpg[/img][/color][/color][/color][color=#333333][color=#333333][color=#333333]以上就是工采网小编今天给大家介绍的关于[/color]红外温度传感器[color=#333333]的相关知识及它的应用范围的介绍,因为红外温度传感器的使用帮助我们生产和科研的过程编的更加的简单,所以我们增加对于它的相关知识的了解是非常的有必要的,毕竟是我们经常会使用的工具。这就是今天讲解的全部内容了,希望对大家在日后的生活中能够有所帮助。[/color][/color][/color]

  • 新型电子传感器灵敏度似人体皮肤

    传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 韩国首尔大学的研究人员从甲虫的翅膀获得灵感,研发出一种柔韧的电子传感器,其能捕捉到一只瓢虫行走时的轻柔脚步声,也可以区分剪力和扭力,就像人体皮肤一样。它还可以绑在手腕上,作为心率监测器使用。29日出版的《自然·材料》杂志对传感器的设计进行了描述。 研究人员解释说,当甲虫休息时,其翅膀上和身体上的两排毛发会通过一种名为范德华力的静电吸引力相互锁定,他们借鉴了甲虫鞘翅间的这种锁合结构,利用交织在一起的“毛发”制成了该电子传感器。“毛发”实际上是直径100纳米、长1微米、外覆导电金属涂层的聚合物纤维。将聚合物纤维层像三明治一样夹在一起,这些纳米“毛发”就会互相吸引并彼此锁定。用聚合物制作的柔软防护层将其“包裹”住,并用电线连接起来,便可作为传感器使用。当按压、揉搓或刷拭传感器时,“毛发”的位置发生改变,传感器的电阻也随之变化。小至5帕斯卡的压力都可被其探测到,这是比最轻的触摸还要柔和的力度。  据专业人士介绍,这种传感器将在家庭医疗方面起到重要作用。目前,这种“毛发”电子传感器正处在开发阶段,离真正上市面对消费者还有很长的路要走。

  • 光电传感器与红外传感器的区别

    光电传感器与红外传感器的区别

    [font=宋体][color=#1E1F24]光电传感器与红外传感器的主要区别在于它们的工作原理和用途。[/color][/font][font=宋体][color=#1E1F24]光电传感器通常使用光敏元件(如光敏电阻、光电池等)来检测光线或可见光的强度。当光线照射到光敏元件上时,光敏元件会根据光线强度产生相应的电信号。因此,光电传感器主要用于检测可见光的存在、测量光的强度和辨别颜色等。[/color][/font][font=宋体][color=#1E1F24]红外传感器则使用红外线来探测目标物体。红外线是一种波长在红色光和微波之间的电磁波,具有穿云透雾的能力。红外传感器通常使用热敏元件来探测目标物体发出的红外辐射,并根据目标物体的温度差异来判断是否存在目标物体。因此,红外传感器主要用于热成像、夜视、监控、消防等领域。[/color][/font][align=center][img=光电液位传感器,600,324]https://ng1.17img.cn/bbsfiles/images/2023/11/202311091558166644_7199_4008598_3.jpg!w600x324.jpg[/img][/align][font=宋体][color=#1E1F24]光电传感器和红外传感器在结构、性能和应用方面也存在差异。光电传感器的结构相对简单,通常由一个光敏元件和一些电子元件组成。而红外传感器的结构较为复杂,通常需要使用光学系统、热敏元件和信号处理电路等。光电传感器的响应速度较快,适用于高速检测和自动化控制等领域,而红外传感器的响应速度较慢,但具有较高的灵敏度和分辨率,适用于远距离探测和热成像等领域。[/color][/font][font=宋体][color=#1E1F24][url=https://www.eptsz.com]光电传感器[/url]和红外传感器是两种不同的传感器类型,它们的工作原理、结构、性能和应用等方面存在明显的差异。在选择使用时,需要根据实际需求和应用场景来选择合适的传感器类型。[/color][/font]

  • 【资料】正确使用红外人体测温仪“八项注意”

    正确使用红外人体测温仪“八项注意”中国计量科学研究院的专家指出,红外辐射温度计测量的是额头等人体表面的温度,体表温度不仅跟人体温度相关,而且受体表下血液循环及导热状况和表面换热条件的影响。为使红外辐射温度计准确可靠地反映人体温度变化,要做到八点:  ——尽量要求被测量人在测量环境中停留足够长时间,使得被测量人的表面换热条件相同或相近。比如在机场,要在旅客到达机场候机楼10分钟后进行测量。这时候机楼通风和温度条件基本稳定,旅客前额的外部换热条件基本达到相近。  ——测量场所应尽量选择在室内,且避免阳光直照红外辐射温度计和被测量人的额头。  ——要对被测量人的距离准确估计。  ——人的额头温度一般低于腋下温度1到3摄氏度,这时应将发烧的腋下温度判据转换到额头温度。  ——红外耳温计是测量耳温的,1秒钟以内可测量完毕,由于人的耳膜和耳道受外界环境条件影响较小,因此,红外耳温计能准确地测量体温。人的耳温一般高于腋下温度0.4摄氏度。这时红外耳温计示值应将发烧的腋下温度判据转换到耳温的判据。  ——为确保红外辐射温度计的准确和稳定性,应定期与标准的校准装置进行校准比对。  ——非接触红外辐射温度计分工业用和医用两种,测量体温时应选用医用红外辐射温度计,因为工业用的范围宽、分辨率低、误差大。  ——各种测温仪按测量准确度由高到低排序是:医用体温计、红外耳温计、体表红外辐射温度计。从预防非典的角度,红外耳温计比体表红外辐射温度计准确。(

  • 【资料】建设智慧城市的好帮手——红外线传感器

    “智慧地球的核心技术就是传感器的应用,因为传感器包含了很多信息。上海建设智慧城市,更需要传感器,特别是其中的红外线技术服务于城市生活和管理。”全国人大代表、中科院院士褚君浩说。    昨天下午,市人大常委会主任刘云耕一行走访中科院上海技术物理研究所,就“红外线眼睛”对城市生活和城市管理的影响,褚君浩代表的解析深入浅出,让人开眼。    人体安检安全可靠    一个人走在人群里,西装革履,西服外套搭在手臂上,貌似安闲;其实,西服下是一把握在手中的尖刀―――这一切,都未能逃过“红外线眼睛”。    “可见光的波长在0.4-0.7微米,红外线的波长大于0.7微米,而这种能透视人体的红外线波长则达到了300微米。”褚君浩说,波长越大,光子能量就越小,对人体的伤害也就越小;红外线技术运用于人体安检,是一种安全可靠的新技术。    目前,无论是航空港,还是地铁安检,通用技术都是X射线和电磁设备―――检查箱包借助X射线,人身安检借助电磁设备,X射线不能用于人身安检,因为它对人体有害。“基于红外线安检的特性和优势,将来城市管理中日益普及这种新技术,也是大势所趋。”褚君浩说。    守护老人居家平安    2010年上海老龄人口信息显示,本市纯老年人家庭老人约有86.38万人,其中独居老人18.8万人。“红外线眼睛”也可以做独居老人的“守护神”。    老人家中安装红外线感应器后,如果在一定时间段内,老人没有经过这个感应器,就很可能出了什么问题,感应器就向社区居家养老服务中心的终端报警,志愿者会立即上门探视,避免老人“有事无人应”。    “这样的红外线技术应用并无多大难度。”褚君浩说,以信息化为特征的智慧城市,更需要“红外线眼睛”关注老年群体。    技术推广先要科普    200年前,红外线被人类发现。近年来,红外线技术在民用技术中的应用,也已初露端倪。    “大家熟悉的风云气象卫星,就安装了不同类型的‘红外线眼睛’,波长分别在1-3微米,3-5微米,以及8-14微米,各种‘眼睛’各司其职,它们共同的特点就是―――黑暗中也看得见。”褚君浩说,其实,只要给普通照相机安装上“红外线眼睛”,风雨中、暗夜里的拍摄,也不再是麻烦事。    “目前的一个常见问题是,不能从国外获取核心技术的产品,我们就能自己研发;而能从国外买来的产品,我们往往就失去抢占市场制高点的动力。”褚院士希望“红外线眼睛”能跳出这个怪圈。另外,技术推广的一个前提是科普,科普能让更多的人了解“红外线眼睛”。

  • 【原创】红外气体传感器应用于瓦斯发电

    瓦斯或称煤层气,实际上是一种非常规天然气,其主要成分是甲烷CH4。CH4瓦斯易爆,煤矿开采时的瓦斯爆炸给人们的生命财产带来严重祸殃,瓦斯直排大气,其温室效应是CO和CO2的多倍。我国煤层瓦斯资源十分丰富,是继俄罗斯和加拿大之后的第三大储量国。据悉,我国煤矿埋深在2 km 以内的瓦斯估计有30×1012 ~35×1012 M3,其热值较高,煤矿瓦斯每立方米可发电1~ 3.2 kW • h。。我国每年煤矿排出的瓦斯总量大约为135亿m3,可产生470亿kWh电能。而现在利用煤矿瓦斯发电产生的发电量仅为20亿kWh左右,大部分瓦斯都被直接排放到大气中,既浪费了资源,也污染了环境。因此大力发展瓦斯发电,不仅能缓解我们能源紧张问题,而且还可以保护环境,取得巨大的经济效应。我国瓦斯发电技术已经比较成熟,尝试和推广瓦斯发电可以拓展瓦斯应用领域,达到“以抽保用,以用促抽”的目的,保证矿井安全生产,保护环境,实现科学发展。国内现在已有多家瓦斯发电厂,相信不久将会更多,瓦斯发电主要关键技术有电控燃气混合器技术,贫燃技术,数字式点火技术,全电子控制技术。电控燃气混合器技术是针对煤矿瓦斯浓度不稳定、压力波动大的特点而采用先进的电子控制系统。首先,发电机组混合器腔内的氧传感器提供精确控制信号,通过步进电机控制空气和瓦斯的流量,实现对空燃比的精确控制,即甲烷与氧气的体积比为1:2。在机组运行过程中,甲烷的含量控制在5% 一16%爆炸极限之间,电子点火后,甲烷在气缸内充分爆炸做功,内燃机活塞上下往复运动,带动曲轴旋转,从而发电机转子切割磁力线发出电能。这种技术使内燃机无条件地适应了煤矿瓦斯的特点,解决了因瓦斯不稳定而影响发电机组功率波动大的问题。毫无疑问,在电控燃气混合技术中是要用到气体传感器的,只有有气体传感器的存在,才能把气体浓度信号传送给电子控制系统,使电机控制进气量,控制燃烧比,最大的利用热能,适应煤矿瓦斯浓度不稳定、压力波动大的问题。因此好的气体传感器在此技术中至关重要。武汉四方光电科技有限公司(www.gassensor.com.cn)专业生产红外气体传感器和红外气体分析仪器。该公司红外气体传感器采用非分光红外吸收光谱法(NDIR)技术,结合嵌入式的硬件和软件技术,可实现不同浓度、不同气体的高精度连续检测。公司产品已经广泛应用到机动车尾气检测、连续污染物监测系统CEMS、沼气分析、冶金炉气分析、红外可燃气体检测、石油天然气勘探等诸多领域。此外,瓦斯中可能含有H2S和水,这两种气体含量要严格控制,否则对管道及发动机的金属部件产生腐蚀,特别是对铜质及铝质部件腐蚀更为严重,因此,H2S的浓度监测也非常重要,四方光电的产品相信也能派上用场。总之,瓦斯发电在我国这样一个煤炭大国将是一个非常有前景的产业,而气体传感器相信也是推动这一产业进步的技术之一。[color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 【原创】非分光红外(NDIR)气体传感器核心技术详解

    电调制非分光红外(NDIR)气体传感器 本文介绍一种采用电调制红外光源的新型红外气体传感器。该传感器通过采用电调制红外光源,省却了传统方法中的机械调制部件;同时采用了高精度干涉滤光片一体化红外传感器以及单光束双波长技术,配合易拆卸的镀金气室及数据采集系统,可以实现SO2、NO、CO2、CO、CH4、N2O等气体的实时测量。一 前言 NDIR红外气体分析仪作为一种快速、准确的气体分析技术,特别连续污染物监测系统(CEMS)以及机动车尾气检测应用中十分普遍。国内NDIR气体分析仪的主要厂家大都采用国际上八十年代初的红外气体分析方法,如采用镍锘丝作为红外光源、采用电机机械调制红外光、采用薄膜电容微音器或InSb等作为传感器等。由于采用电机机械调制,仪器功耗大,且稳定性差,仪器造价也很高。同时采用薄膜电容微音器作为传感使得仪器对震动十分敏感,因此不适合便携测量。随着红外光源、传感器及电子技术的发展,NDIR红外气体传感器在国外得到了迅速的发展。主要表现在无机械调制装置,采用新型红外传感器及电调制光源,在仪器电路上采用了低功耗嵌入式系统,使得仪器在体积、功耗、性能、价格上具有以往仪器无法比拟的优势。二 NDIR气体分析基本机理 当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯--比尔(Lambert-Beer)吸收定律。设入射光是平行光,其强度为I0,出射光的强度为I,气体介质的厚度为L。当由气体介质中的分子数dN的吸收所造成的光强减弱为dI时,根据朗伯--比尔吸收定律: dI/I=-KdN,式中K为比例常数。经积分得:lnI=-KN+α (1) , 式中:N为吸收气体介质的分子总数 α为积分常数。显然有N∝cl,c为气体浓度。则式(1)可写成: I=exp(α)exp(-KN)=exp(α)exp(-μcL)=I0exp(-μcL) (2)式(2)表明,光强在气体介质中随浓度c及厚度L按指数规律衰减。吸收系数取决于气体特性,各种气体的吸收系数μ互不相同。对同一气体,μ则随入射波长而变。若吸收介质中含i种吸收气体,则式(2)应改为:I=I0exp(-l∑μi ci) (3) 因此对于多种混合气体,为了分析特定组分,应该在传感器或红外光源前安装一个适合分析气体吸收波长的窄带滤光片,使传感器的信号变化只反映被测气体浓度变化。 以CO2分析为例,红外光源发射出1-20um的红外光,通过一定长度的气室吸收后,经过一个4.26μm波长的窄带滤光片后,由红外传感器监测透过4.26um波长红外光的强度,以此表示CO2气体的浓度,三 电调制NDIR红外气体传感器关键技术 在设计传感器的光学系统部分时,为了减少红外传感器微弱信号的衰减以及外界信号干扰,将前置放大电路也一并放在光学部件上,并采取了一定的电磁屏蔽措施。为了使气体红外吸收信号具有较好的分辨率,在进行结构设计时,红外光源、气室、红外探测器应设置在同一光轴上。此外为了使得信号足够大,可以使用椭圆型或抛物线型反射镜。红外光源由稳流供电,供电电压和电流根据使用的光源不同而不同。工作时,传感器根据预先设定的调制频率发出周期性的红外光,红外光源发出的红外光通过窗口材料入射到测量气室,测量气室由采样气泵连续将被测气体通入测量气室,气体吸收特定波长的红外光,透过测量气室的红外光由红外探测器探测。由于调制红外光的作用红外传感器输出交流的电信号,通过其后的前置放大电路放大后在一次经过高精密放大整流电路,得到一个与被测气体浓度对应的直流信号送入测控系统处理。红外传感器内有温度传感器探测其工作环境温度。红外传感器信号经过测控系统,并经数字滤波、线性插值及温度补偿等软件处理后,给出气体浓度测量值。采用了以下关键技术:1.红外光源及其调制pulsIR,reflectIR等新型电调制红外光源等,升降温速度很快.红外光源发射窗口上安装有透明窗,一方面可以保证发射的红外光波长在特定范围内,适合于对常规的气体如CO2、CO、CH4、NO、SO2等气体进行测量。此外也可以阻止外界环境对光源温度的影响。2.镀膜气室采用气室与外支撑分离的结构,安装时只需将气室固定安装在支撑结构的中心即可。此种结构设计保证了该部件易于装卸﹑更换;同时由于与外支撑分离,进一步减小了外界条件的影响,使仪器能适应复杂环境下工作。此外原来一些需要较长气室的传感器,采用以往方法加工镀膜工艺十分困难,采用此法后将十分容易,成本也将大大降低。传统气室采用了与外支撑一体化设计,具有制造容易﹑安装方便等优点,但受外界温度波动影响较大;其次,由于被分析气体成分复杂,具有一定的腐蚀性,如SO2﹑NOx等,长时间使用后气室极易被污染,直接影响测量精度。3.红外探测器红外探测器,NDIR气体传感器的核心部件,测量精度很大程度取决于传感器的性能高低。本研究采用高灵敏度红外传感器,例如TPS2534Gx/Gy,TPS4339Gw/Gx/Gy/Gz,在其封装上固定安装有针对不同气体的窄带干涉滤光片,可以实现对不同气体的测量。为了确保红外探测器得到较强的稳定信号,可以设计一种红外探测器定向轴,即使在前置放大板上焊接的红外探测器位置有一定的偏差,本传感器也可确保与红外光源和气室位于同一光学中心轴上。 红外探测器接收红外光产生的信号十分微弱,极易受外界的干扰,因此稳定可靠的前置放大电路是关键,最好采用高精密、低飘移的模拟放大电路,并采用窄带滤波电路。前置放大电路具有精度高、漂移小、响应快的特点。前置放大出来的信号通过二级放大电路,直接输出一个与气体浓度对应信号,并送入测控系统,通过非线性校正和补偿后得到气体浓度。4、 传感器测控系统 为了实现NDIR气体传感器的测量、控制以及自动标定等功能,需要一个合适的微控制器来管理传感器。传感器测控系统 通过采集红外输出信号及测量标准气体曲线,采用非线性校正算法可以直接得到测量气体的浓度。通过采用以上技术,NDIR红外气体传感器的结构比以往仪器将大大简化,仪器功耗也大幅度降低(只有以往的1/4),传感器的成本也不到以往技术的1/4。此类传感器可以实现模块化和标准化,因此更加适合在我国广泛使用。

  • 红外液位传感器原理是什么

    红外液位传感器原理是什么

    红外液位传感器是一种接触式液位测量装置,其核心部件是红外发射管和光敏接收器。这种传感器利用红外线的特性,通过检测液体的存在与否来实现液位的测量。当液位传感器处于无水状态时,红外发射管发出的光通过透镜折射后直接照射到接收管上,接收管接收到光线后会产生相应的电信号。这个电信号经过处理后,可以判断液体的存在与否,进而实现液位的检测。当有水状态时,光线无法直接折射到接收管上,导致接收管无法接收到光线或只能接收到少量光线,此时接收管输出的电信号减弱或消失,传感器即可判断液体的存在与否,进而实现液位的检测。[align=center][img=光电液位传感器,605,375]https://ng1.17img.cn/bbsfiles/images/2024/01/202401151559106375_1876_4008598_3.jpg!w605x375.jpg[/img][/align][url=https://www.eptsz.com]红外液位传感器[/url]具有很多优点,例如测量精度高、响应速度快、稳定性好等。此外,由于其非接触式的特点,它还具有抗腐蚀、防污染等优点,可以广泛应用于各种需要检测液体的场合。红外液位传感器是一种利用红外线技术进行液位测量的传感器,具有广泛的应用前景和重要的实际意义。

  • 【原创大赛】POCT仪器之——便携红外人体血氧饱和度监测仪揭秘

    【原创大赛】POCT仪器之——便携红外人体血氧饱和度监测仪揭秘

    POCT仪器之——便携红外人体血氧饱和度监测仪揭秘 随着电子技术和传感器技术的发展,医院许多大型检测仪器实现了小型化,护士常常进行床边检测(又称“即时检验”Point-of-care Testing,POCT)。 人体除心率、血压、呼吸频率和温度外,脉搏血氧(PO)被认为是排在第5位的最关键健康状况指标。血红蛋白(Hb)是血细胞的重要组成部分,它负责将氧气从肺部输送到身体的其它组织。血红蛋白在任一时刻所含的氧气量被称为氧饱和度。氧饱和度以百分比表示,它是血红蛋白的含氧量与血红蛋白携氧能力之比。血氧饱和度是反映人体呼吸功能及氧含量是否正常的重要生理参数,它是显示人体各组织是否健康的一个重要生理参数,严重缺氧会直接导窒息、休克、死亡等悲剧的发生。 人体血氧饱和度仪应用在以下几个方面:病人在急救和转运过程中、消防抢险、高空飞行必须监测血氧;心脏病、高血压、糖尿病人,特别是老人都会有呼吸方面的问题,监测血氧指标可很好地了解自己的呼吸、免疫系统是否正常,血氧饱和度已成为普通家庭日常监测的重要生理指标;医护人员在查房和出诊是也将血氧作为必监测项目,使用数量有压过听诊器的趋势;呼吸疾病患者特别是长期打鼾的、使用呼吸机和制氧机的患者,在日常生活中使用血氧仪来监测治疗效果;户外动者、登山爱好者、体育运动者在运动时都使用血氧仪,及时知道自己的身体情况,并采取必要的保护措施。下面将市售的一款便携式人体血氧饱和度监测仪进行解析,揭开内部结构的神秘面纱。一、外观 血氧仪像一个大夹子:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170137_482364_1807987_3.jpg电池仓在背面,使用两只7号电池。该仪器非常省电,不使用8秒钟后自动关机,两节电池可用30小时:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170137_482365_1807987_3.jpg手指槽的上端有发射窗,下端有光信号接收窗:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170137_482366_1807987_3.jpg将手指放进去,几秒钟后,显示出血氧饱和度、脉搏值:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170137_482367_1807987_3.jpg二、系统结构原理便携式人体血氧饱和度监测仪结构原理见下图,开机后,电源提供1.8V和3V、12V三组直流电给电路使用,嵌入式微处理器(MCU)向光头驱动电路发出控制信号,使双发光二极管(红光、红外光)交替发出调制光,该两组光线穿过手指,被另一面的光电池接收,信号通过前置放大、整理电路,输入MCU进行分析、计算,结果由LED数字显示板显示出来。http://ng1.17img.cn/bbsfiles/images/2014/10/201410271513_520299_1807987_3.jpg血氧饱和度监测原理:无创脉搏血氧饱和度测量是以朗伯 - 比尔定律,血液中还原血红蛋白 (Hb )和氧合血红蛋白(HbO2 )对光的吸收特性不同为基础的。通过两种不同波长的光(660nm红光和940nm近红外光)分别照射人手指组织后,再由光电检测器转换成电信号。在该波长处,氧合血红蛋白和还原血红蛋白的吸收差别较大,组织中的其他成分吸收光信号是恒定的, 经过光电检测器后得到直流分量 DC,而动脉血中的 HbO2 和Hb对光信号的吸收是随着脉搏搏动作周期性变化, 经过光电检测器后得到交流分量 AC, 由于 HbO2 和 Hb对同一种光线的吸收率各不相同, 微处理器计算所吸收的这两种光谱的比率,并将结果与存在存储器里的饱和度数值表进行比较,从而得出血氧饱和度。三、拆解主电路板可用指甲从上端缝隙处,将上盖分开:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170138_482369_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312170138_482370_1807987_3.jpg电路板正面的元件不多,显示采用LED数字显示板,占据了电路板主要面积:http://ng1.17img.cn/bbsfiles/images/2014/10/201410271514_520300_1807987_3.jpg电路板上的集成电路ULN2003A,74HC164:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170138_482372_1807987_3.jpgULN2003A是高耐压、大电流反相器,内部由七个硅NPN 达林顿管组成的驱动芯片,电路框图如下:[im

  • 【资料】气体传感器的基础知识

    目前按照气敏特性来分,气体传感器主要分为:半导体型、电化学型、固体电解质型、接触燃烧型、光化学型等气体传感器,又以前两种最为普遍。 一、半导体型气体传感器的优缺点自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器已经成为当今应用最普遍、最实用的一类气体传感器。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。不足之处是必须在高温下工作、对气体或气味的选择性差、元件参数分散、稳定性不理想、功率高等方面。 二、半导体传感器需要加热的原因半导体传感器是利用一种金属氧化物薄膜制成的阻抗器件,其电阻随着气体含量不同而变化。气体分子在薄膜表面进行还原反应以引起传感器电导率的变化。为了消除气体分子达到初始状态就必须发生一次氧化反应。传感器内的加热器可以加速氧化过程,这也是为什么有些低端传感器总是不稳定,其原因就是没有加热或加热电压过低导致温度太低反应不充分。 三、电化学气体传感器的工作原理 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的原电池式以及需要供电的可控电位电解式,目前可以检测许多有毒气体和氧气,后者还能检测血液中的氧浓度。电化学传感器的主要优点是气体的高灵敏度以及良好的选择性。不足之处是有寿命的限制一般为两年。 四、半导体传感器和电化学传感器的区别 半导体传感器因其简单低价已经得到广泛应用,但是又因为它的选择性差和稳定性不理想目前还只是在民用级别使用。而电化学传感器因其良好的选择性和高灵敏度被广泛应用在几乎所有工业场合。 五、固态电解质气体传感器 顾名思义,固态电解质就是以固体离子导电为电解质的化学电池。它介于半导体和电化学之间。选择性,灵敏度高于半导体而寿命又长于电化学,所以也得到了很多的应用,不足之处就是响应时间过长。 六、接触燃烧式气体传感器 接触燃烧式气体传感器只能测量可燃气体。又分为直接接触燃烧式和催化接触燃烧式,原理是气敏材料在通电状态下,可燃气体在表面或者在催化剂作用下燃烧,由于燃烧使气敏材料温度升高从而电阻发生变化。后者因为催化剂的关系具有广普特性应用更广。 七、光学式气体传感器光学式气体传感器主要包括红外吸收型、光谱吸收型、荧光型等等,主要以红外吸收型为主。由于不同气体对红外波吸收程度不同,通过测量红外吸收波长来检测气体。目前因为它的结构关系一般造价颇高。

  • 【原创】请求高手帮助,同行交流,红外传感器探头

    我买了几个热释电传感器和红外灯泡 组装成了自己的红外传感器探头但是现在遇到麻烦了:显示浓度老是下降,不知道什么原因ps:原理是基于lamber-bill吸收定律,用到ndir(非色散红外)的原理(原理见附件)我做过很多次试验 ,因为传感器电路部分别人做的,买别人的探头安装的时候 没有下降的迹象 但是用我做的探头的时候 就会下降。肯求大家来讨论讨论[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=59230]电调制非分光红外气体传感器[/url]

  • 【分享】常见气体传感器的介绍

    首先介绍的是红外式传感器和光离子气体传感器。红外式传感器是利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。PID光离子化气体传感器由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下离子化,生成正负离子,在电极间形成电流,经放大输出信号,PID具有灵敏度高,无中毒问题,安全可靠等优点。 其实介绍的是催化燃烧式传感器,催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 最后介绍的是定电位电解式气体传感器,定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,此类传感器大都依赖进口。定电位电解式气体传感器在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。

  • 二氧化碳气体传感器用于监测汽车尾气

    [align=center][/align]随着人们生活水平和经济水平的提高,汽车已成为每个家庭的必不可少的交通工具。但是,汽车尾气污染问题是我们现在面临的一个严重的环境问题。汽车每年排放的有害排放量是其自身重量的三倍。 英国环境保护协会曾经发布了一份研究报告,每年因空气污染而死亡的英国人比在交通事故中丧生的人高10倍。在汽车发动机燃烧后排放到空气中的气体主要包括二氧化氮、二氧化硫、一氧化碳、 碳氢化合物、二氧化碳等。废气的排放直接导致环境污染,危害人体健康。污染严重的区域导致“酸雨”的形成,从而造成土壤、水源的污染,影响空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,破坏农作物和森林植被并腐蚀建筑物。汽车尾气排放的有害物质不仅增加了空气污染,而且破坏了环境的生态平衡。更重要的是,这些污染物将在一定条件下产生二次污染-光化学烟雾,这不仅使人们看不到远处的任何东西。它也使人流眼泪、呼吸困难甚至呕吐。对于年幼的孩子来说,他们自己的免疫系统尚未完全发育,免疫力很低,在受污染的环境中,孩子比成年人受到的伤害更大。汽车尾气是铅的重要来源,孩子的身高大约等于汽车尾气的高度。如果小孩站在汽车后面或有更多汽车,那么他将直接吸入有害气体,因此小孩更容易受到汽车尾气的影响。在许多大中型城市中,汽车的数量实际上已经“超载”,汽车排气控制和治理已成为世界上的重要问题。因此,汽车发动机排放的尾气监测已成为环境监测的重点之一,包含易燃易爆、有毒有害气体的监测,工采网代理多种类型的气体传感器,这些气体传感器可以用于检测汽车尾气排放。英国GSS 高速响应红外二氧化碳传感器(NDIR CO2传感器) - SprintIRSprintIR 是一款高速响应 红外CO2传感器(20Hz)高速检测(20Hz),测量范围从 0 到 100%;英国GSS 低功耗HVAC专用红外二氧化碳传感器- COZIR-A红外二氧化碳传感器(NDIR CO2传感器)COZIR-A 是具有低功耗(3.5mW)的高性能 CO2传感器,是应用于电池供电产品和便携式设备的理想选择;日本figaro 民用电化学一氧化碳传感器 - TGS5042一氧化碳可检测浓度高达1%,操作使用温度范围广(-5˚ C ~ 55˚ C);对干扰气体灵敏度很低。这种传感器具有使用寿命长,长期稳定性好,精度高。工采网建议大家在开车的时候要注意车内通风,使得车内空气可以循环,从而防止汽车排除的废气将再次回收到汽车,被人体被吸收。

  • 红外水位传感器的介绍

    红外水位传感器的介绍

    [align=left][size=18px]红外传感器是通过光电原理来检测有水无水,传感器内部有发射光线的和接收光电的二极管,当液位上升到其中一个二极管,则传感器会判断为有水,当液位下降到低于2个二极管的时候,传感器会判断为无水。[/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px]红外传感器在检测的时候,朝上,朝下安装的时候,检测精度为±1mm,在朝上、朝下安装的这种情况下,传感器的发射管以及接收管,都是同个水平线,液位的上升下降,都是同时淹没或者低于二极管,所以即可实现液位线一致。[/size][/align][align=left][size=18px] [/size][/align][align=center][size=18px][img=,690,363]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171710528492_1619_4008598_3.jpg!w690x363.jpg[/img][/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px]红外传感器可实现上、下、侧、斜置安装,上下安装,可实现检测精度为±1mm,而其他方式安装,则无法保证精度达到±1mm,那是因为发射管和接收管,不是在同一水平线上,且安装的时候需拧转传感器,很难把控。[/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px]若是想要侧面安装也达到±1mm的话则可使用非接触式红外水位传感器,因其一般会预留安装孔,可打螺丝固定,2个固定孔的位置保持在同一水平线,所以可以满足此需求。[/size][/align][align=left][size=18px] [/size][/align][align=right][/align]

  • 红外测温仪里的红外线温度传感器仪器对温度环境有影响吗?

    红外测温仪里有一种叫红外线温度传感仪器,这种新型温度传感器的测量灵敏度为:ΔT=ΔL/L(α1-α2),,△L就是红外位移传感器对有机玻璃长度测量的灵敏度。它们的主要作用是:利于高精度的螺旋测微器进行定标,最终得到我们想要的,较精度(3×10-7m)的位移测量仪。  我们采用微品玻璃陶瓷材料制成一个圆筒,这种微晶玻璃陶瓷材料具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能,其基本性能指标如下:使用温度-273℃~1000℃体积电阻率1.08x1014Ω·cm,热膨胀系数为αl=8.6x10-6/℃,微品玻璃陶瓷抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度不变化。  在筒内的一端固定一根长L=10cm的薄有机玻璃圆筒,在筒内另一端固定一个红外位移传感器,并且让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为α2=1.7x10-4/℃,两者相差达2个数量级,所以当温度变化时,我们可以认为有机玻璃在陶瓷卡材料上的相对位移可以忽略,故有机玻璃的自由端同红外位移传感器之间的相对位置变化将改变红外接收管的有效接收面积。从而使位移传感器输出电压也随之改变。这种新型温度传感器的测量灵敏度为:  ΔT=ΔL/L(α1-α2)  其中,△L为红外位移传感器对有机玻璃长度测量的灵敏度。  红外位移传感器,主要机构由红外发光二极管发射和接受装置,数据放大去噪部分以及数据采集处理系统组成。我们可以看到它是利用红外光电二级管的光电转换规律,通过其遮挡的光通量与输出电流的关系确定遮挡体。能将微小的温度转换成电压的变化。在运用放大电路将其进行放大处理。结合数据采集卡建立电压信号与温度的函数关系。最后利于高精度的螺旋测微器进行定标,最终形成我们可以得到一个具有较高测量精度(3×10-7m)的位移测量仪。  由于光电转换的电流较小而且红外发光二极管的功率也较低,因此我们可以认为红外位移传感器不会对测量的温度环境有影响。  从这里我们知道,红外线温度传感仪器是测量精密度比较高的红外测温工具,它对温度环境不受影响。

  • 红外接近传感器的作用是什么?

    红外接近传感器的作用是什么?

    [size=24px][font=宋体]红外接近传感器是用来检测物体的,利用红外的物理特性来测量感应强度。在日常生活中被广泛应用,如家用电器、智能洗手液机、感应开关等设备。[/font][img=,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241433390457_4745_4008598_3.jpg!w690x275.jpg[/img][font=宋体]以洗手液机为例,传统的洗手液是通过按压的方式出液的,而智能洗手液机则是通过感应手而出液,这样不仅方便卫生,还减少了交叉感染。将红外传感器安装在洗手液机中,当手放在洗手液机的感应位置时,传感器发射管发出的光通过人手会反射到接收器上,液体就会出来。[/font][font=宋体]红外接近传感器具有防水防尘、寿命长、稳定性强、检测距离精度高、一致性强等优点,可根据应用定制。[/font][/size]

  • 【讨论】近红外滤光片与近红外传感器的关系

    大家讨论讨论:近红外带通滤光片(滤得波长1000nm--1500nm),近红外传感器光感峰值大约在1200nm左右.请问,如果我想要一光线通过滤光片,然后用传感器测其光强,与直接用传感器测其光强,两者结果会是什么关系?

  • 【资料】红外传感器的种类

    红外技术发展到现在,已经为大家所熟知,te连接器已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。红外传感器根据探测机理可分成为:光子探测器(基于光电效应)和热探测器(基于热效应)。在即将开始的2011中国电子展上也会有产品展示。

  • 什么是气体传感器

    气体传感器是用来检测气体的成份和含量的传感器。在上世纪70年代,气体传感器就成为传感器的一个大系列,属于化学传感器的一个分支。目前市场上流行的气体传感器分为: 半导体式气体传感器、催化燃烧式气体传感器、热导池式气体传感器、电化学式气体传感器、红外线气体传感器、磁性氧气传感器、检测仪中的0-100% LEL与0-n PPM、其他。下边介绍下半体导体式气传感器:半体导体式气传感器它是利用一些金属氧化物半导体材料,在一定温度下,电导率随着环境气体成份的变化而变化的原理制造的。我公司生产的氧化锆氧分析仪采用的是氧化锆锆管,被测气体(烟气)通过传感器进入氧化锆管的内侧,参比气体(空气)通过自然对流进入传感器的外侧,当锆管内外侧的氧浓度不同时在氧化锆管内外侧产生氧浓差电势(在参比气体确定情况下,氧化锆输出的氧浓差电势与传感器的工作温度和被测气体浓度呈函数对应关系)该氧浓差电动势经显示仪表转化成与被测烟气含氧量呈线性关系的标准信号供显示和输出。半导体式气体传感器可以有效地用于:甲烷、乙烷、丙烷、丁烷、酒精、甲醛、一氧化碳、二氧化碳、乙烯、乙炔、氯乙烯、苯乙烯、丙烯酸等很多气体地检测。尤其是,这种传感器成本低廉,适宜于民用气体检测的需求。缺点:稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,不宜应用于计量准确要求的场所。我公司产的氧化锆氧分析仪已经达到了日本、美国、德国、韩国等国际水平。

  • 【求助】关于中红外光源及中红外传感器

    各位常接触传感器的朋友,除了西安聚星光电技术有限公司外,能告诉我西安还有哪家公司生产中红外光源和中红外传感器,最好是西安的,如果知道外省哪家公司有,请"高抬贵手"写下公司名字,不胜感激.急啊

  • 何谓气体传感器-四种气体传感器的检测原理

    所谓[url=https://www.isweek.cn/category_11.html]气体传感器[/url],是一种可以检查出目视不到的气体存在的传感装置。在以家用天燃气丙烷气体报警器为主的空调与空气洁净器、汽车等领域广泛得到应用。现在工采网小编对4种气体检测原理进行说明。[b][b][b]一、半导体气体传感器工作原理[/b][b]简单的架构[/b][/b][/b][url=http://news.isweek.cn/wp-content/uploads/2021/12/shikumi.gif][img=shikumi,300,280]http://news.isweek.cn/wp-content/uploads/2021/12/shikumi.gif[/img][/url][b][b][b]STEP1[/b][/b][/b]在洁净的空气中,氧化锡表面吸附的氧会束缚氧化锡中的电子,造成电子难以流动的状态。[b][b][b]STEP2[/b][/b][/b]在泄漏的气体(还原性气体)环境中,表面的氧与还原气体反应后消失,氧化锡中的电子重获自由,受此影响,电子流动通畅。[b][b][b]传感器的检测原理[/b][/b][/b]当氧化锡粒子在数百度的温度下暴露在氧气中时,氧气捕捉粒子中的电子后,吸附于粒子表面。结果,在氧化锡粒子中形成电子耗尽层。由于气体传感器使用的氧化锡粒子一般都很小,因此在空气中整个粒子都将进入电子耗尽层的状态。这种状态称为容衰竭(volume depletion)。相反,把粒子中心部位未能达到耗尽层的状态称为域衰竭(regional depletion)。使氧气分压从零(flat band开始按照小([O[sup]-[/sup]](Ⅰ))→中([O[sup]-[/sup]](Ⅱ))→大([O[sup]-[/sup]](Ⅲ)))的顺序上升时,能带结构与电子传导分布的变化如下图所示([O[sup]-[/sup]]:吸附的氧气浓度)。在容衰竭(volume depletion)状态下,电子耗尽层的厚度变化结束,产生费米能级转换[i][i]p[/i][/i]kT,电子耗尽状态往前推进则[i][i]p[/i][/i]kT增大,后退则pkT缩小。[b][b][b]■ 随着吸附的氧气浓度增加半导体粒子的耗尽状态在推进[/b][/b]能带结构[/b][table][tr][td][img]http://www.figaro-china.com/img/development/handoutai/zu1.jpg[/img][/td][td][table][tr][td]x[/td][td]:[/td][td]半径方向的距离[/td][/tr][tr][td]qV(x)[/td][td]:[/td][td]势垒[/td][/tr][tr][td][i]a[/i][/td][td]:[/td][td]离子半径[/td][/tr][tr][td][O[sup]-[/sup]][/td][td]:[/td][td]吸附氧气的浓度[/td][/tr][tr][td]E[sub]C[/sub][/td][td]:[/td][td]传导带下端[/td][/tr][tr][td]E[sub]F[/sub][/td][td]:[/td][td]费米能级[/td][/tr][tr][td][i]p[/i]kT[/td][td]:[/td][td]费米能级转换[/td][/tr][/table][/td][/tr][/table][b]传导电子分布[/b][table][tr][td][img]http://www.figaro-china.com/img/development/handoutai/zu2.jpg[/img][/td][td][table][tr][td][e][/td][td]:[/td][td]电子浓度[/td][/tr][tr][td]N[sub]d[/sub][/td][td]:[/td][td]施子密度[/td][/tr][/table][/td][/tr][/table]容衰竭(volume depletion)状态下球状氧化锡粒子表面的电子浓度[e][sub]S[/sub]可用施子密度Nd、粒子半径[i]a[/i]以及德拜长度L[sub]D[/sub]通过式子(1)表示。如果[i]p[/i]增大则[e][sub]S[/sub]减少,[i]p[/i]减少则[e][sub]S[/sub]增大。[e][sub]S[/sub]=N[sub]d[/sub] exp{-(1/6)([i]a[/i]/L[sub]D[/sub])[sup]2[/sup]-[i]p[/i]} ... (1)由大小、施子密度相同的球状氧化锡粒子组成的传感器的电阻值R,可使用flat band时的电阻值R[sub]0[/sub],通过式子(2)表示。[e][sub]S[/sub]减少则将增大,[e][sub]S[/sub]增大则将缩小。R/R[sub]0[/sub]= N[sub]d[/sub]/[e][sub]S[/sub] ... (2)使用了氧化锡的半导体式气体传感器,就是这样通过氧化锡粒子表面的[O[sup]-[/sup]]的变化来体现电阻值R的变化。置于空气中被加热到数百度的氧化锡粒子,一旦暴露于一氧化碳这样的还原性气体中,其表面吸附的氧气与气体之间发生反应后,使[O[sup]-[/sup]]减少,结果是[e][sub]S[/sub]增大,R缩小。消除还原性气体后,[O[sup]-[/sup]]增大到暴露于气体前的浓度,R也将恢复到暴露于气体前的大小。使用氧化锡的半导体式气体传感器就是利用这个性能对气体进行检测。[b][b][b]二、催化燃烧式气体传感器工作原理[/b][/b][/b]催化燃烧式气体传感器由对可燃气体进行反应的检测片(D)和不与可燃气体进行反应的补偿片(C)2个元件构成。如果存在可燃气体的话,只有检测片可以燃烧,因此检测片温度上升使检测片的电阻增加。 相反,因为补偿片不燃烧,其电阻不发生变化(图1)。这些元件组成惠斯通电桥回路(图2),不存在可燃气体的氛围中,可以调整可变电阻(VR)让电桥回路处于平衡状态。 然后,当气体传感器暴露于可燃气体中时,只有检测片的电阻上升,因此电桥回路的平衡被打破,这个变化表现为不均衡电压(Vout)而可以被检测出来。此不均衡电压与气体浓度之间存在图3所示的比例关系,因此可以通过测定电压而检出气体浓度。[b]■ (图1)测定电路[/b][img=,621,257]http://www.figaro-china.com/img/development/sesshoku/img1.jpg[/img][b]■ (图2)测试电路[/b][img=,297,255]http://www.figaro-china.com/img/development/sesshoku/img2.jpg[/img][b]■ (图3)[/b][img=,297,255]http://www.figaro-china.com/img/development/sesshoku/img3.jpg[/img][b][b][b]三、电化学气体传感器工作原理[/b][/b]传感器元件构成与电极反应式[/b][img=,621,255]http://www.figaro-china.com/img/development/denkikagaku/shiki.jpg[/img]传感器由来自贵金属催化剂的检测极、对极与离子传导体构成。当CO等检测对象气体存在时,在检测极催化剂上与空气中的水蒸气发生(1)式所示的反应。CO + H[sub]2[/sub]O → CO[sub]2[/sub]+ 2H[sup]+[/sup] + 2e[sup]-[/sup] …(1)检测极与对极接通电流(短路)后,检测极产生的质子(H+)与同时产生的电子(e-)分别通过离子传导体与外部电线(引线)各自到达对极,在对极上与空气中的氧之间发生(2)式所示的反应。(1/2)O[sub]2[/sub] + 2H[sup]+[/sup] + 2e[sup]-[/sup] → H[sub]2[/sub]O …(2)也就是说此传感器构成了由(1)(2)反应式形成的(3)反应式的全电池反应,可以认为是将气体作为活性物质的电池。CO + (1/2)O[sub]2[/sub] → CO[sub]2[/sub] …(3)当做气体传感器使用时,接通检测极与对极的电流,来测定其短路电流。[b]CO浓度检测原理公式[/b][img=,254,236]http://www.figaro-china.com/img/development/denkikagaku/co.jpg[/img]对流过外部电路的短路电流与气体浓度的关系,通过传感器进行适当的扩散控制(控制气体的流入量),呈现出式子(4)这样的比例关系(右图)。I = F × (A/σ) × D × C × n …(4)这里 I:短路电流;A:扩散孔面积;σ:扩散层长度;D:气体扩散系数;C:气体浓度;n:反应的电子数量[b]特长[/b]反应式(1)所示的氧化电位由于比氧化电极电位的基准值(2H+ + 2e- ? H2)要低(拥有较低电位),因此此反应不需要消耗来自外部的电压、温度等其他能量,可以有选择地进行,与别的检测方式相比在干扰性、重复性、节电方面要优越得多。[b][b][b]四、NDIR气体传感器工作原理[/b][b]NDIR(非色散型红外线)式气体传感器的工作原理[/b][/b][/b]NDIR(non-dispersive infrared)式气体传感器是通过由入射红外线引发对象气体的分子振动,利用其可吸收特定波长红外线的现象来进行气体检测的。红外线的透射率(透射光强度与源自辐射源的放射光强度之比)取决于对象气体的浓度。[img]http://www.figaro-china.com/img/development/ndir-type/zu01.png[/img]传感器由红外线放射光源、感光素子、光学滤镜以及收纳它们的检测匣体、信号处理电路构成。在单光源双波长型传感器中,在2个感光素子的前部分别设置了具有不同的透过波长范围阈值的光学滤镜,通过比较可吸收检测对象气体波长范围与不可吸收波长范围的透射量,就可以换算为相应的气体浓度。因此,双波长方式可实现长期而又稳定的检测。[b]检测原理[/b]用中波段红外线照射气体后,由于气体分子的振动数与红外线的能级处于同一个光谱范畴,红外线与分子的固有振动数发生共振后,在分子振动时被气体分子所吸收。气体浓度与红外线透射率的关系可通过下述朗伯-比尔定律进行说明。对于NDIR式气体传感器来说,对象气体的吸光度ε与光程d是不变的,在与成为对象的气体吸收能(波长)一致的光谱范畴,通过测定红外线的透射率[i]T[/i],即可得到对象气体的浓度c。[img]http://www.figaro-china.com/img/development/ndir-type/zu02.png[/img]来自放射源的入射光强度[i]I[/i][sub]0[/sub],是通过使用不吸收红外线的零点气体校准后设定的。吸光度ε是利用已知浓度的对象气体进行校准后进行初始设定的。[b]特长[/b]因为红外线是根据目标气体固有的红外能量(波长)被吸收的,所以气体选择性非常高成为其最大的特长。即使在高浓度的对象气体中长时间进行暴露,也从原理上避免了灵敏度的不可逆变化。

  • 七大类常用气体传感器优缺点对比

    一、半导体传感器和电化学传感器的区别 半导体传感器因其简单低价已经得到广泛应用,但是又因为它的选择性差和稳定性不理想目前还只是在民用级别使用气体探测器。而电化学传感器因其良好的选择性和高灵敏度被广泛应用在几乎所有工业场合。 二、半导体型气体传感器的优缺点 自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器已经成为当今应用最普遍、最实用的一类气体传感器。它具有成本低廉、制造简单、 灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。不足之处是必须在高温下工作、对气体或气味的选择性差、元件参数分散、稳定性不理想、功率 高等方面。 三、接触燃烧式气体传感器 接触燃烧式气体传感器只能测量可燃气体。又分为直接接触燃烧式和催化接触燃烧式,原理是气敏材料在通电状态下,可燃气体在表面或者在催化剂作用下燃烧,由于燃烧使气敏材料温度升高从而电阻发生变化。后者因为催化剂的关系具有广普特性应用更广。 四、固态电解质气体传感器 顾名思义,固态电解质就是以固体离子导电为电解质的化学电池。它介于半导体和电化学之间。选择性,灵敏度高于半导体而寿命又长于电化学,所以也得到了很多的应用,不足之处就是响应时间过长。 五、电化学气体传感器的工作原理 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的原电池式以及需要供电的可控电位电解式,目前可以检测许多有毒气体和氧气,后者还能检测 血液中的氧浓度。电化学传感器的主要优点是气体的高灵敏度以及良好的选择性。不足之处是有寿命的限制一般为两年。 六、光学式气体传感器 光学式气体传感器主要包括红外吸收型、光谱吸收型、荧光型等等,主要以红外吸收型为主。由于不同气体对红外波吸收程度不同,通过测量红外吸收波长来检测气体。目前因为它的结构关系一般造价颇高。 七、半导体传感器需要加热的原因 半导体传感器是利用一种金属氧化物薄膜制成的阻抗器件气体探测器, 其电阻随着气体含量不同而变化。气体分子在薄膜表面进行还原反应以引起传感器电导率的变化。为了消除气体分子达到初始状态就必须发生一次氧化反应。传感器 内的加热器可以加速氧化过程,这也是为什么有些低端传感器总是不稳定,其原因就是没有加热或加热电压过低导致温度太低反应不充分。

  • 非接触红外水位传感器介绍

    非接触红外水位传感器介绍

    [size=18px]红外水位传感器有接触式以及非接触式,今天主要介绍的是非接触式红外水位传感器,其工作原理是,传感器发出红外光,利用光在空气中和液体中折射不同进行检测,从而判断传感器位置是否处于有水状态,根据有水无水给出2种不同信号。[/size][size=18px] [/size][align=center][size=18px][img=,690,358]https://ng1.17img.cn/bbsfiles/images/2022/05/202205131612331303_4463_4008598_3.png!w690x358.jpg[/img][img=,690,358]https://ng1.17img.cn/bbsfiles/images/2022/05/202205131612331303_4463_4008598_3.png!w690x358.jpg[/img][/size][/align][align=center][size=18px] [/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px]使用非接触式水位传感器需要在透明以及半透明的水箱上设计棱镜,棱镜和水箱一体成型,才能实现检测,将传感器对准安装在水箱上,可满足检测水箱是否在位,适用于水箱需移动的应用。[/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px]在此应用上,棱镜设计的时候可以根据实际情况变动结构,只要达到光线反射要求即可,无特定的形状要求,但需要让水箱光锥与传感器对齐,水箱不可左右偏移,左右偏移会导致传感器输出电压不准,若光锥是长条形,则水箱可以上下偏移。[/size][/align][size=18px] [/size][size=18px] 主要可实现功能:缺液报警、满溢提醒、无水亮灯提醒、自动加水,等等功能。[/size][size=18px] [/size][size=18px][b][/b][/size]

  • 【分享】气体检测传感器的检测原理

    检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器、等以下简单概述各种传感器的原理及特点。金属氧化物半导体式传感器金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。定电位电解式气体传感器定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。迦伐尼电池式氧气传感器隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。红外式传感器红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。PID光离子化气体传感器PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。

  • 分离式液位传感器与一体式液位传感器对比

    分离式液位传感器与一体式液位传感器对比

    [align=left][font=宋体]在现代工业和日常生活中,光电液位传感器是不可或缺的一部分,广泛应用于智能家电设备中检测液位变化,实现缺液提醒报警功能。今天小编带大家了解一下关于分离式液位传感器和一体式液位传感器。[/font][/align][align=left] [/align][align=left][font=宋体]一体式光电液位传感器是根据光学原理来检测变化的,传感器内部有红外发射管和光敏接收器,通过棱镜部位检测,当传感器位置无水时,发射管发出的光经过棱镜后会折射至接收管,有水状态时,光折射到液体中,接收器接收不到光线,以此来判断输出高低电平信号。需要在水箱上开孔安装,适合水箱不需要移动的设备。[/font][/align][align=center][img=霍尔流量计,639,367]https://ng1.17img.cn/bbsfiles/images/2023/12/202312281724028821_399_4008598_3.jpg!w639x367.jpg[/img][/align][align=left][font=宋体]分离式液位传感器在传统光学传感器的基础上,将菱鏡部分直接设计到用户水箱上,通过模具一体成型。而光学组件则被分离出来,置于水箱外部进行感应。这种设计使得传感器独立于水箱外,中间可以间隔空气。这种设计有诸多优点。首先,它解决了水箱需要移动和加水的问题,提高了使用便利性。其次,由于传感器独立于水箱外,水箱内部没有外结构件干涉,更易清洁,从而避免了传感器边角的细菌滋生。此外,这种设计的水位感应精准,能够满足各种精确的液位测量需求。[/font][/align][align=left] [/align][align=left][font=宋体][url=https://www.eptsz.com]分离式液位传感器[/url]和一体式液位传感器各有优缺点,一体式需要开孔安装,适合水箱不需要移动的设备,分离式液位传感器方便水箱随时移动,更易于清洁和维护,在选择使用哪种传感器时,需要根据实际的应用需求和场景来决定。[/font][/align]

  • 气体检测传感器的检测原理

    检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、定电位电解式气体传感器、催化燃烧式传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等,以下简单阐述各种传感器的原理及特点。 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。

  • 检测物体用哪种传感器?

    检测物体用哪种传感器?

    [size=24px][font=宋体]红外接近传感器可以用来检测物体,它是用红外线来探测目标,利用红外的物理特性来检测感应强度。[/font][font=宋体]红外接近传感器的应用非常广泛,例如在自动给液机中的应用,通过红外感应人手,将手放在给液机下面,传感器内部发射管发出的光线会通过人手反射回接收管上,以此来给出信号,设备则会自动出液。这种应用不仅减少了交叉感染,而且还更加智能、卫生。[/font][img=,690,664]https://ng1.17img.cn/bbsfiles/images/2022/12/202212090937425986_9640_4008598_3.jpg!w690x664.jpg[/img][font=宋体][font=宋体]红外接近传感器具有免调试、免维护、防水防尘、稳定性强、测试距离准确、使用寿命长等优点。经过不断地改进升级,减小了传感器受阳光干扰的影响,如果您需要定制产品,我们可以根据您的需求提供合适的方案。[/font][font=Calibri][url=https://www.eptsz.cn/][b]www.eptsz.cn[/b][/url][/font][/font][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制